
QUIC J. Iyengar, Ed.
Internet-Draft Google
Intended status: Standards Track M. Thomson, Ed.
Expires: August 1, 2018 Mozilla
 January 28, 2018

QUIC: A UDP-Based Multiplexed and Secure Transport
draft-ietf-quic-transport-09

Abstract

 This document defines the core of the QUIC transport protocol. This
 document describes connection establishment, packet format,
 multiplexing and reliability. Accompanying documents describe the
 cryptographic handshake and loss detection.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/-transport [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 1, 2018.

Iyengar & Thomson Expires August 1, 2018 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-transport
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Transport Protocol January 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
2. Conventions and Definitions 5
2.1. Notational Conventions 6

3. A QUIC Overview . 6
3.1. Low-Latency Connection Establishment 6
3.2. Stream Multiplexing 7

 3.3. Rich Signaling for Congestion Control and Loss Recovery . 7
3.4. Stream and Connection Flow Control 7
3.5. Authenticated and Encrypted Header and Payload 8
3.6. Connection Migration and Resilience to NAT Rebinding . . 8
3.7. Version Negotiation 8

4. Versions . 8
5. Packet Types and Formats 9
5.1. Long Header . 10
5.2. Short Header . 11
5.3. Version Negotiation Packet 13
5.4. Cryptographic Handshake Packets 14
5.4.1. Initial Packet 14
5.4.2. Retry Packet . 15
5.4.3. Handshake Packet 15

5.5. Protected Packets . 16
5.6. Connection ID . 16
5.7. Packet Numbers . 17
5.7.1. Initial Packet Number 18

5.8. Handling Packets from Different Versions 18
6. Frames and Frame Types 19
7. Life of a Connection . 20
7.1. Matching Packets to Connections 21
7.2. Version Negotiation 22
7.2.1. Sending Version Negotiation Packets 22
7.2.2. Handling Version Negotiation Packets 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Iyengar & Thomson Expires August 1, 2018 [Page 2]

Internet-Draft QUIC Transport Protocol January 2018

7.2.3. Using Reserved Versions 23
7.3. Cryptographic and Transport Handshake 24
7.4. Transport Parameters 25
7.4.1. Transport Parameter Definitions 27
7.4.2. Values of Transport Parameters for 0-RTT 29
7.4.3. New Transport Parameters 29
7.4.4. Version Negotiation Validation 30

7.5. Stateless Retries . 31
7.6. Proof of Source Address Ownership 32
7.6.1. Client Address Validation Procedure 32
7.6.2. Address Validation on Session Resumption 33
7.6.3. Address Validation Token Integrity 34

7.7. Connection Migration 34
7.7.1. Privacy Implications of Connection Migration 35
7.7.2. Address Validation for Migrated Connections 36

7.8. Spurious Connection Migrations 37
7.9. Connection Termination 38
7.9.1. Closing and Draining Connection States 38
7.9.2. Idle Timeout . 40
7.9.3. Immediate Close 40
7.9.4. Stateless Reset 41

8. Frame Types and Formats 44
8.1. Variable-Length Integer Encoding 44
8.2. PADDING Frame . 45
8.3. RST_STREAM Frame . 45
8.4. CONNECTION_CLOSE frame 46
8.5. APPLICATION_CLOSE frame 47
8.6. MAX_DATA Frame . 47
8.7. MAX_STREAM_DATA Frame 48
8.8. MAX_STREAM_ID Frame 49
8.9. PING Frame . 49
8.10. BLOCKED Frame . 50
8.11. STREAM_BLOCKED Frame 51
8.12. STREAM_ID_BLOCKED Frame 51
8.13. NEW_CONNECTION_ID Frame 52
8.14. STOP_SENDING Frame 52
8.15. PONG Frame . 53
8.16. ACK Frame . 53
8.16.1. ACK Block Section 55
8.16.2. Sending ACK Frames 56
8.16.3. ACK Frames and Packet Protection 57

8.17. STREAM Frames . 58
9. Packetization and Reliability 60
9.1. Packet Size . 61
9.2. Path Maximum Transmission Unit 62
9.2.1. Special Considerations for PMTU Discovery 63

 9.2.2. Special Considerations for Packetization Layer PMTU
 Discovery . 63

Iyengar & Thomson Expires August 1, 2018 [Page 3]

Internet-Draft QUIC Transport Protocol January 2018

10. Streams: QUIC's Data Structuring Abstraction 64
10.1. Stream Identifiers 64
10.2. Stream States . 65
10.2.1. Send Stream States 66
10.2.2. Receive Stream States 68
10.2.3. Permitted Frame Types 71
10.2.4. Bidirectional Stream States 71

10.3. Solicited State Transitions 72
10.4. Stream Concurrency 73
10.5. Sending and Receiving Data 74
10.6. Stream Prioritization 74

11. Flow Control . 75
11.1. Edge Cases and Other Considerations 76
11.1.1. Response to a RST_STREAM 77
11.1.2. Data Limit Increments 77

11.2. Stream Limit Increment 78
11.2.1. Blocking on Flow Control 78

11.3. Stream Final Offset 78
12. Error Handling . 79
12.1. Connection Errors 79
12.2. Stream Errors . 80
12.3. Transport Error Codes 80
12.4. Application Protocol Error Codes 82

13. Security and Privacy Considerations 82
13.1. Spoofed ACK Attack 82
13.2. Slowloris Attacks 83
13.3. Stream Fragmentation and Reassembly Attacks 83
13.4. Stream Commitment Attack 83

14. IANA Considerations . 84
14.1. QUIC Transport Parameter Registry 84
14.2. QUIC Transport Error Codes Registry 85

15. References . 88
15.1. Normative References 88
15.2. Informative References 89
15.3. URIs . 90

Appendix A. Contributors . 90
Appendix B. Acknowledgments 90
Appendix C. Change Log . 91
C.1. Since draft-ietf-quic-transport-08 91
C.2. Since draft-ietf-quic-transport-07 91
C.3. Since draft-ietf-quic-transport-06 92
C.4. Since draft-ietf-quic-transport-05 93
C.5. Since draft-ietf-quic-transport-04 93
C.6. Since draft-ietf-quic-transport-03 94
C.7. Since draft-ietf-quic-transport-02 94
C.8. Since draft-ietf-quic-transport-01 95
C.9. Since draft-ietf-quic-transport-00 97
C.10. Since draft-hamilton-quic-transport-protocol-01 97

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01

Iyengar & Thomson Expires August 1, 2018 [Page 4]

Internet-Draft QUIC Transport Protocol January 2018

 Authors' Addresses . 97

1. Introduction

 QUIC is a multiplexed and secure transport protocol that runs on top
 of UDP. QUIC aims to provide a flexible set of features that allow
 it to be a general-purpose transport for multiple applications.

 QUIC implements techniques learned from experience with TCP, SCTP and
 other transport protocols. QUIC uses UDP as substrate so as to not
 require changes to legacy client operating systems and middleboxes to
 be deployable. QUIC authenticates all of its headers and encrypts
 most of the data it exchanges, including its signaling. This allows
 the protocol to evolve without incurring a dependency on upgrades to
 middleboxes. This document describes the core QUIC protocol,
 including the conceptual design, wire format, and mechanisms of the
 QUIC protocol for connection establishment, stream multiplexing,
 stream and connection-level flow control, and data reliability.

 Accompanying documents describe QUIC's loss detection and congestion
 control [QUIC-RECOVERY], and the use of TLS 1.3 for key negotiation
 [QUIC-TLS].

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 Client: The endpoint initiating a QUIC connection.

 Server: The endpoint accepting incoming QUIC connections.

 Endpoint: The client or server end of a connection.

 Stream: A logical, bi-directional channel of ordered bytes within a
 QUIC connection.

 Connection: A conversation between two QUIC endpoints with a single
 encryption context that multiplexes streams within it.

 Connection ID: The 64-bit unsigned number used as an identifier for
 a QUIC connection.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Iyengar & Thomson Expires August 1, 2018 [Page 5]

Internet-Draft QUIC Transport Protocol January 2018

 QUIC packet: A well-formed UDP payload that can be parsed by a QUIC
 receiver.

2.1. Notational Conventions

 Packet and frame diagrams use the format described in Section 3.1 of
 [RFC2360], with the following additional conventions:

 [x] Indicates that x is optional

 x (A) Indicates that x is A bits long

 x (A/B/C) ... Indicates that x is one of A, B, or C bits long

 x (i) ... Indicates that x uses the variable-length encoding in
Section 8.1

 x (*) ... Indicates that x is variable-length

3. A QUIC Overview

 This section briefly describes QUIC's key mechanisms and benefits.
 Key strengths of QUIC include:

 o Low-latency connection establishment

 o Multiplexing without head-of-line blocking

 o Authenticated and encrypted header and payload

 o Rich signaling for congestion control and loss recovery

 o Stream and connection flow control

 o Connection migration and resilience to NAT rebinding

 o Version negotiation

3.1. Low-Latency Connection Establishment

 QUIC relies on a combined cryptographic and transport handshake for
 setting up a secure transport connection. QUIC connections are
 expected to commonly use 0-RTT handshakes, meaning that for most QUIC
 connections, data can be sent immediately following the client
 handshake packet, without waiting for a reply from the server. QUIC
 provides a dedicated stream (Stream ID 0) to be used for performing
 the cryptographic handshake and QUIC options negotiation. The format
 of the QUIC options and parameters used during negotiation are

https://datatracker.ietf.org/doc/html/rfc2360#section-3.1
https://datatracker.ietf.org/doc/html/rfc2360#section-3.1

Iyengar & Thomson Expires August 1, 2018 [Page 6]

Internet-Draft QUIC Transport Protocol January 2018

 described in this document, but the handshake protocol that runs on
 Stream ID 0 is described in the accompanying cryptographic handshake
 draft [QUIC-TLS].

3.2. Stream Multiplexing

 When application messages are transported over TCP, independent
 application messages can suffer from head-of-line blocking. When an
 application multiplexes many streams atop TCP's single-bytestream
 abstraction, a loss of a TCP segment results in blocking of all
 subsequent segments until a retransmission arrives, irrespective of
 the application streams that are encapsulated in subsequent segments.
 QUIC ensures that lost packets carrying data for an individual stream
 only impact that specific stream. Data received on other streams can
 continue to be reassembled and delivered to the application.

3.3. Rich Signaling for Congestion Control and Loss Recovery

 QUIC's packet framing and acknowledgments carry rich information that
 help both congestion control and loss recovery in fundamental ways.
 Each QUIC packet carries a new packet number, including those
 carrying retransmitted data. This obviates the need for a separate
 mechanism to distinguish acknowledgments for retransmissions from
 those for original transmissions, avoiding TCP's retransmission
 ambiguity problem. QUIC acknowledgments also explicitly encode the
 delay between the receipt of a packet and its acknowledgment being
 sent, and together with the monotonically-increasing packet numbers,
 this allows for precise network roundtrip-time (RTT) calculation.
 QUIC's ACK frames support multiple ACK blocks, so QUIC is more
 resilient to reordering than TCP with SACK support, as well as able
 to keep more bytes on the wire when there is reordering or loss.

3.4. Stream and Connection Flow Control

 QUIC implements stream- and connection-level flow control. At a high
 level, a QUIC receiver advertises the maximum amount of data that it
 is willing to receive on each stream. As data is sent, received, and
 delivered on a particular stream, the receiver sends MAX_STREAM_DATA
 frames that increase the advertised limit for that stream, allowing
 the peer to send more data on that stream.

 In addition to this stream-level flow control, QUIC implements
 connection-level flow control to limit the aggregate buffer that a
 QUIC receiver is willing to allocate to all streams on a connection.
 Connection-level flow control works in the same way as stream-level
 flow control, but the bytes delivered and the limits are aggregated
 across all streams.

Iyengar & Thomson Expires August 1, 2018 [Page 7]

Internet-Draft QUIC Transport Protocol January 2018

3.5. Authenticated and Encrypted Header and Payload

 TCP headers appear in plaintext on the wire and are not
 authenticated, causing a plethora of injection and header
 manipulation issues for TCP, such as receive-window manipulation and
 sequence-number overwriting. While some of these are mechanisms used
 by middleboxes to improve TCP performance, others are active attacks.
 Even "performance-enhancing" middleboxes that routinely interpose on
 the transport state machine end up limiting the evolvability of the
 transport protocol, as has been observed in the design of MPTCP
 [RFC6824] and in its subsequent deployability issues.

 Generally, QUIC packets are always authenticated and the payload is
 typically fully encrypted. The parts of the packet header which are
 not encrypted are still authenticated by the receiver, so as to
 thwart any packet injection or manipulation by third parties. Some
 early handshake packets, such as the Version Negotiation packet, are
 not encrypted, but information sent in these unencrypted handshake
 packets is later verified as part of cryptographic processing.

3.6. Connection Migration and Resilience to NAT Rebinding

 QUIC connections are identified by a Connection ID, a 64-bit unsigned
 number randomly generated by the server. QUIC's consistent
 connection ID allows connections to survive changes to the client's
 IP and port, such as those caused by NAT rebindings or by the client
 changing network connectivity to a new address. QUIC provides
 automatic cryptographic verification of a rebound client, since the
 client continues to use the same session key for encrypting and
 decrypting packets. The consistent connection ID can be used to
 allow migration of the connection to a new server IP address as well,
 since the Connection ID remains consistent across changes in the
 client's and the server's network addresses.

3.7. Version Negotiation

 QUIC version negotiation allows for multiple versions of the protocol
 to be deployed and used concurrently. Version negotiation is
 described in Section 7.2.

4. Versions

 QUIC versions are identified using a 32-bit unsigned number.

 The version 0x00000000 is reserved to represent version negotiation.
 This version of the specification is identified by the number
 0x00000001.

https://datatracker.ietf.org/doc/html/rfc6824

Iyengar & Thomson Expires August 1, 2018 [Page 8]

Internet-Draft QUIC Transport Protocol January 2018

 Version 0x00000001 of QUIC uses TLS as a cryptographic handshake
 protocol, as described in [QUIC-TLS].

 Versions with the most significant 16 bits of the version number
 cleared are reserved for use in future IETF consensus documents.

 Versions that follow the pattern 0x?a?a?a?a are reserved for use in
 forcing version negotiation to be exercised. That is, any version
 number where the low four bits of all octets is 1010 (in binary). A
 client or server MAY advertise support for any of these reserved
 versions.

 Reserved version numbers will probably never represent a real
 protocol; a client MAY use one of these version numbers with the
 expectation that the server will initiate version negotiation; a
 server MAY advertise support for one of these versions and can expect
 that clients ignore the value.

 [[RFC editor: please remove the remainder of this section before
 publication.]]

 The version number for the final version of this specification
 (0x00000001), is reserved for the version of the protocol that is
 published as an RFC.

 Version numbers used to identify IETF drafts are created by adding
 the draft number to 0xff000000. For example, draft-ietf-quic-

transport-13 would be identified as 0xff00000D.

 Implementors are encouraged to register version numbers of QUIC that
 they are using for private experimentation on the github wiki [4].

5. Packet Types and Formats

 We first describe QUIC's packet types and their formats, since some
 are referenced in subsequent mechanisms.

 All numeric values are encoded in network byte order (that is, big-
 endian) and all field sizes are in bits. When discussing individual
 bits of fields, the least significant bit is referred to as bit 0.
 Hexadecimal notation is used for describing the value of fields.

 Any QUIC packet has either a long or a short header, as indicated by
 the Header Form bit. Long headers are expected to be used early in
 the connection before version negotiation and establishment of 1-RTT
 keys. Short headers are minimal version-specific headers, which are
 used after version negotiation and 1-RTT keys are established.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13

Iyengar & Thomson Expires August 1, 2018 [Page 9]

Internet-Draft QUIC Transport Protocol January 2018

5.1. Long Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1| Type (7) |
 +-+
 | |
 + Connection ID (64) +
 | |
 +-+
 | Version (32) |
 +-+
 | Packet Number (32) |
 +-+
 | Payload (*) ...
 +-+

 Figure 1: Long Header Format

 Long headers are used for packets that are sent prior to the
 completion of version negotiation and establishment of 1-RTT keys.
 Once both conditions are met, a sender switches to sending packets
 using the short header (Section 5.2). The long form allows for
 special packets - such as the Version Negotiation packet - to be
 represented in this uniform fixed-length packet format. A long
 header contains the following fields:

 Header Form: The most significant bit (0x80) of octet 0 (the first
 octet) is set to 1 for long headers.

 Long Packet Type: The remaining seven bits of octet 0 contain the
 packet type. This field can indicate one of 128 packet types.
 The types specified for this version are listed in Table 1.

 Connection ID: Octets 1 through 8 contain the connection ID.
Section 5.6 describes the use of this field in more detail.

 Version: Octets 9 to 12 contain the selected protocol version. This
 field indicates which version of QUIC is in use and determines how
 the rest of the protocol fields are interpreted.

 Packet Number: Octets 13 to 16 contain the packet number.
Section 5.7 describes the use of packet numbers.

 Payload: Octets from 17 onwards (the rest of QUIC packet) are the
 payload of the packet.

Iyengar & Thomson Expires August 1, 2018 [Page 10]

Internet-Draft QUIC Transport Protocol January 2018

 The following packet types are defined:

 +------+-----------------+---------------+
 | Type | Name | Section |
 +------+-----------------+---------------+
 | 0x7F | Initial | Section 5.4.1 |
 | | | |
 | 0x7E | Retry | Section 5.4.2 |
 | | | |
 | 0x7D | Handshake | Section 5.4.3 |
 | | | |
 | 0x7C | 0-RTT Protected | Section 5.5 |
 +------+-----------------+---------------+

 Table 1: Long Header Packet Types

 The header form, packet type, connection ID, packet number and
 version fields of a long header packet are version-independent. The
 types of packets defined in Table 1 are version-specific. See

Section 5.8 for details on how packets from different versions of
 QUIC are interpreted.

 The interpretation of the fields and the payload are specific to a
 version and packet type. Type-specific semantics for this version
 are described in the following sections.

5.2. Short Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |0|C|K| Type (5)|
 +-+
 | |
 + [Connection ID (64)] +
 | |
 +-+
 | Packet Number (8/16/32) ...
 +-+
 | Protected Payload (*) ...
 +-+

 Figure 2: Short Header Format

 The short header can be used after the version and 1-RTT keys are
 negotiated. This header form has the following fields:

Iyengar & Thomson Expires August 1, 2018 [Page 11]

Internet-Draft QUIC Transport Protocol January 2018

 Header Form: The most significant bit (0x80) of octet 0 is set to 0
 for the short header.

 Omit Connection ID Flag: The second bit (0x40) of octet 0 indicates
 whether the Connection ID field is omitted. If set to 0, then the
 Connection ID field is present; if set to 1, the Connection ID
 field is omitted. The Connection ID field can only be omitted if
 the omit_connection_id transport parameter (Section 7.4.1) is
 specified by the intended recipient of the packet.

 Key Phase Bit: The third bit (0x20) of octet 0 indicates the key
 phase, which allows a recipient of a packet to identify the packet
 protection keys that are used to protect the packet. See
 [QUIC-TLS] for details.

 Short Packet Type: The remaining 5 bits of octet 0 include one of 32
 packet types. Table 2 lists the types that are defined for short
 packets.

 Connection ID: If the Omit Connection ID Flag is not set, a
 connection ID occupies octets 1 through 8 of the packet. See

Section 5.6 for more details.

 Packet Number: The length of the packet number field depends on the
 packet type. This field can be 1, 2 or 4 octets long depending on
 the short packet type.

 Protected Payload: Packets with a short header always include a
 1-RTT protected payload.

 The packet type in a short header currently determines only the size
 of the packet number field. Additional types can be used to signal
 the presence of other fields.

 +------+--------------------+
 | Type | Packet Number Size |
 +------+--------------------+
 | 0x1F | 1 octet |
 | | |
 | 0x1E | 2 octets |
 | | |
 | 0x1D | 4 octets |
 +------+--------------------+

 Table 2: Short Header Packet Types

 The header form, omit connection ID flag, and connection ID of a
 short header packet are version-independent. The remaining fields

Iyengar & Thomson Expires August 1, 2018 [Page 12]

Internet-Draft QUIC Transport Protocol January 2018

 are specific to the selected QUIC version. See Section 5.8 for
 details on how packets from different versions of QUIC are
 interpreted.

5.3. Version Negotiation Packet

 A Version Negotiation packet is inherently not version-specific, and
 does not use the packet headers defined above. Upon receipt by a
 client, it will appear to be a packet using the long header, but will
 be identified as a Version Negotiation packet based on the Version
 field.

 The Version Negotiation packet is a response to a client packet that
 contains a version that is not supported by the server, and is only
 sent by servers.

 The layout of a Version Negotiation packet is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1| Unused (7) |
 +-+
 | |
 + Connection ID (64) +
 | |
 +-+
 | Version (32) |
 +-+
 | Supported Version 1 (32) ...
 +-+
 | [Supported Version 2 (32)] ...
 +-+
 ...
 +-+
 | [Supported Version N (32)] ...
 +-+

 Figure 3: Version Negotiation Packet

 The value in the Unused field is selected randomly by the server.
 The Connection ID field echoes the corresponding value from the
 triggering client packet. This allows clients some assurance that
 the server received the packet and that the Version Negotiation
 packet is in fact from the server. The Version field MUST be set to
 0x00000000. The remainder of the Version Negotiation packet is a
 list of 32-bit versions which the server supports.

Iyengar & Thomson Expires August 1, 2018 [Page 13]

Internet-Draft QUIC Transport Protocol January 2018

 A Version Negotiation packet cannot be explicitly acknowledged in an
 ACK frame by a client. Receiving another Initial packet implicitly
 acknowledges a Version Negotiation packet.

 See Section 7.2 for a description of the version negotiation process.

5.4. Cryptographic Handshake Packets

 Once version negotiation is complete, the cryptographic handshake is
 used to agree on cryptographic keys. The cryptographic handshake is
 carried in Initial (Section 5.4.1), Retry (Section 5.4.2) and
 Handshake (Section 5.4.3) packets.

 All these packets use the long header and contain the current QUIC
 version in the version field.

 In order to prevent tampering by version-unaware middleboxes,
 handshake packets are protected with a connection- and version-
 specific key, as described in [QUIC-TLS]. This protection does not
 provide confidentiality or integrity against on-path attackers, but
 provides some level of protection against off-path attackers.

5.4.1. Initial Packet

 The Initial packet uses long headers with a type value of 0x7F. It
 carries the first cryptographic handshake message sent by the client.

 The client populates the connection ID field with randomly selected
 values, unless it has received a packet from the server. If the
 client has received a packet from the server, the connection ID field
 uses the value provided by the server.

 The first Initial packet that is sent by a client contains a
 randomized packet number. All subsequent packets contain a packet
 number that is incremented by one, see (Section 5.7).

 The payload of a Initial packet consists of a STREAM frame (or
 frames) for stream 0 containing a cryptographic handshake message,
 with enough PADDING frames that the packet is at least 1200 octets
 (see Section 9). The stream in this packet always starts at an
 offset of 0 (see Section 7.5) and the complete cryptographic
 handshake message MUST fit in a single packet (see Section 7.3).

 The client uses the Initial packet type for any packet that contains
 an initial cryptographic handshake message. This includes all cases
 where a new packet containing the initial cryptographic message needs
 to be created, this includes the packets sent after receiving a
 Version Negotiation (Section 5.3) or Retry packet (Section 5.4.2).

Iyengar & Thomson Expires August 1, 2018 [Page 14]

Internet-Draft QUIC Transport Protocol January 2018

5.4.2. Retry Packet

 A Retry packet uses long headers with a type value of 0x7E. It
 carries cryptographic handshake messages and acknowledgments. It is
 used by a server that wishes to perform a stateless retry (see

Section 7.5).

 The server includes a connection ID of its choice in the connection
 ID field. The client MUST use this connection ID for any subsequent
 packets that it sends.

 The packet number field echoes the packet number field from the
 triggering client packet.

 A Retry packet is never explicitly acknowledged in an ACK frame by a
 client. Receiving another Initial packet implicitly acknowledges a
 Retry packet.

 After receiving a Retry packet, the client uses a new Initial packet
 containing the next cryptographic handshake message. The client
 retains the state of its cryptographic handshake, but discards all
 transport state. The Initial packet that is generated in response to
 a Retry packet includes STREAM frames on stream 0 that start again at
 an offset of 0.

 Continuing the cryptographic handshake is necessary to ensure that an
 attacker cannot force a downgrade of any cryptographic parameters.
 In addition to continuing the cryptographic handshake, the client
 MUST remember the results of any version negotiation that occurred
 (see Section 7.2). The client MAY also retain any observed RTT or
 congestion state that it has accumulated for the flow, but other
 transport state MUST be discarded.

 The payload of the Retry packet contains a single STREAM frame on
 stream 0 with offset 0 containing the server's cryptographic
 stateless retry material. It MUST NOT contain any other frames. The
 next STREAM frame sent by the server will also start at stream offset
 0.

5.4.3. Handshake Packet

 A Handshake packet uses long headers with a type value of 0x7D. It
 is used to carry acknowledgments and cryptographic handshake messages
 from the server and client.

 The connection ID field in a Handshake packet contains a connection
 ID that is chosen by the server (see Section 5.6).

Iyengar & Thomson Expires August 1, 2018 [Page 15]

Internet-Draft QUIC Transport Protocol January 2018

 The first Handshake packet sent by a server contains a randomized
 packet number. This value is increased for each subsequent packet
 sent by the server as described in Section 5.7. The client
 increments the packet number from its previous packet by one for each
 Handshake packet that it sends (which might be an Initial, 0-RTT
 Protected, or Handshake packet).

 The payload of this packet contains STREAM frames and could contain
 PADDING and ACK frames.

5.5. Protected Packets

 Packets that are protected with 0-RTT keys are sent with long
 headers; all packets protected with 1-RTT keys are sent with short
 headers. The different packet types explicitly indicate the
 encryption level and therefore the keys that are used to remove
 packet protection.

 Packets protected with 0-RTT keys use a type value of 0x7C. The
 connection ID field for a 0-RTT packet is selected by the client.

 The client can send 0-RTT packets after receiving a Handshake packet
 (Section 5.4.3), if that packet does not complete the handshake.
 Even if the client receives a different connection ID in the
 Handshake packet, it MUST continue to use the connection ID selected
 by the client for 0-RTT packets, see Section 5.6.

 The version field for protected packets is the current QUIC version.

 The packet number field contains a packet number, which increases
 with each packet sent, see Section 5.7 for details.

 The payload is protected using authenticated encryption. [QUIC-TLS]
 describes packet protection in detail. After decryption, the
 plaintext consists of a sequence of frames, as described in

Section 6.

5.6. Connection ID

 QUIC connections are identified by their 64-bit Connection ID. All
 long headers contain a Connection ID. Short headers indicate the
 presence of a Connection ID using the Omit Connection ID flag. When
 present, the Connection ID is in the same location in all packet
 headers, making it straightforward for middleboxes, such as load
 balancers, to locate and use it.

 The client MUST choose a random connection ID and use it in Initial
 packets (Section 5.4.1) and 0-RTT packets (Section 5.5).

Iyengar & Thomson Expires August 1, 2018 [Page 16]

Internet-Draft QUIC Transport Protocol January 2018

 When the server receives a Initial packet and decides to proceed with
 the handshake, it chooses a new value for the connection ID and sends
 that in a Retry (Section 5.4.2) or Handshake (Section 5.4.3) packet.
 The server MAY choose to use the value that the client initially
 selects.

 Once the client receives the connection ID that the server has
 chosen, it MUST use it for all subsequent Handshake (Section 5.4.3)
 and 1-RTT (Section 5.5) packets but not for 0-RTT packets
 (Section 5.5).

 Server's Version Negotiation (Section 5.3) and Retry (Section 5.4.2)
 packets MUST use connection ID selected by the client.

5.7. Packet Numbers

 The packet number is an integer in the range 0 to 2^62-1. The value
 is used in determining the cryptographic nonce for packet encryption.
 Each endpoint maintains a separate packet number for sending and
 receiving. The packet number for sending MUST increase by at least
 one after sending any packet, unless otherwise specified (see

Section 5.7.1).

 A QUIC endpoint MUST NOT reuse a packet number within the same
 connection (that is, under the same cryptographic keys). If the
 packet number for sending reaches 2^62 - 1, the sender MUST close the
 connection without sending a CONNECTION_CLOSE frame or any further
 packets; a server MAY send a Stateless Reset (Section 7.9.4) in
 response to further packets that it receives.

 For the packet header, the number of bits required to represent the
 packet number are reduced by including only the least significant
 bits of the packet number. The actual packet number for each packet
 is reconstructed at the receiver based on the largest packet number
 received on a successfully authenticated packet.

 A packet number is decoded by finding the packet number value that is
 closest to the next expected packet. The next expected packet is the
 highest received packet number plus one. For example, if the highest
 successfully authenticated packet had a packet number of 0xaa82f30e,
 then a packet containing a 16-bit value of 0x1f94 will be decoded as
 0xaa831f94.

 The sender MUST use a packet number size able to represent more than
 twice as large a range than the difference between the largest
 acknowledged packet and packet number being sent. A peer receiving
 the packet will then correctly decode the packet number, unless the
 packet is delayed in transit such that it arrives after many higher-

Iyengar & Thomson Expires August 1, 2018 [Page 17]

Internet-Draft QUIC Transport Protocol January 2018

 numbered packets have been received. An endpoint SHOULD use a large
 enough packet number encoding to allow the packet number to be
 recovered even if the packet arrives after packets that are sent
 afterwards.

 As a result, the size of the packet number encoding is at least one
 more than the base 2 logarithm of the number of contiguous
 unacknowledged packet numbers, including the new packet.

 For example, if an endpoint has received an acknowledgment for packet
 0x6afa2f, sending a packet with a number of 0x6b4264 requires a
 16-bit or larger packet number encoding; whereas a 32-bit packet
 number is needed to send a packet with a number of 0x6bc107.

 Version Negotiation (Section 5.3) and Retry (Section 5.4.2) packets
 have special rules for populating the packet number field.

5.7.1. Initial Packet Number

 The initial value for packet number MUST be selected randomly from a
 range between 0 and 2^32 - 1025 (inclusive). This value is selected
 so that Initial and Handshake packets exercise as many possible
 values for the Packet Number field as possible.

 Limiting the range allows both for loss of packets and for any
 stateless exchanges. Packet numbers are incremented for subsequent
 packets, but packet loss and stateless handling can both mean that
 the first packet sent by an endpoint isn't necessarily the first
 packet received by its peer. The first packet received by a peer
 cannot be 2^32 or greater or the recipient will incorrectly assume a
 packet number that is 2^32 values lower and discard the packet.

 Use of a secure random number generator [RFC4086] is not necessary
 for generating the initial packet number, nor is it necessary that
 the value be uniformly distributed.

5.8. Handling Packets from Different Versions

 Between different versions the following things are guaranteed to
 remain constant:

 o the location of the header form flag,

 o the location of the Omit Connection ID flag in short headers,

 o the location and size of the Connection ID field in both header
 forms,

https://datatracker.ietf.org/doc/html/rfc4086

Iyengar & Thomson Expires August 1, 2018 [Page 18]

Internet-Draft QUIC Transport Protocol January 2018

 o the location and size of the Version field in long headers,

 o the format and semantics of the Version Negotiation packet.

 Implementations MUST assume that an unsupported version uses an
 unknown packet format. All other fields MUST be ignored when
 processing a packet that contains an unsupported version.

6. Frames and Frame Types

 The payload of all packets, after removing packet protection,
 consists of a sequence of frames, as shown in Figure 4. Version
 Negotiation and Stateless Reset do not contain frames.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Frame 1 (*) ...
 +-+
 | Frame 2 (*) ...
 +-+
 ...
 +-+
 | Frame N (*) ...
 +-+

 Figure 4: Contents of Protected Payload

 Protected payloads MUST contain at least one frame, and MAY contain
 multiple frames and multiple frame types.

 Frames MUST fit within a single QUIC packet and MUST NOT span a QUIC
 packet boundary. Each frame begins with a Frame Type byte,
 indicating its type, followed by additional type-dependent fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (8) | Type-Dependent Fields (*) ...
 +-+

 Figure 5: Generic Frame Layout

 Frame types are listed in Table 3. Note that the Frame Type byte in
 STREAM and ACK frames is used to carry other frame-specific flags.
 For all other frames, the Frame Type byte simply identifies the
 frame. These frames are explained in more detail as they are
 referenced later in the document.

Iyengar & Thomson Expires August 1, 2018 [Page 19]

Internet-Draft QUIC Transport Protocol January 2018

 +-------------+-------------------+--------------+
 | Type Value | Frame Type Name | Definition |
 +-------------+-------------------+--------------+
 | 0x00 | PADDING | Section 8.2 |
 | | | |
 | 0x01 | RST_STREAM | Section 8.3 |
 | | | |
 | 0x02 | CONNECTION_CLOSE | Section 8.4 |
 | | | |
 | 0x03 | APPLICATION_CLOSE | Section 8.5 |
 | | | |
 | 0x04 | MAX_DATA | Section 8.6 |
 | | | |
 | 0x05 | MAX_STREAM_DATA | Section 8.7 |
 | | | |
 | 0x06 | MAX_STREAM_ID | Section 8.8 |
 | | | |
 | 0x07 | PING | Section 8.9 |
 | | | |
 | 0x08 | BLOCKED | Section 8.10 |
 | | | |
 | 0x09 | STREAM_BLOCKED | Section 8.11 |
 | | | |
 | 0x0a | STREAM_ID_BLOCKED | Section 8.12 |
 | | | |
 | 0x0b | NEW_CONNECTION_ID | Section 8.13 |
 | | | |
 | 0x0c | STOP_SENDING | Section 8.14 |
 | | | |
 | 0x0d | PONG | Section 8.15 |
 | | | |
 | 0x0e | ACK | Section 8.16 |
 | | | |
 | 0x10 - 0x17 | STREAM | Section 8.17 |
 +-------------+-------------------+--------------+

 Table 3: Frame Types

7. Life of a Connection

 A QUIC connection is a single conversation between two QUIC
 endpoints. QUIC's connection establishment intertwines version
 negotiation with the cryptographic and transport handshakes to reduce
 connection establishment latency, as described in Section 7.3. Once
 established, a connection may migrate to a different IP or port at
 either endpoint, due to NAT rebinding or mobility, as described in

Section 7.7. Finally a connection may be terminated by either
 endpoint, as described in Section 7.9.

Iyengar & Thomson Expires August 1, 2018 [Page 20]

Internet-Draft QUIC Transport Protocol January 2018

7.1. Matching Packets to Connections

 Incoming packets are classified on receipt. Packets can either be
 associated with an existing connection, be discarded, or - for
 servers - potentially create a new connection.

 Packets that can be associated with an existing connection are
 handled according to the current state of that connection. Packets
 are associated with existing connections using connection ID if it is
 present; this might include connection IDs that were advertised using
 NEW_CONNECTION_ID (Section 8.13). Packets without connection IDs and
 long-form packets for connections that have incomplete cryptographic
 handshakes are associated with an existing connection using the tuple
 of source and destination IP addresses and ports.

 A packet that uses the short header could be associated with an
 existing connection with an incomplete cryptographic handshake. Such
 a packet could be a valid packet that has been reordered with respect
 to the long-form packets that will complete the cryptographic
 handshake. This might happen after the final set of cryptographic
 handshake messages from either peer. These packets are expected to
 be correlated with a connection using the tuple of IP addresses and
 ports. Packets that might be reordered in this fashion SHOULD be
 buffered in anticipation of the handshake completing.

 0-RTT packets might be received prior to a Client Initial packet at a
 server. If the version of these packets is acceptable to the server,
 it MAY buffer these packets in anticipation of receiving a reordered
 Client Initial packet.

 Buffering ensures that data is not lost, which improves performance;
 conversely, discarding these packets could create false loss signals
 for the congestion controllers. However, limiting the number and
 size of buffered packets might be needed to prevent exposure to
 denial of service.

 For clients, any packet that cannot be associated with an existing
 connection SHOULD be discarded if it is not buffered. Discarded
 packets MAY be logged for diagnostic or security purposes.

 For servers, packets that aren't associated with a connection
 potentially create a new connection. However, only packets that use
 the long packet header and that are at least the minimum size defined
 for the protocol version can be initial packets. A server MAY
 discard packets with a short header or packets that are smaller than
 the smallest minimum size for any version that the server supports.
 A server that discards a packet that cannot be associated with a
 connection MAY also generate a stateless reset (Section 7.9.4).

Iyengar & Thomson Expires August 1, 2018 [Page 21]

Internet-Draft QUIC Transport Protocol January 2018

 This version of QUIC defines a minimum size for initial packets of
 1200 octets (see Section 9). Versions of QUIC that define smaller
 minimum initial packet sizes need to be aware that initial packets
 will be discarded without action by servers that only support
 versions with larger minimums. Clients that support multiple QUIC
 versions can avoid this problem by ensuring that they increase the
 size of their initial packets to the largest minimum size across all
 of the QUIC versions they support. Servers need to recognize initial
 packets that are the minimum size of all QUIC versions they support.

7.2. Version Negotiation

 QUIC's connection establishment begins with version negotiation,
 since all communication between the endpoints, including packet and
 frame formats, relies on the two endpoints agreeing on a version.

 A QUIC connection begins with a client sending an Initial packet
 (Section 5.4.1). The details of the handshake mechanisms are
 described in Section 7.3, but any Initial packet sent from the client
 to the server MUST use the long header format - which includes the
 version of the protocol being used - and they MUST be padded to at
 least 1200 octets.

 The server receives this packet and determines whether it potentially
 creates a new connection (see Section 7.1). If the packet might
 generate a new connection, the server then checks whether it
 understands the version that the client has selected.

 If the packet contains a version that is acceptable to the server,
 the server proceeds with the handshake (Section 7.3). This commits
 the server to the version that the client selected.

7.2.1. Sending Version Negotiation Packets

 If the version selected by the client is not acceptable to the
 server, the server responds with a Version Negotiation packet
 (Section 5.3). This includes a list of versions that the server will
 accept.

 A server sends a Version Negotiation packet for any packet with an
 unacceptable version if that packet could create a new connection.
 This allows a server to process packets with unsupported versions
 without retaining state. Though either the Client Initial packet or
 the version negotiation packet that is sent in response could be
 lost, the client will send new packets until it successfully receives
 a response or it abandons the connection attempt.

Iyengar & Thomson Expires August 1, 2018 [Page 22]

Internet-Draft QUIC Transport Protocol January 2018

7.2.2. Handling Version Negotiation Packets

 When the client receives a Version Negotiation packet, it first
 checks that the connection ID matches the connection ID the client
 sent. If this check fails, the packet MUST be discarded.

 Once the Version Negotiation packet is determined to be valid, the
 client then selects an acceptable protocol version from the list
 provided by the server. The client then attempts to create a
 connection using that version. Though the contents of the Client
 Initial packet the client sends might not change in response to
 version negotiation, a client MUST increase the packet number it uses
 on every packet it sends. Packets MUST continue to use long headers
 and MUST include the new negotiated protocol version.

 The client MUST use the long header format and include its selected
 version on all packets until it has 1-RTT keys and it has received a
 packet from the server which is not a Version Negotiation packet.

 A client MUST NOT change the version it uses unless it is in response
 to a Version Negotiation packet from the server. Once a client
 receives a packet from the server which is not a Version Negotiation
 packet, it MUST discard other Version Negotiation packets on the same
 connection. Similarly, a client MUST ignore a Version Negotiation
 packet if it has already received and acted on a Version Negotiation
 packet.

 A client MUST ignore a Version Negotiation packet that lists the
 client's chosen version.

 Version negotiation packets have no cryptographic protection. The
 result of the negotiation MUST be revalidated as part of the
 cryptographic handshake (see Section 7.4.4).

7.2.3. Using Reserved Versions

 For a server to use a new version in the future, clients must
 correctly handle unsupported versions. To help ensure this, a server
 SHOULD include a reserved version (see Section 4) while generating a
 Version Negotiation packet.

 The design of version negotiation permits a server to avoid
 maintaining state for packets that it rejects in this fashion. The
 validation of version negotiation (see Section 7.4.4) only validates
 the result of version negotiation, which is the same no matter which
 reserved version was sent. A server MAY therefore send different
 reserved version numbers in the Version Negotiation Packet and in its
 transport parameters.

Iyengar & Thomson Expires August 1, 2018 [Page 23]

Internet-Draft QUIC Transport Protocol January 2018

 A client MAY send a packet using a reserved version number. This can
 be used to solicit a list of supported versions from a server.

7.3. Cryptographic and Transport Handshake

 QUIC relies on a combined cryptographic and transport handshake to
 minimize connection establishment latency. QUIC allocates stream 0
 for the cryptographic handshake. Version 0x00000001 of QUIC uses TLS
 1.3 as described in [QUIC-TLS]; a different QUIC version number could
 indicate that a different cryptographic handshake protocol is in use.

 QUIC provides this stream with reliable, ordered delivery of data.
 In return, the cryptographic handshake provides QUIC with:

 o authenticated key exchange, where

 * a server is always authenticated,

 * a client is optionally authenticated,

 * every connection produces distinct and unrelated keys,

 * keying material is usable for packet protection for both 0-RTT
 and 1-RTT packets, and

 * 1-RTT keys have forward secrecy

 o authenticated values for the transport parameters of the peer (see
Section 7.4)

 o authenticated confirmation of version negotiation (see
Section 7.4.4)

 o authenticated negotiation of an application protocol (TLS uses
 ALPN [RFC7301] for this purpose)

 o for the server, the ability to carry data that provides assurance
 that the client can receive packets that are addressed with the
 transport address that is claimed by the client (see Section 7.6)

 The initial cryptographic handshake message MUST be sent in a single
 packet. Any second attempt that is triggered by address validation
 MUST also be sent within a single packet. This avoids having to
 reassemble a message from multiple packets. Reassembling messages
 requires that a server maintain state prior to establishing a
 connection, exposing the server to a denial of service risk.

https://datatracker.ietf.org/doc/html/rfc7301

Iyengar & Thomson Expires August 1, 2018 [Page 24]

Internet-Draft QUIC Transport Protocol January 2018

 The first client packet of the cryptographic handshake protocol MUST
 fit within a 1232 octet QUIC packet payload. This includes overheads
 that reduce the space available to the cryptographic handshake
 protocol.

 Details of how TLS is integrated with QUIC is provided in more detail
 in [QUIC-TLS].

7.4. Transport Parameters

 During connection establishment, both endpoints make authenticated
 declarations of their transport parameters. These declarations are
 made unilaterally by each endpoint. Endpoints are required to comply
 with the restrictions implied by these parameters; the description of
 each parameter includes rules for its handling.

 The format of the transport parameters is the TransportParameters
 struct from Figure 6. This is described using the presentation
 language from Section 3 of [I-D.ietf-tls-tls13].

Iyengar & Thomson Expires August 1, 2018 [Page 25]

Internet-Draft QUIC Transport Protocol January 2018

 uint32 QuicVersion;

 enum {
 initial_max_stream_data(0),
 initial_max_data(1),
 initial_max_stream_id_bidi(2),
 idle_timeout(3),
 omit_connection_id(4),
 max_packet_size(5),
 stateless_reset_token(6),
 ack_delay_exponent(7),
 initial_max_stream_id_uni(8),
 (65535)
 } TransportParameterId;

 struct {
 TransportParameterId parameter;
 opaque value<0..2^16-1>;
 } TransportParameter;

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 QuicVersion initial_version;

 case encrypted_extensions:
 QuicVersion negotiated_version;
 QuicVersion supported_versions<4..2^8-4>;
 };
 TransportParameter parameters<22..2^16-1>;
 } TransportParameters;

 Figure 6: Definition of TransportParameters

 The "extension_data" field of the quic_transport_parameters extension
 defined in [QUIC-TLS] contains a TransportParameters value. TLS
 encoding rules are therefore used to encode the transport parameters.

 QUIC encodes transport parameters into a sequence of octets, which
 are then included in the cryptographic handshake. Once the handshake
 completes, the transport parameters declared by the peer are
 available. Each endpoint validates the value provided by its peer.
 In particular, version negotiation MUST be validated (see

Section 7.4.4) before the connection establishment is considered
 properly complete.

 Definitions for each of the defined transport parameters are included
 in Section 7.4.1. Any given parameter MUST appear at most once in a

Iyengar & Thomson Expires August 1, 2018 [Page 26]

Internet-Draft QUIC Transport Protocol January 2018

 given transport parameters extension. An endpoint MUST treat receipt
 of duplicate transport parameters as a connection error of type
 TRANSPORT_PARAMETER_ERROR.

7.4.1. Transport Parameter Definitions

 An endpoint MUST include the following parameters in its encoded
 TransportParameters:

 initial_max_stream_data (0x0000): The initial stream maximum data
 parameter contains the initial value for the maximum data that can
 be sent on any newly created stream. This parameter is encoded as
 an unsigned 32-bit integer in units of octets. This is equivalent
 to an implicit MAX_STREAM_DATA frame (Section 8.7) being sent on
 all streams immediately after opening.

 initial_max_data (0x0001): The initial maximum data parameter
 contains the initial value for the maximum amount of data that can
 be sent on the connection. This parameter is encoded as an
 unsigned 32-bit integer in units of octets. This is equivalent to
 sending a MAX_DATA (Section 8.6) for the connection immediately
 after completing the handshake.

 idle_timeout (0x0003): The idle timeout is a value in seconds that
 is encoded as an unsigned 16-bit integer. The maximum value is
 600 seconds (10 minutes).

 A server MUST include the following transport parameters:

 stateless_reset_token (0x0006): The Stateless Reset Token is used in
 verifying a stateless reset, see Section 7.9.4. This parameter is
 a sequence of 16 octets.

 A client MUST NOT include a stateless reset token. A server MUST
 treat receipt of a stateless_reset_token transport parameter as a
 connection error of type TRANSPORT_PARAMETER_ERROR.

 An endpoint MAY use the following transport parameters:

 initial_max_stream_id_bidi (0x0002): The initial maximum stream ID
 parameter contains the initial maximum stream number the peer may
 initiate for bidirectional streams, encoded as an unsigned 32-bit
 integer. This value MUST be a valid bidirectional stream ID for a
 peer-initiated stream (that is, the two least significant bits are
 set to 0 by a server and to 1 by a client). If an invalid value
 is provided, the recipient MUST generate a connection error of
 type TRANSPORT_PARAMETER_ERROR. Setting this parameter is
 equivalent to sending a MAX_STREAM_ID (Section 8.8) immediately

Iyengar & Thomson Expires August 1, 2018 [Page 27]

Internet-Draft QUIC Transport Protocol January 2018

 after completing the handshake. The maximum bidirectional stream
 ID is set to 0 if this parameter is absent, preventing the
 creation of new bidirectional streams until a MAX_STREAM_ID frame
 is sent. Note that a default value of 0 does not prevent the
 cryptographic handshake stream (that is, stream 0) from being
 used.

 initial_max_stream_id_uni (0x0008): The initial maximum stream ID
 parameter contains the initial maximum stream number the peer may
 initiate for unidirectional streams, encoded as an unsigned 32-bit
 integer. The value MUST be a valid unidirectional ID for the
 recipient (that is, the two least significant bits are set to 2 by
 a server and to 3 by a client). If an invalid value is provided,
 the recipient MUST generate a connection error of type
 TRANSPORT_PARAMETER_ERROR. Setting this parameter is equivalent
 to sending a MAX_STREAM_ID (Section 8.8) immediately after
 completing the handshake. The maximum unidirectional stream ID is
 set to 0 if this parameter is absent, preventing the creation of
 new unidirectional streams until a MAX_STREAM_ID frame is sent.

 omit_connection_id (0x0004): The omit connection identifier
 parameter indicates that packets sent to the endpoint that
 advertises this parameter MAY omit the connection ID in packets
 using short header format. This can be used by an endpoint where
 it knows that source and destination IP address and port are
 sufficient for it to identify a connection. This parameter is
 zero length. Absence of this parameter means that the connection
 ID MUST be present in every packet sent to this endpoint.

 max_packet_size (0x0005): The maximum packet size parameter places a
 limit on the size of packets that the endpoint is willing to
 receive, encoded as an unsigned 16-bit integer. This indicates
 that packets larger than this limit will be dropped. The default
 for this parameter is the maximum permitted UDP payload of 65527.
 Values below 1200 are invalid. This limit only applies to
 protected packets (Section 5.5).

 ack_delay_exponent (0x0007): An 8-bit unsigned integer value
 indicating an exponent used to decode the ACK Delay field in the
 ACK frame, see Section 8.16. If this value is absent, a default
 value of 3 is assumed (indicating a multiplier of 8). The default
 value is also used for ACK frames that are sent in Initial,
 Handshake, and Retry packets. Values above 20 are invalid.

Iyengar & Thomson Expires August 1, 2018 [Page 28]

Internet-Draft QUIC Transport Protocol January 2018

7.4.2. Values of Transport Parameters for 0-RTT

 A client that attempts to send 0-RTT data MUST remember the transport
 parameters used by the server. The transport parameters that the
 server advertises during connection establishment apply to all
 connections that are resumed using the keying material established
 during that handshake. Remembered transport parameters apply to the
 new connection until the handshake completes and new transport
 parameters from the server can be provided.

 A server can remember the transport parameters that it advertised, or
 store an integrity-protected copy of the values in the ticket and
 recover the information when accepting 0-RTT data. A server uses the
 transport parameters in determining whether to accept 0-RTT data.

 A server MAY accept 0-RTT and subsequently provide different values
 for transport parameters for use in the new connection. If 0-RTT
 data is accepted by the server, the server MUST NOT reduce any limits
 or alter any values that might be violated by the client with its
 0-RTT data. In particular, a server that accepts 0-RTT data MUST NOT
 set values for initial_max_data or initial_max_stream_data that are
 smaller than the remembered value of those parameters. Similarly, a
 server MUST NOT reduce the value of initial_max_stream_id_bidi or
 initial_max_stream_id_uni.

 Omitting or setting a zero value for certain transport parameters can
 result in 0-RTT data being enabled, but not usable. The following
 transport parameters SHOULD be set to non-zero values for 0-RTT:
 initial_max_stream_id_bidi, initial_max_stream_id_uni,
 initial_max_data, initial_max_stream_data.

 A server MUST reject 0-RTT data or even abort a handshake if the
 implied values for transport parameters cannot be supported.

7.4.3. New Transport Parameters

 New transport parameters can be used to negotiate new protocol
 behavior. An endpoint MUST ignore transport parameters that it does
 not support. Absence of a transport parameter therefore disables any
 optional protocol feature that is negotiated using the parameter.

 New transport parameters can be registered according to the rules in
Section 14.1.

Iyengar & Thomson Expires August 1, 2018 [Page 29]

Internet-Draft QUIC Transport Protocol January 2018

7.4.4. Version Negotiation Validation

 Though the cryptographic handshake has integrity protection, two
 forms of QUIC version downgrade are possible. In the first, an
 attacker replaces the QUIC version in the Initial packet. In the
 second, a fake Version Negotiation packet is sent by an attacker. To
 protect against these attacks, the transport parameters include three
 fields that encode version information. These parameters are used to
 retroactively authenticate the choice of version (see Section 7.2).

 The cryptographic handshake provides integrity protection for the
 negotiated version as part of the transport parameters (see

Section 7.4). As a result, attacks on version negotiation by an
 attacker can be detected.

 The client includes the initial_version field in its transport
 parameters. The initial_version is the version that the client
 initially attempted to use. If the server did not send a version
 negotiation packet Section 5.3, this will be identical to the
 negotiated_version field in the server transport parameters.

 A server that processes all packets in a stateful fashion can
 remember how version negotiation was performed and validate the
 initial_version value.

 A server that does not maintain state for every packet it receives
 (i.e., a stateless server) uses a different process. If the
 initial_version matches the version of QUIC that is in use, a
 stateless server can accept the value.

 If the initial_version is different from the version of QUIC that is
 in use, a stateless server MUST check that it would have sent a
 version negotiation packet if it had received a packet with the
 indicated initial_version. If a server would have accepted the
 version included in the initial_version and the value differs from
 the QUIC version that is in use, the server MUST terminate the
 connection with a VERSION_NEGOTIATION_ERROR error.

 The server includes both the version of QUIC that is in use and a
 list of the QUIC versions that the server supports.

 The negotiated_version field is the version that is in use. This
 MUST be set by the server to the value that is on the Initial packet
 that it accepts (not an Initial packet that triggers a Retry or
 Version Negotiation packet). A client that receives a
 negotiated_version that does not match the version of QUIC that is in
 use MUST terminate the connection with a VERSION_NEGOTIATION_ERROR
 error code.

Iyengar & Thomson Expires August 1, 2018 [Page 30]

Internet-Draft QUIC Transport Protocol January 2018

 The server includes a list of versions that it would send in any
 version negotiation packet (Section 5.3) in the supported_versions
 field. The server populates this field even if it did not send a
 version negotiation packet.

 The client validates that the negotiated_version is included in the
 supported_versions list and - if version negotiation was performed -
 that it would have selected the negotiated version. A client MUST
 terminate the connection with a VERSION_NEGOTIATION_ERROR error code
 if the current QUIC version is not listed in the supported_versions
 list. A client MUST terminate with a VERSION_NEGOTIATION_ERROR error
 code if version negotiation occurred but it would have selected a
 different version based on the value of the supported_versions list.

 When an endpoint accepts multiple QUIC versions, it can potentially
 interpret transport parameters as they are defined by any of the QUIC
 versions it supports. The version field in the QUIC packet header is
 authenticated using transport parameters. The position and the
 format of the version fields in transport parameters MUST either be
 identical across different QUIC versions, or be unambiguously
 different to ensure no confusion about their interpretation. One way
 that a new format could be introduced is to define a TLS extension
 with a different codepoint.

7.5. Stateless Retries

 A server can process an initial cryptographic handshake messages from
 a client without committing any state. This allows a server to
 perform address validation (Section 7.6, or to defer connection
 establishment costs.

 A server that generates a response to an initial packet without
 retaining connection state MUST use the Retry packet (Section 5.4.2).
 This packet causes a client to reset its transport state and to
 continue the connection attempt with new connection state while
 maintaining the state of the cryptographic handshake.

 A server MUST NOT send multiple Retry packets in response to a client
 handshake packet. Thus, any cryptographic handshake message that is
 sent MUST fit within a single packet.

 In TLS, the Retry packet type is used to carry the HelloRetryRequest
 message.

Iyengar & Thomson Expires August 1, 2018 [Page 31]

Internet-Draft QUIC Transport Protocol January 2018

7.6. Proof of Source Address Ownership

 Transport protocols commonly spend a round trip checking that a
 client owns the transport address (IP and port) that it claims.
 Verifying that a client can receive packets sent to its claimed
 transport address protects against spoofing of this information by
 malicious clients.

 This technique is used primarily to avoid QUIC from being used for
 traffic amplification attack. In such an attack, a packet is sent to
 a server with spoofed source address information that identifies a
 victim. If a server generates more or larger packets in response to
 that packet, the attacker can use the server to send more data toward
 the victim than it would be able to send on its own.

 Several methods are used in QUIC to mitigate this attack. Firstly,
 the initial handshake packet is padded to at least 1200 octets. This
 allows a server to send a similar amount of data without risking
 causing an amplification attack toward an unproven remote address.

 A server eventually confirms that a client has received its messages
 when the cryptographic handshake successfully completes. This might
 be insufficient, either because the server wishes to avoid the
 computational cost of completing the handshake, or it might be that
 the size of the packets that are sent during the handshake is too
 large. This is especially important for 0-RTT, where the server
 might wish to provide application data traffic - such as a response
 to a request - in response to the data carried in the early data from
 the client.

 To send additional data prior to completing the cryptographic
 handshake, the server then needs to validate that the client owns the
 address that it claims.

 Source address validation is therefore performed during the
 establishment of a connection. TLS provides the tools that support
 the feature, but basic validation is performed by the core transport
 protocol.

 A different type of source address validation is performed after a
 connection migration, see Section 7.7.2.

7.6.1. Client Address Validation Procedure

 QUIC uses token-based address validation. Any time the server wishes
 to validate a client address, it provides the client with a token.
 As long as the token cannot be easily guessed (see Section 7.6.3), if

Iyengar & Thomson Expires August 1, 2018 [Page 32]

Internet-Draft QUIC Transport Protocol January 2018

 the client is able to return that token, it proves to the server that
 it received the token.

 During the processing of the cryptographic handshake messages from a
 client, TLS will request that QUIC make a decision about whether to
 proceed based on the information it has. TLS will provide QUIC with
 any token that was provided by the client. For an initial packet,
 QUIC can decide to abort the connection, allow it to proceed, or
 request address validation.

 If QUIC decides to request address validation, it provides the
 cryptographic handshake with a token. The contents of this token are
 consumed by the server that generates the token, so there is no need
 for a single well-defined format. A token could include information
 about the claimed client address (IP and port), a timestamp, and any
 other supplementary information the server will need to validate the
 token in the future.

 The cryptographic handshake is responsible for enacting validation by
 sending the address validation token to the client. A legitimate
 client will include a copy of the token when it attempts to continue
 the handshake. The cryptographic handshake extracts the token then
 asks QUIC a second time whether the token is acceptable. In
 response, QUIC can either abort the connection or permit it to
 proceed.

 A connection MAY be accepted without address validation - or with
 only limited validation - but a server SHOULD limit the data it sends
 toward an unvalidated address. Successful completion of the
 cryptographic handshake implicitly provides proof that the client has
 received packets from the server.

7.6.2. Address Validation on Session Resumption

 A server MAY provide clients with an address validation token during
 one connection that can be used on a subsequent connection. Address
 validation is especially important with 0-RTT because a server
 potentially sends a significant amount of data to a client in
 response to 0-RTT data.

 A different type of token is needed when resuming. Unlike the token
 that is created during a handshake, there might be some time between
 when the token is created and when the token is subsequently used.
 Thus, a resumption token SHOULD include an expiration time. It is
 also unlikely that the client port number is the same on two
 different connections; validating the port is therefore unlikely to
 be successful.

Iyengar & Thomson Expires August 1, 2018 [Page 33]

Internet-Draft QUIC Transport Protocol January 2018

 This token can be provided to the cryptographic handshake immediately
 after establishing a connection. QUIC might also generate an updated
 token if significant time passes or the client address changes for
 any reason (see Section 7.7). The cryptographic handshake is
 responsible for providing the client with the token. In TLS the
 token is included in the ticket that is used for resumption and
 0-RTT, which is carried in a NewSessionTicket message.

7.6.3. Address Validation Token Integrity

 An address validation token MUST be difficult to guess. Including a
 large enough random value in the token would be sufficient, but this
 depends on the server remembering the value it sends to clients.

 A token-based scheme allows the server to offload any state
 associated with validation to the client. For this design to work,
 the token MUST be covered by integrity protection against
 modification or falsification by clients. Without integrity
 protection, malicious clients could generate or guess values for
 tokens that would be accepted by the server. Only the server
 requires access to the integrity protection key for tokens.

 In TLS the address validation token is often bundled with the
 information that TLS requires, such as the resumption secret. In
 this case, adding integrity protection can be delegated to the
 cryptographic handshake protocol, avoiding redundant protection. If
 integrity protection is delegated to the cryptographic handshake, an
 integrity failure will result in immediate cryptographic handshake
 failure. If integrity protection is performed by QUIC, QUIC MUST
 abort the connection if the integrity check fails with a
 PROTOCOL_VIOLATION error code.

7.7. Connection Migration

 QUIC connections are identified by their 64-bit Connection ID.
 QUIC's consistent connection ID allows connections to survive changes
 to the client's IP and/or port, such as those caused by client or
 server migrating to a new network. Connection migration allows a
 client to retain any shared state with a connection when they move
 networks. This includes state that can be hard to recover such as
 outstanding requests, which might otherwise be lost with no easy way
 to retry them.

 An endpoint that receives packets that contain a source IP address
 and port that has not yet been used can start sending new packets
 with those as a destination IP address and port. Packets exchanged
 between endpoints can then follow the new path.

Iyengar & Thomson Expires August 1, 2018 [Page 34]

Internet-Draft QUIC Transport Protocol January 2018

 Due to variations in path latency or packet reordering, packets from
 different source addresses might be reordered. The packet with the
 highest packet number MUST be used to determine which path to use.
 Endpoints also need to be prepared to receive packets from an older
 source address.

 An endpoint MUST validate that its peer can receive packets at the
 new address before sending any significant quantity of data to that
 address, or it risks being used for denial of service. See

Section 7.7.2 for details.

7.7.1. Privacy Implications of Connection Migration

 Using a stable connection ID on multiple network paths allows a
 passive observer to correlate activity between those paths. A client
 that moves between networks might not wish to have their activity
 correlated by any entity other than a server. The NEW_CONNECTION_ID
 message can be sent by a server to provide an unlinkable connection
 ID for use in case the client wishes to explicitly break linkability
 between two points of network attachment.

 A client might need to send packets on multiple networks without
 receiving any response from the server. To ensure that the client is
 not linkable across each of these changes, a new connection ID and
 packet number gap are needed for each network. To support this, a
 server sends multiple NEW_CONNECTION_ID messages. Each
 NEW_CONNECTION_ID is marked with a sequence number. Connection IDs
 MUST be used in the order in which they are numbered.

 A client which wishes to break linkability upon changing networks
 MUST use the connection ID provided by the server as well as
 incrementing the packet sequence number by an externally
 unpredictable value computed as described in Section 7.7.1.1. Packet
 number gaps are cumulative. A client might skip connection IDs, but
 it MUST ensure that it applies the associated packet number gaps for
 connection IDs that it skips in addition to the packet number gap
 associated with the connection ID that it does use.

 A server that receives a packet that is marked with a new connection
 ID recovers the packet number by adding the cumulative packet number
 gap to its expected packet number. A server SHOULD discard packets
 that contain a smaller gap than it advertised.

 For instance, a server might provide a packet number gap of 7
 associated with a new connection ID. If the server received packet
 10 using the previous connection ID, it should expect packets on the
 new connection ID to start at 18. A packet with the new connection
 ID and a packet number of 17 is discarded as being in error.

Iyengar & Thomson Expires August 1, 2018 [Page 35]

Internet-Draft QUIC Transport Protocol January 2018

7.7.1.1. Packet Number Gap

 In order to avoid linkage, the packet number gap MUST be externally
 indistinguishable from random. The packet number gap for a
 connection ID with sequence number is computed by encoding the
 sequence number as a 32-bit integer in big-endian format, and then
 computing:

 Gap = HKDF-Expand-Label(packet_number_secret,
 "QUIC packet sequence gap", sequence, 4)

 The output of HKDF-Expand-Label is interpreted as a big-endian
 number. "packet_number_secret" is derived from the TLS key exchange,
 as described in Section 5.6 of [QUIC-TLS].

7.7.2. Address Validation for Migrated Connections

 An endpoint that receives a packet from a new remote IP address and
 port (or just a new remote port) on packets from its peer is likely
 seeing a connection migration at the peer.

 However, it is also possible that the peer is spoofing its source
 address in order to cause the endpoint to send excessive amounts of
 data to an unwilling host. If the endpoint sends significantly more
 data than the peer, connection migration might be used to amplify the
 volume of data that an attacker can generate toward a victim.

 Thus, when seeing a new remote transport address, an endpoint MUST
 verify that its peer can receive and respond to packets at that new
 address. By providing copies of the data that it receives, the peer
 proves that it is receiving packets at the new address and consents
 to receive data.

 Prior to validating the new remote address, and endpoint MUST limit
 the amount of data and packets that it sends to its peer. At a
 minimum, this needs to consider the possibility that packets are sent
 without congestion feedback.

 Once a connection is established, address validation is relatively
 simple (see Section 7.6 for the process that is used during the
 handshake). An endpoint validates a remote address by sending a PING
 frame containing a payload that is hard to guess. This frame MUST be
 sent in a packet that is sent to the new address. Once a PONG frame
 containing the same payload is received, the address is considered to
 be valid. The PONG frame can use any path on its return. A PING
 frame containing 12 randomly generated [RFC4086] octets is sufficient
 to ensure that it is easier to receive the packet than it is to guess
 the value correctly.

https://datatracker.ietf.org/doc/html/rfc4086

Iyengar & Thomson Expires August 1, 2018 [Page 36]

Internet-Draft QUIC Transport Protocol January 2018

 If the PING frame is determined to be lost, a new PING frame SHOULD
 be generated. This PING frame MUST include a new Data field that is
 similarly difficult to guess.

 If validation of the new remote address fails, after allowing enough
 time for possible loss and recovery of packets carrying PING and PONG
 frames, the endpoint MUST terminate the connection. When setting
 this timer, implementations are cautioned that the new path could
 have a longer round trip time than the original. The endpoint MUST
 NOT send a CONNECTION_CLOSE frame in this case; it has to assume that
 the remote peer does not want to receive any more packets.

 If the remote address is validated successfully, the endpoint MAY
 increase the rate that it sends on the new path using the state from
 the previous path. The capacity available on the new path might not
 be the same as the old path. An endpoint MUST NOT restore its send
 rate unless it is reasonably sure that the path is the same as the
 previous path. For instance, a change in only port number is likely
 indicative of a rebinding in a middlebox and not a complete change in
 path. This determination likely depends on heuristics, which could
 be imperfect; if the new path capacity is significantly reduced,
 ultimately this relies on the congestion controller responding to
 congestion signals and reduce send rates appropriately.

 After verifying an address, the endpoint SHOULD update any address
 validation tokens (Section 7.6) that it has issued to its peer if
 those are no longer valid based on the changed address.

 Address validation using the PING frame MAY be used at any time by
 either peer. For instance, an endpoint might check that a peer is
 still in possession of its address after a period of quiescence.

 Upon seeing a connection migration, an endpoint that sees a new
 address MUST abandon any address validation it is performing with
 other addresses on the expectation that the validation is likely to
 fail. Abandoning address validation primarily means not closing the
 connection when a PONG frame is not received, but it could also mean
 ceasing retransmissions of the PING frame. An endpoint that doesn't
 retransmit a PING frame might receive a PONG frame, which it MUST
 ignore.

7.8. Spurious Connection Migrations

 A connection migration could be triggered by an attacker that is able
 to capture and forward a packet such that it arrives before the
 legitimate copy of that packet. Such a packet will appear to be a
 legitimate connection migration and the legitimate copy will be
 dropped as a duplicate.

Iyengar & Thomson Expires August 1, 2018 [Page 37]

Internet-Draft QUIC Transport Protocol January 2018

 After a spurious migration, validation of the source address will
 fail because the entity at the source address does not have the
 necessary cryptographic keys to read or respond to the PING frame
 that is sent to it, even if it wanted to. Such a spurious connection
 migration could result in the connection being dropped when the
 source address validation fails. This grants an attacker the ability
 to terminate the connection.

 Receipt of packets with higher packet numbers from the legitimate
 address will trigger another connection migration. This will cause
 the validation of the address of the spurious migration to be
 abandoned.

 To ensure that a peer sends packets from the legitimate address
 before the validation of the new address can fail, an endpoint SHOULD
 attempt to validate the old remote address before attempting to
 validate the new address. If the connection migration is spurious,
 then the legitimate address will be used to respond and the
 connection will migrate back to the old address.

 As with any address validation, packets containing retransmissions of
 the PING frame validating an address MUST be sent to the address
 being validated. Consequently, during a migration of a peer, an
 endpoint could be sending to multiple remote addresses.

 An endpoint MAY abandon address validation for an address that it
 considers to be already valid. That is, if successive connection
 migrations occur in quick succession with the final remote address
 being identical to the initial remote address, the endpoint MAY
 abandon address validation for that address.

7.9. Connection Termination

 Connections should remain open until they become idle for a pre-
 negotiated period of time. A QUIC connection, once established, can
 be terminated in one of three ways:

 o idle timeout (Section 7.9.2)

 o immediate close (Section 7.9.3)

 o stateless reset (Section 7.9.4)

7.9.1. Closing and Draining Connection States

 The closing and draining connection states exist to ensure that
 connections close cleanly and that delayed or reordered packets are
 properly discarded. These states SHOULD persist for three times the

Iyengar & Thomson Expires August 1, 2018 [Page 38]

Internet-Draft QUIC Transport Protocol January 2018

 current Retransmission Timeout (RTO) interval as defined in
 [QUIC-RECOVERY].

 An endpoint enters a closing period after initiating an immediate
 close (Section 7.9.3) and optionally after an idle timeout
 (Section 7.9.2). While closing, an endpoint MUST NOT send packets
 unless they contain a CONNECTION_CLOSE or APPLICATION_CLOSE frame
 (see Section 7.9.3 for details).

 In the closing state, only a packet containing a closing frame can be
 sent. An endpoint retains only enough information to generate a
 packet containing a closing frame and to identify packets as
 belonging to the connection. The connection ID and QUIC version is
 sufficient information to identify packets for a closing connection;
 an endpoint can discard all other connection state. An endpoint MAY
 retain packet protection keys for incoming packets to allow it to
 read and process a closing frame.

 The draining state is entered once an endpoint receives a signal that
 its peer is closing or draining. While otherwise identical to the
 closing state, an endpoint in the draining state MUST NOT send any
 packets. Retaining packet protection keys is unnecessary once a
 connection is in the draining state.

 An endpoint MAY transition from the closing period to the draining
 period if it can confirm that its peer is also closing or draining.
 Receiving a closing frame is sufficient confirmation, as is receiving
 a stateless reset. The draining period SHOULD end when the closing
 period would have ended. In other words, the endpoint can use the
 same end time, but cease retransmission of the closing packet.

 Disposing of connection state prior to the end of the closing or
 draining period could cause delayed or reordered packets to be
 handled poorly. Endpoints that have some alternative means to ensure
 that late-arriving packets on the connection do not create QUIC
 state, such as those that are able to close the UDP socket, MAY use
 an abbreviated draining period which can allow for faster resource
 recovery. Servers that retain an open socket for accepting new
 connections SHOULD NOT exit the closing or draining period early.

 Once the closing or draining period has ended, an endpoint SHOULD
 discard all connection state. This results in new packets on the
 connection being handled generically. For instance, an endpoint MAY
 send a stateless reset in response to any further incoming packets.

 The draining and closing periods do not apply when a stateless reset
 (Section 7.9.4) is sent.

Iyengar & Thomson Expires August 1, 2018 [Page 39]

Internet-Draft QUIC Transport Protocol January 2018

 An endpoint is not expected to handle key updates when it is closing
 or draining. A key update might prevent the endpoint from moving
 from the closing state to draining, but it otherwise has no impact.

 An endpoint could receive packets from a new source address,
 indicating a connection migration (Section 7.7), while in the closing
 period. An endpoint in the closing state MUST strictly limit the
 number of packets it sends to this new address as though the address
 were not validated (see Section 7.7.2). A server in the closing
 state MAY instead choose to discard packets received from a new
 source address.

7.9.2. Idle Timeout

 A connection that remains idle for longer than the idle timeout (see
Section 7.4.1) is closed. A connection enters the draining state

 when the idle timeout expires.

 The time at which an idle timeout takes effect won't be perfectly
 synchronized on both endpoints. An endpoint that sends packets near
 the end of an idle period could have those packets discarded if its
 peer enters the draining state before the packet is received.

7.9.3. Immediate Close

 An endpoint sends a closing frame, either CONNECTION_CLOSE or
 APPLICATION_CLOSE, to terminate the connection immediately. Either
 closing frame causes all streams to immediately become closed; open
 streams can be assumed to be implicitly reset.

 After sending a closing frame, endpoints immediately enter the
 closing state. During the closing period, an endpoint that sends a
 closing frame SHOULD respond to any packet that it receives with
 another packet containing a closing frame. To minimize the state
 that an endpoint maintains for a closing connection, endpoints MAY
 send the exact same packet. However, endpoints SHOULD limit the
 number of packets they generate containing a closing frame. For
 instance, an endpoint could progressively increase the number of
 packets that it receives before sending additional packets or
 increase the time between packets.

 Note: Allowing retransmission of a packet contradicts other advice
 in this document that recommends the creation of new packet
 numbers for every packet. Sending new packet numbers is primarily
 of advantage to loss recovery and congestion control, which are
 not expected to be relevant for a closed connection.
 Retransmitting the final packet requires less state.

Iyengar & Thomson Expires August 1, 2018 [Page 40]

Internet-Draft QUIC Transport Protocol January 2018

 After receiving a closing frame, endpoints enter the draining state.
 An endpoint that receives a closing frame MAY send a single packet
 containing a closing frame before entering the draining state, using
 a CONNECTION_CLOSE frame and a NO_ERROR code if appropriate. An
 endpoint MUST NOT send further packets, which could result in a
 constant exchange of closing frames until the closing period on
 either peer ended.

 An immediate close can be used after an application protocol has
 arranged to close a connection. This might be after the application
 protocols negotiates a graceful shutdown. The application protocol
 exchanges whatever messages that are needed to cause both endpoints
 to agree to close the connection, after which the application
 requests that the connection be closed. The application protocol can
 use an APPLICATION_CLOSE message with an appropriate error code to
 signal closure.

7.9.4. Stateless Reset

 A stateless reset is provided as an option of last resort for a
 server that does not have access to the state of a connection. A
 server crash or outage might result in clients continuing to send
 data to a server that is unable to properly continue the connection.
 A server that wishes to communicate a fatal connection error MUST use
 a closing frame if it has sufficient state to do so.

 To support this process, the server sends a stateless_reset_token
 value during the handshake in the transport parameters. This value
 is protected by encryption, so only client and server know this
 value.

 A server that receives packets that it cannot process sends a packet
 in the following layout:

Iyengar & Thomson Expires August 1, 2018 [Page 41]

Internet-Draft QUIC Transport Protocol January 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |0|C|K|Type (5) |
 +-+
 | |
 + [Connection ID (64)] +
 | |
 +-+
 | Packet Number (8/16/32) |
 +-+
 | Random Octets (*) ...
 +-+
 | |
 + +
 | |
 + Stateless Reset Token (128) +
 | |
 + +
 | |
 +-+

 A server copies the connection ID field from the packet that triggers
 the stateless reset. A server omits the connection ID if explicitly
 configured to do so, or if the client packet did not include a
 connection ID.

 The Packet Number field is set to a randomized value. The server
 SHOULD send a packet with a short header and a type of 0x1F. This
 produces the shortest possible packet number encoding, which
 minimizes the perceived gap between the last packet that the server
 sent and this packet. A server MAY use a different short header
 type, indicating a different packet number length, but a longer
 packet number encoding might allow this message to be identified as a
 stateless reset more easily using heuristics.

 After the Packet Number, the server pads the message with an
 arbitrary number of octets containing random values.

 Finally, the last 16 octets of the packet are set to the value of the
 Stateless Reset Token.

 This design ensures that a stateless reset packet is - to the extent
 possible - indistinguishable from a regular packet.

 A stateless reset is not appropriate for signaling error conditions.
 An endpoint that wishes to communicate a fatal connection error MUST

Iyengar & Thomson Expires August 1, 2018 [Page 42]

Internet-Draft QUIC Transport Protocol January 2018

 use a CONNECTION_CLOSE or APPLICATION_CLOSE frame if it has
 sufficient state to do so.

 This stateless reset design is specific to QUIC version 1. A server
 that supports multiple versions of QUIC needs to generate a stateless
 reset that will be accepted by clients that support any version that
 the server might support (or might have supported prior to losing
 state). Designers of new versions of QUIC need to be aware of this
 and either reuse this design, or use a portion of the packet other
 than the last 16 octets for carrying data.

7.9.4.1. Detecting a Stateless Reset

 A client detects a potential stateless reset when a packet with a
 short header either cannot be decrypted or is marked as a duplicate
 packet. The client then compares the last 16 octets of the packet
 with the Stateless Reset Token provided by the server in its
 transport parameters. If these values are identical, the client MUST
 enter the draining period and not send any further packets on this
 connection. If the comparison fails, the packet can be discarded.

7.9.4.2. Calculating a Stateless Reset Token

 The stateless reset token MUST be difficult to guess. In order to
 create a Stateless Reset Token, a server could randomly generate
 [RFC4086] a secret for every connection that it creates. However,
 this presents a coordination problem when there are multiple servers
 in a cluster or a storage problem for a server that might lose state.
 Stateless reset specifically exists to handle the case where state is
 lost, so this approach is suboptimal.

 A single static key can be used across all connections to the same
 endpoint by generating the proof using a second iteration of a
 preimage-resistant function that takes three inputs: the static key,
 a the connection ID for the connection (see Section 5.6), and an
 identifier for the server instance. A server could use HMAC
 [RFC2104] (for example, HMAC(static_key, server_id || connection_id))
 or HKDF [RFC5869] (for example, using the static key as input keying
 material, with server and connection identifiers as salt). The
 output of this function is truncated to 16 octets to produce the
 Stateless Reset Token for that connection.

 A server that loses state can use the same method to generate a valid
 Stateless Reset Secret. The connection ID comes from the packet that
 the server receives.

 This design relies on the client always sending a connection ID in
 its packets so that the server can use the connection ID from a

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc5869

Iyengar & Thomson Expires August 1, 2018 [Page 43]

Internet-Draft QUIC Transport Protocol January 2018

 packet to reset the connection. A server that uses this design
 cannot allow clients to omit a connection ID (that is, it cannot use
 the truncate_connection_id transport parameter Section 7.4.1).

 Revealing the Stateless Reset Token allows any entity to terminate
 the connection, so a value can only be used once. This method for
 choosing the Stateless Reset Token means that the combination of
 server instance, connection ID, and static key cannot occur for
 another connection. A connection ID from a connection that is reset
 by revealing the Stateless Reset Token cannot be reused for new
 connections at the same server without first changing to use a
 different static key or server identifier.

 Note that Stateless Reset messages do not have any cryptographic
 protection.

8. Frame Types and Formats

 As described in Section 6, Regular packets contain one or more
 frames. We now describe the various QUIC frame types that can be
 present in a Regular packet. The use of these frames and various
 frame header bits are described in subsequent sections.

8.1. Variable-Length Integer Encoding

 QUIC frames use a common variable-length encoding for all non-
 negative integer values. This encoding ensures that smaller integer
 values need fewer octets to encode.

 The QUIC variable-length integer encoding reserves the two most
 significant bits of the first octet to encode the base 2 logarithm of
 the integer encoding length in octets. The integer value is encoded
 on the remaining bits, in network byte order.

 This means that integers are encoded on 1, 2, 4, or 8 octets and can
 encode 6, 14, 30, or 62 bit values respectively. Table 4 summarizes
 the encoding properties.

Iyengar & Thomson Expires August 1, 2018 [Page 44]

Internet-Draft QUIC Transport Protocol January 2018

 +------+--------+-------------+-----------------------+
 | 2Bit | Length | Usable Bits | Range |
 +------+--------+-------------+-----------------------+
 | 00 | 1 | 6 | 0-63 |
 | | | | |
 | 01 | 2 | 14 | 0-16383 |
 | | | | |
 | 10 | 4 | 30 | 0-1073741823 |
 | | | | |
 | 11 | 8 | 62 | 0-4611686018427387903 |
 +------+--------+-------------+-----------------------+

 Table 4: Summary of Integer Encodings

 For example, the eight octet sequence c2 19 7c 5e ff 14 e8 8c (in
 hexadecimal) decodes to the decimal value 151288809941952652; the
 four octet sequence 9d 7f 3e 7d decodes to 494878333; the two octet
 sequence 7b bd decodes to 15293; and the single octet 25 decodes to
 37 (as does the two octet sequence 40 25).

 Error codes (Section 12.3) are described using integers, but do not
 use this encoding.

8.2. PADDING Frame

 The PADDING frame (type=0x00) has no semantic value. PADDING frames
 can be used to increase the size of a packet. Padding can be used to
 increase an initial client packet to the minimum required size, or to
 provide protection against traffic analysis for protected packets.

 A PADDING frame has no content. That is, a PADDING frame consists of
 the single octet that identifies the frame as a PADDING frame.

8.3. RST_STREAM Frame

 An endpoint may use a RST_STREAM frame (type=0x01) to abruptly
 terminate a stream.

 After sending a RST_STREAM, an endpoint ceases transmission and
 retransmission of STREAM frames on the identified stream. A receiver
 of RST_STREAM can discard any data that it already received on that
 stream.

 The RST_STREAM frame is as follows:

Iyengar & Thomson Expires August 1, 2018 [Page 45]

Internet-Draft QUIC Transport Protocol January 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Application Error Code (16) |
 +-+
 | Final Offset (i) ...
 +-+

 The fields are:

 Stream ID: A variable-length integer encoding of the Stream ID of
 the stream being terminated.

 Application Protocol Error Code: A 16-bit application protocol error
 code (see Section 12.4) which indicates why the stream is being
 closed.

 Final Offset: A variable-length integer indicating the absolute byte
 offset of the end of data written on this stream by the RST_STREAM
 sender.

8.4. CONNECTION_CLOSE frame

 An endpoint sends a CONNECTION_CLOSE frame (type=0x02) to notify its
 peer that the connection is being closed. CONNECTION_CLOSE is used
 to signal errors at the QUIC layer, or the absence of errors (with
 the NO_ERROR code).

 If there are open streams that haven't been explicitly closed, they
 are implicitly closed when the connection is closed.

 The CONNECTION_CLOSE frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (16) | Reason Phrase Length (i) ...
 +-+
 | Reason Phrase (*) ...
 +-+

 The fields of a CONNECTION_CLOSE frame are as follows:

 Error Code: A 16-bit error code which indicates the reason for
 closing this connection. CONNECTION_CLOSE uses codes from the

Iyengar & Thomson Expires August 1, 2018 [Page 46]

Internet-Draft QUIC Transport Protocol January 2018

 space defined in Section 12.3 (APPLICATION_CLOSE uses codes from
 the application protocol error code space, see Section 12.4).

 Reason Phrase Length: A variable-length integer specifying the
 length of the reason phrase in bytes. Note that a
 CONNECTION_CLOSE frame cannot be split between packets, so in
 practice any limits on packet size will also limit the space
 available for a reason phrase.

 Reason Phrase: A human-readable explanation for why the connection
 was closed. This can be zero length if the sender chooses to not
 give details beyond the Error Code. This SHOULD be a UTF-8
 encoded string [RFC3629].

8.5. APPLICATION_CLOSE frame

 An APPLICATION_CLOSE frame (type=0x03) uses the same format as the
 CONNECTION_CLOSE frame (Section 8.4), except that it uses error codes
 from the application protocol error code space (Section 12.4) instead
 of the transport error code space.

 Other than the error code space, the format and semantics of the
 APPLICATION_CLOSE frame are identical to the CONNECTION_CLOSE frame.

8.6. MAX_DATA Frame

 The MAX_DATA frame (type=0x04) is used in flow control to inform the
 peer of the maximum amount of data that can be sent on the connection
 as a whole.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Maximum Data (i) ...
 +-+

 The fields in the MAX_DATA frame are as follows:

 Maximum Data: A variable-length integer indicating the maximum
 amount of data that can be sent on the entire connection, in units
 of octets.

 All data sent in STREAM frames counts toward this limit, with the
 exception of data on stream 0. The sum of the largest received
 offsets on all streams - including streams in terminal states, but
 excluding stream 0 - MUST NOT exceed the value advertised by a

https://datatracker.ietf.org/doc/html/rfc3629

Iyengar & Thomson Expires August 1, 2018 [Page 47]

Internet-Draft QUIC Transport Protocol January 2018

 receiver. An endpoint MUST terminate a connection with a
 QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA error if it receives more
 data than the maximum data value that it has sent, unless this is a
 result of a change in the initial limits (see Section 7.4.2).

8.7. MAX_STREAM_DATA Frame

 The MAX_STREAM_DATA frame (type=0x05) is used in flow control to
 inform a peer of the maximum amount of data that can be sent on a
 stream.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Maximum Stream Data (i) ...
 +-+

 The fields in the MAX_STREAM_DATA frame are as follows:

 Stream ID: The stream ID of the stream that is affected encoded as a
 variable-length integer.

 Maximum Stream Data: A variable-length integer indicating the
 maximum amount of data that can be sent on the identified stream,
 in units of octets.

 When counting data toward this limit, an endpoint accounts for the
 largest received offset of data that is sent or received on the
 stream. Loss or reordering can mean that the largest received offset
 on a stream can be greater than the total size of data received on
 that stream. Receiving STREAM frames might not increase the largest
 received offset.

 The data sent on a stream MUST NOT exceed the largest maximum stream
 data value advertised by the receiver. An endpoint MUST terminate a
 connection with a FLOW_CONTROL_ERROR error if it receives more data
 than the largest maximum stream data that it has sent for the
 affected stream, unless this is a result of a change in the initial
 limits (see Section 7.4.2).

Iyengar & Thomson Expires August 1, 2018 [Page 48]

Internet-Draft QUIC Transport Protocol January 2018

8.8. MAX_STREAM_ID Frame

 The MAX_STREAM_ID frame (type=0x06) informs the peer of the maximum
 stream ID that they are permitted to open.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Maximum Stream ID (i) ...
 +-+

 The fields in the MAX_STREAM_ID frame are as follows:

 Maximum Stream ID: ID of the maximum unidirectional or bidirectional
 peer-initiated stream ID for the connection encoded as a variable-
 length integer. The limit applies to unidirectional steams if the
 second least signification bit of the stream ID is 1, and applies
 to bidirectional streams if it is 0.

 Loss or reordering can mean that a MAX_STREAM_ID frame can be
 received which states a lower stream limit than the client has
 previously received. MAX_STREAM_ID frames which do not increase the
 maximum stream ID MUST be ignored.

 A peer MUST NOT initiate a stream with a higher stream ID than the
 greatest maximum stream ID it has received. An endpoint MUST
 terminate a connection with a STREAM_ID_ERROR error if a peer
 initiates a stream with a higher stream ID than it has sent, unless
 this is a result of a change in the initial limits (see

Section 7.4.2).

8.9. PING Frame

 Endpoints can use PING frames (type=0x07) to verify that their peers
 are still alive or to check reachability to the peer.

 The PING frame contains a variable-length payload.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length(8) | Data (*) ...
 +-+

 Length: This 8-bit value describes the length of the Data field.

Iyengar & Thomson Expires August 1, 2018 [Page 49]

Internet-Draft QUIC Transport Protocol January 2018

 Data: This variable-length field contains arbitrary data.

 A PING frame with an empty Data field causes the packet containing it
 to be acknowledged as normal. No other action is required of the
 recipient.

 An empty PING frame can be used to keep a connection alive when an
 application or application protocol wishes to prevent the connection
 from timing out. An application protocol SHOULD provide guidance
 about the conditions under which generating a PING is recommended.
 This guidance SHOULD indicate whether it is the client or the server
 that is expected to send the PING. Having both endpoints send PING
 frames without coordination can produce an excessive number of
 packets and poor performance.

 If the Data field is not empty, the recipient of this frame MUST
 generate a PONG frame (Section 8.15) containing the same Data. A
 PING frame with data is not appropriate for use in keeping a
 connection alive, because the PONG frame elicits an acknowledgement,
 causing the sender of the original PING to send two packets.

 A connection will time out if no packets are sent or received for a
 period longer than the time specified in the idle_timeout transport
 parameter (see Section 7.9). However, state in middleboxes might
 time out earlier than that. Though REQ-5 in [RFC4787] recommends a 2
 minute timeout interval, experience shows that sending packets every
 15 to 30 seconds is necessary to prevent the majority of middleboxes
 from losing state for UDP flows.

8.10. BLOCKED Frame

 A sender SHOULD send a BLOCKED frame (type=0x08) when it wishes to
 send data, but is unable to due to connection-level flow control (see

Section 11.2.1). BLOCKED frames can be used as input to tuning of
 flow control algorithms (see Section 11.1.2).

 The BLOCKED frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Offset (i) ...
 +-+

 The BLOCKED frame contains a single field.

 Offset: A variable-length integer indicating the connection-level
 offset at which the blocking occurred.

https://datatracker.ietf.org/doc/html/rfc4787

Iyengar & Thomson Expires August 1, 2018 [Page 50]

Internet-Draft QUIC Transport Protocol January 2018

8.11. STREAM_BLOCKED Frame

 A sender SHOULD send a STREAM_BLOCKED frame (type=0x09) when it
 wishes to send data, but is unable to due to stream-level flow
 control. This frame is analogous to BLOCKED (Section 8.10).

 The STREAM_BLOCKED frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Offset (i) ...
 +-+

 The STREAM_BLOCKED frame contains two fields:

 Stream ID: A variable-length integer indicating the stream which is
 flow control blocked.

 Offset: A variable-length integer indicating the offset of the
 stream at which the blocking occurred.

8.12. STREAM_ID_BLOCKED Frame

 A sender MAY send a STREAM_ID_BLOCKED frame (type=0x0a) when it
 wishes to open a stream, but is unable to due to the maximum stream
 ID limit set by its peer (see Section 8.8). This does not open the
 stream, but informs the peer that a new stream was needed, but the
 stream limit prevented the creation of the stream.

 The STREAM_ID_BLOCKED frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+

 The STREAM_ID_BLOCKED frame contains a single field.

 Stream ID: A variable-length integer indicating the highest stream
 ID that the sender was permitted to open.

Iyengar & Thomson Expires August 1, 2018 [Page 51]

Internet-Draft QUIC Transport Protocol January 2018

8.13. NEW_CONNECTION_ID Frame

 A server sends a NEW_CONNECTION_ID frame (type=0x0b) to provide the
 client with alternative connection IDs that can be used to break
 linkability when migrating connections (see Section 7.7.1).

 The NEW_CONNECTION_ID is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence (i) ...
 +-+
 | |
 + Connection ID (64) +
 | |
 +-+
 | |
 + +
 | |
 + Stateless Reset Token (128) +
 | |
 + +
 | |
 +-+

 The fields are:

 Sequence: A variable-length integer. This value starts at 0 and
 increases by 1 for each connection ID that is provided by the
 server. The connection ID that is assigned during the handshake
 is assumed to have a sequence of -1. That is, the value selected
 during the handshake comes immediately before the first value that
 a server can send.

 Connection ID: A 64-bit connection ID.

 Stateless Reset Token: A 128-bit value that will be used to for a
 stateless reset when the associated connection ID is used (see

Section 7.9.4).

8.14. STOP_SENDING Frame

 An endpoint may use a STOP_SENDING frame (type=0x0c) to communicate
 that incoming data is being discarded on receipt at application
 request. This signals a peer to abruptly terminate transmission on a
 stream.

Iyengar & Thomson Expires August 1, 2018 [Page 52]

Internet-Draft QUIC Transport Protocol January 2018

 The STOP_SENDING frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Application Error Code (16) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The fields are:

 Stream ID: A variable-length integer carrying the Stream ID of the
 stream being ignored.

 Application Error Code: A 16-bit, application-specified reason the
 sender is ignoring the stream (see Section 12.4).

8.15. PONG Frame

 The PONG frame (type=0x0d) is sent in response to a PING frame that
 contains data. Its format is identical to the PING frame
 (Section 8.9).

 An endpoint that receives an unsolicited PONG frame - that is, a PONG
 frame containing a payload that is empty MUST generate a connection
 error of type FRAME_ERROR, indicating the PONG frame (that is,
 0x10d). If the content of a PONG frame does not match the content of
 a PING frame previously sent by the endpoint, the endpoint MAY
 generate a connection error of type UNSOLICITED_PONG.

8.16. ACK Frame

 Receivers send ACK frames (type=0xe) to inform senders which packets
 they have received and processed. A sent packet that has never been
 acknowledged is missing. The ACK frame contains any number of ACK
 blocks. ACK blocks are ranges of acknowledged packets.

 Unlike TCP SACKs, QUIC acknowledgements are irrevocable. Once a
 packet has been acknowledged, even if it does not appear in a future
 ACK frame, it remains acknowledged.

 A client MUST NOT acknowledge Version Negotiation or Retry packets.
 These packet types contain packet numbers selected by the client, not
 the server.

 A sender MAY intentionally skip packet numbers to introduce entropy
 into the connection, to avoid opportunistic acknowledgement attacks.

Iyengar & Thomson Expires August 1, 2018 [Page 53]

Internet-Draft QUIC Transport Protocol January 2018

 The sender SHOULD close the connection if an unsent packet number is
 acknowledged. The format of the ACK frame is efficient at expressing
 even long blocks of missing packets, allowing for large,
 unpredictable gaps.

 An ACK frame is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Largest Acknowledged (i) ...
 +-+
 | ACK Delay (i) ...
 +-+
 | ACK Block Count (i) ...
 +-+
 | ACK Blocks (*) ...
 +-+

 Figure 7: ACK Frame Format

 The fields in the ACK frame are as follows:

 Largest Acknowledged: A variable-length integer representing the
 largest packet number the peer is acknowledging; this is usually
 the largest packet number that the peer has received prior to
 generating the ACK frame. Unlike the packet number in the QUIC
 long or short header, the value in an ACK frame is not truncated.

 ACK Delay: A variable-length integer including the time in
 microseconds that the largest acknowledged packet, as indicated in
 the Largest Acknowledged field, was received by this peer to when
 this ACK was sent. The value of the ACK Delay field is scaled by
 multiplying the encoded value by the 2 to the power of the value
 of the "ack_delay_exponent" transport parameter set by the sender
 of the ACK frame. The "ack_delay_exponent" defaults to 3, or a
 multiplier of 8 (see Section 7.4.1). Scaling in this fashion
 allows for a larger range of values with a shorter encoding at the
 cost of lower resolution.

 ACK Block Count: The number of Additional ACK Block (and Gap) fields
 after the First ACK Block.

 ACK Blocks: Contains one or more blocks of packet numbers which have
 been successfully received, see Section 8.16.1.

Iyengar & Thomson Expires August 1, 2018 [Page 54]

Internet-Draft QUIC Transport Protocol January 2018

8.16.1. ACK Block Section

 The ACK Block Section consists of alternating Gap and ACK Block
 fields in descending packet number order. A First Ack Block field is
 followed by a variable number of alternating Gap and Additional ACK
 Blocks. The number of Gap and Additional ACK Block fields is
 determined by the ACK Block Count field.

 Gap and ACK Block fields use a relative integer encoding for
 efficiency. Though each encoded value is positive, the values are
 subtracted, so that each ACK Block describes progressively lower-
 numbered packets. As long as contiguous ranges of packets are small,
 the variable-length integer encoding ensures that each range can be
 expressed in a small number of octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | First ACK Block (i) ...
 +-+
 | Gap (i) ...
 +-+
 | Additional ACK Block (i) ...
 +-+
 | Gap (i) ...
 +-+
 | Additional ACK Block (i) ...
 +-+
 ...
 +-+
 | Gap (i) ...
 +-+
 | Additional ACK Block (i) ...
 +-+

 Figure 8: ACK Block Section

 Each ACK Block acknowledges a contiguous range of packets by
 indicating the number of acknowledged packets that precede the
 largest packet number in that block. A value of zero indicates that
 only the largest packet number is acknowledged. Larger ACK Block
 values indicate a larger range, with corresponding lower values for
 the smallest packet number in the range. Thus, given a largest
 packet number for the ACK, the smallest value is determined by the
 formula:

 smallest = largest - ack_block

Iyengar & Thomson Expires August 1, 2018 [Page 55]

Internet-Draft QUIC Transport Protocol January 2018

 The range of packets that are acknowledged by the ACK block include
 the range from the smallest packet number to the largest, inclusive.

 The largest value for the First ACK Block is determined by the
 Largest Acknowledged field; the largest for Additional ACK Blocks is
 determined by cumulatively subtracting the size of all preceding ACK
 Blocks and Gaps.

 Each Gap indicates a range of packets that are not being
 acknowledged. The number of packets in the gap is one higher than
 the encoded value of the Gap Field.

 The value of the Gap field establishes the largest packet number
 value for the ACK block that follows the gap using the following
 formula:

 largest = previous_smallest - gap - 2

 If the calculated value for largest or smallest packet number for any
 ACK Block is negative, an endpoint MUST generate a connection error
 of type FRAME_ERROR indicating an error in an ACK frame (that is,
 0x10d).

 The fields in the ACK Block Section are:

 First ACK Block: A variable-length integer indicating the number of
 contiguous packets preceding the Largest Acknowledged that are
 being acknowledged.

 Gap (repeated): A variable-length integer indicating the number of
 contiguous unacknowledged packets preceding the packet number one
 lower than the smallest in the preceding ACK Block.

 ACK Block (repeated): A variable-length integer indicating the
 number of contiguous acknowledged packets preceding the largest
 packet number, as determined by the preceding Gap.

8.16.2. Sending ACK Frames

 Implementations MUST NOT generate packets that only contain ACK
 frames in response to packets which only contain ACK frames.
 However, they MUST acknowledge packets containing only ACK frames
 when sending ACK frames in response to other packets.
 Implementations MUST NOT send more than one ACK frame per received
 packet that contains frames other than ACK frames. Packets
 containing non-ACK frames MUST be acknowledged immediately or when a
 delayed ack timer expires.

Iyengar & Thomson Expires August 1, 2018 [Page 56]

Internet-Draft QUIC Transport Protocol January 2018

 To limit ACK blocks to those that have not yet been received by the
 sender, the receiver SHOULD track which ACK frames have been
 acknowledged by its peer. Once an ACK frame has been acknowledged,
 the packets it acknowledges SHOULD NOT be acknowledged again.

 A receiver that is only sending ACK frames will not receive
 acknowledgments for its packets. Sending an occasional MAX_DATA or
 MAX_STREAM_DATA frame as data is received will ensure that
 acknowledgements are generated by a peer. Otherwise, an endpoint MAY
 send a PING frame once per RTT to solicit an acknowledgment.

 To limit receiver state or the size of ACK frames, a receiver MAY
 limit the number of ACK blocks it sends. A receiver can do this even
 without receiving acknowledgment of its ACK frames, with the
 knowledge this could cause the sender to unnecessarily retransmit
 some data. Standard QUIC [QUIC-RECOVERY] algorithms declare packets
 lost after sufficiently newer packets are acknowledged. Therefore,
 the receiver SHOULD repeatedly acknowledge newly received packets in
 preference to packets received in the past.

8.16.3. ACK Frames and Packet Protection

 ACK frames that acknowledge protected packets MUST be carried in a
 packet that has an equivalent or greater level of packet protection.

 Packets that are protected with 1-RTT keys MUST be acknowledged in
 packets that are also protected with 1-RTT keys.

 A packet that is not protected and claims to acknowledge a packet
 number that was sent with packet protection is not valid. An
 unprotected packet that carries acknowledgments for protected packets
 MUST be discarded in its entirety.

 Packets that a client sends with 0-RTT packet protection MUST be
 acknowledged by the server in packets protected by 1-RTT keys. This
 can mean that the client is unable to use these acknowledgments if
 the server cryptographic handshake messages are delayed or lost.
 Note that the same limitation applies to other data sent by the
 server protected by the 1-RTT keys.

 Unprotected packets, such as those that carry the initial
 cryptographic handshake messages, MAY be acknowledged in unprotected
 packets. Unprotected packets are vulnerable to falsification or
 modification. Unprotected packets can be acknowledged along with
 protected packets in a protected packet.

 An endpoint SHOULD acknowledge packets containing cryptographic
 handshake messages in the next unprotected packet that it sends,

Iyengar & Thomson Expires August 1, 2018 [Page 57]

Internet-Draft QUIC Transport Protocol January 2018

 unless it is able to acknowledge those packets in later packets
 protected by 1-RTT keys. At the completion of the cryptographic
 handshake, both peers send unprotected packets containing
 cryptographic handshake messages followed by packets protected by
 1-RTT keys. An endpoint SHOULD acknowledge the unprotected packets
 that complete the cryptographic handshake in a protected packet,
 because its peer is guaranteed to have access to 1-RTT packet
 protection keys.

 For instance, a server acknowledges a TLS ClientHello in the packet
 that carries the TLS ServerHello; similarly, a client can acknowledge
 a TLS HelloRetryRequest in the packet containing a second TLS
 ClientHello. The complete set of server handshake messages (TLS
 ServerHello through to Finished) might be acknowledged by a client in
 protected packets, because it is certain that the server is able to
 decipher the packet.

8.17. STREAM Frames

 STREAM frames implicitly create a stream and carry stream data. The
 STREAM frame takes the form 0b00010XXX (or the set of values from
 0x10 to 0x17). The value of the three low-order bits of the frame
 type determine the fields that are present in the frame.

 o The OFF bit (0x04) in the frame type is set to indicate that there
 is an Offset field present. When set to 1, the Offset field is
 present; when set to 0, the Offset field is absent and the Stream
 Data starts at an offset of 0 (that is, the frame contains the
 first octets of the stream, or the end of a stream that includes
 no data).

 o The LEN bit (0x02) in the frame type is set to indicate that there
 is a Length field present. If this bit is set to 0, the Length
 field is absent and the Stream Data field extends to the end of
 the packet. If this bit is set to 1, the Length field is present.

 o The FIN bit (0x01) of the frame type is set only on frames that
 contain the final offset of the stream. Setting this bit
 indicates that the frame marks the end of the stream.

 A STREAM frame is shown below.

Iyengar & Thomson Expires August 1, 2018 [Page 58]

Internet-Draft QUIC Transport Protocol January 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | [Offset (i)] ...
 +-+
 | [Length (i)] ...
 +-+
 | Stream Data (*) ...
 +-+

 Figure 9: STREAM Frame Format

 The STREAM frame contains the following fields:

 Stream ID: A variable-length integer indicating the stream ID of the
 stream (see Section 10.1).

 Offset: A variable-length integer specifying the byte offset in the
 stream for the data in this STREAM frame. This field is present
 when the OFF bit is set to 1. When the Offset field is absent,
 the offset is 0.

 Length: A variable-length integer specifying the length of the
 Stream Data field in this STREAM frame. This field is present
 when the LEN bit is set to 1. When the LEN bit is set to 0, the
 Stream Data field consumes all the remaining octets in the packet.

 Stream Data: The bytes from the designated stream to be delivered.

 A stream frame's Stream Data MUST NOT be empty, unless the FIN bit is
 set. When the FIN flag is sent on an empty STREAM frame, the offset
 in the STREAM frame is the offset of the next byte that would be
 sent.

 The first byte in the stream has an offset of 0. The largest offset
 delivered on a stream - the sum of the re-constructed offset and data
 length - MUST be less than 2^62.

 Stream multiplexing is achieved by interleaving STREAM frames from
 multiple streams into one or more QUIC packets. A single QUIC packet
 can include multiple STREAM frames from one or more streams.

 Implementation note: One of the benefits of QUIC is avoidance of
 head-of-line blocking across multiple streams. When a packet loss
 occurs, only streams with data in that packet are blocked waiting for
 a retransmission to be received, while other streams can continue

Iyengar & Thomson Expires August 1, 2018 [Page 59]

Internet-Draft QUIC Transport Protocol January 2018

 making progress. Note that when data from multiple streams is
 bundled into a single QUIC packet, loss of that packet blocks all
 those streams from making progress. An implementation is therefore
 advised to bundle as few streams as necessary in outgoing packets
 without losing transmission efficiency to underfilled packets.

9. Packetization and Reliability

 A sender bundles one or more frames in a Regular QUIC packet (see
Section 6).

 A sender SHOULD minimize per-packet bandwidth and computational costs
 by bundling as many frames as possible within a QUIC packet. A
 sender MAY wait for a short period of time to bundle multiple frames
 before sending a packet that is not maximally packed, to avoid
 sending out large numbers of small packets. An implementation may
 use heuristics about expected application sending behavior to
 determine whether and for how long to wait. This waiting period is
 an implementation decision, and an implementation should be careful
 to delay conservatively, since any delay is likely to increase
 application-visible latency.

 Regular QUIC packets are "containers" of frames; a packet is never
 retransmitted whole. How an endpoint handles the loss of the frame
 depends on the type of the frame. Some frames are simply
 retransmitted, some have their contents moved to new frames, and
 others are never retransmitted.

 When a packet is detected as lost, the sender re-sends any frames as
 necessary:

 o All application data sent in STREAM frames MUST be retransmitted,
 unless the endpoint has sent a RST_STREAM for that stream. When
 an endpoint sends a RST_STREAM frame, data outstanding on that
 stream SHOULD NOT be retransmitted, since subsequent data on this
 stream is expected to not be delivered by the receiver.

 o ACK and PADDING frames MUST NOT be retransmitted. ACK frames
 containing updated information will be sent as described in

Section 8.16.

 o STOP_SENDING frames MUST be retransmitted until the receive stream
 enters either a "Data Recvd" or "Reset Recvd" state. See

Section 10.3.

 o The most recent MAX_STREAM_DATA frame for a stream MUST be
 retransmitted until the receive stream enters a "Size Known"
 state. Any previous unacknowledged MAX_STREAM_DATA frame for the

Iyengar & Thomson Expires August 1, 2018 [Page 60]

Internet-Draft QUIC Transport Protocol January 2018

 same stream SHOULD NOT be retransmitted since a newer
 MAX_STREAM_DATA frame for a stream obviates the need for
 delivering older ones. Similarly, the most recent MAX_DATA frame
 MUST be retransmitted; previous unacknowledged ones SHOULD NOT be
 retransmitted.

 o BLOCKED, STREAM_BLOCKED, and STREAM_ID_BLOCKED frames SHOULD be
 retransmitted if the sender is still blocked on the same limit.
 If the limit has been increased since the frame was originally
 sent, the frame SHOULD NOT be retransmitted.

 o All other frames MUST be retransmitted.

 Upon detecting losses, a sender MUST take appropriate congestion
 control action. The details of loss detection and congestion control
 are described in [QUIC-RECOVERY].

 A packet MUST NOT be acknowledged until packet protection has been
 successfully removed and all frames contained in the packet have been
 processed. For STREAM frames, this means the data has been queued
 (but not necessarily delivered to the application). This also means
 that any stream state transitions triggered by STREAM or RST_STREAM
 frames have occurred. Once the packet has been fully processed, a
 receiver acknowledges receipt by sending one or more ACK frames
 containing the packet number of the received packet.

 To avoid creating an indefinite feedback loop, an endpoint MUST NOT
 send an ACK frame in response to a packet containing only ACK or
 PADDING frames, even if there are packet gaps which precede the
 received packet. The endpoint MUST acknowledge packets containing
 only ACK or PADDING frames in the next ACK frame that it sends.

 Strategies and implications of the frequency of generating
 acknowledgments are discussed in more detail in [QUIC-RECOVERY].

9.1. Packet Size

 The QUIC packet size includes the QUIC header and integrity check,
 but not the UDP or IP header.

 Clients MUST pad any Initial packet it sends to have a QUIC packet
 size of at least 1200 octets. Sending an Initial packet of this size
 ensures that the network path supports a reasonably sized packet, and
 helps reduce the amplitude of amplification attacks caused by server
 responses toward an unverified client address.

Iyengar & Thomson Expires August 1, 2018 [Page 61]

Internet-Draft QUIC Transport Protocol January 2018

 An Initial packet MAY exceed 1200 octets if the client knows that the
 Path Maximum Transmission Unit (PMTU) supports the size that it
 chooses.

 A server MAY send a CONNECTION_CLOSE frame with error code
 PROTOCOL_VIOLATION in response to an Initial packet smaller than 1200
 octets. It MUST NOT send any other frame type in response, or
 otherwise behave as if any part of the offending packet was processed
 as valid.

9.2. Path Maximum Transmission Unit

 The Path Maximum Transmission Unit (PMTU) is the maximum size of the
 entire IP header, UDP header, and UDP payload. The UDP payload
 includes the QUIC packet header, protected payload, and any
 authentication fields.

 All QUIC packets SHOULD be sized to fit within the estimated PMTU to
 avoid IP fragmentation or packet drops. To optimize bandwidth
 efficiency, endpoints SHOULD use Packetization Layer PMTU Discovery
 ([PLPMTUD]). Endpoints MAY use PMTU Discovery ([PMTUDv4], [PMTUDv6])
 for detecting the PMTU, setting the PMTU appropriately, and storing
 the result of previous PMTU determinations.

 In the absence of these mechanisms, QUIC endpoints SHOULD NOT send IP
 packets larger than 1280 octets. Assuming the minimum IP header
 size, this results in a QUIC packet size of 1232 octets for IPv6 and
 1252 octets for IPv4. Some QUIC implementations MAY wish to be more
 conservative in computing allowed QUIC packet size given unknown
 tunneling overheads or IP header options.

 QUIC endpoints that implement any kind of PMTU discovery SHOULD
 maintain an estimate for each combination of local and remote IP
 addresses. Each pairing of local and remote addresses could have a
 different maximum MTU in the path.

 QUIC depends on the network path supporting a MTU of at least 1280
 octets. This is the IPv6 minimum MTU and therefore also supported by
 most modern IPv4 networks. An endpoint MUST NOT reduce its MTU below
 this number, even if it receives signals that indicate a smaller
 limit might exist.

 If a QUIC endpoint determines that the PMTU between any pair of local
 and remote IP addresses has fallen below 1280 octets, it MUST
 immediately cease sending QUIC packets on the affected path. This
 could result in termination of the connection if an alternative path
 cannot be found.

Iyengar & Thomson Expires August 1, 2018 [Page 62]

Internet-Draft QUIC Transport Protocol January 2018

9.2.1. Special Considerations for PMTU Discovery

 Traditional ICMP-based path MTU discovery in IPv4 [RFC1191] is
 potentially vulnerable to off-path attacks that successfully guess
 the IP/port 4-tuple and reduce the MTU to a bandwidth-inefficient
 value. TCP connections mitigate this risk by using the (at minimum)
 8 bytes of transport header echoed in the ICMP message to validate
 the TCP sequence number as valid for the current connection.
 However, as QUIC operates over UDP, in IPv4 the echoed information
 could consist only of the IP and UDP headers, which usually has
 insufficient entropy to mitigate off-path attacks.

 As a result, endpoints that implement PMTUD in IPv4 SHOULD take steps
 to mitigate this risk. For instance, an application could:

 o Set the IPv4 Don't Fragment (DF) bit on a small proportion of
 packets, so that most invalid ICMP messages arrive when there are
 no DF packets outstanding, and can therefore be identified as
 spurious.

 o Store additional information from the IP or UDP headers from DF
 packets (for example, the IP ID or UDP checksum) to further
 authenticate incoming Datagram Too Big messages.

 o Any reduction in PMTU due to a report contained in an ICMP packet
 is provisional until QUIC's loss detection algorithm determines
 that the packet is actually lost.

9.2.2. Special Considerations for Packetization Layer PMTU Discovery

 The PADDING frame provides a useful option for PMTU probe packets
 that does not exist in other transports. PADDING frames generate
 acknowledgements, but their content need not be delivered reliably.
 PADDING frames may delay the delivery of application data, as they
 consume the congestion window. However, by definition their likely
 loss in a probe packet does not require delay-inducing retransmission
 of application data.

 When implementing the algorithm in Section 7.2 of [RFC4821], the
 initial value of search_low SHOULD be consistent with the IPv6
 minimum packet size. Paths that do not support this size cannot
 deliver Initial packets, and therefore are not QUIC-compliant.

Section 7.3 of [RFC4821] discusses tradeoffs between small and large
 increases in the size of probe packets. As QUIC probe packets need
 not contain application data, aggressive increases in probe size
 carry fewer consequences.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821#section-7.2
https://datatracker.ietf.org/doc/html/rfc4821#section-7.3

Iyengar & Thomson Expires August 1, 2018 [Page 63]

Internet-Draft QUIC Transport Protocol January 2018

10. Streams: QUIC's Data Structuring Abstraction

 Streams in QUIC provide a lightweight, ordered byte-stream
 abstraction.

 There are two basic types of stream in QUIC. Unidirectional streams
 carry data in one direction only; bidirectional streams allow for
 data to be sent in both directions. Different stream identifiers are
 used to distinguish between unidirectional and bidirectional streams,
 as well as to create a separation between streams that are initiated
 by the client and server (see Section 10.1).

 Either type of stream can be created by either endpoint, can
 concurrently send data interleaved with other streams, and can be
 cancelled.

 Data that is received on a stream is delivered in order within that
 stream, but there is no particular delivery order across streams.
 Transmit ordering among streams is left to the implementation.

 The creation and destruction of streams are expected to have minimal
 bandwidth and computational cost. A single STREAM frame may create,
 carry data for, and terminate a stream, or a stream may last the
 entire duration of a connection.

 Streams are individually flow controlled, allowing an endpoint to
 limit memory commitment and to apply back pressure. The creation of
 streams is also flow controlled, with each peer declaring the maximum
 stream ID it is willing to accept at a given time.

 An alternative view of QUIC streams is as an elastic "message"
 abstraction, similar to the way ephemeral streams are used in SST
 [SST], which may be a more appealing description for some
 applications.

10.1. Stream Identifiers

 Streams are identified by an unsigned 62-bit integer, referred to as
 the Stream ID. The least significant two bits of the Stream ID are
 used to identify the type of stream (unidirectional or bidirectional)
 and the initiator of the stream.

 The least significant bit (0x1) of the Stream ID identifies the
 initiator of the stream. Clients initiate even-numbered streams
 (those with the least significant bit set to 0); servers initiate
 odd-numbered streams (with the bit set to 1). Separation of the
 stream identifiers ensures that client and server are able to open
 streams without the latency imposed by negotiating for an identifier.

Iyengar & Thomson Expires August 1, 2018 [Page 64]

Internet-Draft QUIC Transport Protocol January 2018

 If an endpoint receives a frame for a stream that it expects to
 initiate (i.e., odd-numbered for the client or even-numbered for the
 server), but which it has not yet opened, it MUST close the
 connection with error code STREAM_STATE_ERROR.

 The second least significant bit (0x2) of the Stream ID
 differentiates between unidirectional streams and bidirectional
 streams. Unidirectional streams always have this bit set to 1 and
 bidirectional streams have this bit set to 0.

 The two type bits from a Stream ID therefore identify streams as
 summarized in Table 5.

 +----------+----------------------------------+
 | Low Bits | Stream Type |
 +----------+----------------------------------+
 | 0x0 | Client-Initiated, Bidirectional |
 | | |
 | 0x1 | Server-Initiated, Bidirectional |
 | | |
 | 0x2 | Client-Initiated, Unidirectional |
 | | |
 | 0x3 | Server-Initiated, Unidirectional |
 +----------+----------------------------------+

 Table 5: Stream ID Types

 Stream ID 0 (0x0) is a client-initiated, bidirectional stream that is
 used for the cryptographic handshake. Stream 0 MUST NOT be used for
 application data.

 A QUIC endpoint MUST NOT reuse a Stream ID. Open streams can be used
 in any order. Streams that are used out of order result in opening
 all lower-numbered streams of the same type in the same direction.

 Stream IDs are encoded as a variable-length integer (see
Section 8.1).

10.2. Stream States

 This section describes the two types of QUIC stream in terms of the
 states of their send or receive components. Two state machines are
 described: one for streams on which an endpoint transmits data
 (Section 10.2.1); another for streams from which an endpoint receives
 data (Section 10.2.2).

 Unidirectional streams use the applicable state machine directly.
 Bidirectional streams use both state machines. For the most part,

Iyengar & Thomson Expires August 1, 2018 [Page 65]

Internet-Draft QUIC Transport Protocol January 2018

 the use of these state machines is the same whether the stream is
 unidirectional or bidirectional. The conditions for opening a stream
 are slightly more complex for a bidirectional stream because the
 opening of either send or receive causes the stream to open in both
 directions.

 Opening a stream causes all lower-numbered streams of the same type
 to implicitly open. This includes both send and receive streams if
 the stream is bidirectional. For bidirectional streams, an endpoint
 can send data on an implicitly opened stream. On both unidirectional
 and bidirectional streams, an endpoint MAY send MAX_STREAM_DATA or
 STOP_SENDING on implicitly opened streams. An endpoint SHOULD NOT
 implicitly open streams that it initiates, instead opening streams in
 order.

 Note: These states are largely informative. This document uses
 stream states to describe rules for when and how different types
 of frames can be sent and the reactions that are expected when
 different types of frames are received. Though these state
 machines are intended to be useful in implementing QUIC, these
 states aren't intended to constrain implementations. An
 implementation can define a different state machine as long as its
 behavior is consistent with an implementation that implements
 these states.

10.2.1. Send Stream States

 Figure 10 shows the states for the part of a stream that sends data
 to a peer.

Iyengar & Thomson Expires August 1, 2018 [Page 66]

Internet-Draft QUIC Transport Protocol January 2018

 o
 | Application Open
 | Open Paired Stream (bidirectional)
 v
 +-------+
 | Open | Send RST_STREAM
 | |-----------------------.
 +-------+ |
 | |
 | Send STREAM / |
 | STREAM_BLOCKED |
 v |
 +-------+ |
 | Send | Send RST_STREAM |
 | |---------------------->|
 +-------+ |
 | |
 | Send STREAM + FIN |
 v v
 +-------+ +-------+
 | Data | Send RST_STREAM | Reset |
 | Sent +------------------>| Sent |
 +-------+ +-------+
 | |
 | Recv All ACKs | Recv ACK
 v v
 +-------+ +-------+
 | Data | | Reset |
 | Recvd | | Recvd |
 +-------+ +-------+

 Figure 10: States for Send Streams

 The sending part of stream that the endpoint initiates (types 0 and 2
 for clients, 1 and 3 for servers) is opened by the application or
 application protocol. The "Open" state represents a newly created
 stream that is able to accept data from the application. Stream data
 might be buffered in this state in preparation for sending.

 The sending part of a bidirectional stream initiated by a peer (type
 0 for a server, type 1 for a client) enters the "Open" state if the
 receiving part enters the "Recv" state.

 Sending the first STREAM or STREAM_BLOCKED frame causes a send stream
 to enter the "Send" state. An implementation might choose to defer
 allocating a Stream ID to a send stream until it sends the first
 frame and enters this state, which can allow for better stream
 prioritization.

Iyengar & Thomson Expires August 1, 2018 [Page 67]

Internet-Draft QUIC Transport Protocol January 2018

 In the "Send" state, an endpoint transmits - and retransmits as
 necessary - data in STREAM frames. The endpoint respects the flow
 control limits of its peer, accepting MAX_STREAM_DATA frames. An
 endpoint in the "Send" state generates STREAM_BLOCKED frames if it
 encounters flow control limits.

 After the application indicates that stream data is complete and a
 STREAM frame containing the FIN bit is sent, the send stream enters
 the "Data Sent" state. From this state, the endpoint only
 retransmits stream data as necessary. The endpoint no longer needs
 to track flow control limits or send STREAM_BLOCKED frames for a send
 stream in this state. The endpoint can ignore any MAX_STREAM_DATA
 frames it receives from its peer in this state; MAX_STREAM_DATA
 frames might be received until the peer receives the final stream
 offset.

 Once all stream data has been successfully acknowledged, the send
 stream enters the "Data Recvd" state, which is a terminal state.

 From any of the "Open", "Send", or "Data Sent" states, an application
 can signal that it wishes to abandon transmission of stream data.
 Similarly, the endpoint might receive a STOP_SENDING frame from its
 peer. In either case, the endpoint sends a RST_STREAM frame, which
 causes the stream to enter the "Reset Sent" state.

 An endpoint MAY send a RST_STREAM as the first frame on a send
 stream; this causes the send stream to open and then immediately
 transition to the "Reset Sent" state.

 Once a packet containing a RST_STREAM has been acknowledged, the send
 stream enters the "Reset Recvd" state, which is a terminal state.

10.2.2. Receive Stream States

 Figure 11 shows the states for the part of a stream that receives
 data from a peer. The states for a receive stream mirror only some
 of the states of the send stream at the peer. A receive stream
 doesn't track states on the send stream that cannot be observed, such
 as the "Open" state; instead, receive streams track the delivery of
 data to the application or application protocol some of which cannot
 be observed by the sender.

Iyengar & Thomson Expires August 1, 2018 [Page 68]

Internet-Draft QUIC Transport Protocol January 2018

 o
 | Recv STREAM / STREAM_BLOCKED / RST_STREAM
 | Open Paired Stream (bidirectional)
 | Recv MAX_STREAM_DATA
 v
 +-------+
 | Recv | Recv RST_STREAM
 | |-----------------------.
 +-------+ |
 | |
 | Recv STREAM + FIN |
 v |
 +-------+ |
 | Size | Recv RST_STREAM |
 | Known +---------------------->|
 +-------+ |
 | |
 | Recv All Data |
 v v
 +-------+ +-------+
 | Data | Recv RST_STREAM | Reset |
 | Recvd +<-- (optional) --->| Recvd |
 +-------+ +-------+
 | |
 | App Read All Data | App Read RST
 v v
 +-------+ +-------+
 | Data | | Reset |
 | Read | | Read |
 +-------+ +-------+

 Figure 11: States for Receive Streams

 The receiving part of a stream initiated by a peer (types 1 and 3 for
 a client, or 0 and 2 for a server) are created when the first STREAM,
 STREAM_BLOCKED, RST_STREAM, or MAX_STREAM_DATA (bidirectional only,
 see below) is received for that stream. The initial state for a
 receive stream is "Recv". Receiving a RST_STREAM frame causes the
 receive stream to immediately transition to the "Reset Recvd".

 The receive stream enters the "Recv" state when the sending part of a
 bidirectional stream initiated by the endpoint (type 0 for a client,
 type 1 for a server) enters the "Open" state.

 A bidirectional stream also opens when a MAX_STREAM_DATA frame is
 received. Receiving a MAX_STREAM_DATA frame implies that the remote
 peer has opened the stream and is providing flow control credit. A

Iyengar & Thomson Expires August 1, 2018 [Page 69]

Internet-Draft QUIC Transport Protocol January 2018

 MAX_STREAM_DATA frame might arrive before a STREAM or STREAM_BLOCKED
 frame if packets are lost or reordered.

 In the "Recv" state, the endpoint receives STREAM and STREAM_BLOCKED
 frames. Incoming data is buffered and reassembled into the correct
 order for delivery to the application. As data is consumed by the
 application and buffer space becomes available, the endpoint sends
 MAX_STREAM_DATA frames to allow the peer to send more data.

 When a STREAM frame with a FIN bit is received, the final offset (see
Section 11.3) is known. The receive stream enters the "Size Known"

 state. In this state, the endpoint no longer needs to send
 MAX_STREAM_DATA frames, it only receives any retransmissions of
 stream data.

 Once all data for the stream has been received, the receive stream
 enters the "Data Recvd" state. This might happen as a result of
 receiving the same STREAM frame that causes the transition to "Size
 Known". In this state, the endpoint has all stream data. Any STREAM
 or STREAM_BLOCKED frames it receives for the stream can be discarded.

 The "Data Recvd" state persists until stream data has been delivered
 to the application or application protocol. Once stream data has
 been delivered, the stream enters the "Data Read" state, which is a
 terminal state.

 Receiving a RST_STREAM frame in the "Recv" or "Size Known" states
 causes the stream to enter the "Reset Recvd" state. This might cause
 the delivery of stream data to the application to be interrupted.

 It is possible that all stream data is received when a RST_STREAM is
 received (that is, from the "Data Recvd" state). Similarly, it is
 possible for remaining stream data to arrive after receiving a
 RST_STREAM frame (the "Reset Recvd" state). An implementation is
 able to manage this situation as they choose. Sending RST_STREAM
 means that an endpoint cannot guarantee delivery of stream data;
 however there is no requirement that stream data not be delivered if
 a RST_STREAM is received. An implementation MAY interrupt delivery
 of stream data, discard any data that was not consumed, and signal
 the existence of the RST_STREAM immediately. Alternatively, the
 RST_STREAM signal might be suppressed or withheld if stream data is
 completely received. In the latter case, the receive stream
 effectively transitions to "Data Recvd" from "Reset Recvd".

 Once the application has been delivered the signal indicating that
 the receive stream was reset, the receive stream transitions to the
 "Reset Read" state, which is a terminal state.

Iyengar & Thomson Expires August 1, 2018 [Page 70]

Internet-Draft QUIC Transport Protocol January 2018

10.2.3. Permitted Frame Types

 The sender of a stream sends just three frame types that affect the
 state of a stream at either sender or receiver: STREAM
 (Section 8.17), STREAM_BLOCKED (Section 8.11), and RST_STREAM
 (Section 8.3).

 A sender MUST NOT send any of these frames from a terminal state
 ("Data Recvd" or "Reset Recvd"). A sender MUST NOT send STREAM or
 STREAM_BLOCKED after sending a RST_STREAM; that is, in the "Reset
 Sent" state in addition to the terminal states. A receiver could
 receive any of these frames in any state, but only due to the
 possibility of delayed delivery of packets carrying them.

 The receiver of a stream sends MAX_STREAM_DATA (Section 8.7) and
 STOP_SENDING frames (Section 8.14).

 The receiver only sends MAX_STREAM_DATA in the "Recv" state. A
 receiver can send STOP_SENDING in any state where it has not received
 a RST_STREAM frame; that is states other than "Reset Recvd" or "Reset
 Read". However there is little value in sending a STOP_SENDING frame
 after all stream data has been received in the "Data Recvd" state. A
 sender could receive these frames in any state as a result of delayed
 delivery of packets.

10.2.4. Bidirectional Stream States

 A bidirectional stream is composed of a send stream and a receive
 stream. Implementations may represent states of the bidirectional
 stream as composites of send and receive stream states. The simplest
 model presents the stream as "open" when either send or receive
 stream is in a non-terminal state and "closed" when both send and
 receive streams are in a terminal state.

 Table 6 shows a more complex mapping of bidirectional stream states
 that loosely correspond to the stream states in HTTP/2 [HTTP2]. This
 shows that multiple states on send or receive streams are mapped to
 the same composite state. Note that this is just one possibility for
 such a mapping; this mapping requires that data is acknowledged
 before the transition to a "closed" or "half-closed" state.

Iyengar & Thomson Expires August 1, 2018 [Page 71]

Internet-Draft QUIC Transport Protocol January 2018

 +-----------------------+---------------------+---------------------+
 | Send Stream | Receive Stream | Composite State |
 +-----------------------+---------------------+---------------------+
No Stream/Open	No Stream/Recv *1	idle
Open/Send/Data Sent	Recv/Size Known	open
Open/Send/Data Sent	Data Recvd/Data	half-closed
	Read	(remote)
Open/Send/Data Sent	Reset Recvd/Reset	half-closed
	Read	(remote)
Data Recvd	Recv/Size Known	half-closed (local)
Reset Sent/Reset	Recv/Size Known	half-closed (local)
Recvd		
Data Recvd	Recv/Size Known	half-closed (local)
Reset Sent/Reset	Data Recvd/Data	closed
Recvd	Read	
Reset Sent/Reset	Reset Recvd/Reset	closed
Recvd	Read	
Data Recvd	Data Recvd/Data	closed
	Read	
Data Recvd	Reset Recvd/Reset	closed
	Read	
 +-----------------------+---------------------+---------------------+

 Table 6: Possible Mapping of Stream States to HTTP/2

 Note (*1): A stream is considered "idle" if it has not yet been
 created, or if the receive stream is in the "Recv" state without
 yet having received any frames.

10.3. Solicited State Transitions

 If an endpoint is no longer interested in the data it is receiving on
 a stream, it MAY send a STOP_SENDING frame identifying that stream to
 prompt closure of the stream in the opposite direction. This
 typically indicates that the receiving application is no longer
 reading data it receives from the stream, but is not a guarantee that
 incoming data will be ignored.

Iyengar & Thomson Expires August 1, 2018 [Page 72]

Internet-Draft QUIC Transport Protocol January 2018

 STREAM frames received after sending STOP_SENDING are still counted
 toward the connection and stream flow-control windows, even though
 these frames will be discarded upon receipt. This avoids potential
 ambiguity about which STREAM frames count toward flow control.

 A STOP_SENDING frame requests that the receiving endpoint send a
 RST_STREAM frame. An endpoint that receives a STOP_SENDING frame
 MUST send a RST_STREAM frame for that stream, and can use an error
 code of STOPPING. If the STOP_SENDING frame is received on a send
 stream that is already in the "Data Sent" state, a RST_STREAM frame
 MAY still be sent in order to cancel retransmission of previously-
 sent STREAM frames.

 STOP_SENDING SHOULD only be sent for a receive stream that has not
 been reset. STOP_SENDING is most useful for streams in the "Recv" or
 "Size Known" states.

 An endpoint is expected to send another STOP_SENDING frame if a
 packet containing a previous STOP_SENDING is lost. However, once
 either all stream data or a RST_STREAM frame has been received for
 the stream - that is, the stream is in any state other than "Recv" or
 "Size Known" - sending a STOP_SENDING frame is unnecessary.

10.4. Stream Concurrency

 An endpoint limits the number of concurrently active incoming streams
 by adjusting the maximum stream ID. An initial value is set in the
 transport parameters (see Section 7.4.1) and is subsequently
 increased by MAX_STREAM_ID frames (see Section 8.8).

 The maximum stream ID is specific to each endpoint and applies only
 to the peer that receives the setting. That is, clients specify the
 maximum stream ID the server can initiate, and servers specify the
 maximum stream ID the client can initiate. Each endpoint may respond
 on streams initiated by the other peer, regardless of whether it is
 permitted to initiated new streams.

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a STREAM frame with an ID greater than the limit it has
 sent MUST treat this as a stream error of type STREAM_ID_ERROR
 (Section 12), unless this is a result of a change in the initial
 offsets (see Section 7.4.2).

 A receiver MUST NOT renege on an advertisement; that is, once a
 receiver advertises a stream ID via a MAX_STREAM_ID frame, it MUST
 NOT subsequently advertise a smaller maximum ID. A sender may
 receive MAX_STREAM_ID frames out of order; a sender MUST therefore
 ignore any MAX_STREAM_ID that does not increase the maximum.

Iyengar & Thomson Expires August 1, 2018 [Page 73]

Internet-Draft QUIC Transport Protocol January 2018

10.5. Sending and Receiving Data

 Once a stream is created, endpoints may use the stream to send and
 receive data. Each endpoint may send a series of STREAM frames
 encapsulating data on a stream until the stream is terminated in that
 direction. Streams are an ordered byte-stream abstraction, and they
 have no other structure within them. STREAM frame boundaries are not
 expected to be preserved in retransmissions from the sender or during
 delivery to the application at the receiver.

 When new data is to be sent on a stream, a sender MUST set the
 encapsulating STREAM frame's offset field to the stream offset of the
 first byte of this new data. The first byte of data that is sent on
 a stream has the stream offset 0. The largest offset delivered on a
 stream MUST be less than 2^62. A receiver MUST ensure that received
 stream data is delivered to the application as an ordered byte-
 stream. Data received out of order MUST be buffered for later
 delivery, as long as it is not in violation of the receiver's flow
 control limits.

 An endpoint MUST NOT send data on any stream without ensuring that it
 is within the data limits set by its peer. The cryptographic
 handshake stream, Stream 0, is exempt from the connection-level data
 limits established by MAX_DATA. Data on stream 0 other than the
 initial cryptographic handshake message is still subject to stream-
 level data limits and MAX_STREAM_DATA. This message is exempt from
 flow control because it needs to be sent in a single packet
 regardless of the server's flow control state. This rule applies
 even for 0-RTT handshakes where the remembered value of
 MAX_STREAM_DATA would not permit sending a full initial cryptographic
 handshake message.

 Flow control is described in detail in Section 11, and congestion
 control is described in the companion document [QUIC-RECOVERY].

10.6. Stream Prioritization

 Stream multiplexing has a significant effect on application
 performance if resources allocated to streams are correctly
 prioritized. Experience with other multiplexed protocols, such as
 HTTP/2 [HTTP2], shows that effective prioritization strategies have a
 significant positive impact on performance.

 QUIC does not provide frames for exchanging prioritization
 information. Instead it relies on receiving priority information
 from the application that uses QUIC. Protocols that use QUIC are
 able to define any prioritization scheme that suits their application
 semantics. A protocol might define explicit messages for signaling

Iyengar & Thomson Expires August 1, 2018 [Page 74]

Internet-Draft QUIC Transport Protocol January 2018

 priority, such as those defined in HTTP/2; it could define rules that
 allow an endpoint to determine priority based on context; or it could
 leave the determination to the application.

 A QUIC implementation SHOULD provide ways in which an application can
 indicate the relative priority of streams. When deciding which
 streams to dedicate resources to, QUIC SHOULD use the information
 provided by the application. Failure to account for priority of
 streams can result in suboptimal performance.

 Stream priority is most relevant when deciding which stream data will
 be transmitted. Often, there will be limits on what can be
 transmitted as a result of connection flow control or the current
 congestion controller state.

 Giving preference to the transmission of its own management frames
 ensures that the protocol functions efficiently. That is,
 prioritizing frames other than STREAM frames ensures that loss
 recovery, congestion control, and flow control operate effectively.

 Stream 0 MUST be prioritized over other streams prior to the
 completion of the cryptographic handshake. This includes the
 retransmission of the second flight of client handshake messages,
 that is, the TLS Finished and any client authentication messages.

 STREAM frames that are determined to be lost SHOULD be retransmitted
 before sending new data, unless application priorities indicate
 otherwise. Retransmitting lost stream data can fill in gaps, which
 allows the peer to consume already received data and free up flow
 control window.

11. Flow Control

 It is necessary to limit the amount of data that a sender may have
 outstanding at any time, so as to prevent a fast sender from
 overwhelming a slow receiver, or to prevent a malicious sender from
 consuming significant resources at a receiver. This section
 describes QUIC's flow-control mechanisms.

 QUIC employs a credit-based flow-control scheme similar to HTTP/2's
 flow control [HTTP2]. A receiver advertises the number of octets it
 is prepared to receive on a given stream and for the entire
 connection. This leads to two levels of flow control in QUIC: (i)
 Connection flow control, which prevents senders from exceeding a
 receiver's buffer capacity for the connection, and (ii) Stream flow
 control, which prevents a single stream from consuming the entire
 receive buffer for a connection.

Iyengar & Thomson Expires August 1, 2018 [Page 75]

Internet-Draft QUIC Transport Protocol January 2018

 A data receiver sends MAX_STREAM_DATA or MAX_DATA frames to the
 sender to advertise additional credit. MAX_STREAM_DATA frames send
 the the maximum absolute byte offset of a stream, while MAX_DATA
 sends the maximum sum of the absolute byte offsets of all streams
 other than stream 0.

 A receiver MAY advertise a larger offset at any point by sending
 MAX_DATA or MAX_STREAM_DATA frames. A receiver MUST NOT renege on an
 advertisement; that is, once a receiver advertises an offset, it MUST
 NOT subsequently advertise a smaller offset. A sender could receive
 MAX_DATA or MAX_STREAM_DATA frames out of order; a sender MUST
 therefore ignore any flow control offset that does not move the
 window forward.

 A receiver MUST close the connection with a FLOW_CONTROL_ERROR error
 (Section 12) if the peer violates the advertised connection or stream
 data limits.

 A sender SHOULD send BLOCKED or STREAM_BLOCKED frames to indicate it
 has data to write but is blocked by flow control limits. These
 frames are expected to be sent infrequently in common cases, but they
 are considered useful for debugging and monitoring purposes.

 A receiver advertises credit for a stream by sending a
 MAX_STREAM_DATA frame with the Stream ID set appropriately. A
 receiver could use the current offset of data consumed to determine
 the flow control offset to be advertised. A receiver MAY send
 MAX_STREAM_DATA frames in multiple packets in order to make sure that
 the sender receives an update before running out of flow control
 credit, even if one of the packets is lost.

 Connection flow control is a limit to the total bytes of stream data
 sent in STREAM frames on all streams. A receiver advertises credit
 for a connection by sending a MAX_DATA frame. A receiver maintains a
 cumulative sum of bytes received on all streams, which are used to
 check for flow control violations. A receiver might use a sum of
 bytes consumed on all contributing streams to determine the maximum
 data limit to be advertised.

11.1. Edge Cases and Other Considerations

 There are some edge cases which must be considered when dealing with
 stream and connection level flow control. Given enough time, both
 endpoints must agree on flow control state. If one end believes it
 can send more than the other end is willing to receive, the
 connection will be torn down when too much data arrives.

Iyengar & Thomson Expires August 1, 2018 [Page 76]

Internet-Draft QUIC Transport Protocol January 2018

 Conversely if a sender believes it is blocked, while endpoint B
 expects more data can be received, then the connection can be in a
 deadlock, with the sender waiting for a MAX_DATA or MAX_STREAM_DATA
 frame which will never come.

 On receipt of a RST_STREAM frame, an endpoint will tear down state
 for the matching stream and ignore further data arriving on that
 stream. This could result in the endpoints getting out of sync,
 since the RST_STREAM frame may have arrived out of order and there
 may be further bytes in flight. The data sender would have counted
 the data against its connection level flow control budget, but a
 receiver that has not received these bytes would not know to include
 them as well. The receiver must learn the number of bytes that were
 sent on the stream to make the same adjustment in its connection flow
 controller.

 To avoid this de-synchronization, a RST_STREAM sender MUST include
 the final byte offset sent on the stream in the RST_STREAM frame. On
 receiving a RST_STREAM frame, a receiver definitively knows how many
 bytes were sent on that stream before the RST_STREAM frame, and the
 receiver MUST use the final offset to account for all bytes sent on
 the stream in its connection level flow controller.

11.1.1. Response to a RST_STREAM

 RST_STREAM terminates one direction of a stream abruptly. Whether
 any action or response can or should be taken on the data already
 received is an application-specific issue, but it will often be the
 case that upon receipt of a RST_STREAM an endpoint will choose to
 stop sending data in its own direction. If the sender of a
 RST_STREAM wishes to explicitly state that no future data will be
 processed, that endpoint MAY send a STOP_SENDING frame at the same
 time.

11.1.2. Data Limit Increments

 This document leaves when and how many bytes to advertise in a
 MAX_DATA or MAX_STREAM_DATA to implementations, but offers a few
 considerations. These frames contribute to connection overhead.
 Therefore frequently sending frames with small changes is
 undesirable. At the same time, infrequent updates require larger
 increments to limits if blocking is to be avoided. Thus, larger
 updates require a receiver to commit to larger resource commitments.
 Thus there is a tradeoff between resource commitment and overhead
 when determining how large a limit is advertised.

 A receiver MAY use an autotuning mechanism to tune the frequency and
 amount that it increases data limits based on a roundtrip time

Iyengar & Thomson Expires August 1, 2018 [Page 77]

Internet-Draft QUIC Transport Protocol January 2018

 estimate and the rate at which the receiving application consumes
 data, similar to common TCP implementations.

11.2. Stream Limit Increment

 As with flow control, this document leaves when and how many streams
 to make available to a peer via MAX_STREAM_ID to implementations, but
 offers a few considerations. MAX_STREAM_ID frames constitute minimal
 overhead, while withholding MAX_STREAM_ID frames can prevent the peer
 from using the available parallelism.

 Implementations will likely want to increase the maximum stream ID as
 peer-initiated streams close. A receiver MAY also advance the
 maximum stream ID based on current activity, system conditions, and
 other environmental factors.

11.2.1. Blocking on Flow Control

 If a sender does not receive a MAX_DATA or MAX_STREAM_DATA frame when
 it has run out of flow control credit, the sender will be blocked and
 SHOULD send a BLOCKED or STREAM_BLOCKED frame. These frames are
 expected to be useful for debugging at the receiver; they do not
 require any other action. A receiver SHOULD NOT wait for a BLOCKED
 or STREAM_BLOCKED frame before sending MAX_DATA or MAX_STREAM_DATA,
 since doing so will mean that a sender is unable to send for an
 entire round trip.

 For smooth operation of the congestion controller, it is generally
 considered best to not let the sender go into quiescence if
 avoidable. To avoid blocking a sender, and to reasonably account for
 the possibiity of loss, a receiver should send a MAX_DATA or
 MAX_STREAM_DATA frame at least two roundtrips before it expects the
 sender to get blocked.

 A sender sends a single BLOCKED or STREAM_BLOCKED frame only once
 when it reaches a data limit. A sender SHOULD NOT send multiple
 BLOCKED or STREAM_BLOCKED frames for the same data limit, unless the
 original frame is determined to be lost. Another BLOCKED or
 STREAM_BLOCKED frame can be sent after the data limit is increased.

11.3. Stream Final Offset

 The final offset is the count of the number of octets that are
 transmitted on a stream. For a stream that is reset, the final
 offset is carried explicitly in a RST_STREAM frame. Otherwise, the
 final offset is the offset of the end of the data carried in a STREAM
 frame marked with a FIN flag, or 0 in the case of incoming
 unidirectional streams.

Iyengar & Thomson Expires August 1, 2018 [Page 78]

Internet-Draft QUIC Transport Protocol January 2018

 An endpoint will know the final offset for a stream when the receive
 stream enters the "Size Known" or "Reset Recvd" state.

 An endpoint MUST NOT send data on a stream at or beyond the final
 offset.

 Once a final offset for a stream is known, it cannot change. If a
 RST_STREAM or STREAM frame causes the final offset to change for a
 stream, an endpoint SHOULD respond with a FINAL_OFFSET_ERROR error
 (see Section 12). A receiver SHOULD treat receipt of data at or
 beyond the final offset as a FINAL_OFFSET_ERROR error, even after a
 stream is closed. Generating these errors is not mandatory, but only
 because requiring that an endpoint generate these errors also means
 that the endpoint needs to maintain the final offset state for closed
 streams, which could mean a significant state commitment.

12. Error Handling

 An endpoint that detects an error SHOULD signal the existence of that
 error to its peer. Errors can affect an entire connection (see

Section 12.1), or a single stream (see Section 12.2).

 The most appropriate error code (Section 12.3) SHOULD be included in
 the frame that signals the error. Where this specification
 identifies error conditions, it also identifies the error code that
 is used.

 A stateless reset (Section 7.9.4) is not suitable for any error that
 can be signaled with a CONNECTION_CLOSE, APPLICATION_CLOSE, or
 RST_STREAM frame. A stateless reset MUST NOT be used by an endpoint
 that has the state necessary to send a frame on the connection.

12.1. Connection Errors

 Errors that result in the connection being unusable, such as an
 obvious violation of protocol semantics or corruption of state that
 affects an entire connection, MUST be signaled using a
 CONNECTION_CLOSE or APPLICATION_CLOSE frame (Section 8.4,

Section 8.5). An endpoint MAY close the connection in this manner
 even if the error only affects a single stream.

 Application protocols can signal application-specific protocol errors
 using the APPLICATION_CLOSE frame. Errors that are specific to the
 transport, including all those described in this document, are
 carried in a CONNECTION_CLOSE frame. Other than the type of error
 code they carry, these frames are identical in format and semantics.

Iyengar & Thomson Expires August 1, 2018 [Page 79]

Internet-Draft QUIC Transport Protocol January 2018

 A CONNECTION_CLOSE or APPLICATION_CLOSE frame could be sent in a
 packet that is lost. An endpoint SHOULD be prepared to retransmit a
 packet containing either frame type if it receives more packets on a
 terminated connection. Limiting the number of retransmissions and
 the time over which this final packet is sent limits the effort
 expended on terminated connections.

 An endpoint that chooses not to retransmit packets containing
 CONNECTION_CLOSE or APPLICATION_CLOSE risks a peer missing the first
 such packet. The only mechanism available to an endpoint that
 continues to receive data for a terminated connection is to use the
 stateless reset process (Section 7.9.4).

 An endpoint that receives an invalid CONNECTION_CLOSE or
 APPLICATION_CLOSE frame MUST NOT signal the existence of the error to
 its peer.

12.2. Stream Errors

 If the error affects a single stream, but otherwise leaves the
 connection in a recoverable state, the endpoint can send a RST_STREAM
 frame (Section 8.3) with an appropriate error code to terminate just
 the affected stream.

 Stream 0 is critical to the functioning of the entire connection. If
 stream 0 is closed with either a RST_STREAM or STREAM frame bearing
 the FIN flag, an endpoint MUST generate a connection error of type
 PROTOCOL_VIOLATION.

 RST_STREAM MUST be instigated by the application and MUST carry an
 application error code. Resetting a stream without knowledge of the
 application protocol could cause the protocol to enter an
 unrecoverable state. Application protocols might require certain
 streams to be reliably delivered in order to guarantee consistent
 state between endpoints.

12.3. Transport Error Codes

 QUIC error codes are 16-bit unsigned integers.

 This section lists the defined QUIC transport error codes that may be
 used in a CONNECTION_CLOSE frame. These errors apply to the entire
 connection.

 NO_ERROR (0x0): An endpoint uses this with CONNECTION_CLOSE to
 signal that the connection is being closed abruptly in the absence
 of any error.

Iyengar & Thomson Expires August 1, 2018 [Page 80]

Internet-Draft QUIC Transport Protocol January 2018

 INTERNAL_ERROR (0x1): The endpoint encountered an internal error and
 cannot continue with the connection.

 FLOW_CONTROL_ERROR (0x3): An endpoint received more data than it
 permitted in its advertised data limits (see Section 11).

 STREAM_ID_ERROR (0x4): An endpoint received a frame for a stream
 identifier that exceeded its advertised maximum stream ID.

 STREAM_STATE_ERROR (0x5): An endpoint received a frame for a stream
 that was not in a state that permitted that frame (see

Section 10.2).

 FINAL_OFFSET_ERROR (0x6): An endpoint received a STREAM frame
 containing data that exceeded the previously established final
 offset. Or an endpoint received a RST_STREAM frame containing a
 final offset that was lower than the maximum offset of data that
 was already received. Or an endpoint received a RST_STREAM frame
 containing a different final offset to the one already
 established.

 FRAME_FORMAT_ERROR (0x7): An endpoint received a frame that was
 badly formatted. For instance, an empty STREAM frame that omitted
 the FIN flag, or an ACK frame that has more acknowledgment ranges
 than the remainder of the packet could carry. This is a generic
 error code; an endpoint SHOULD use the more specific frame format
 error codes (0x1XX) if possible.

 TRANSPORT_PARAMETER_ERROR (0x8): An endpoint received transport
 parameters that were badly formatted, included an invalid value,
 was absent even though it is mandatory, was present though it is
 forbidden, or is otherwise in error.

 VERSION_NEGOTIATION_ERROR (0x9): An endpoint received transport
 parameters that contained version negotiation parameters that
 disagreed with the version negotiation that it performed. This
 error code indicates a potential version downgrade attack.

 PROTOCOL_VIOLATION (0xA): An endpoint detected an error with
 protocol compliance that was not covered by more specific error
 codes.

 UNSOLICITED_PONG (0xB): An endpoint received a PONG frame that did
 not correspond to any PING frame that it previously sent.

 FRAME_ERROR (0x1XX): An endpoint detected an error in a specific
 frame type. The frame type is included as the last octet of the

Iyengar & Thomson Expires August 1, 2018 [Page 81]

Internet-Draft QUIC Transport Protocol January 2018

 error code. For example, an error in a MAX_STREAM_ID frame would
 be indicated with the code (0x106).

 See Section 14.2 for details of registering new error codes.

12.4. Application Protocol Error Codes

 Application protocol error codes are 16-bit unsigned integers, but
 the management of application error codes are left to application
 protocols. Application protocol error codes are used for the
 RST_STREAM (Section 8.3) and APPLICATION_CLOSE (Section 8.5) frames.

 There is no restriction on the use of the 16-bit error code space for
 application protocols. However, QUIC reserves the error code with a
 value of 0 to mean STOPPING. The application error code of STOPPING
 (0) is used by the transport to cancel a stream in response to
 receipt of a STOP_SENDING frame.

13. Security and Privacy Considerations

13.1. Spoofed ACK Attack

 An attacker might be able to receive an address validation token
 (Section 7.6) from the server and then release the IP address it used
 to acquire that token. The attacker may, in the future, spoof this
 same address (which now presumably addresses a different endpoint),
 and initiate a 0-RTT connection with a server on the victim's behalf.
 The attacker can then spoof ACK frames to the server which cause the
 server to send excessive amounts of data toward the new owner of the
 IP address.

 There are two possible mitigations to this attack. The simplest one
 is that a server can unilaterally create a gap in packet-number
 space. In the non-attack scenario, the client will send an ACK frame
 with the larger value for largest acknowledged. In the attack
 scenario, the attacker could acknowledge a packet in the gap. If the
 server sees an acknowledgment for a packet that was never sent, the
 connection can be aborted.

 The second mitigation is that the server can require that
 acknowledgments for sent packets match the encryption level of the
 sent packet. This mitigation is useful if the connection has an
 ephemeral forward-secure key that is generated and used for every new
 connection. If a packet sent is protected with a forward-secure key,
 then any acknowledgments that are received for them MUST also be
 forward-secure protected. Since the attacker will not have the
 forward secure key, the attacker will not be able to generate
 forward-secure protected packets with ACK frames.

Iyengar & Thomson Expires August 1, 2018 [Page 82]

Internet-Draft QUIC Transport Protocol January 2018

13.2. Slowloris Attacks

 The attacks commonly known as Slowloris [SLOWLORIS] try to keep many
 connections to the target endpoint open and hold them open as long as
 possible. These attacks can be executed against a QUIC endpoint by
 generating the minimum amount of activity necessary to avoid being
 closed for inactivity. This might involve sending small amounts of
 data, gradually opening flow control windows in order to control the
 sender rate, or manufacturing ACK frames that simulate a high loss
 rate.

 QUIC deployments SHOULD provide mitigations for the Slowloris
 attacks, such as increasing the maximum number of clients the server
 will allow, limiting the number of connections a single IP address is
 allowed to make, imposing restrictions on the minimum transfer speed
 a connection is allowed to have, and restricting the length of time
 an endpoint is allowed to stay connected.

13.3. Stream Fragmentation and Reassembly Attacks

 An adversarial endpoint might intentionally fragment the data on
 stream buffers in order to cause disproportionate memory commitment.
 An adversarial endpoint could open a stream and send some STREAM
 frames containing arbitrary fragments of the stream content.

 The attack is mitigated if flow control windows correspond to
 available memory. However, some receivers will over-commit memory
 and advertise flow control offsets in the aggregate that exceed
 actual available memory. The over-commitment strategy can lead to
 better performance when endpoints are well behaved, but renders
 endpoints vulnerable to the stream fragmentation attack.

 QUIC deployments SHOULD provide mitigations against the stream
 fragmentation attack. Mitigations could consist of avoiding over-
 committing memory, delaying reassembly of STREAM frames, implementing
 heuristics based on the age and duration of reassembly holes, or some
 combination.

13.4. Stream Commitment Attack

 An adversarial endpoint can open lots of streams, exhausting state on
 an endpoint. The adversarial endpoint could repeat the process on a
 large number of connections, in a manner similar to SYN flooding
 attacks in TCP.

 Normally, clients will open streams sequentially, as explained in
Section 10.1. However, when several streams are initiated at short

 intervals, transmission error may cause STREAM DATA frames opening

Iyengar & Thomson Expires August 1, 2018 [Page 83]

Internet-Draft QUIC Transport Protocol January 2018

 streams to be received out of sequence. A receiver is obligated to
 open intervening streams if a higher-numbered stream ID is received.
 Thus, on a new connection, opening stream 2000001 opens 1 million
 streams, as required by the specification.

 The number of active streams is limited by the concurrent stream
 limit transport parameter, as explained in Section 10.4. If chosen
 judisciously, this limit mitigates the effect of the stream
 commitment attack. However, setting the limit too low could affect
 performance when applications expect to open large number of streams.

14. IANA Considerations

14.1. QUIC Transport Parameter Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Parameters"
 under a "QUIC Protocol" heading.

 The "QUIC Transport Parameters" registry governs a 16-bit space.
 This space is split into two spaces that are governed by different
 policies. Values with the first byte in the range 0x00 to 0xfe (in
 hexadecimal) are assigned via the Specification Required policy
 [RFC8126]. Values with the first byte 0xff are reserved for Private
 Use [RFC8126].

 Registrations MUST include the following fields:

 Value: The numeric value of the assignment (registrations will be
 between 0x0000 and 0xfeff).

 Parameter Name: A short mnemonic for the parameter.

 Specification: A reference to a publicly available specification for
 the value.

 The nominated expert(s) verify that a specification exists and is
 readily accessible. The expert(s) are encouraged to be biased
 towards approving registrations unless they are abusive, frivolous,
 or actively harmful (not merely aesthetically displeasing, or
 architecturally dubious).

 The initial contents of this registry are shown in Table 7.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Iyengar & Thomson Expires August 1, 2018 [Page 84]

Internet-Draft QUIC Transport Protocol January 2018

 +--------+----------------------------+---------------+
 | Value | Parameter Name | Specification |
 +--------+----------------------------+---------------+
 | 0x0000 | initial_max_stream_data | Section 7.4.1 |
 | | | |
 | 0x0001 | initial_max_data | Section 7.4.1 |
 | | | |
 | 0x0002 | initial_max_stream_id_bidi | Section 7.4.1 |
 | | | |
 | 0x0003 | idle_timeout | Section 7.4.1 |
 | | | |
 | 0x0004 | omit_connection_id | Section 7.4.1 |
 | | | |
 | 0x0005 | max_packet_size | Section 7.4.1 |
 | | | |
 | 0x0006 | stateless_reset_token | Section 7.4.1 |
 | | | |
 | 0x0007 | ack_delay_exponent | Section 7.4.1 |
 | | | |
 | 0x0008 | initial_max_stream_id_uni | Section 7.4.1 |
 +--------+----------------------------+---------------+

 Table 7: Initial QUIC Transport Parameters Entries

14.2. QUIC Transport Error Codes Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Error
 Codes" under a "QUIC Protocol" heading.

 The "QUIC Transport Error Codes" registry governs a 16-bit space.
 This space is split into two spaces that are governed by different
 policies. Values with the first byte in the range 0x00 to 0xfe (in
 hexadecimal) are assigned via the Specification Required policy
 [RFC8126]. Values with the first byte 0xff are reserved for Private
 Use [RFC8126].

 Registrations MUST include the following fields:

 Value: The numeric value of the assignment (registrations will be
 between 0x0000 and 0xfeff).

 Code: A short mnemonic for the parameter.

 Description: A brief description of the error code semantics, which
 MAY be a summary if a specification reference is provided.

 Specification: A reference to a publicly available specification for
 the value.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Iyengar & Thomson Expires August 1, 2018 [Page 85]

Internet-Draft QUIC Transport Protocol January 2018

 The initial contents of this registry are shown in Table 8. Note
 that FRAME_ERROR takes the range from 0x100 to 0x1FF and private use
 occupies the range from 0xFE00 to 0xFFFF.

Iyengar & Thomson Expires August 1, 2018 [Page 86]

Internet-Draft QUIC Transport Protocol January 2018

 +-----------+------------------------+---------------+--------------+
 | Value | Error | Description | Specificatio |
 | | | | n |
 +-----------+------------------------+---------------+--------------+
0x0	NO_ERROR	No error	Section 12.3
0x1	INTERNAL_ERROR	Implementatio	Section 12.3
		n error	
0x3	FLOW_CONTROL_ERROR	Flow control	Section 12.3
		error	
0x4	STREAM_ID_ERROR	Invalid	Section 12.3
		stream ID	
0x5	STREAM_STATE_ERROR	Frame	Section 12.3
		received in	
		invalid	
		stream state	
0x6	FINAL_OFFSET_ERROR	Change to	Section 12.3
		final stream	
		offset	
0x7	FRAME_FORMAT_ERROR	Generic frame	Section 12.3
		format error	
0x8	TRANSPORT_PARAMETER_ER	Error in	Section 12.3
	ROR	transport	
		parameters	
0x9	VERSION_NEGOTIATION_ER	Version	Section 12.3
	ROR	negotiation	
		failure	
0xA	PROTOCOL_VIOLATION	Generic	Section 12.3
		protocol	
		violation	
0xB	UNSOLICITED_PONG	Unsolicited	Section 12.3
		PONG frame	
0x100-0x1	FRAME_ERROR	Specific	Section 12.3
FF		frame format	
		error	
 +-----------+------------------------+---------------+--------------+

 Table 8: Initial QUIC Transport Error Codes Entries

Iyengar & Thomson Expires August 1, 2018 [Page 87]

Internet-Draft QUIC Transport Protocol January 2018

15. References

15.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-23 (work in progress),
 January 2018.

 [PLPMTUD] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [PMTUDv4] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [PMTUDv6] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery-09 (work
 in progress), January 2018.

 [QUIC-TLS]
 Thomson, M., Ed. and S. Turner, Ed., "Using Transport
 Layer Security (TLS) to Secure QUIC", draft-ietf-quic-

tls-09 (work in progress), January 2018.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-23
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629

Iyengar & Thomson Expires August 1, 2018 [Page 88]

Internet-Draft QUIC Transport Protocol January 2018

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

 [EARLY-DESIGN]
 Roskind, J., "QUIC: Multiplexed Transport Over UDP",
 December 2013, <https://goo.gl/dMVtFi>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
RFC 2360, DOI 10.17487/RFC2360, June 1998,

 <https://www.rfc-editor.org/info/rfc2360>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://goo.gl/dMVtFi
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp22
https://datatracker.ietf.org/doc/html/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869

Iyengar & Thomson Expires August 1, 2018 [Page 89]

Internet-Draft QUIC Transport Protocol January 2018

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [SLOWLORIS]
 RSnake Hansen, R., "Welcome to Slowloris...", June 2009,
 <https://web.archive.org/web/20150315054838/

http://ha.ckers.org/slowloris/>.

 [SST] Ford, B., "Structured streams", ACM SIGCOMM Computer
 Communication Review Vol. 37, pp. 361,
 DOI 10.1145/1282427.1282421, October 2007.

15.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-transport

 [4] https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

Appendix A. Contributors

 The original authors of this specification were Ryan Hamilton, Jana
 Iyengar, Ian Swett, and Alyssa Wilk.

 The original design and rationale behind this protocol draw
 significantly from work by Jim Roskind [EARLY-DESIGN]. In
 alphabetical order, the contributors to the pre-IETF QUIC project at
 Google are: Britt Cyr, Jeremy Dorfman, Ryan Hamilton, Jana Iyengar,
 Fedor Kouranov, Charles Krasic, Jo Kulik, Adam Langley, Jim Roskind,
 Robbie Shade, Satyam Shekhar, Cherie Shi, Ian Swett, Raman Tenneti,
 Victor Vasiliev, Antonio Vicente, Patrik Westin, Alyssa Wilk, Dale
 Worley, Fan Yang, Dan Zhang, Daniel Ziegler.

Appendix B. Acknowledgments

 Special thanks are due to the following for helping shape pre-IETF
 QUIC and its deployment: Chris Bentzel, Misha Efimov, Roberto Peon,
 Alistair Riddoch, Siddharth Vijayakrishnan, and Assar Westerlund.

https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://web.archive.org/web/20150315054838/
http://ha.ckers.org/slowloris/
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-transport
https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

Iyengar & Thomson Expires August 1, 2018 [Page 90]

Internet-Draft QUIC Transport Protocol January 2018

 This document has benefited immensely from various private
 discussions and public ones on the quic@ietf.org and proto-
 quic@chromium.org mailing lists. Our thanks to all.

Appendix C. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

C.1. Since draft-ietf-quic-transport-08

 o Clarified requirements for BLOCKED usage (#65, #924)

 o BLOCKED frame now includes reason for blocking (#452, #924, #927,
 #928)

 o Cleartext integrity as version independent (#568)

 o GAP limitation in ACK Frame (#613)

 o Improved PMTUD description (#614, #1036)

 o Clarified stream state machine (#634, #662, #894)

 o Reserved versions don't need to be generated deterministically
 (#831, #931)

 o You don't always need the draining period (#871)

 o Stateless reset clarified as version-specific (#930, #986)

 o initial_max_stream_id_x transport parameters are optional (#970,
 #971)

 o Ack Delay assumes a default value during the handshake (#1007,
 #1009)

 o Removed transport parameters from NewSessionTicket (#1015)

C.2. Since draft-ietf-quic-transport-07

 o The long header now has version before packet number (#926, #939)

 o Rename and consolidate packet types (#846, #822, #847)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-07

Iyengar & Thomson Expires August 1, 2018 [Page 91]

Internet-Draft QUIC Transport Protocol January 2018

 o Packet types are assigned new codepoints and the Connection ID
 Flag is inverted (#426, #956)

 o Removed type for Version Negotiation and use Version 0 (#963,
 #968)

 o Streams are split into unidirectional and bidirectional (#643,
 #656, #720, #872, #175, #885)

 * Stream limits now have separate uni- and bi-directinal
 transport parameters (#909, #958)

 * Stream limit transport parameters are now optional and default
 to 0 (#970, #971)

 o The stream state machine has been split into read and write (#634,
 #894)

 o Employ variable-length integer encodings throughout (#595)

 o Improvements to connection close

 * Added distinct closing and draining states (#899, #871)

 * Draining period can terminate early (#869, #870)

 * Clarifications about stateless reset (#889, #890)

 o Address validation for connection migration (#161, #732, #878)

 o Clearly defined retransmission rules for BLOCKED (#452, #65, #924)

 o negotiated_version is sent in server transport parameters (#710,
 #959)

 o Increased the range over which packet numbers are randomized
 (#864, #850, #964)

C.3. Since draft-ietf-quic-transport-06

 o Replaced FNV-1a with AES-GCM for all "Cleartext" packets (#554)

 o Split error code space between application and transport (#485)

 o Stateless reset token moved to end (#820)

 o 1-RTT-protected long header types removed (#848)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-06

Iyengar & Thomson Expires August 1, 2018 [Page 92]

Internet-Draft QUIC Transport Protocol January 2018

 o No acknowledgments during draining period (#852)

 o Remove "application close" as a separate close type (#854)

 o Remove timestamps from the ACK frame (#841)

 o Require transport parameters to only appear once (#792)

C.4. Since draft-ietf-quic-transport-05

 o Stateless token is server-only (#726)

 o Refactor section on connection termination (#733, #748, #328,
 #177)

 o Limit size of Version Negotiation packet (#585)

 o Clarify when and what to ack (#736)

 o Renamed STREAM_ID_NEEDED to STREAM_ID_BLOCKED

 o Clarify Keep-alive requirements (#729)

C.5. Since draft-ietf-quic-transport-04

 o Introduce STOP_SENDING frame, RST_STREAM only resets in one
 direction (#165)

 o Removed GOAWAY; application protocols are responsible for graceful
 shutdown (#696)

 o Reduced the number of error codes (#96, #177, #184, #211)

 o Version validation fields can't move or change (#121)

 o Removed versions from the transport parameters in a
 NewSessionTicket message (#547)

 o Clarify the meaning of "bytes in flight" (#550)

 o Public reset is now stateless reset and not visible to the path
 (#215)

 o Reordered bits and fields in STREAM frame (#620)

 o Clarifications to the stream state machine (#572, #571)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-04

Iyengar & Thomson Expires August 1, 2018 [Page 93]

Internet-Draft QUIC Transport Protocol January 2018

 o Increased the maximum length of the Largest Acknowledged field in
 ACK frames to 64 bits (#629)

 o truncate_connection_id is renamed to omit_connection_id (#659)

 o CONNECTION_CLOSE terminates the connection like TCP RST (#330,
 #328)

 o Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

C.6. Since draft-ietf-quic-transport-03

 o Change STREAM and RST_STREAM layout

 o Add MAX_STREAM_ID settings

C.7. Since draft-ietf-quic-transport-02

 o The size of the initial packet payload has a fixed minimum (#267,
 #472)

 o Define when Version Negotiation packets are ignored (#284, #294,
 #241, #143, #474)

 o The 64-bit FNV-1a algorithm is used for integrity protection of
 unprotected packets (#167, #480, #481, #517)

 o Rework initial packet types to change how the connection ID is
 chosen (#482, #442, #493)

 o No timestamps are forbidden in unprotected packets (#542, #429)

 o Cryptographic handshake is now on stream 0 (#456)

 o Remove congestion control exemption for cryptographic handshake
 (#248, #476)

 o Version 1 of QUIC uses TLS; a new version is needed to use a
 different handshake protocol (#516)

 o STREAM frames have a reduced number of offset lengths (#543, #430)

 o Split some frames into separate connection- and stream- level
 frames (#443)

 * WINDOW_UPDATE split into MAX_DATA and MAX_STREAM_DATA (#450)

 * BLOCKED split to match WINDOW_UPDATE split (#454)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02

Iyengar & Thomson Expires August 1, 2018 [Page 94]

Internet-Draft QUIC Transport Protocol January 2018

 * Define STREAM_ID_NEEDED frame (#455)

 o A NEW_CONNECTION_ID frame supports connection migration without
 linkability (#232, #491, #496)

 o Transport parameters for 0-RTT are retained from a previous
 connection (#405, #513, #512)

 * A client in 0-RTT no longer required to reset excess streams
 (#425, #479)

 o Expanded security considerations (#440, #444, #445, #448)

C.8. Since draft-ietf-quic-transport-01

 o Defined short and long packet headers (#40, #148, #361)

 o Defined a versioning scheme and stable fields (#51, #361)

 o Define reserved version values for "greasing" negotiation (#112,
 #278)

 o The initial packet number is randomized (#35, #283)

 o Narrow the packet number encoding range requirement (#67, #286,
 #299, #323, #356)

 o Defined client address validation (#52, #118, #120, #275)

 o Define transport parameters as a TLS extension (#49, #122)

 o SCUP and COPT parameters are no longer valid (#116, #117)

 o Transport parameters for 0-RTT are either remembered from before,
 or assume default values (#126)

 o The server chooses connection IDs in its final flight (#119, #349,
 #361)

 o The server echoes the Connection ID and packet number fields when
 sending a Version Negotiation packet (#133, #295, #244)

 o Defined a minimum packet size for the initial handshake packet
 from the client (#69, #136, #139, #164)

 o Path MTU Discovery (#64, #106)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01

Iyengar & Thomson Expires August 1, 2018 [Page 95]

Internet-Draft QUIC Transport Protocol January 2018

 o The initial handshake packet from the client needs to fit in a
 single packet (#338)

 o Forbid acknowledgment of packets containing only ACK and PADDING
 (#291)

 o Require that frames are processed when packets are acknowledged
 (#381, #341)

 o Removed the STOP_WAITING frame (#66)

 o Don't require retransmission of old timestamps for lost ACK frames
 (#308)

 o Clarified that frames are not retransmitted, but the information
 in them can be (#157, #298)

 o Error handling definitions (#335)

 o Split error codes into four sections (#74)

 o Forbid the use of Public Reset where CONNECTION_CLOSE is possible
 (#289)

 o Define packet protection rules (#336)

 o Require that stream be entirely delivered or reset, including
 acknowledgment of all STREAM frames or the RST_STREAM, before it
 closes (#381)

 o Remove stream reservation from state machine (#174, #280)

 o Only stream 1 does not contribute to connection-level flow control
 (#204)

 o Stream 1 counts towards the maximum concurrent stream limit (#201,
 #282)

 o Remove connection-level flow control exclusion for some streams
 (except 1) (#246)

 o RST_STREAM affects connection-level flow control (#162, #163)

 o Flow control accounting uses the maximum data offset on each
 stream, rather than bytes received (#378)

 o Moved length-determining fields to the start of STREAM and ACK
 (#168, #277)

Iyengar & Thomson Expires August 1, 2018 [Page 96]

Internet-Draft QUIC Transport Protocol January 2018

 o Added the ability to pad between frames (#158, #276)

 o Remove error code and reason phrase from GOAWAY (#352, #355)

 o GOAWAY includes a final stream number for both directions (#347)

 o Error codes for RST_STREAM and CONNECTION_CLOSE are now at a
 consistent offset (#249)

 o Defined priority as the responsibility of the application protocol
 (#104, #303)

C.9. Since draft-ietf-quic-transport-00

 o Replaced DIVERSIFICATION_NONCE flag with KEY_PHASE flag

 o Defined versioning

 o Reworked description of packet and frame layout

 o Error code space is divided into regions for each component

 o Use big endian for all numeric values

C.10. Since draft-hamilton-quic-transport-protocol-01

 o Adopted as base for draft-ietf-quic-tls

 o Updated authors/editors list

 o Added IANA Considerations section

 o Moved Contributors and Acknowledgments to appendices

Authors' Addresses

 Jana Iyengar (editor)
 Google

 Email: jri@google.com

 Martin Thomson (editor)
 Mozilla

 Email: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls

Iyengar & Thomson Expires August 1, 2018 [Page 97]

