
QUIC J. Iyengar, Ed.
Internet-Draft Fastly
Intended status: Standards Track M. Thomson, Ed.
Expires: July 27, 2019 Mozilla
 January 23, 2019

QUIC: A UDP-Based Multiplexed and Secure Transport
draft-ietf-quic-transport-18

Abstract

 This document defines the core of the QUIC transport protocol.
 Accompanying documents describe QUIC's loss detection and congestion
 control and the use of TLS for key negotiation.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=quic>.

 Working Group information can be found at <https://github.com/
quicwg>; source code and issues list for this draft can be found at

 <https://github.com/quicwg/base-drafts/labels/-transport>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 27, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Iyengar & Thomson Expires July 27, 2019 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-transport
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Transport Protocol January 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Document Structure 6
1.2. Terms and Definitions 7
1.3. Notational Conventions 8

2. Streams . 8
2.1. Stream Types and Identifiers 9
2.2. Sending and Receiving Data 10
2.3. Stream Prioritization 10

3. Stream States . 11
3.1. Sending Stream States 11
3.2. Receiving Stream States 13
3.3. Permitted Frame Types 16
3.4. Bidirectional Stream States 16
3.5. Solicited State Transitions 18

4. Flow Control . 19
4.1. Data Flow Control . 19
4.2. Flow Credit Increments 20
4.3. Handling Stream Cancellation 21
4.4. Stream Final Size . 22
4.5. Controlling Concurrency 22

5. Connections . 23
5.1. Connection ID . 23
5.1.1. Issuing Connection IDs 24
5.1.2. Consuming and Retiring Connection IDs 25

5.2. Matching Packets to Connections 25
5.2.1. Client Packet Handling 26
5.2.2. Server Packet Handling 26

5.3. Life of a QUIC Connection 27
6. Version Negotiation . 27
6.1. Sending Version Negotiation Packets 28
6.2. Handling Version Negotiation Packets 28
6.3. Using Reserved Versions 29

7. Cryptographic and Transport Handshake 30
7.1. Example Handshake Flows 31
7.2. Negotiating Connection IDs 32
7.3. Transport Parameters 34

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Iyengar & Thomson Expires July 27, 2019 [Page 2]

Internet-Draft QUIC Transport Protocol January 2019

7.3.1. Values of Transport Parameters for 0-RTT 34
7.3.2. New Transport Parameters 35
7.3.3. Version Negotiation Validation 36

8. Address Validation . 37
8.1. Address Validation During Connection Establishment . . . 38
8.1.1. Address Validation using Retry Packets 38
8.1.2. Address Validation for Future Connections 39
8.1.3. Address Validation Token Integrity 41

8.2. Path Validation . 41
8.3. Initiating Path Validation 42
8.4. Path Validation Responses 42
8.5. Successful Path Validation 43
8.6. Failed Path Validation 43

9. Connection Migration . 44
9.1. Probing a New Path 45
9.2. Initiating Connection Migration 45
9.3. Responding to Connection Migration 46
9.3.1. Peer Address Spoofing 46
9.3.2. On-Path Address Spoofing 47
9.3.3. Off-Path Packet Forwarding 47

9.4. Loss Detection and Congestion Control 48
9.5. Privacy Implications of Connection Migration 49
9.6. Server's Preferred Address 50
9.6.1. Communicating A Preferred Address 50
9.6.2. Responding to Connection Migration 51

 9.6.3. Interaction of Client Migration and Preferred Address 51
10. Connection Termination 52
10.1. Closing and Draining Connection States 52
10.2. Idle Timeout . 53
10.3. Immediate Close . 54
10.4. Stateless Reset . 55
10.4.1. Detecting a Stateless Reset 57
10.4.2. Calculating a Stateless Reset Token 58
10.4.3. Looping . 59

11. Error Handling . 59
11.1. Connection Errors 60
11.2. Stream Errors . 60

12. Packets and Frames . 61
12.1. Protected Packets 61
12.2. Coalescing Packets 62
12.3. Packet Numbers . 62
12.4. Frames and Frame Types 64

13. Packetization and Reliability 66
13.1. Packet Processing and Acknowledgment 67
13.1.1. Sending ACK Frames 67
13.1.2. ACK Frames and Packet Protection 68

13.2. Retransmission of Information 68
13.3. Explicit Congestion Notification 71

Iyengar & Thomson Expires July 27, 2019 [Page 3]

Internet-Draft QUIC Transport Protocol January 2019

13.3.1. ECN Counts . 71
13.3.2. ECN Verification 72

14. Packet Size . 73
14.1. Path Maximum Transmission Unit (PMTU) 74
14.2. ICMP Packet Too Big Messages 75
14.3. Datagram Packetization Layer PMTU Discovery 76

15. Versions . 76
16. Variable-Length Integer Encoding 77
17. Packet Formats . 78
17.1. Packet Number Encoding and Decoding 78
17.2. Long Header Packets 79
17.2.1. Version Negotiation Packet 82
17.2.2. Initial Packet 83
17.2.3. 0-RTT . 86
17.2.4. Handshake Packet 87
17.2.5. Retry Packet . 88

17.3. Short Header Packets 90
18. Transport Parameter Encoding 92
18.1. Transport Parameter Definitions 94

19. Frame Types and Formats 97
19.1. PADDING Frame . 97
19.2. PING Frame . 97
19.3. ACK Frames . 97
19.3.1. ACK Ranges . 99
19.3.2. ECN Counts . 101

19.4. RESET_STREAM Frame 102
19.5. STOP_SENDING Frame 102
19.6. CRYPTO Frame . 103
19.7. NEW_TOKEN Frame . 104
19.8. STREAM Frames . 104
19.9. MAX_DATA Frame . 106
19.10. MAX_STREAM_DATA Frame 106
19.11. MAX_STREAMS Frames 107
19.12. DATA_BLOCKED Frame 108
19.13. STREAM_DATA_BLOCKED Frame 109
19.14. STREAMS_BLOCKED Frames 109
19.15. NEW_CONNECTION_ID Frame 110
19.16. RETIRE_CONNECTION_ID Frame 111
19.17. PATH_CHALLENGE Frame 112
19.18. PATH_RESPONSE Frame 112
19.19. CONNECTION_CLOSE Frames 113
19.20. Extension Frames . 114

20. Transport Error Codes . 114
20.1. Application Protocol Error Codes 115

21. Security Considerations 116
21.1. Handshake Denial of Service 116
21.2. Amplification Attack 117
21.3. Optimistic ACK Attack 117

Iyengar & Thomson Expires July 27, 2019 [Page 4]

Internet-Draft QUIC Transport Protocol January 2019

21.4. Slowloris Attacks 117
21.5. Stream Fragmentation and Reassembly Attacks 118
21.6. Stream Commitment Attack 118
21.7. Explicit Congestion Notification Attacks 119
21.8. Stateless Reset Oracle 119

22. IANA Considerations . 119
22.1. QUIC Transport Parameter Registry 119
22.2. QUIC Frame Type Registry 121
22.3. QUIC Transport Error Codes Registry 122

23. References . 125
23.1. Normative References 125
23.2. Informative References 126

Appendix A. Sample Packet Number Decoding Algorithm 128
Appendix B. Change Log . 128
B.1. Since draft-ietf-quic-transport-17 128
B.2. Since draft-ietf-quic-transport-16 129
B.3. Since draft-ietf-quic-transport-15 130
B.4. Since draft-ietf-quic-transport-14 130
B.5. Since draft-ietf-quic-transport-13 131
B.6. Since draft-ietf-quic-transport-12 132
B.7. Since draft-ietf-quic-transport-11 133
B.8. Since draft-ietf-quic-transport-10 133
B.9. Since draft-ietf-quic-transport-09 134
B.10. Since draft-ietf-quic-transport-08 134
B.11. Since draft-ietf-quic-transport-07 135
B.12. Since draft-ietf-quic-transport-06 136
B.13. Since draft-ietf-quic-transport-05 136
B.14. Since draft-ietf-quic-transport-04 136
B.15. Since draft-ietf-quic-transport-03 137
B.16. Since draft-ietf-quic-transport-02 137
B.17. Since draft-ietf-quic-transport-01 138
B.18. Since draft-ietf-quic-transport-00 140
B.19. Since draft-hamilton-quic-transport-protocol-01 140

 Acknowledgments . 141
 Contributors . 141
 Authors' Addresses . 141

1. Introduction

 QUIC is a multiplexed and secure general-purpose transport protocol
 that provides:

 o Stream multiplexing

 o Stream and connection-level flow control

 o Low-latency connection establishment

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-16
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-15
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01

Iyengar & Thomson Expires July 27, 2019 [Page 5]

Internet-Draft QUIC Transport Protocol January 2019

 o Connection migration and resilience to NAT rebinding

 o Authenticated and encrypted header and payload

 QUIC uses UDP as a substrate to avoid requiring changes to legacy
 client operating systems and middleboxes. QUIC authenticates all of
 its headers and encrypts most of the data it exchanges, including its
 signaling, to avoid incurring a dependency on middleboxes.

1.1. Document Structure

 This document describes the core QUIC protocol and is structured as
 follows.

 o Streams are the basic service abstraction that QUIC provides.

 * Section 2 describes core concepts related to streams,

 * Section 3 provides a reference model for stream states, and

 * Section 4 outlines the operation of flow control.

 o Connections are the context in which QUIC endpoints communicate.

 * Section 5 describes core concepts related to connections,

 * Section 6 describes version negotiation,

 * Section 7 details the process for establishing connections,

 * Section 8 specifies critical denial of service mitigation
 mechanisms,

 * Section 9 describes how endpoints migrate a connection to a new
 network path,

 * Section 10 lists the options for terminating an open
 connection, and

 * Section 11 provides general guidance for error handling.

 o Packets and frames are the basic unit used by QUIC to communicate.

 * Section 12 describes concepts related to packets and frames,

 * Section 13 defines models for the transmission, retransmission,
 and acknowledgement of data, and

Iyengar & Thomson Expires July 27, 2019 [Page 6]

Internet-Draft QUIC Transport Protocol January 2019

 * Section 14 specifies rules for managing the size of packets.

 o Finally, encoding details of QUIC protocol elements are described
 in:

 * Section 15 (Versions),

 * Section 16 (Integer Encoding),

 * Section 17 (Packet Headers),

 * Section 18 (Transport Parameters),

 * Section 19 (Frames), and

 * Section 20 (Errors).

 Accompanying documents describe QUIC's loss detection and congestion
 control [QUIC-RECOVERY], and the use of TLS for key negotiation
 [QUIC-TLS].

 This document defines QUIC version 1, which conforms to the protocol
 invariants in [QUIC-INVARIANTS].

1.2. Terms and Definitions

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Commonly used terms in the document are described below.

 QUIC: The transport protocol described by this document. QUIC is a
 name, not an acronym.

 QUIC packet: The smallest unit of QUIC that can be encapsulated in a
 UDP datagram. Multiple QUIC packets can be encapsulated in a
 single UDP datagram.

 Endpoint: An entity that can participate in a QUIC connection by
 generating, receiving, and processing QUIC packets. There are
 only two types of endpoint in QUIC: client and server.

 Client: The endpoint initiating a QUIC connection.

 Server: The endpoint accepting incoming QUIC connections.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Iyengar & Thomson Expires July 27, 2019 [Page 7]

Internet-Draft QUIC Transport Protocol January 2019

 Connection ID: An opaque identifier that is used to identify a QUIC
 connection at an endpoint. Each endpoint sets a value for its
 peer to include in packets sent towards the endpoint.

 Stream: A unidirectional or bidirectional channel of ordered bytes
 within a QUIC connection. A QUIC connection can carry multiple
 simultaneous streams.

 Application: An entity that uses QUIC to send and receive data.

1.3. Notational Conventions

 Packet and frame diagrams in this document use the format described
 in Section 3.1 of [RFC2360], with the following additional
 conventions:

 [x]: Indicates that x is optional

 x (A): Indicates that x is A bits long

 x (A/B/C) ...: Indicates that x is one of A, B, or C bits long

 x (i) ...: Indicates that x uses the variable-length encoding in
Section 16

 x (*) ...: Indicates that x is variable-length

2. Streams

 Streams in QUIC provide a lightweight, ordered byte-stream
 abstraction to an application. An alternative view of QUIC streams
 is as an elastic "message" abstraction.

 Streams can be created by sending data. Other processes associated
 with stream management - ending, cancelling, and managing flow
 control - are all designed to impose minimal overheads. For
 instance, a single STREAM frame (Section 19.8) can open, carry data
 for, and close a stream. Streams can also be long-lived and can last
 the entire duration of a connection.

 Streams can be created by either endpoint, can concurrently send data
 interleaved with other streams, and can be cancelled. Any stream can
 be initiated by either endpoint. QUIC does not provide any means of
 ensuring ordering between bytes on different streams.

 QUIC allows for an arbitrary number of streams to operate
 concurrently and for an arbitrary amount of data to be sent on any

https://datatracker.ietf.org/doc/html/rfc2360#section-3.1

Iyengar & Thomson Expires July 27, 2019 [Page 8]

Internet-Draft QUIC Transport Protocol January 2019

 stream, subject to flow control constraints (see Section 4) and
 stream limits.

2.1. Stream Types and Identifiers

 Streams can be unidirectional or bidirectional. Unidirectional
 streams carry data in one direction: from the initiator of the stream
 to its peer. Bidirectional streams allow for data to be sent in both
 directions.

 Streams are identified within a connection by a numeric value,
 referred to as the stream ID. Stream IDs are unique to a stream. A
 QUIC endpoint MUST NOT reuse a stream ID within a connection. Stream
 IDs are encoded as variable-length integers (see Section 16).

 The least significant bit (0x1) of the stream ID identifies the
 initiator of the stream. Client-initiated streams have even-numbered
 stream IDs (with the bit set to 0), and server-initiated streams have
 odd-numbered stream IDs (with the bit set to 1).

 The second least significant bit (0x2) of the stream ID distinguishes
 between bidirectional streams (with the bit set to 0) and
 unidirectional streams (with the bit set to 1).

 The least significant two bits from a stream ID therefore identify a
 stream as one of four types, as summarized in Table 1.

 +------+----------------------------------+
 | Bits | Stream Type |
 +------+----------------------------------+
 | 0x0 | Client-Initiated, Bidirectional |
 | | |
 | 0x1 | Server-Initiated, Bidirectional |
 | | |
 | 0x2 | Client-Initiated, Unidirectional |
 | | |
 | 0x3 | Server-Initiated, Unidirectional |
 +------+----------------------------------+

 Table 1: Stream ID Types

 Within each type, streams are created with numerically increasing
 stream IDs. A stream ID that is used out of order results in all
 streams of that type with lower-numbered stream IDs also being
 opened.

 The first bidirectional stream opened by the client has a stream ID
 of 0.

Iyengar & Thomson Expires July 27, 2019 [Page 9]

Internet-Draft QUIC Transport Protocol January 2019

2.2. Sending and Receiving Data

 STREAM frames (Section 19.8) encapsulate data sent by an application.
 An endpoint uses the Stream ID and Offset fields in STREAM frames to
 place data in order.

 Endpoints MUST be able to deliver stream data to an application as an
 ordered byte-stream. Delivering an ordered byte-stream requires that
 an endpoint buffer any data that is received out of order, up to the
 advertised flow control limit.

 QUIC makes no specific allowances for delivery of stream data out of
 order. However, implementations MAY choose to offer the ability to
 deliver data out of order to a receiving application.

 An endpoint could receive data for a stream at the same stream offset
 multiple times. Data that has already been received can be
 discarded. The data at a given offset MUST NOT change if it is sent
 multiple times; an endpoint MAY treat receipt of different data at
 the same offset within a stream as a connection error of type
 PROTOCOL_VIOLATION.

 Streams are an ordered byte-stream abstraction with no other
 structure that is visible to QUIC. STREAM frame boundaries are not
 expected to be preserved when data is transmitted, when data is
 retransmitted after packet loss, or when data is delivered to the
 application at a receiver.

 An endpoint MUST NOT send data on any stream without ensuring that it
 is within the flow control limits set by its peer. Flow control is
 described in detail in Section 4.

2.3. Stream Prioritization

 Stream multiplexing can have a significant effect on application
 performance if resources allocated to streams are correctly
 prioritized.

 QUIC does not provide frames for exchanging prioritization
 information. Instead it relies on receiving priority information
 from the application that uses QUIC.

 A QUIC implementation SHOULD provide ways in which an application can
 indicate the relative priority of streams. When deciding which
 streams to dedicate resources to, the implementation SHOULD use the
 information provided by the application.

Iyengar & Thomson Expires July 27, 2019 [Page 10]

Internet-Draft QUIC Transport Protocol January 2019

3. Stream States

 This section describes streams in terms of their send or receive
 components. Two state machines are described: one for the streams on
 which an endpoint transmits data (Section 3.1), and another for
 streams on which an endpoint receives data (Section 3.2).

 Unidirectional streams use the applicable state machine directly.
 Bidirectional streams use both state machines. For the most part,
 the use of these state machines is the same whether the stream is
 unidirectional or bidirectional. The conditions for opening a stream
 are slightly more complex for a bidirectional stream because the
 opening of either send or receive sides causes the stream to open in
 both directions.

 An endpoint MUST open streams of the same type in increasing order of
 stream ID.

 Note: These states are largely informative. This document uses
 stream states to describe rules for when and how different types
 of frames can be sent and the reactions that are expected when
 different types of frames are received. Though these state
 machines are intended to be useful in implementing QUIC, these
 states aren't intended to constrain implementations. An
 implementation can define a different state machine as long as its
 behavior is consistent with an implementation that implements
 these states.

3.1. Sending Stream States

 Figure 1 shows the states for the part of a stream that sends data to
 a peer.

Iyengar & Thomson Expires July 27, 2019 [Page 11]

Internet-Draft QUIC Transport Protocol January 2019

 o
 | Create Stream (Sending)
 | Peer Creates Bidirectional Stream
 v
 +-------+
 | Ready | Send RESET_STREAM
 | |-----------------------.
 +-------+ |
 | |
 | Send STREAM / |
 | STREAM_DATA_BLOCKED |
 | |
 | Peer Creates |
 | Bidirectional Stream |
 v |
 +-------+ |
 | Send | Send RESET_STREAM |
 | |---------------------->|
 +-------+ |
 | |
 | Send STREAM + FIN |
 v v
 +-------+ +-------+
 | Data | Send RESET_STREAM | Reset |
 | Sent |------------------>| Sent |
 +-------+ +-------+
 | |
 | Recv All ACKs | Recv ACK
 v v
 +-------+ +-------+
 | Data | | Reset |
 | Recvd | | Recvd |
 +-------+ +-------+

 Figure 1: States for Sending Parts of Streams

 The sending part of stream that the endpoint initiates (types 0 and 2
 for clients, 1 and 3 for servers) is opened by the application. The
 "Ready" state represents a newly created stream that is able to
 accept data from the application. Stream data might be buffered in
 this state in preparation for sending.

 Sending the first STREAM or STREAM_DATA_BLOCKED frame causes a
 sending part of a stream to enter the "Send" state. An
 implementation might choose to defer allocating a stream ID to a
 stream until it sends the first frame and enters this state, which
 can allow for better stream prioritization.

Iyengar & Thomson Expires July 27, 2019 [Page 12]

Internet-Draft QUIC Transport Protocol January 2019

 The sending part of a bidirectional stream initiated by a peer (type
 0 for a server, type 1 for a client) enters the "Ready" state then
 immediately transitions to the "Send" state if the receiving part
 enters the "Recv" state (Section 3.2).

 In the "Send" state, an endpoint transmits - and retransmits as
 necessary - stream data in STREAM frames. The endpoint respects the
 flow control limits set by its peer, and continues to accept and
 process MAX_STREAM_DATA frames. An endpoint in the "Send" state
 generates STREAM_DATA_BLOCKED frames if it is blocked from sending by
 stream or connection flow control limits Section 4.1.

 After the application indicates that all stream data has been sent
 and a STREAM frame containing the FIN bit is sent, the sending part
 of the stream enters the "Data Sent" state. From this state, the
 endpoint only retransmits stream data as necessary. The endpoint
 does not need to check flow control limits or send
 STREAM_DATA_BLOCKED frames for a stream in this state.
 MAX_STREAM_DATA frames might be received until the peer receives the
 final stream offset. The endpoint can safely ignore any
 MAX_STREAM_DATA frames it receives from its peer for a stream in this
 state.

 Once all stream data has been successfully acknowledged, the sending
 part of the stream enters the "Data Recvd" state, which is a terminal
 state.

 From any of the "Ready", "Send", or "Data Sent" states, an
 application can signal that it wishes to abandon transmission of
 stream data. Alternatively, an endpoint might receive a STOP_SENDING
 frame from its peer. In either case, the endpoint sends a
 RESET_STREAM frame, which causes the stream to enter the "Reset Sent"
 state.

 An endpoint MAY send a RESET_STREAM as the first frame that mentions
 a stream; this causes the sending part of that stream to open and
 then immediately transition to the "Reset Sent" state.

 Once a packet containing a RESET_STREAM has been acknowledged, the
 sending part of the stream enters the "Reset Recvd" state, which is a
 terminal state.

3.2. Receiving Stream States

 Figure 2 shows the states for the part of a stream that receives data
 from a peer. The states for a receiving part of a stream mirror only
 some of the states of the sending part of the stream at the peer.
 The receiving part of a stream does not track states on the sending

Iyengar & Thomson Expires July 27, 2019 [Page 13]

Internet-Draft QUIC Transport Protocol January 2019

 part that cannot be observed, such as the "Ready" state. Instead,
 the receiving part of a stream tracks the delivery of data to the
 application, some of which cannot be observed by the sender.

 o
 | Recv STREAM / STREAM_DATA_BLOCKED / RESET_STREAM
 | Create Bidirectional Stream (Sending)
 | Recv MAX_STREAM_DATA / STOP_SENDING (Bidirectional)
 | Create Higher-Numbered Stream
 v
 +-------+
 | Recv | Recv RESET_STREAM
 | |-----------------------.
 +-------+ |
 | |
 | Recv STREAM + FIN |
 v |
 +-------+ |
 | Size | Recv RESET_STREAM |
 | Known |---------------------->|
 +-------+ |
 | |
 | Recv All Data |
 v v
 +-------+ Recv RESET_STREAM +-------+
 | Data |--- (optional) --->| Reset |
 | Recvd | Recv All Data | Recvd |
 +-------+<-- (optional) ----+-------+
 | |
 | App Read All Data | App Read RST
 v v
 +-------+ +-------+
 | Data | | Reset |
 | Read | | Read |
 +-------+ +-------+

 Figure 2: States for Receiving Parts of Streams

 The receiving part of a stream initiated by a peer (types 1 and 3 for
 a client, or 0 and 2 for a server) is created when the first STREAM,
 STREAM_DATA_BLOCKED, or RESET_STREAM is received for that stream.
 For bidirectional streams initiated by a peer, receipt of a
 MAX_STREAM_DATA or STOP_SENDING frame for the sending part of the
 stream also creates the receiving part. The initial state for the
 receiving part of stream is "Recv".

Iyengar & Thomson Expires July 27, 2019 [Page 14]

Internet-Draft QUIC Transport Protocol January 2019

 The receiving part of a stream enters the "Recv" state when the
 sending part of a bidirectional stream initiated by the endpoint
 (type 0 for a client, type 1 for a server) enters the "Ready" state.

 An endpoint opens a bidirectional stream when a MAX_STREAM_DATA or
 STOP_SENDING frame is received from the peer for that stream.
 Receiving a MAX_STREAM_DATA frame for an unopened stream indicates
 that the remote peer has opened the stream and is providing flow
 control credit. Receiving a STOP_SENDING frame for an unopened
 stream indicates that the remote peer no longer wishes to receive
 data on this stream. Either frame might arrive before a STREAM or
 STREAM_DATA_BLOCKED frame if packets are lost or reordered.

 Before creating a stream, all streams of the same type with lower-
 numbered stream IDs MUST be created. This ensures that the creation
 order for streams is consistent on both endpoints.

 In the "Recv" state, the endpoint receives STREAM and
 STREAM_DATA_BLOCKED frames. Incoming data is buffered and can be
 reassembled into the correct order for delivery to the application.
 As data is consumed by the application and buffer space becomes
 available, the endpoint sends MAX_STREAM_DATA frames to allow the
 peer to send more data.

 When a STREAM frame with a FIN bit is received, the final size of the
 stream is known (see Section 4.4). The receiving part of the stream
 then enters the "Size Known" state. In this state, the endpoint no
 longer needs to send MAX_STREAM_DATA frames, it only receives any
 retransmissions of stream data.

 Once all data for the stream has been received, the receiving part
 enters the "Data Recvd" state. This might happen as a result of
 receiving the same STREAM frame that causes the transition to "Size
 Known". In this state, the endpoint has all stream data. Any STREAM
 or STREAM_DATA_BLOCKED frames it receives for the stream can be
 discarded.

 The "Data Recvd" state persists until stream data has been delivered
 to the application. Once stream data has been delivered, the stream
 enters the "Data Read" state, which is a terminal state.

 Receiving a RESET_STREAM frame in the "Recv" or "Size Known" states
 causes the stream to enter the "Reset Recvd" state. This might cause
 the delivery of stream data to the application to be interrupted.

 It is possible that all stream data is received when a RESET_STREAM
 is received (that is, from the "Data Recvd" state). Similarly, it is
 possible for remaining stream data to arrive after receiving a

Iyengar & Thomson Expires July 27, 2019 [Page 15]

Internet-Draft QUIC Transport Protocol January 2019

 RESET_STREAM frame (the "Reset Recvd" state). An implementation is
 free to manage this situation as it chooses. Sending RESET_STREAM
 means that an endpoint cannot guarantee delivery of stream data;
 however there is no requirement that stream data not be delivered if
 a RESET_STREAM is received. An implementation MAY interrupt delivery
 of stream data, discard any data that was not consumed, and signal
 the receipt of the RESET_STREAM immediately. Alternatively, the
 RESET_STREAM signal might be suppressed or withheld if stream data is
 completely received and is buffered to be read by the application.
 In the latter case, the receiving part of the stream transitions from
 "Reset Recvd" to "Data Recvd".

 Once the application has been delivered the signal indicating that
 the stream was reset, the receiving part of the stream transitions to
 the "Reset Read" state, which is a terminal state.

3.3. Permitted Frame Types

 The sender of a stream sends just three frame types that affect the
 state of a stream at either sender or receiver: STREAM
 (Section 19.8), STREAM_DATA_BLOCKED (Section 19.13), and RESET_STREAM
 (Section 19.4).

 A sender MUST NOT send any of these frames from a terminal state
 ("Data Recvd" or "Reset Recvd"). A sender MUST NOT send STREAM or
 STREAM_DATA_BLOCKED after sending a RESET_STREAM; that is, in the
 terminal states and in the "Reset Sent" state. A receiver could
 receive any of these three frames in any state, due to the
 possibility of delayed delivery of packets carrying them.

 The receiver of a stream sends MAX_STREAM_DATA (Section 19.10) and
 STOP_SENDING frames (Section 19.5).

 The receiver only sends MAX_STREAM_DATA in the "Recv" state. A
 receiver can send STOP_SENDING in any state where it has not received
 a RESET_STREAM frame; that is states other than "Reset Recvd" or
 "Reset Read". However there is little value in sending a
 STOP_SENDING frame in the "Data Recvd" state, since all stream data
 has been received. A sender could receive either of these two frames
 in any state as a result of delayed delivery of packets.

3.4. Bidirectional Stream States

 A bidirectional stream is composed of sending and receiving parts.
 Implementations may represent states of the bidirectional stream as
 composites of sending and receiving stream states. The simplest
 model presents the stream as "open" when either sending or receiving

Iyengar & Thomson Expires July 27, 2019 [Page 16]

Internet-Draft QUIC Transport Protocol January 2019

 parts are in a non-terminal state and "closed" when both sending and
 receiving streams are in terminal states.

 Table 2 shows a more complex mapping of bidirectional stream states
 that loosely correspond to the stream states in HTTP/2 [HTTP2]. This
 shows that multiple states on sending or receiving parts of streams
 are mapped to the same composite state. Note that this is just one
 possibility for such a mapping; this mapping requires that data is
 acknowledged before the transition to a "closed" or "half-closed"
 state.

 +-----------------------+---------------------+---------------------+
 | Sending Part | Receiving Part | Composite State |
 +-----------------------+---------------------+---------------------+
No Stream/Ready	No Stream/Recv *1	idle
Ready/Send/Data Sent	Recv/Size Known	open
Ready/Send/Data Sent	Data Recvd/Data	half-closed
	Read	(remote)
Ready/Send/Data Sent	Reset Recvd/Reset	half-closed
	Read	(remote)
Data Recvd	Recv/Size Known	half-closed (local)
Reset Sent/Reset	Recv/Size Known	half-closed (local)
Recvd		
Reset Sent/Reset	Data Recvd/Data	closed
Recvd	Read	
Reset Sent/Reset	Reset Recvd/Reset	closed
Recvd	Read	
Data Recvd	Data Recvd/Data	closed
	Read	
Data Recvd	Reset Recvd/Reset	closed
	Read	
 +-----------------------+---------------------+---------------------+

 Table 2: Possible Mapping of Stream States to HTTP/2

 Note (*1): A stream is considered "idle" if it has not yet been
 created, or if the receiving part of the stream is in the "Recv"
 state without yet having received any frames.

Iyengar & Thomson Expires July 27, 2019 [Page 17]

Internet-Draft QUIC Transport Protocol January 2019

3.5. Solicited State Transitions

 If an endpoint is no longer interested in the data it is receiving on
 a stream, it MAY send a STOP_SENDING frame identifying that stream to
 prompt closure of the stream in the opposite direction. This
 typically indicates that the receiving application is no longer
 reading data it receives from the stream, but it is not a guarantee
 that incoming data will be ignored.

 STREAM frames received after sending STOP_SENDING are still counted
 toward connection and stream flow control, even though these frames
 will be discarded upon receipt.

 A STOP_SENDING frame requests that the receiving endpoint send a
 RESET_STREAM frame. An endpoint that receives a STOP_SENDING frame
 MUST send a RESET_STREAM frame if the stream is in the Ready or Send
 state. If the stream is in the Data Sent state and any outstanding
 data is declared lost, an endpoint SHOULD send a RESET_STREAM frame
 in lieu of a retransmission.

 An endpoint SHOULD copy the error code from the STOP_SENDING frame to
 the RESET_STREAM frame it sends, but MAY use any application error
 code. The endpoint that sends a STOP_SENDING frame MAY ignore the
 error code carried in any RESET_STREAM frame it receives.

 If the STOP_SENDING frame is received on a stream that is already in
 the "Data Sent" state, an endpoint that wishes to cease
 retransmission of previously-sent STREAM frames on that stream MUST
 first send a RESET_STREAM frame.

 STOP_SENDING SHOULD only be sent for a stream that has not been reset
 by the peer. STOP_SENDING is most useful for streams in the "Recv"
 or "Size Known" states.

 An endpoint is expected to send another STOP_SENDING frame if a
 packet containing a previous STOP_SENDING is lost. However, once
 either all stream data or a RESET_STREAM frame has been received for
 the stream - that is, the stream is in any state other than "Recv" or
 "Size Known" - sending a STOP_SENDING frame is unnecessary.

 An endpoint that wishes to terminate both directions of a
 bidirectional stream can terminate one direction by sending a
 RESET_STREAM, and it can encourage prompt termination in the opposite
 direction by sending a STOP_SENDING frame.

Iyengar & Thomson Expires July 27, 2019 [Page 18]

Internet-Draft QUIC Transport Protocol January 2019

4. Flow Control

 It is necessary to limit the amount of data that a receiver could
 buffer, to prevent a fast sender from overwhelming a slow receiver,
 or to prevent a malicious sender from consuming a large amount of
 memory at a receiver. To enable a receiver to limit memory
 commitment to a connection and to apply back pressure on the sender,
 streams are flow controlled both individually and as an aggregate. A
 QUIC receiver controls the maximum amount of data the sender can send
 on a stream at any time, as described in Section 4.1 and Section 4.2

 Similarly, to limit concurrency within a connection, a QUIC endpoint
 controls the maximum cumulative number of streams that its peer can
 initiate, as described in Section 4.5.

 Data sent in CRYPTO frames is not flow controlled in the same way as
 stream data. QUIC relies on the cryptographic protocol
 implementation to avoid excessive buffering of data, see [QUIC-TLS].
 The implementation SHOULD provide an interface to QUIC to tell it
 about its buffering limits so that there is not excessive buffering
 at multiple layers.

4.1. Data Flow Control

 QUIC employs a credit-based flow-control scheme similar to that in
 HTTP/2 [HTTP2], where a receiver advertises the number of bytes it is
 prepared to receive on a given stream and for the entire connection.
 This leads to two levels of data flow control in QUIC:

 o Stream flow control, which prevents a single stream from consuming
 the entire receive buffer for a connection by limiting the amount
 of data that can be sent on any stream.

 o Connection flow control, which prevents senders from exceeding a
 receiver's buffer capacity for the connection, by limiting the
 total bytes of stream data sent in STREAM frames on all streams.

 A receiver sets initial credits for all streams by sending transport
 parameters during the handshake (Section 7.3). A receiver sends
 MAX_STREAM_DATA (Section 19.10) or MAX_DATA (Section 19.9) frames to
 the sender to advertise additional credit.

 A receiver advertises credit for a stream by sending a
 MAX_STREAM_DATA frame with the Stream ID field set appropriately. A
 MAX_STREAM_DATA frame indicates the maximum absolute byte offset of a
 stream. A receiver could use the current offset of data consumed to
 determine the flow control offset to be advertised. A receiver MAY
 send MAX_STREAM_DATA frames in multiple packets in order to make sure

Iyengar & Thomson Expires July 27, 2019 [Page 19]

Internet-Draft QUIC Transport Protocol January 2019

 that the sender receives an update before running out of flow control
 credit, even if one of the packets is lost.

 A receiver advertises credit for a connection by sending a MAX_DATA
 frame, which indicates the maximum of the sum of the absolute byte
 offsets of all streams. A receiver maintains a cumulative sum of
 bytes received on all streams, which is used to check for flow
 control violations. A receiver might use a sum of bytes consumed on
 all streams to determine the maximum data limit to be advertised.

 A receiver can advertise a larger offset by sending MAX_STREAM_DATA
 or MAX_DATA frames at any time during the connection. A receiver
 cannot renege on an advertisement however. That is, once a receiver
 advertises an offset, it MAY advertise a smaller offset, but this has
 no effect.

 A receiver MUST close the connection with a FLOW_CONTROL_ERROR error
 (Section 11) if the sender violates the advertised connection or
 stream data limits.

 A sender MUST ignore any MAX_STREAM_DATA or MAX_DATA frames that do
 not increase flow control limits.

 If a sender runs out of flow control credit, it will be unable to
 send new data and is considered blocked. A sender SHOULD send
 STREAM_DATA_BLOCKED or DATA_BLOCKED frames to indicate it has data to
 write but is blocked by flow control limits. These frames are
 expected to be sent infrequently in common cases, but they are
 considered useful for debugging and monitoring purposes.

 A sender sends a single STREAM_DATA_BLOCKED or DATA_BLOCKED frame
 only once when it reaches a data limit. A sender SHOULD NOT send
 multiple STREAM_DATA_BLOCKED or DATA_BLOCKED frames for the same data
 limit, unless the original frame is determined to be lost. Another
 STREAM_DATA_BLOCKED or DATA_BLOCKED frame can be sent after the data
 limit is increased.

4.2. Flow Credit Increments

 This document leaves when and how many bytes to advertise in a
 MAX_STREAM_DATA or MAX_DATA frame to implementations, but offers a
 few considerations. These frames contribute to connection overhead.
 Therefore frequently sending frames with small changes is
 undesirable. At the same time, larger increments to limits are
 necessary to avoid blocking if updates are less frequent, requiring
 larger resource commitments at the receiver. Thus there is a trade-
 off between resource commitment and overhead when determining how
 large a limit is advertised.

Iyengar & Thomson Expires July 27, 2019 [Page 20]

Internet-Draft QUIC Transport Protocol January 2019

 A receiver can use an autotuning mechanism to tune the frequency and
 amount of advertised additional credit based on a round-trip time
 estimate and the rate at which the receiving application consumes
 data, similar to common TCP implementations. As an optimization,
 sending frames related to flow control only when there are other
 frames to send or when a peer is blocked ensures that flow control
 doesn't cause extra packets to be sent.

 If a sender runs out of flow control credit, it will be unable to
 send new data and is considered blocked. It is generally considered
 best to not let the sender become blocked. To avoid blocking a
 sender, and to reasonably account for the possibility of loss, a
 receiver should send a MAX_DATA or MAX_STREAM_DATA frame at least two
 round trips before it expects the sender to get blocked.

 A receiver MUST NOT wait for a STREAM_DATA_BLOCKED or DATA_BLOCKED
 frame before sending MAX_STREAM_DATA or MAX_DATA, since doing so will
 mean that a sender will be blocked for at least an entire round trip,
 and potentially for longer if the peer chooses to not send
 STREAM_DATA_BLOCKED or DATA_BLOCKED frames.

4.3. Handling Stream Cancellation

 Endpoints need to eventually agree on the amount of flow control
 credit that has been consumed, to avoid either exceeding flow control
 limits or deadlocking.

 On receipt of a RESET_STREAM frame, an endpoint will tear down state
 for the matching stream and ignore further data arriving on that
 stream. If a RESET_STREAM frame is reordered with stream data for
 the same stream, the receiver's estimate of the number of bytes
 received on that stream can be lower than the sender's estimate of
 the number sent. As a result, the two endpoints could disagree on
 the number of bytes that count towards connection flow control.

 To remedy this issue, a RESET_STREAM frame (Section 19.4) includes
 the final size of data sent on the stream. On receiving a
 RESET_STREAM frame, a receiver definitively knows how many bytes were
 sent on that stream before the RESET_STREAM frame, and the receiver
 MUST use the final size of the stream to account for all bytes sent
 on the stream in its connection level flow controller.

 RESET_STREAM terminates one direction of a stream abruptly. For a
 bidirectional stream, RESET_STREAM has no effect on data flow in the
 opposite direction. Both endpoints MUST maintain flow control state
 for the stream in the unterminated direction until that direction
 enters a terminal state, or until one of the endpoints sends
 CONNECTION_CLOSE.

Iyengar & Thomson Expires July 27, 2019 [Page 21]

Internet-Draft QUIC Transport Protocol January 2019

4.4. Stream Final Size

 The final size is the amount of flow control credit that is consumed
 by a stream. Assuming that every contiguous byte on the stream was
 sent once, the final size is the number of bytes sent. More
 generally, this is one higher than the largest byte offset sent on
 the stream.

 For a stream that is reset, the final size is carried explicitly in a
 RESET_STREAM frame. Otherwise, the final size is the offset plus the
 length of a STREAM frame marked with a FIN flag, or 0 in the case of
 incoming unidirectional streams.

 An endpoint will know the final size for a stream when the receiving
 part of the stream enters the "Size Known" or "Reset Recvd" state
 (Section 3).

 An endpoint MUST NOT send data on a stream at or beyond the final
 size.

 Once a final size for a stream is known, it cannot change. If a
 RESET_STREAM or STREAM frame is received indicating a change in the
 final size for the stream, an endpoint SHOULD respond with a
 FINAL_SIZE_ERROR error (see Section 11). A receiver SHOULD treat
 receipt of data at or beyond the final size as a FINAL_SIZE_ERROR
 error, even after a stream is closed. Generating these errors is not
 mandatory, but only because requiring that an endpoint generate these
 errors also means that the endpoint needs to maintain the final size
 state for closed streams, which could mean a significant state
 commitment.

4.5. Controlling Concurrency

 An endpoint limits the cumulative number of incoming streams a peer
 can open. Only streams with a stream ID less than (max_stream * 4 +
 initial_stream_id_for_type) can be opened (see Table 5). Initial
 limits are set in the transport parameters (see Section 18.1) and
 subsequently limits are advertised using MAX_STREAMS frames
 (Section 19.11). Separate limits apply to unidirectional and
 bidirectional streams.

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a STREAM frame with a stream ID exceeding the limit it
 has sent MUST treat this as a stream error of type STREAM_LIMIT_ERROR
 (Section 11).

 A receiver cannot renege on an advertisement. That is, once a
 receiver advertises a stream limit using the MAX_STREAMS frame,

Iyengar & Thomson Expires July 27, 2019 [Page 22]

Internet-Draft QUIC Transport Protocol January 2019

 advertising a smaller limit has no effect. A receiver MUST ignore
 any MAX_STREAMS frame that does not increase the stream limit.

 As with stream and connection flow control, this document leaves when
 and how many streams to advertise to a peer via MAX_STREAMS to
 implementations. Implementations might choose to increase limits as
 streams close to keep the number of streams available to peers
 roughly consistent.

 An endpoint that is unable to open a new stream due to the peer's
 limits SHOULD send a STREAMS_BLOCKED frame (Section 19.14). This
 signal is considered useful for debugging. An endpoint MUST NOT wait
 to receive this signal before advertising additional credit, since
 doing so will mean that the peer will be blocked for at least an
 entire round trip, and potentially for longer if the peer chooses to
 not send STREAMS_BLOCKED frames.

5. Connections

 QUIC's connection establishment combines version negotiation with the
 cryptographic and transport handshakes to reduce connection
 establishment latency, as described in Section 7. Once established,
 a connection may migrate to a different IP or port at either endpoint
 as described in Section 9. Finally, a connection may be terminated
 by either endpoint, as described in Section 10.

5.1. Connection ID

 Each connection possesses a set of connection identifiers, or
 connection IDs, each of which can identify the connection.
 Connection IDs are independently selected by endpoints; each endpoint
 selects the connection IDs that its peer uses.

 The primary function of a connection ID is to ensure that changes in
 addressing at lower protocol layers (UDP, IP) don't cause packets for
 a QUIC connection to be delivered to the wrong endpoint. Each
 endpoint selects connection IDs using an implementation-specific (and
 perhaps deployment-specific) method which will allow packets with
 that connection ID to be routed back to the endpoint and identified
 by the endpoint upon receipt.

 Connection IDs MUST NOT contain any information that can be used by
 an external observer to correlate them with other connection IDs for
 the same connection. As a trivial example, this means the same
 connection ID MUST NOT be issued more than once on the same
 connection.

Iyengar & Thomson Expires July 27, 2019 [Page 23]

Internet-Draft QUIC Transport Protocol January 2019

 Packets with long headers include Source Connection ID and
 Destination Connection ID fields. These fields are used to set the
 connection IDs for new connections, see Section 7.2 for details.

 Packets with short headers (Section 17.3) only include the
 Destination Connection ID and omit the explicit length. The length
 of the Destination Connection ID field is expected to be known to
 endpoints. Endpoints using a load balancer that routes based on
 connection ID could agree with the load balancer on a fixed length
 for connection IDs, or agree on an encoding scheme. A fixed portion
 could encode an explicit length, which allows the entire connection
 ID to vary in length and still be used by the load balancer.

 A Version Negotiation (Section 17.2.1) packet echoes the connection
 IDs selected by the client, both to ensure correct routing toward the
 client and to allow the client to validate that the packet is in
 response to an Initial packet.

 A zero-length connection ID MAY be used when the connection ID is not
 needed for routing and the address/port tuple of packets is
 sufficient to identify a connection. An endpoint whose peer has
 selected a zero-length connection ID MUST continue to use a zero-
 length connection ID for the lifetime of the connection and MUST NOT
 send packets from any other local address.

 When an endpoint has requested a non-zero-length connection ID, it
 needs to ensure that the peer has a supply of connection IDs from
 which to choose for packets sent to the endpoint. These connection
 IDs are supplied by the endpoint using the NEW_CONNECTION_ID frame
 (Section 19.15).

5.1.1. Issuing Connection IDs

 Each Connection ID has an associated sequence number to assist in
 deduplicating messages. The initial connection ID issued by an
 endpoint is sent in the Source Connection ID field of the long packet
 header (Section 17.2) during the handshake. The sequence number of
 the initial connection ID is 0. If the preferred_address transport
 parameter is sent, the sequence number of the supplied connection ID
 is 1.

 Additional connection IDs are communicated to the peer using
 NEW_CONNECTION_ID frames (Section 19.15). The sequence number on
 each newly-issued connection ID MUST increase by 1. The connection
 ID randomly selected by the client in the Initial packet and any
 connection ID provided by a Retry packet are not assigned sequence
 numbers unless a server opts to retain them as its initial connection
 ID.

Iyengar & Thomson Expires July 27, 2019 [Page 24]

Internet-Draft QUIC Transport Protocol January 2019

 When an endpoint issues a connection ID, it MUST accept packets that
 carry this connection ID for the duration of the connection or until
 its peer invalidates the connection ID via a RETIRE_CONNECTION_ID
 frame (Section 19.16).

 Endpoints store received connection IDs for future use. An endpoint
 that receives excessive connection IDs MAY discard those it cannot
 store without sending a RETIRE_CONNECTION_ID frame. An endpoint that
 issues connection IDs cannot expect its peer to store and use all
 issued connection IDs.

 An endpoint SHOULD ensure that its peer has a sufficient number of
 available and unused connection IDs. While each endpoint
 independently chooses how many connection IDs to issue, endpoints
 SHOULD provide and maintain at least eight connection IDs. The
 endpoint SHOULD do this by always supplying a new connection ID when
 a connection ID is retired by its peer or when the endpoint receives
 a packet with a previously unused connection ID. Endpoints that
 initiate migration and require non-zero-length connection IDs SHOULD
 provide their peers with new connection IDs before migration, or risk
 the peer closing the connection.

5.1.2. Consuming and Retiring Connection IDs

 An endpoint can change the connection ID it uses for a peer to
 another available one at any time during the connection. An endpoint
 consumes connection IDs in response to a migrating peer, see

Section 9.5 for more.

 An endpoint maintains a set of connection IDs received from its peer,
 any of which it can use when sending packets. When the endpoint
 wishes to remove a connection ID from use, it sends a
 RETIRE_CONNECTION_ID frame to its peer. Sending a
 RETIRE_CONNECTION_ID frame indicates that the connection ID won't be
 used again and requests that the peer replace it with a new
 connection ID using a NEW_CONNECTION_ID frame.

 As discussed in Section 9.5, each connection ID MUST be used on
 packets sent from only one local address. An endpoint that migrates
 away from a local address SHOULD retire all connection IDs used on
 that address once it no longer plans to use that address.

5.2. Matching Packets to Connections

 Incoming packets are classified on receipt. Packets can either be
 associated with an existing connection, or - for servers -
 potentially create a new connection.

Iyengar & Thomson Expires July 27, 2019 [Page 25]

Internet-Draft QUIC Transport Protocol January 2019

 Hosts try to associate a packet with an existing connection. If the
 packet has a Destination Connection ID corresponding to an existing
 connection, QUIC processes that packet accordingly. Note that more
 than one connection ID can be associated with a connection; see

Section 5.1.

 If the Destination Connection ID is zero length and the packet
 matches the address/port tuple of a connection where the host did not
 require connection IDs, QUIC processes the packet as part of that
 connection. Endpoints SHOULD either reject connection attempts that
 use the same addresses as existing connections, or use a non-zero-
 length Destination Connection ID so that packets can be correctly
 attributed to connections.

 Endpoints can send a Stateless Reset (Section 10.4) for any packets
 that cannot be attributed to an existing connection. A stateless
 reset allows a peer to more quickly identify when a connection
 becomes unusable.

 Packets that are matched to an existing connection, but for which the
 endpoint cannot remove packet protection, are discarded.

 Invalid packets without packet protection, such as Initial, Retry, or
 Version Negotiation, MAY be discarded. An endpoint MUST generate a
 connection error if it commits changes to state before discovering an
 error.

5.2.1. Client Packet Handling

 Valid packets sent to clients always include a Destination Connection
 ID that matches a value the client selects. Clients that choose to
 receive zero-length connection IDs can use the address/port tuple to
 identify a connection. Packets that don't match an existing
 connection are discarded.

 Due to packet reordering or loss, clients might receive packets for a
 connection that are encrypted with a key it has not yet computed.
 Clients MAY drop these packets, or MAY buffer them in anticipation of
 later packets that allow it to compute the key.

 If a client receives a packet that has an unsupported version, it
 MUST discard that packet.

5.2.2. Server Packet Handling

 If a server receives a packet that has an unsupported version, but
 the packet is sufficiently large to initiate a new connection for any
 version supported by the server, it SHOULD send a Version Negotiation

Iyengar & Thomson Expires July 27, 2019 [Page 26]

Internet-Draft QUIC Transport Protocol January 2019

 packet as described in Section 6.1. Servers MAY rate control these
 packets to avoid storms of Version Negotiation packets.

 The first packet for an unsupported version can use different
 semantics and encodings for any version-specific field. In
 particular, different packet protection keys might be used for
 different versions. Servers that do not support a particular version
 are unlikely to be able to decrypt the payload of the packet.
 Servers SHOULD NOT attempt to decode or decrypt a packet from an
 unknown version, but instead send a Version Negotiation packet,
 provided that the packet is sufficiently long.

 Servers MUST drop other packets that contain unsupported versions.

 Packets with a supported version, or no version field, are matched to
 a connection using the connection ID or - for packets with zero-
 length connection IDs - the address tuple. If the packet doesn't
 match an existing connection, the server continues below.

 If the packet is an Initial packet fully conforming with the
 specification, the server proceeds with the handshake (Section 7).
 This commits the server to the version that the client selected.

 If a server isn't currently accepting any new connections, it SHOULD
 send an Initial packet containing a CONNECTION_CLOSE frame with error
 code SERVER_BUSY.

 If the packet is a 0-RTT packet, the server MAY buffer a limited
 number of these packets in anticipation of a late-arriving Initial
 Packet. Clients are forbidden from sending Handshake packets prior
 to receiving a server response, so servers SHOULD ignore any such
 packets.

 Servers MUST drop incoming packets under all other circumstances.

5.3. Life of a QUIC Connection

 TBD.

6. Version Negotiation

 Version negotiation ensures that client and server agree to a QUIC
 version that is mutually supported. A server sends a Version
 Negotiation packet in response to each packet that might initiate a
 new connection, see Section 5.2 for details.

 The first few messages of an exchange between a client attempting to
 create a new connection with server is shown in Figure 3. After

Iyengar & Thomson Expires July 27, 2019 [Page 27]

Internet-Draft QUIC Transport Protocol January 2019

 version negotiation completes, connection establishment can proceed,
 for example as shown in Section 7.1.

 Client Server

 Packet (v=X) ->

 <- Version Negotiation (supported=Y,Z)

 Packet (v=Y) ->

 <- Packet(s) (v=Y)

 Figure 3: Example Version Negotiation Exchange

 The size of the first packet sent by a client will determine whether
 a server sends a Version Negotiation packet. Clients that support
 multiple QUIC versions SHOULD pad the first packet they send to the
 largest of the minimum packet sizes across all versions they support.
 This ensures that the server responds if there is a mutually
 supported version.

6.1. Sending Version Negotiation Packets

 If the version selected by the client is not acceptable to the
 server, the server responds with a Version Negotiation packet (see

Section 17.2.1). This includes a list of versions that the server
 will accept. An endpoint MUST NOT send a Version Negotiation packet
 in response to receiving a Version Negotiation packet.

 This system allows a server to process packets with unsupported
 versions without retaining state. Though either the Initial packet
 or the Version Negotiation packet that is sent in response could be
 lost, the client will send new packets until it successfully receives
 a response or it abandons the connection attempt.

 A server MAY limit the number of Version Negotiation packets it
 sends. For instance, a server that is able to recognize packets as
 0-RTT might choose not to send Version Negotiation packets in
 response to 0-RTT packets with the expectation that it will
 eventually receive an Initial packet.

6.2. Handling Version Negotiation Packets

 When the client receives a Version Negotiation packet, it first
 checks that the Destination and Source Connection ID fields match the
 Source and Destination Connection ID fields in a packet that the
 client sent. If this check fails, the packet MUST be discarded.

Iyengar & Thomson Expires July 27, 2019 [Page 28]

Internet-Draft QUIC Transport Protocol January 2019

 Once the Version Negotiation packet is determined to be valid, the
 client then selects an acceptable protocol version from the list
 provided by the server. The client then attempts to create a
 connection using that version. Though the content of the Initial
 packet the client sends might not change in response to version
 negotiation, a client MUST increase the packet number it uses on
 every packet it sends. Packets MUST continue to use long headers
 (Section 17.2) and MUST include the new negotiated protocol version.

 The client MUST use the long header format and include its selected
 version on all packets until it has 1-RTT keys and it has received a
 packet from the server which is not a Version Negotiation packet.

 A client MUST NOT change the version it uses unless it is in response
 to a Version Negotiation packet from the server. Once a client
 receives a packet from the server which is not a Version Negotiation
 packet, it MUST discard other Version Negotiation packets on the same
 connection. Similarly, a client MUST ignore a Version Negotiation
 packet if it has already received and acted on a Version Negotiation
 packet.

 A client MUST ignore a Version Negotiation packet that lists the
 client's chosen version. If the client does not support any of the
 versions the server offers, it aborts the connection attempt.

 A client MAY attempt 0-RTT after receiving a Version Negotiation
 packet. A client that sends additional 0-RTT packets MUST NOT reset
 the packet number to 0 as a result, see Section 17.2.3.

 Version negotiation packets have no cryptographic protection. The
 result of the negotiation MUST be revalidated as part of the
 cryptographic handshake (see Section 7.3.3).

6.3. Using Reserved Versions

 For a server to use a new version in the future, clients must
 correctly handle unsupported versions. To help ensure this, a server
 SHOULD include a reserved version (see Section 15) while generating a
 Version Negotiation packet.

 The design of version negotiation permits a server to avoid
 maintaining state for packets that it rejects in this fashion. The
 validation of version negotiation (see Section 7.3.3) only validates
 the result of version negotiation, which is the same no matter which
 reserved version was sent. A server MAY therefore send different
 reserved version numbers in the Version Negotiation Packet and in its
 transport parameters.

Iyengar & Thomson Expires July 27, 2019 [Page 29]

Internet-Draft QUIC Transport Protocol January 2019

 A client MAY send a packet using a reserved version number. This can
 be used to solicit a list of supported versions from a server.

7. Cryptographic and Transport Handshake

 QUIC relies on a combined cryptographic and transport handshake to
 minimize connection establishment latency. QUIC uses the CRYPTO
 frame Section 19.6 to transmit the cryptographic handshake. Version
 0x00000001 of QUIC uses TLS as described in [QUIC-TLS]; a different
 QUIC version number could indicate that a different cryptographic
 handshake protocol is in use.

 QUIC provides reliable, ordered delivery of the cryptographic
 handshake data. QUIC packet protection is used to encrypt as much of
 the handshake protocol as possible. The cryptographic handshake MUST
 provide the following properties:

 o authenticated key exchange, where

 * a server is always authenticated,

 * a client is optionally authenticated,

 * every connection produces distinct and unrelated keys,

 * keying material is usable for packet protection for both 0-RTT
 and 1-RTT packets, and

 * 1-RTT keys have forward secrecy

 o authenticated values for the transport parameters of the peer (see
Section 7.3)

 o authenticated confirmation of version negotiation (see
Section 7.3.3)

 o authenticated negotiation of an application protocol (TLS uses
 ALPN [RFC7301] for this purpose)

 The first CRYPTO frame from a client MUST be sent in a single packet.
 Any second attempt that is triggered by address validation (see

Section 8.1) MUST also be sent within a single packet. This avoids
 having to reassemble a message from multiple packets.

 The first client packet of the cryptographic handshake protocol MUST
 fit within a 1232 byte QUIC packet payload. This includes overheads
 that reduce the space available to the cryptographic handshake
 protocol.

https://datatracker.ietf.org/doc/html/rfc7301

Iyengar & Thomson Expires July 27, 2019 [Page 30]

Internet-Draft QUIC Transport Protocol January 2019

 An endpoint can verify support for Explicit Congestion Notification
 (ECN) in the first packets it sends, as described in Section 13.3.2.

 The CRYPTO frame can be sent in different packet number spaces. The
 sequence numbers used by CRYPTO frames to ensure ordered delivery of
 cryptographic handshake data start from zero in each packet number
 space.

 Endpoints MUST explicitly negotiate an application protocol. This
 avoids situations where there is a disagreement about the protocol
 that is in use.

7.1. Example Handshake Flows

 Details of how TLS is integrated with QUIC are provided in
 [QUIC-TLS], but some examples are provided here. An extension of
 this exchange to support client address validation is shown in

Section 8.1.1.

 Once any version negotiation and address validation exchanges are
 complete, the cryptographic handshake is used to agree on
 cryptographic keys. The cryptographic handshake is carried in
 Initial (Section 17.2.2) and Handshake (Section 17.2.4) packets.

 Figure 4 provides an overview of the 1-RTT handshake. Each line
 shows a QUIC packet with the packet type and packet number shown
 first, followed by the frames that are typically contained in those
 packets. So, for instance the first packet is of type Initial, with
 packet number 0, and contains a CRYPTO frame carrying the
 ClientHello.

 Note that multiple QUIC packets - even of different encryption levels
 - may be coalesced into a single UDP datagram (see Section 12.2), and
 so this handshake may consist of as few as 4 UDP datagrams, or any
 number more. For instance, the server's first flight contains
 packets from the Initial encryption level (obfuscation), the
 Handshake level, and "0.5-RTT data" from the server at the 1-RTT
 encryption level.

Iyengar & Thomson Expires July 27, 2019 [Page 31]

Internet-Draft QUIC Transport Protocol January 2019

 Client Server

 Initial[0]: CRYPTO[CH] ->

 Initial[0]: CRYPTO[SH] ACK[0]
 Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
 <- 1-RTT[0]: STREAM[1, "..."]

 Initial[1]: ACK[0]
 Handshake[0]: CRYPTO[FIN], ACK[0]
 1-RTT[0]: STREAM[0, "..."], ACK[0] ->

 1-RTT[1]: STREAM[55, "..."], ACK[0]
 <- Handshake[1]: ACK[0]

 Figure 4: Example 1-RTT Handshake

 Figure 5 shows an example of a connection with a 0-RTT handshake and
 a single packet of 0-RTT data. Note that as described in

Section 12.3, the server acknowledges 0-RTT data at the 1-RTT
 encryption level, and the client sends 1-RTT packets in the same
 packet number space.

 Client Server

 Initial[0]: CRYPTO[CH]
 0-RTT[0]: STREAM[0, "..."] ->

 Initial[0]: CRYPTO[SH] ACK[0]
 Handshake[0] CRYPTO[EE, CERT, CV, FIN]
 <- 1-RTT[0]: STREAM[1, "..."] ACK[0]

 Initial[1]: ACK[0]
 Handshake[0]: CRYPTO[FIN], ACK[0]
 1-RTT[2]: STREAM[0, "..."] ACK[0] ->

 1-RTT[1]: STREAM[55, "..."], ACK[1,2]
 <- Handshake[1]: ACK[0]

 Figure 5: Example 0-RTT Handshake

7.2. Negotiating Connection IDs

 A connection ID is used to ensure consistent routing of packets, as
 described in Section 5.1. The long header contains two connection
 IDs: the Destination Connection ID is chosen by the recipient of the
 packet and is used to provide consistent routing; the Source

Iyengar & Thomson Expires July 27, 2019 [Page 32]

Internet-Draft QUIC Transport Protocol January 2019

 Connection ID is used to set the Destination Connection ID used by
 the peer.

 During the handshake, packets with the long header (Section 17.2) are
 used to establish the connection ID that each endpoint uses. Each
 endpoint uses the Source Connection ID field to specify the
 connection ID that is used in the Destination Connection ID field of
 packets being sent to them. Upon receiving a packet, each endpoint
 sets the Destination Connection ID it sends to match the value of the
 Source Connection ID that they receive.

 When an Initial packet is sent by a client which has not previously
 received a Retry packet from the server, it populates the Destination
 Connection ID field with an unpredictable value. This MUST be at
 least 8 bytes in length. Until a packet is received from the server,
 the client MUST use the same value unless it abandons the connection
 attempt and starts a new one. The initial Destination Connection ID
 is used to determine packet protection keys for Initial packets.

 The final version used for a connection might be different from the
 version of the first Initial from the client. To enable consistent
 routing through the handshake, a client SHOULD select an initial
 Destination Connection ID length long enough to fulfill the minimum
 size for every QUIC version it supports.

 The client populates the Source Connection ID field with a value of
 its choosing and sets the SCIL field to match.

 The Destination Connection ID field in the server's Initial packet
 contains a connection ID that is chosen by the recipient of the
 packet (i.e., the client); the Source Connection ID includes the
 connection ID that the sender of the packet wishes to use (see

Section 5.1). The server MUST use consistent Source Connection IDs
 during the handshake.

 On first receiving an Initial or Retry packet from the server, the
 client uses the Source Connection ID supplied by the server as the
 Destination Connection ID for subsequent packets. That means that a
 client might change the Destination Connection ID twice during
 connection establishment, once in response to a Retry and once in
 response to the first Initial packet from the server. Once a client
 has received an Initial packet from the server, it MUST discard any
 packet it receives with a different Source Connection ID.

 A client MUST only change the value it sends in the Destination
 Connection ID in response to the first packet of each type it
 receives from the server (Retry or Initial); a server MUST set its
 value based on the Initial packet. Any additional changes are not

Iyengar & Thomson Expires July 27, 2019 [Page 33]

Internet-Draft QUIC Transport Protocol January 2019

 permitted; if subsequent packets of those types include a different
 Source Connection ID, they MUST be discarded. This avoids problems
 that might arise from stateless processing of multiple Initial
 packets producing different connection IDs.

 The connection ID can change over the lifetime of a connection,
 especially in response to connection migration (Section 9), see

Section 5.1.1 for details.

7.3. Transport Parameters

 During connection establishment, both endpoints make authenticated
 declarations of their transport parameters. These declarations are
 made unilaterally by each endpoint. Endpoints are required to comply
 with the restrictions implied by these parameters; the description of
 each parameter includes rules for its handling.

 The encoding of the transport parameters is detailed in Section 18.

 QUIC includes the encoded transport parameters in the cryptographic
 handshake. Once the handshake completes, the transport parameters
 declared by the peer are available. Each endpoint validates the
 value provided by its peer. In particular, version negotiation MUST
 be validated (see Section 7.3.3) before the connection establishment
 is considered properly complete.

 Definitions for each of the defined transport parameters are included
 in Section 18.1. An endpoint MUST treat receipt of a transport
 parameter with an invalid value as a connection error of type
 TRANSPORT_PARAMETER_ERROR. Any given parameter MUST appear at most
 once in a given transport parameters extension. An endpoint MUST
 treat receipt of duplicate transport parameters as a connection error
 of type TRANSPORT_PARAMETER_ERROR.

 A server MUST include the original_connection_id transport parameter
 (Section 18.1) if it sent a Retry packet to enable validation of the
 Retry, as described in Section 17.2.5.

7.3.1. Values of Transport Parameters for 0-RTT

 A client that attempts to send 0-RTT data MUST remember the transport
 parameters used by the server. The transport parameters that the
 server advertises during connection establishment apply to all
 connections that are resumed using the keying material established
 during that handshake. Remembered transport parameters apply to the
 new connection until the handshake completes and new transport
 parameters from the server can be provided.

Iyengar & Thomson Expires July 27, 2019 [Page 34]

Internet-Draft QUIC Transport Protocol January 2019

 A server can remember the transport parameters that it advertised, or
 store an integrity-protected copy of the values in the ticket and
 recover the information when accepting 0-RTT data. A server uses the
 transport parameters in determining whether to accept 0-RTT data.

 A server MAY accept 0-RTT and subsequently provide different values
 for transport parameters for use in the new connection. If 0-RTT
 data is accepted by the server, the server MUST NOT reduce any limits
 or alter any values that might be violated by the client with its
 0-RTT data. In particular, a server that accepts 0-RTT data MUST NOT
 set values for the following parameters (Section 18.1) that are
 smaller than the remembered value of those parameters.

 o initial_max_data

 o initial_max_stream_data_bidi_local

 o initial_max_stream_data_bidi_remote

 o initial_max_stream_data_uni

 o initial_max_streams_bidi

 o initial_max_streams_uni

 Omitting or setting a zero value for certain transport parameters can
 result in 0-RTT data being enabled, but not usable. The applicable
 subset of transport parameters that permit sending of application
 data SHOULD be set to non-zero values for 0-RTT. This includes
 initial_max_data and either initial_max_streams_bidi and
 initial_max_stream_data_bidi_remote, or initial_max_streams_uni and
 initial_max_stream_data_uni.

 The value of the server's previous preferred_address MUST NOT be used
 when establishing a new connection; rather, the client should wait to
 observe the server's new preferred_address value in the handshake.

 A server MUST either reject 0-RTT data or abort a handshake if the
 implied values for transport parameters cannot be supported.

7.3.2. New Transport Parameters

 New transport parameters can be used to negotiate new protocol
 behavior. An endpoint MUST ignore transport parameters that it does
 not support. Absence of a transport parameter therefore disables any
 optional protocol feature that is negotiated using the parameter.

Iyengar & Thomson Expires July 27, 2019 [Page 35]

Internet-Draft QUIC Transport Protocol January 2019

 New transport parameters can be registered according to the rules in
Section 22.1.

7.3.3. Version Negotiation Validation

 Though the cryptographic handshake has integrity protection, two
 forms of QUIC version downgrade are possible. In the first, an
 attacker replaces the QUIC version in the Initial packet. In the
 second, a fake Version Negotiation packet is sent by an attacker. To
 protect against these attacks, the transport parameters include three
 fields that encode version information. These parameters are used to
 retroactively authenticate the choice of version (see Section 6).

 The cryptographic handshake provides integrity protection for the
 negotiated version as part of the transport parameters (see

Section 18.1). As a result, attacks on version negotiation by an
 attacker can be detected.

 The client includes the initial_version field in its transport
 parameters. The initial_version is the version that the client
 initially attempted to use. If the server did not send a Version
 Negotiation packet Section 17.2.1, this will be identical to the
 negotiated_version field in the server transport parameters.

 A server that processes all packets in a stateful fashion can
 remember how version negotiation was performed and validate the
 initial_version value.

 A server that does not maintain state for every packet it receives
 (i.e., a stateless server) uses a different process. If the
 initial_version matches the version of QUIC that is in use, a
 stateless server can accept the value.

 If the initial_version is different from the version of QUIC that is
 in use, a stateless server MUST check that it would have sent a
 Version Negotiation packet if it had received a packet with the
 indicated initial_version. If a server would have accepted the
 version included in the initial_version and the value differs from
 the QUIC version that is in use, the server MUST terminate the
 connection with a VERSION_NEGOTIATION_ERROR error.

 The server includes both the version of QUIC that is in use and a
 list of the QUIC versions that the server supports (see

Section 18.1).

 The negotiated_version field is the version that is in use. This
 MUST be set by the server to the value that is on the Initial packet
 that it accepts (not an Initial packet that triggers a Retry or

Iyengar & Thomson Expires July 27, 2019 [Page 36]

Internet-Draft QUIC Transport Protocol January 2019

 Version Negotiation packet). A client that receives a
 negotiated_version that does not match the version of QUIC that is in
 use MUST terminate the connection with a VERSION_NEGOTIATION_ERROR
 error code.

 The server includes a list of versions that it would send in any
 version negotiation packet (Section 17.2.1) in the supported_versions
 field. The server populates this field even if it did not send a
 version negotiation packet.

 The client validates that the negotiated_version is included in the
 supported_versions list and - if version negotiation was performed -
 that it would have selected the negotiated version. A client MUST
 terminate the connection with a VERSION_NEGOTIATION_ERROR error code
 if the current QUIC version is not listed in the supported_versions
 list. A client MUST terminate with a VERSION_NEGOTIATION_ERROR error
 code if version negotiation occurred but it would have selected a
 different version based on the value of the supported_versions list.

 When an endpoint accepts multiple QUIC versions, it can potentially
 interpret transport parameters as they are defined by any of the QUIC
 versions it supports. The version field in the QUIC packet header is
 authenticated using transport parameters. The position and the
 format of the version fields in transport parameters MUST either be
 identical across different QUIC versions, or be unambiguously
 different to ensure no confusion about their interpretation. One way
 that a new format could be introduced is to define a TLS extension
 with a different codepoint.

8. Address Validation

 Address validation is used by QUIC to avoid being used for a traffic
 amplification attack. In such an attack, a packet is sent to a
 server with spoofed source address information that identifies a
 victim. If a server generates more or larger packets in response to
 that packet, the attacker can use the server to send more data toward
 the victim than it would be able to send on its own.

 The primary defense against amplification attack is verifying that an
 endpoint is able to receive packets at the transport address that it
 claims. Address validation is performed both during connection
 establishment (see Section 8.1) and during connection migration (see

Section 8.2).

Iyengar & Thomson Expires July 27, 2019 [Page 37]

Internet-Draft QUIC Transport Protocol January 2019

8.1. Address Validation During Connection Establishment

 Connection establishment implicitly provides address validation for
 both endpoints. In particular, receipt of a packet protected with
 Handshake keys confirms that the client received the Initial packet
 from the server. Once the server has successfully processed a
 Handshake packet from the client, it can consider the client address
 to have been validated.

 Prior to validating the client address, servers MUST NOT send more
 than three times as many bytes as the number of bytes they have
 received. This limits the magnitude of any amplification attack that
 can be mounted using spoofed source addresses. In determining this
 limit, servers only count the size of successfully processed packets.

 Clients MUST pad UDP datagrams that contain only Initial packets to
 at least 1200 bytes. Once a client has received an acknowledgment
 for a Handshake packet it MAY send smaller datagrams. Sending padded
 datagrams ensures that the server is not overly constrained by the
 amplification restriction.

 Packet loss, in particular loss of a Handshake packet from the
 server, can cause a situation in which the server cannot send when
 the client has no data to send and the anti-amplification limit is
 reached. In order to avoid this causing a handshake deadlock,
 clients SHOULD send a packet upon a handshake timeout, as described
 in [QUIC-RECOVERY]. If the client has no data to retransmit and does
 not have Handshake keys, it SHOULD send an Initial packet in a UDP
 datagram of at least 1200 bytes. If the client has Handshake keys,
 it SHOULD send a Handshake packet.

 A server might wish to validate the client address before starting
 the cryptographic handshake. QUIC uses a token in the Initial packet
 to provide address validation prior to completing the handshake.
 This token is delivered to the client during connection establishment
 with a Retry packet (see Section 8.1.1) or in a previous connection
 using the NEW_TOKEN frame (see Section 8.1.2).

 In addition to sending limits imposed prior to address validation,
 servers are also constrained in what they can send by the limits set
 by the congestion controller. Clients are only constrained by the
 congestion controller.

8.1.1. Address Validation using Retry Packets

 Upon receiving the client's Initial packet, the server can request
 address validation by sending a Retry packet (Section 17.2.5)
 containing a token. This token MUST be repeated by the client in all

Iyengar & Thomson Expires July 27, 2019 [Page 38]

Internet-Draft QUIC Transport Protocol January 2019

 Initial packets it sends after it receives the Retry packet. In
 response to processing an Initial containing a token, a server can
 either abort the connection or permit it to proceed.

 As long as it is not possible for an attacker to generate a valid
 token for its own address (see Section 8.1.3) and the client is able
 to return that token, it proves to the server that it received the
 token.

 A server can also use a Retry packet to defer the state and
 processing costs of connection establishment. By giving the client a
 different connection ID to use, a server can cause the connection to
 be routed to a server instance with more resources available for new
 connections.

 A flow showing the use of a Retry packet is shown in Figure 6.

 Client Server

 Initial[0]: CRYPTO[CH] ->

 <- Retry+Token

 Initial+Token[0]: CRYPTO[CH] ->

 Initial[0]: CRYPTO[SH] ACK[0]
 Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
 <- 1-RTT[0]: STREAM[1, "..."]

 Figure 6: Example Handshake with Retry

8.1.2. Address Validation for Future Connections

 A server MAY provide clients with an address validation token during
 one connection that can be used on a subsequent connection. Address
 validation is especially important with 0-RTT because a server
 potentially sends a significant amount of data to a client in
 response to 0-RTT data.

 The server uses the NEW_TOKEN frame Section 19.7 to provide the
 client with an address validation token that can be used to validate
 future connections. The client includes this token in Initial
 packets to provide address validation in a future connection. The
 client MUST include the token in all Initial packets it sends, unless
 a Retry replaces the token with a newer token. The client MUST NOT
 use the token provided in a Retry for future connections. Servers
 MAY discard any Initial packet that does not carry the expected
 token.

Iyengar & Thomson Expires July 27, 2019 [Page 39]

Internet-Draft QUIC Transport Protocol January 2019

 Unlike the token that is created for a Retry packet, there might be
 some time between when the token is created and when the token is
 subsequently used. Thus, a token SHOULD include an expiration time.
 The server MAY include either an explicit expiration time or an
 issued timestamp and dynamically calculate the expiration time. It
 is also unlikely that the client port number is the same on two
 different connections; validating the port is therefore unlikely to
 be successful.

 A token SHOULD be constructed to be easily distinguishable from
 tokens that are sent in Retry packets as they are carried in the same
 field.

 If the client has a token received in a NEW_TOKEN frame on a previous
 connection to what it believes to be the same server, it can include
 that value in the Token field of its Initial packet.

 A token allows a server to correlate activity between the connection
 where the token was issued and any connection where it is used.
 Clients that want to break continuity of identity with a server MAY
 discard tokens provided using the NEW_TOKEN frame. A token obtained
 in a Retry packet MUST be used immediately during the connection
 attempt and cannot be used in subsequent connection attempts.

 A client SHOULD NOT reuse a token in different connections. Reusing
 a token allows connections to be linked by entities on the network
 path (see Section 9.5). A client MUST NOT reuse a token if it
 believes that its point of network attachment has changed since the
 token was last used; that is, if there is a change in its local IP
 address or network interface. A client needs to start the connection
 process over if it migrates prior to completing the handshake.

 When a server receives an Initial packet with an address validation
 token, it SHOULD attempt to validate it, unless it has already
 completed address validation. If the token is invalid then the
 server SHOULD proceed as if the client did not have a validated
 address, including potentially sending a Retry. If the validation
 succeeds, the server SHOULD then allow the handshake to proceed.

 Note: The rationale for treating the client as unvalidated rather
 than discarding the packet is that the client might have received
 the token in a previous connection using the NEW_TOKEN frame, and
 if the server has lost state, it might be unable to validate the
 token at all, leading to connection failure if the packet is
 discarded. A server MAY encode tokens provided with NEW_TOKEN
 frames and Retry packets differently, and validate the latter more
 strictly.

Iyengar & Thomson Expires July 27, 2019 [Page 40]

Internet-Draft QUIC Transport Protocol January 2019

 In a stateless design, a server can use encrypted and authenticated
 tokens to pass information to clients that the server can later
 recover and use to validate a client address. Tokens are not
 integrated into the cryptographic handshake and so they are not
 authenticated. For instance, a client might be able to reuse a
 token. To avoid attacks that exploit this property, a server can
 limit its use of tokens to only the information needed to validate
 client addresses.

 Attackers could replay tokens to use servers as amplifiers in DDoS
 attacks. To protect against such attacks, servers SHOULD ensure that
 tokens sent in Retry packets are only accepted for a short time.
 Tokens that are provided in NEW_TOKEN frames (see Section 19.7) need
 to be valid for longer, but SHOULD NOT be accepted multiple times in
 a short period. Servers are encouraged to allow tokens to be used
 only once, if possible.

8.1.3. Address Validation Token Integrity

 An address validation token MUST be difficult to guess. Including a
 large enough random value in the token would be sufficient, but this
 depends on the server remembering the value it sends to clients.

 A token-based scheme allows the server to offload any state
 associated with validation to the client. For this design to work,
 the token MUST be covered by integrity protection against
 modification or falsification by clients. Without integrity
 protection, malicious clients could generate or guess values for
 tokens that would be accepted by the server. Only the server
 requires access to the integrity protection key for tokens.

 There is no need for a single well-defined format for the token
 because the server that generates the token also consumes it. A
 token could include information about the claimed client address (IP
 and port), a timestamp, and any other supplementary information the
 server will need to validate the token in the future.

8.2. Path Validation

 Path validation is used during connection migration (see Section 9
 and Section 9.6) by the migrating endpoint to verify reachability of
 a peer from a new local address. In path validation, endpoints test
 reachability between a specific local address and a specific peer
 address, where an address is the two-tuple of IP address and port.

 Path validation tests that packets (PATH_CHALLENGE) can be both sent
 to and received (PATH_RESPONSE) from a peer on the path.

Iyengar & Thomson Expires July 27, 2019 [Page 41]

Internet-Draft QUIC Transport Protocol January 2019

 Importantly, it validates that the packets received from the
 migrating endpoint do not carry a spoofed source address.

 Path validation can be used at any time by either endpoint. For
 instance, an endpoint might check that a peer is still in possession
 of its address after a period of quiescence.

 Path validation is not designed as a NAT traversal mechanism. Though
 the mechanism described here might be effective for the creation of
 NAT bindings that support NAT traversal, the expectation is that one
 or other peer is able to receive packets without first having sent a
 packet on that path. Effective NAT traversal needs additional
 synchronization mechanisms that are not provided here.

 An endpoint MAY bundle PATH_CHALLENGE and PATH_RESPONSE frames that
 are used for path validation with other frames. In particular, an
 endpoint may pad a packet carrying a PATH_CHALLENGE for PMTU
 discovery, or an endpoint may bundle a PATH_RESPONSE with its own
 PATH_CHALLENGE.

 When probing a new path, an endpoint might want to ensure that its
 peer has an unused connection ID available for responses. The
 endpoint can send NEW_CONNECTION_ID and PATH_CHALLENGE frames in the
 same packet. This ensures that an unused connection ID will be
 available to the peer when sending a response.

8.3. Initiating Path Validation

 To initiate path validation, an endpoint sends a PATH_CHALLENGE frame
 containing a random payload on the path to be validated.

 An endpoint MAY send multiple PATH_CHALLENGE frames to guard against
 packet loss. An endpoint SHOULD NOT send a PATH_CHALLENGE more
 frequently than it would an Initial packet, ensuring that connection
 migration is no more load on a new path than establishing a new
 connection.

 The endpoint MUST use unpredictable data in every PATH_CHALLENGE
 frame so that it can associate the peer's response with the
 corresponding PATH_CHALLENGE.

8.4. Path Validation Responses

 On receiving a PATH_CHALLENGE frame, an endpoint MUST respond
 immediately by echoing the data contained in the PATH_CHALLENGE frame
 in a PATH_RESPONSE frame.

Iyengar & Thomson Expires July 27, 2019 [Page 42]

Internet-Draft QUIC Transport Protocol January 2019

 To ensure that packets can be both sent to and received from the
 peer, the PATH_RESPONSE MUST be sent on the same path as the
 triggering PATH_CHALLENGE. That is, from the same local address on
 which the PATH_CHALLENGE was received, to the same remote address
 from which the PATH_CHALLENGE was received.

8.5. Successful Path Validation

 A new address is considered valid when a PATH_RESPONSE frame is
 received that meets the following criteria:

 o It contains the data that was sent in a previous PATH_CHALLENGE.
 Receipt of an acknowledgment for a packet containing a
 PATH_CHALLENGE frame is not adequate validation, since the
 acknowledgment can be spoofed by a malicious peer.

 o It was sent from the same remote address to which the
 corresponding PATH_CHALLENGE was sent. If a PATH_RESPONSE frame
 is received from a different remote address than the one to which
 the PATH_CHALLENGE was sent, path validation is considered to have
 failed, even if the data matches that sent in the PATH_CHALLENGE.

 o It was received on the same local address from which the
 corresponding PATH_CHALLENGE was sent.

 Note that receipt on a different local address does not result in
 path validation failure, as it might be a result of a forwarded
 packet (see Section 9.3.3) or misrouting. It is possible that a
 valid PATH_RESPONSE might be received in the future.

8.6. Failed Path Validation

 Path validation only fails when the endpoint attempting to validate
 the path abandons its attempt to validate the path.

 Endpoints SHOULD abandon path validation based on a timer. When
 setting this timer, implementations are cautioned that the new path
 could have a longer round-trip time than the original. A value of
 three times the larger of the current Probe Timeout (PTO) or the
 initial timeout (that is, 2*kInitialRtt) as defined in
 [QUIC-RECOVERY] is RECOMMENDED. That is:

 validation_timeout = max(3*PTO, 6*kInitialRtt)

 Note that the endpoint might receive packets containing other frames
 on the new path, but a PATH_RESPONSE frame with appropriate data is
 required for path validation to succeed.

Iyengar & Thomson Expires July 27, 2019 [Page 43]

Internet-Draft QUIC Transport Protocol January 2019

 When an endpoint abandons path validation, it determines that the
 path is unusable. This does not necessarily imply a failure of the
 connection - endpoints can continue sending packets over other paths
 as appropriate. If no paths are available, an endpoint can wait for
 a new path to become available or close the connection.

 A path validation might be abandoned for other reasons besides
 failure. Primarily, this happens if a connection migration to a new
 path is initiated while a path validation on the old path is in
 progress.

9. Connection Migration

 The use of a connection ID allows connections to survive changes to
 endpoint addresses (that is, IP address and/or port), such as those
 caused by an endpoint migrating to a new network. This section
 describes the process by which an endpoint migrates to a new address.

 An endpoint MUST NOT initiate connection migration before the
 handshake is finished and the endpoint has 1-RTT keys. The design of
 QUIC relies on endpoints retaining a stable address for the duration
 of the handshake.

 An endpoint also MUST NOT initiate connection migration if the peer
 sent the "disable_migration" transport parameter during the
 handshake. An endpoint which has sent this transport parameter, but
 detects that a peer has nonetheless migrated to a different network
 MAY treat this as a connection error of type INVALID_MIGRATION.

 Not all changes of peer address are intentional migrations. The peer
 could experience NAT rebinding: a change of address due to a
 middlebox, usually a NAT, allocating a new outgoing port or even a
 new outgoing IP address for a flow. NAT rebinding is not connection
 migration as defined in this section, though an endpoint SHOULD
 perform path validation (Section 8.2) if it detects a change in the
 IP address of its peer.

 This document limits migration of connections to new client
 addresses, except as described in Section 9.6. Clients are
 responsible for initiating all migrations. Servers do not send non-
 probing packets (see Section 9.1) toward a client address until they
 see a non-probing packet from that address. If a client receives
 packets from an unknown server address, the client MUST discard these
 packets.

Iyengar & Thomson Expires July 27, 2019 [Page 44]

Internet-Draft QUIC Transport Protocol January 2019

9.1. Probing a New Path

 An endpoint MAY probe for peer reachability from a new local address
 using path validation Section 8.2 prior to migrating the connection
 to the new local address. Failure of path validation simply means
 that the new path is not usable for this connection. Failure to
 validate a path does not cause the connection to end unless there are
 no valid alternative paths available.

 An endpoint uses a new connection ID for probes sent from a new local
 address, see Section 9.5 for further discussion. An endpoint that
 uses a new local address needs to ensure that at least one new
 connection ID is available at the peer. That can be achieved by
 including a NEW_CONNECTION_ID frame in the probe.

 Receiving a PATH_CHALLENGE frame from a peer indicates that the peer
 is probing for reachability on a path. An endpoint sends a
 PATH_RESPONSE in response as per Section 8.2.

 PATH_CHALLENGE, PATH_RESPONSE, NEW_CONNECTION_ID, and PADDING frames
 are "probing frames", and all other frames are "non-probing frames".
 A packet containing only probing frames is a "probing packet", and a
 packet containing any other frame is a "non-probing packet".

9.2. Initiating Connection Migration

 An endpoint can migrate a connection to a new local address by
 sending packets containing non-probing frames from that address.

 Each endpoint validates its peer's address during connection
 establishment. Therefore, a migrating endpoint can send to its peer
 knowing that the peer is willing to receive at the peer's current
 address. Thus an endpoint can migrate to a new local address without
 first validating the peer's address.

 When migrating, the new path might not support the endpoint's current
 sending rate. Therefore, the endpoint resets its congestion
 controller, as described in Section 9.4.

 The new path might not have the same ECN capability. Therefore, the
 endpoint verifies ECN capability as described in Section 13.3.

 Receiving acknowledgments for data sent on the new path serves as
 proof of the peer's reachability from the new address. Note that
 since acknowledgments may be received on any path, return
 reachability on the new path is not established. To establish return
 reachability on the new path, an endpoint MAY concurrently initiate
 path validation Section 8.2 on the new path.

Iyengar & Thomson Expires July 27, 2019 [Page 45]

Internet-Draft QUIC Transport Protocol January 2019

9.3. Responding to Connection Migration

 Receiving a packet from a new peer address containing a non-probing
 frame indicates that the peer has migrated to that address.

 In response to such a packet, an endpoint MUST start sending
 subsequent packets to the new peer address and MUST initiate path
 validation (Section 8.2) to verify the peer's ownership of the
 unvalidated address.

 An endpoint MAY send data to an unvalidated peer address, but it MUST
 protect against potential attacks as described in Section 9.3.1 and

Section 9.3.2. An endpoint MAY skip validation of a peer address if
 that address has been seen recently.

 An endpoint only changes the address that it sends packets to in
 response to the highest-numbered non-probing packet. This ensures
 that an endpoint does not send packets to an old peer address in the
 case that it receives reordered packets.

 After changing the address to which it sends non-probing packets, an
 endpoint could abandon any path validation for other addresses.

 Receiving a packet from a new peer address might be the result of a
 NAT rebinding at the peer.

 After verifying a new client address, the server SHOULD send new
 address validation tokens (Section 8) to the client.

9.3.1. Peer Address Spoofing

 It is possible that a peer is spoofing its source address to cause an
 endpoint to send excessive amounts of data to an unwilling host. If
 the endpoint sends significantly more data than the spoofing peer,
 connection migration might be used to amplify the volume of data that
 an attacker can generate toward a victim.

 As described in Section 9.3, an endpoint is required to validate a
 peer's new address to confirm the peer's possession of the new
 address. Until a peer's address is deemed valid, an endpoint MUST
 limit the rate at which it sends data to this address. The endpoint
 MUST NOT send more than a minimum congestion window's worth of data
 per estimated round-trip time (kMinimumWindow, as defined in
 [QUIC-RECOVERY]). In the absence of this limit, an endpoint risks
 being used for a denial of service attack against an unsuspecting
 victim. Note that since the endpoint will not have any round-trip
 time measurements to this address, the estimate SHOULD be the default
 initial value (see [QUIC-RECOVERY]).

Iyengar & Thomson Expires July 27, 2019 [Page 46]

Internet-Draft QUIC Transport Protocol January 2019

 If an endpoint skips validation of a peer address as described in
Section 9.3, it does not need to limit its sending rate.

9.3.2. On-Path Address Spoofing

 An on-path attacker could cause a spurious connection migration by
 copying and forwarding a packet with a spoofed address such that it
 arrives before the original packet. The packet with the spoofed
 address will be seen to come from a migrating connection, and the
 original packet will be seen as a duplicate and dropped. After a
 spurious migration, validation of the source address will fail
 because the entity at the source address does not have the necessary
 cryptographic keys to read or respond to the PATH_CHALLENGE frame
 that is sent to it even if it wanted to.

 To protect the connection from failing due to such a spurious
 migration, an endpoint MUST revert to using the last validated peer
 address when validation of a new peer address fails.

 If an endpoint has no state about the last validated peer address, it
 MUST close the connection silently by discarding all connection
 state. This results in new packets on the connection being handled
 generically. For instance, an endpoint MAY send a stateless reset in
 response to any further incoming packets.

 Note that receipt of packets with higher packet numbers from the
 legitimate peer address will trigger another connection migration.
 This will cause the validation of the address of the spurious
 migration to be abandoned.

9.3.3. Off-Path Packet Forwarding

 An off-path attacker that can observe packets might forward copies of
 genuine packets to endpoints. If the copied packet arrives before
 the genuine packet, this will appear as a NAT rebinding. Any genuine
 packet will be discarded as a duplicate. If the attacker is able to
 continue forwarding packets, it might be able to cause migration to a
 path via the attacker. This places the attacker on path, giving it
 the ability to observe or drop all subsequent packets.

 Unlike the attack described in Section 9.3.2, the attacker can ensure
 that the new path is successfully validated.

 This style of attack relies on the attacker using a path that is
 approximately as fast as the direct path between endpoints. The
 attack is more reliable if relatively few packets are sent or if
 packet loss coincides with the attempted attack.

Iyengar & Thomson Expires July 27, 2019 [Page 47]

Internet-Draft QUIC Transport Protocol January 2019

 A non-probing packet received on the original path that increases the
 maximum received packet number will cause the endpoint to move back
 to that path. Eliciting packets on this path increases the
 likelihood that the attack is unsuccessful. Therefore, mitigation of
 this attack relies on triggering the exchange of packets.

 In response to an apparent migration, endpoints MUST validate the
 previously active path using a PATH_CHALLENGE frame. This induces
 the sending of new packets on that path. If the path is no longer
 viable, the validation attempt will time out and fail; if the path is
 viable, but no longer desired, the validation will succeed, but only
 results in probing packets being sent on the path.

 An endpoint that receives a PATH_CHALLENGE on an active path SHOULD
 send a non-probing packet in response. If the non-probing packet
 arrives before any copy made by an attacker, this results in the
 connection being migrated back to the original path. Any subsequent
 migration to another path restarts this entire process.

 This defense is imperfect, but this is not considered a serious
 problem. If the path via the attack is reliably faster than the
 original path despite multiple attempts to use that original path, it
 is not possible to distinguish between attack and an improvement in
 routing.

 An endpoint could also use heuristics to improve detection of this
 style of attack. For instance, NAT rebinding is improbable if
 packets were recently received on the old path, similarly rebinding
 is rare on IPv6 paths. Endpoints can also look for duplicated
 packets. Conversely, a change in connection ID is more likely to
 indicate an intentional migration rather than an attack.

9.4. Loss Detection and Congestion Control

 The capacity available on the new path might not be the same as the
 old path. Packets sent on the old path SHOULD NOT contribute to
 congestion control or RTT estimation for the new path.

 On confirming a peer's ownership of its new address, an endpoint
 SHOULD immediately reset the congestion controller and round-trip
 time estimator for the new path.

 An endpoint MUST NOT return to the send rate used for the previous
 path unless it is reasonably sure that the previous send rate is
 valid for the new path. For instance, a change in the client's port
 number is likely indicative of a rebinding in a middlebox and not a
 complete change in path. This determination likely depends on
 heuristics, which could be imperfect; if the new path capacity is

Iyengar & Thomson Expires July 27, 2019 [Page 48]

Internet-Draft QUIC Transport Protocol January 2019

 significantly reduced, ultimately this relies on the congestion
 controller responding to congestion signals and reducing send rates
 appropriately.

 There may be apparent reordering at the receiver when an endpoint
 sends data and probes from/to multiple addresses during the migration
 period, since the two resulting paths may have different round-trip
 times. A receiver of packets on multiple paths will still send ACK
 frames covering all received packets.

 While multiple paths might be used during connection migration, a
 single congestion control context and a single loss recovery context
 (as described in [QUIC-RECOVERY]) may be adequate. For instance, an
 endpoint might delay switching to a new congestion control context
 until it is confirmed that an old path is no longer needed (such as
 the case in Section 9.3.3).

 A sender can make exceptions for probe packets so that their loss
 detection is independent and does not unduly cause the congestion
 controller to reduce its sending rate. An endpoint might set a
 separate timer when a PATH_CHALLENGE is sent, which is cancelled when
 the corresponding PATH_RESPONSE is received. If the timer fires
 before the PATH_RESPONSE is received, the endpoint might send a new
 PATH_CHALLENGE, and restart the timer for a longer period of time.

9.5. Privacy Implications of Connection Migration

 Using a stable connection ID on multiple network paths allows a
 passive observer to correlate activity between those paths. An
 endpoint that moves between networks might not wish to have their
 activity correlated by any entity other than their peer, so different
 connection IDs are used when sending from different local addresses,
 as discussed in Section 5.1. For this to be effective endpoints need
 to ensure that connections IDs they provide cannot be linked by any
 other entity.

 This eliminates the use of the connection ID for linking activity
 from the same connection on different networks. Header protection
 ensures that packet numbers cannot be used to correlate activity.
 This does not prevent other properties of packets, such as timing and
 size, from being used to correlate activity.

 Clients MAY move to a new connection ID at any time based on
 implementation-specific concerns. For example, after a period of
 network inactivity NAT rebinding might occur when the client begins
 sending data again.

Iyengar & Thomson Expires July 27, 2019 [Page 49]

Internet-Draft QUIC Transport Protocol January 2019

 A client might wish to reduce linkability by employing a new
 connection ID and source UDP port when sending traffic after a period
 of inactivity. Changing the UDP port from which it sends packets at
 the same time might cause the packet to appear as a connection
 migration. This ensures that the mechanisms that support migration
 are exercised even for clients that don't experience NAT rebindings
 or genuine migrations. Changing port number can cause a peer to
 reset its congestion state (see Section 9.4), so the port SHOULD only
 be changed infrequently.

 Endpoints that use connection IDs with length greater than zero could
 have their activity correlated if their peers keep using the same
 destination connection ID after migration. Endpoints that receive
 packets with a previously unused Destination Connection ID SHOULD
 change to sending packets with a connection ID that has not been used
 on any other network path. The goal here is to ensure that packets
 sent on different paths cannot be correlated. To fulfill this
 privacy requirement, endpoints that initiate migration and use
 connection IDs with length greater than zero SHOULD provide their
 peers with new connection IDs before migration.

 Caution: If both endpoints change connection ID in response to
 seeing a change in connection ID from their peer, then this can
 trigger an infinite sequence of changes.

9.6. Server's Preferred Address

 QUIC allows servers to accept connections on one IP address and
 attempt to transfer these connections to a more preferred address
 shortly after the handshake. This is particularly useful when
 clients initially connect to an address shared by multiple servers
 but would prefer to use a unicast address to ensure connection
 stability. This section describes the protocol for migrating a
 connection to a preferred server address.

 Migrating a connection to a new server address mid-connection is left
 for future work. If a client receives packets from a new server
 address not indicated by the preferred_address transport parameter,
 the client SHOULD discard these packets.

9.6.1. Communicating A Preferred Address

 A server conveys a preferred address by including the
 preferred_address transport parameter in the TLS handshake.

 Servers MAY communicate a preferred address of each address family
 (IPv4 and IPv6) to allow clients to pick the one most suited to their
 network attachment.

Iyengar & Thomson Expires July 27, 2019 [Page 50]

Internet-Draft QUIC Transport Protocol January 2019

 Once the handshake is finished, the client SHOULD select one of the
 two server's preferred addresses and initiate path validation (see

Section 8.2) of that address using the connection ID provided in the
 preferred_address transport parameter.

 If path validation succeeds, the client SHOULD immediately begin
 sending all future packets to the new server address using the new
 connection ID and discontinue use of the old server address. If path
 validation fails, the client MUST continue sending all future packets
 to the server's original IP address.

9.6.2. Responding to Connection Migration

 A server might receive a packet addressed to its preferred IP address
 at any time after it accepts a connection. If this packet contains a
 PATH_CHALLENGE frame, the server sends a PATH_RESPONSE frame as per

Section 8.2. The server MUST send other non-probing frames from its
 original address until it receives a non-probing packet from the
 client at its preferred address and until the server has validated
 the new path.

 The server MUST probe on the path toward the client from its
 preferred address. This helps to guard against spurious migration
 initiated by an attacker.

 Once the server has completed its path validation and has received a
 non-probing packet with a new largest packet number on its preferred
 address, the server begins sending non-probing packets to the client
 exclusively from its preferred IP address. It SHOULD drop packets
 for this connection received on the old IP address, but MAY continue
 to process delayed packets.

9.6.3. Interaction of Client Migration and Preferred Address

 A client might need to perform a connection migration before it has
 migrated to the server's preferred address. In this case, the client
 SHOULD perform path validation to both the original and preferred
 server address from the client's new address concurrently.

 If path validation of the server's preferred address succeeds, the
 client MUST abandon validation of the original address and migrate to
 using the server's preferred address. If path validation of the
 server's preferred address fails but validation of the server's
 original address succeeds, the client MAY migrate to its new address
 and continue sending to the server's original address.

 If the connection to the server's preferred address is not from the
 same client address, the server MUST protect against potential

Iyengar & Thomson Expires July 27, 2019 [Page 51]

Internet-Draft QUIC Transport Protocol January 2019

 attacks as described in Section 9.3.1 and Section 9.3.2. In addition
 to intentional simultaneous migration, this might also occur because
 the client's access network used a different NAT binding for the
 server's preferred address.

 Servers SHOULD initiate path validation to the client's new address
 upon receiving a probe packet from a different address. Servers MUST
 NOT send more than a minimum congestion window's worth of non-probing
 packets to the new address before path validation is complete.

 A client that migrates to a new address SHOULD use a preferred
 address from the same address family for the server.

10. Connection Termination

 Connections should remain open until they become idle for a pre-
 negotiated period of time. A QUIC connection, once established, can
 be terminated in one of three ways:

 o idle timeout (Section 10.2)

 o immediate close (Section 10.3)

 o stateless reset (Section 10.4)

10.1. Closing and Draining Connection States

 The closing and draining connection states exist to ensure that
 connections close cleanly and that delayed or reordered packets are
 properly discarded. These states SHOULD persist for three times the
 current Probe Timeout (PTO) interval as defined in [QUIC-RECOVERY].

 An endpoint enters a closing period after initiating an immediate
 close (Section 10.3). While closing, an endpoint MUST NOT send
 packets unless they contain a CONNECTION_CLOSE frame (see

Section 10.3 for details). An endpoint retains only enough
 information to generate a packet containing a CONNECTION_CLOSE frame
 and to identify packets as belonging to the connection. The
 connection ID and QUIC version is sufficient information to identify
 packets for a closing connection; an endpoint can discard all other
 connection state. An endpoint MAY retain packet protection keys for
 incoming packets to allow it to read and process a CONNECTION_CLOSE
 frame.

 The draining state is entered once an endpoint receives a signal that
 its peer is closing or draining. While otherwise identical to the
 closing state, an endpoint in the draining state MUST NOT send any

Iyengar & Thomson Expires July 27, 2019 [Page 52]

Internet-Draft QUIC Transport Protocol January 2019

 packets. Retaining packet protection keys is unnecessary once a
 connection is in the draining state.

 An endpoint MAY transition from the closing period to the draining
 period if it can confirm that its peer is also closing or draining.
 Receiving a CONNECTION_CLOSE frame is sufficient confirmation, as is
 receiving a stateless reset. The draining period SHOULD end when the
 closing period would have ended. In other words, the endpoint can
 use the same end time, but cease retransmission of the closing
 packet.

 Disposing of connection state prior to the end of the closing or
 draining period could cause delayed or reordered packets to be
 handled poorly. Endpoints that have some alternative means to ensure
 that late-arriving packets on the connection do not create QUIC
 state, such as those that are able to close the UDP socket, MAY use
 an abbreviated draining period which can allow for faster resource
 recovery. Servers that retain an open socket for accepting new
 connections SHOULD NOT exit the closing or draining period early.

 Once the closing or draining period has ended, an endpoint SHOULD
 discard all connection state. This results in new packets on the
 connection being handled generically. For instance, an endpoint MAY
 send a stateless reset in response to any further incoming packets.

 The draining and closing periods do not apply when a stateless reset
 (Section 10.4) is sent.

 An endpoint is not expected to handle key updates when it is closing
 or draining. A key update might prevent the endpoint from moving
 from the closing state to draining, but it otherwise has no impact.

 While in the closing period, an endpoint could receive packets from a
 new source address, indicating a client connection migration
 (Section 9). An endpoint in the closing state MUST strictly limit
 the number of packets it sends to this new address until the address
 is validated (see Section 8.2). A server in the closing state MAY
 instead choose to discard packets received from a new source address.

10.2. Idle Timeout

 If the idle timeout is enabled, a connection that remains idle for
 longer than the advertised idle timeout (see Section 18.1) is closed.
 A connection enters the draining state when the idle timeout expires.

 Each endpoint advertises its own idle timeout to its peer. An
 enpdpoint restarts any timer it maintains when a packet from its peer
 is received and processed successfully. The timer is also restarted

Iyengar & Thomson Expires July 27, 2019 [Page 53]

Internet-Draft QUIC Transport Protocol January 2019

 when sending a packet containing frames other than ACK or PADDING (an
 ACK-eliciting packet, see [QUIC-RECOVERY]), but only if no other ACK-
 eliciting packets have been sent since last receiving a packet.
 Restarting when sending packets ensures that connections do not
 prematurely time out when initiating new activity.

 The value for an idle timeout can be asymmetric. The value
 advertised by an endpoint is only used to determine whether the
 connection is live at that endpoint. An endpoint that sends packets
 near the end of the idle timeout period of a peer risks having those
 packets discarded if its peer enters the draining state before the
 packets arrive. If a peer could timeout within an Probe Timeout
 (PTO, see Section 6.2.2 of [QUIC-RECOVERY]), it is advisable to test
 for liveness before sending any data that cannot be retried safely.

10.3. Immediate Close

 An endpoint sends a CONNECTION_CLOSE frame (Section 19.19) to
 terminate the connection immediately. A CONNECTION_CLOSE frame
 causes all streams to immediately become closed; open streams can be
 assumed to be implicitly reset.

 After sending a CONNECTION_CLOSE frame, endpoints immediately enter
 the closing state. During the closing period, an endpoint that sends
 a CONNECTION_CLOSE frame SHOULD respond to any packet that it
 receives with another packet containing a CONNECTION_CLOSE frame. To
 minimize the state that an endpoint maintains for a closing
 connection, endpoints MAY send the exact same packet. However,
 endpoints SHOULD limit the number of packets they generate containing
 a CONNECTION_CLOSE frame. For instance, an endpoint could
 progressively increase the number of packets that it receives before
 sending additional packets or increase the time between packets.

 Note: Allowing retransmission of a closing packet contradicts other
 advice in this document that recommends the creation of new packet
 numbers for every packet. Sending new packet numbers is primarily
 of advantage to loss recovery and congestion control, which are
 not expected to be relevant for a closed connection.
 Retransmitting the final packet requires less state.

 New packets from unverified addresses could be used to create an
 amplification attack (see Section 8). To avoid this, endpoints MUST
 either limit transmission of CONNECTION_CLOSE frames to validated
 addresses or drop packets without response if the response would be
 more than three times larger than the received packet.

 After receiving a CONNECTION_CLOSE frame, endpoints enter the
 draining state. An endpoint that receives a CONNECTION_CLOSE frame

Iyengar & Thomson Expires July 27, 2019 [Page 54]

Internet-Draft QUIC Transport Protocol January 2019

 MAY send a single packet containing a CONNECTION_CLOSE frame before
 entering the draining state, using a CONNECTION_CLOSE frame and a
 NO_ERROR code if appropriate. An endpoint MUST NOT send further
 packets, which could result in a constant exchange of
 CONNECTION_CLOSE frames until the closing period on either peer
 ended.

 An immediate close can be used after an application protocol has
 arranged to close a connection. This might be after the application
 protocols negotiates a graceful shutdown. The application protocol
 exchanges whatever messages that are needed to cause both endpoints
 to agree to close the connection, after which the application
 requests that the connection be closed. The application protocol can
 use an CONNECTION_CLOSE frame with an appropriate error code to
 signal closure.

 If the connection has been successfully established, endpoints MUST
 send any CONNECTION_CLOSE frames in a 1-RTT packet. Prior to
 connection establishment a peer might not have 1-RTT keys, so
 endpoints SHOULD send CONNECTION_CLOSE frames in a Handshake packet.
 If the endpoint does not have Handshake keys, or it is not certain
 that the peer has Handshake keys, it MAY send CONNECTION_CLOSE frames
 in an Initial packet. If multiple packets are sent, they can be
 coalesced (see Section 12.2) to facilitate retransmission.

10.4. Stateless Reset

 A stateless reset is provided as an option of last resort for an
 endpoint that does not have access to the state of a connection. A
 crash or outage might result in peers continuing to send data to an
 endpoint that is unable to properly continue the connection. A
 stateless reset is not appropriate for signaling error conditions.
 An endpoint that wishes to communicate a fatal connection error MUST
 use a CONNECTION_CLOSE frame if it has sufficient state to do so.

 To support this process, a token is sent by endpoints. The token is
 carried in the NEW_CONNECTION_ID frame sent by either peer, and
 servers can specify the stateless_reset_token transport parameter
 during the handshake (clients cannot because their transport
 parameters don't have confidentiality protection). This value is
 protected by encryption, so only client and server know this value.
 Tokens are invalidated when their associated connection ID is retired
 via a RETIRE_CONNECTION_ID frame (Section 19.16).

 An endpoint that receives packets that it cannot process sends a
 packet in the following layout:

Iyengar & Thomson Expires July 27, 2019 [Page 55]

Internet-Draft QUIC Transport Protocol January 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|1| Unpredictable Bits (182..) ...
 +-+
 | |
 + +
 | |
 + Stateless Reset Token (128) +
 | |
 + +
 | |
 +-+

 Figure 7: Stateless Reset Packet

 This design ensures that a stateless reset packet is - to the extent
 possible - indistinguishable from a regular packet with a short
 header.

 A stateless reset uses an entire UDP datagram, starting with the
 first two bits of the packet header. The remainder of the first byte
 and an arbitrary number of bytes following it that are set to
 unpredictable values. The last 16 bytes of the datagram contain a
 Stateless Reset Token.

 A stateless reset will be interpreted by a recipient as a packet with
 a short header. For the packet to appear as valid, the Random Bits
 field needs to include at least 182 bits of data (or 23 bytes, less
 the two fixed bits). This is intended to allow for a Destination
 Connection ID of the maximum length permitted, with a minimal packet
 number, and payload. The Stateless Reset Token corresponds to the
 minimum expansion of the packet protection AEAD. More unpredictable
 bytes might be necessary if the endpoint could have negotiated a
 packet protection scheme with a larger minimum AEAD expansion.

 An endpoint SHOULD NOT send a stateless reset that is significantly
 larger than the packet it receives. Endpoints MUST discard packets
 that are too small to be valid QUIC packets. With the set of AEAD
 functions defined in [QUIC-TLS], packets that are smaller than 21
 bytes are never valid.

 An endpoint MAY send a stateless reset in response to a packet with a
 long header. This would not be effective if the stateless reset
 token was not yet available to a peer. In this QUIC version, packets
 with a long header are only used during connection establishment.
 Because the stateless reset token is not available until connection

Iyengar & Thomson Expires July 27, 2019 [Page 56]

Internet-Draft QUIC Transport Protocol January 2019

 establishment is complete or near completion, ignoring an unknown
 packet with a long header might be more effective.

 An endpoint cannot determine the Source Connection ID from a packet
 with a short header, therefore it cannot set the Destination
 Connection ID in the stateless reset packet. The Destination
 Connection ID will therefore differ from the value used in previous
 packets. A random Destination Connection ID makes the connection ID
 appear to be the result of moving to a new connection ID that was
 provided using a NEW_CONNECTION_ID frame (Section 19.15).

 Using a randomized connection ID results in two problems:

 o The packet might not reach the peer. If the Destination
 Connection ID is critical for routing toward the peer, then this
 packet could be incorrectly routed. This might also trigger
 another Stateless Reset in response, see Section 10.4.3. A
 Stateless Reset that is not correctly routed is an ineffective
 error detection and recovery mechanism. In this case, endpoints
 will need to rely on other methods - such as timers - to detect
 that the connection has failed.

 o The randomly generated connection ID can be used by entities other
 than the peer to identify this as a potential stateless reset. An
 endpoint that occasionally uses different connection IDs might
 introduce some uncertainty about this.

 Finally, the last 16 bytes of the packet are set to the value of the
 Stateless Reset Token.

 This stateless reset design is specific to QUIC version 1. An
 endpoint that supports multiple versions of QUIC needs to generate a
 stateless reset that will be accepted by peers that support any
 version that the endpoint might support (or might have supported
 prior to losing state). Designers of new versions of QUIC need to be
 aware of this and either reuse this design, or use a portion of the
 packet other than the last 16 bytes for carrying data.

10.4.1. Detecting a Stateless Reset

 An endpoint detects a potential stateless reset when a incoming
 packet with a short header either cannot be associated with a
 connection, cannot be decrypted, or is marked as a duplicate packet.
 The endpoint then compares the last 16 bytes of the packet with the
 Stateless Reset Token provided by its peer, either in a
 NEW_CONNECTION_ID frame or the server's transport parameters. If
 these values are identical, the endpoint MUST enter the draining

Iyengar & Thomson Expires July 27, 2019 [Page 57]

Internet-Draft QUIC Transport Protocol January 2019

 period and not send any further packets on this connection. If the
 comparison fails, the packet can be discarded.

10.4.2. Calculating a Stateless Reset Token

 The stateless reset token MUST be difficult to guess. In order to
 create a Stateless Reset Token, an endpoint could randomly generate
 [RFC4086] a secret for every connection that it creates. However,
 this presents a coordination problem when there are multiple
 instances in a cluster or a storage problem for an endpoint that
 might lose state. Stateless reset specifically exists to handle the
 case where state is lost, so this approach is suboptimal.

 A single static key can be used across all connections to the same
 endpoint by generating the proof using a second iteration of a
 preimage-resistant function that takes a static key and the
 connection ID chosen by the endpoint (see Section 5.1) as input. An
 endpoint could use HMAC [RFC2104] (for example, HMAC(static_key,
 connection_id)) or HKDF [RFC5869] (for example, using the static key
 as input keying material, with the connection ID as salt). The
 output of this function is truncated to 16 bytes to produce the
 Stateless Reset Token for that connection.

 An endpoint that loses state can use the same method to generate a
 valid Stateless Reset Token. The connection ID comes from the packet
 that the endpoint receives.

 This design relies on the peer always sending a connection ID in its
 packets so that the endpoint can use the connection ID from a packet
 to reset the connection. An endpoint that uses this design MUST
 either use the same connection ID length for all connections or
 encode the length of the connection ID such that it can be recovered
 without state. In addition, it cannot provide a zero-length
 connection ID.

 Revealing the Stateless Reset Token allows any entity to terminate
 the connection, so a value can only be used once. This method for
 choosing the Stateless Reset Token means that the combination of
 connection ID and static key cannot occur for another connection. A
 denial of service attack is possible if the same connection ID is
 used by instances that share a static key, or if an attacker can
 cause a packet to be routed to an instance that has no state but the
 same static key (see Section 21.8). A connection ID from a
 connection that is reset by revealing the Stateless Reset Token
 cannot be reused for new connections at nodes that share a static
 key.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc5869

Iyengar & Thomson Expires July 27, 2019 [Page 58]

Internet-Draft QUIC Transport Protocol January 2019

 Note that Stateless Reset packets do not have any cryptographic
 protection.

10.4.3. Looping

 The design of a Stateless Reset is such that without knowing the
 stateless reset token it is indistinguishable from a valid packet.
 For instance, if a server sends a Stateless Reset to another server
 it might receive another Stateless Reset in response, which could
 lead to an infinite exchange.

 An endpoint MUST ensure that every Stateless Reset that it sends is
 smaller than the packet which triggered it, unless it maintains state
 sufficient to prevent looping. In the event of a loop, this results
 in packets eventually being too small to trigger a response.

 An endpoint can remember the number of Stateless Reset packets that
 it has sent and stop generating new Stateless Reset packets once a
 limit is reached. Using separate limits for different remote
 addresses will ensure that Stateless Reset packets can be used to
 close connections when other peers or connections have exhausted
 limits.

 Reducing the size of a Stateless Reset below the recommended minimum
 size of 39 bytes could mean that the packet could reveal to an
 observer that it is a Stateless Reset. Conversely, refusing to send
 a Stateless Reset in response to a small packet might result in
 Stateless Reset not being useful in detecting cases of broken
 connections where only very small packets are sent; such failures
 might only be detected by other means, such as timers.

 An endpoint can increase the odds that a packet will trigger a
 Stateless Reset if it cannot be processed by padding it to at least
 40 bytes.

11. Error Handling

 An endpoint that detects an error SHOULD signal the existence of that
 error to its peer. Both transport-level and application-level errors
 can affect an entire connection (see Section 11.1), while only
 application-level errors can be isolated to a single stream (see

Section 11.2).

 The most appropriate error code (Section 20) SHOULD be included in
 the frame that signals the error. Where this specification
 identifies error conditions, it also identifies the error code that
 is used.

Iyengar & Thomson Expires July 27, 2019 [Page 59]

Internet-Draft QUIC Transport Protocol January 2019

 A stateless reset (Section 10.4) is not suitable for any error that
 can be signaled with a CONNECTION_CLOSE or RESET_STREAM frame. A
 stateless reset MUST NOT be used by an endpoint that has the state
 necessary to send a frame on the connection.

11.1. Connection Errors

 Errors that result in the connection being unusable, such as an
 obvious violation of protocol semantics or corruption of state that
 affects an entire connection, MUST be signaled using a
 CONNECTION_CLOSE frame (Section 19.19). An endpoint MAY close the
 connection in this manner even if the error only affects a single
 stream.

 Application protocols can signal application-specific protocol errors
 using the application-specific variant of the CONNECTION_CLOSE frame.
 Errors that are specific to the transport, including all those
 described in this document, are carried the QUIC-specific variant of
 the CONNECTION_CLOSE frame.

 A CONNECTION_CLOSE frame could be sent in a packet that is lost. An
 endpoint SHOULD be prepared to retransmit a packet containing
 containing a CONNECTION_CLOSE frame if it receives more packets on a
 terminated connection. Limiting the number of retransmissions and
 the time over which this final packet is sent limits the effort
 expended on terminated connections.

 An endpoint that chooses not to retransmit packets containing a
 CONNECTION_CLOSE frame risks a peer missing the first such packet.
 The only mechanism available to an endpoint that continues to receive
 data for a terminated connection is to use the stateless reset
 process (Section 10.4).

 An endpoint that receives an invalid CONNECTION_CLOSE frame MUST NOT
 signal the existence of the error to its peer.

11.2. Stream Errors

 If an application-level error affects a single stream, but otherwise
 leaves the connection in a recoverable state, the endpoint can send a
 RESET_STREAM frame (Section 19.4) with an appropriate error code to
 terminate just the affected stream.

 RESET_STREAM MUST be instigated by the protocol using QUIC, either
 directly or through the receipt of a STOP_SENDING frame from a peer.
 RESET_STREAM carries an application error code. Resetting a stream
 without knowledge of the application protocol could cause the
 protocol to enter an unrecoverable state. Application protocols

Iyengar & Thomson Expires July 27, 2019 [Page 60]

Internet-Draft QUIC Transport Protocol January 2019

 might require certain streams to be reliably delivered in order to
 guarantee consistent state between endpoints.

12. Packets and Frames

 QUIC endpoints communicate by exchanging packets. Packets have
 confidentiality and integrity protection (see Section 12.1) and are
 carried in UDP datagrams (see Section 12.2).

 This version of QUIC uses the long packet header (see Section 17.2)
 during connection establishment. Packets with the long header are
 Initial (Section 17.2.2), 0-RTT (Section 17.2.3), Handshake
 (Section 17.2.4), and Retry (Section 17.2.5). Version negotiation
 uses a version-independent packet with a long header (see

Section 17.2.1).

 Packets with the short header (Section 17.3) are designed for minimal
 overhead and are used after a connection is established and 1-RTT
 keys are available.

12.1. Protected Packets

 All QUIC packets except Version Negotiation and Retry packets use
 authenticated encryption with additional data (AEAD) [RFC5116] to
 provide confidentiality and integrity protection. Details of packet
 protection are found in [QUIC-TLS]; this section includes an overview
 of the process.

 Initial packets are protected using keys that are statically derived.
 This packet protection is not effective confidentiality protection.
 Initial protection only exists to ensure that the sender of the
 packet is on the network path. Any entity that receives the Initial
 packet from a client can recover the keys necessary to remove packet
 protection or to generate packets that will be successfully
 authenticated.

 All other packets are protected with keys derived from the
 cryptographic handshake. The type of the packet from the long header
 or key phase from the short header are used to identify which
 encryption level - and therefore the keys - that are used. Packets
 protected with 0-RTT and 1-RTT keys are expected to have
 confidentiality and data origin authentication; the cryptographic
 handshake ensures that only the communicating endpoints receive the
 corresponding keys.

 The packet number field contains a packet number, which has
 additional confidentiality protection that is applied after packet
 protection is applied (see [QUIC-TLS] for details). The underlying

https://datatracker.ietf.org/doc/html/rfc5116

Iyengar & Thomson Expires July 27, 2019 [Page 61]

Internet-Draft QUIC Transport Protocol January 2019

 packet number increases with each packet sent in a given packet
 number space, see Section 12.3 for details.

12.2. Coalescing Packets

 Initial (Section 17.2.2), 0-RTT (Section 17.2.3), and Handshake
 (Section 17.2.4) packets contain a Length field, which determines the
 end of the packet. The length includes both the Packet Number and
 Payload fields, both of which are confidentiality protected and
 initially of unknown length. The length of the Payload field is
 learned once header protection is removed.

 Using the Length field, a sender can coalesce multiple QUIC packets
 into one UDP datagram. This can reduce the number of UDP datagrams
 needed to complete the cryptographic handshake and starting sending
 data. Receivers MUST be able to process coalesced packets.

 Coalescing packets in order of increasing encryption levels (Initial,
 0-RTT, Handshake, 1-RTT) makes it more likely the receiver will be
 able to process all the packets in a single pass. A packet with a
 short header does not include a length, so it can only be the last
 packet included in a UDP datagram.

 Senders MUST NOT coalesce QUIC packets for different connections into
 a single UDP datagram. Receivers SHOULD ignore any subsequent
 packets with a different Destination Connection ID than the first
 packet in the datagram.

 Every QUIC packet that is coalesced into a single UDP datagram is
 separate and complete. Though the values of some fields in the
 packet header might be redundant, no fields are omitted. The
 receiver of coalesced QUIC packets MUST individually process each
 QUIC packet and separately acknowledge them, as if they were received
 as the payload of different UDP datagrams. For example, if
 decryption fails (because the keys are not available or any other
 reason), the the receiver MAY either discard or buffer the packet for
 later processing and MUST attempt to process the remaining packets.

 Retry packets (Section 17.2.5), Version Negotiation packets
 (Section 17.2.1), and packets with a short header (Section 17.3) do
 not contain a Length field and so cannot be followed by other packets
 in the same UDP datagram.

12.3. Packet Numbers

 The packet number is an integer in the range 0 to 2^62-1. This
 number is used in determining the cryptographic nonce for packet

Iyengar & Thomson Expires July 27, 2019 [Page 62]

Internet-Draft QUIC Transport Protocol January 2019

 protection. Each endpoint maintains a separate packet number for
 sending and receiving.

 Packet numbers are limited to this range because they need to be
 representable in whole in the Largest Acknowledged field of an ACK
 frame (Section 19.3). When present in a long or short header
 however, packet numbers are reduced and encoded in 1 to 4 bytes, see

Section 17.1).

 Version Negotiation (Section 17.2.1) and Retry Section 17.2.5 packets
 do not include a packet number.

 Packet numbers are divided into 3 spaces in QUIC:

 o Initial space: All Initial packets Section 17.2.2 are in this
 space.

 o Handshake space: All Handshake packets Section 17.2.4 are in this
 space.

 o Application data space: All 0-RTT and 1-RTT encrypted packets
Section 12.1 are in this space.

 As described in [QUIC-TLS], each packet type uses different
 protection keys.

 Conceptually, a packet number space is the context in which a packet
 can be processed and acknowledged. Initial packets can only be sent
 with Initial packet protection keys and acknowledged in packets which
 are also Initial packets. Similarly, Handshake packets are sent at
 the Handshake encryption level and can only be acknowledged in
 Handshake packets.

 This enforces cryptographic separation between the data sent in the
 different packet sequence number spaces. Packet numbers in each
 space start at packet number 0. Subsequent packets sent in the same
 packet number space MUST increase the packet number by at least one.

 0-RTT and 1-RTT data exist in the same packet number space to make
 loss recovery algorithms easier to implement between the two packet
 types.

 A QUIC endpoint MUST NOT reuse a packet number within the same packet
 number space in one connection (that is, under the same cryptographic
 keys). If the packet number for sending reaches 2^62 - 1, the sender
 MUST close the connection without sending a CONNECTION_CLOSE frame or
 any further packets; an endpoint MAY send a Stateless Reset
 (Section 10.4) in response to further packets that it receives.

Iyengar & Thomson Expires July 27, 2019 [Page 63]

Internet-Draft QUIC Transport Protocol January 2019

 A receiver MUST discard a newly unprotected packet unless it is
 certain that it has not processed another packet with the same packet
 number from the same packet number space. Duplicate suppression MUST
 happen after removing packet protection for the reasons described in
 Section 9.3 of [QUIC-TLS]. An efficient algorithm for duplicate
 suppression can be found in Section 3.4.3 of [RFC4303].

 Packet number encoding at a sender and decoding at a receiver are
 described in Section 17.1.

12.4. Frames and Frame Types

 The payload of QUIC packets, after removing packet protection,
 commonly consists of a sequence of frames, as shown in Figure 8.
 Version Negotiation, Stateless Reset, and Retry packets do not
 contain frames.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Frame 1 (*) ...
 +-+
 | Frame 2 (*) ...
 +-+
 ...
 +-+
 | Frame N (*) ...
 +-+

 Figure 8: QUIC Payload

 QUIC payloads MUST contain at least one frame, and MAY contain
 multiple frames and multiple frame types.

 Frames MUST fit within a single QUIC packet and MUST NOT span a QUIC
 packet boundary. Each frame begins with a Frame Type, indicating its
 type, followed by additional type-dependent fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Frame Type (i) ...
 +-+
 | Type-Dependent Fields (*) ...
 +-+

 Figure 9: Generic Frame Layout

https://datatracker.ietf.org/doc/html/rfc4303#section-3.4.3

Iyengar & Thomson Expires July 27, 2019 [Page 64]

Internet-Draft QUIC Transport Protocol January 2019

 The frame types defined in this specification are listed in Table 3.
 The Frame Type in STREAM frames is used to carry other frame-specific
 flags. For all other frames, the Frame Type field simply identifies
 the frame. These frames are explained in more detail in Section 19.

 +-------------+----------------------+---------------+
 | Type Value | Frame Type Name | Definition |
 +-------------+----------------------+---------------+
 | 0x00 | PADDING | Section 19.1 |
 | | | |
 | 0x01 | PING | Section 19.2 |
 | | | |
 | 0x02 - 0x03 | ACK | Section 19.3 |
 | | | |
 | 0x04 | RESET_STREAM | Section 19.4 |
 | | | |
 | 0x05 | STOP_SENDING | Section 19.5 |
 | | | |
 | 0x06 | CRYPTO | Section 19.6 |
 | | | |
 | 0x07 | NEW_TOKEN | Section 19.7 |
 | | | |
 | 0x08 - 0x0f | STREAM | Section 19.8 |
 | | | |
 | 0x10 | MAX_DATA | Section 19.9 |
 | | | |
 | 0x11 | MAX_STREAM_DATA | Section 19.10 |
 | | | |
 | 0x12 - 0x13 | MAX_STREAMS | Section 19.11 |
 | | | |
 | 0x14 | DATA_BLOCKED | Section 19.12 |
 | | | |
 | 0x15 | STREAM_DATA_BLOCKED | Section 19.13 |
 | | | |
 | 0x16 - 0x17 | STREAMS_BLOCKED | Section 19.14 |
 | | | |
 | 0x18 | NEW_CONNECTION_ID | Section 19.15 |
 | | | |
 | 0x19 | RETIRE_CONNECTION_ID | Section 19.16 |
 | | | |
 | 0x1a | PATH_CHALLENGE | Section 19.17 |
 | | | |
 | 0x1b | PATH_RESPONSE | Section 19.18 |
 | | | |
 | 0x1c - 0x1d | CONNECTION_CLOSE | Section 19.19 |
 +-------------+----------------------+---------------+

 Table 3: Frame Types

Iyengar & Thomson Expires July 27, 2019 [Page 65]

Internet-Draft QUIC Transport Protocol January 2019

 All QUIC frames are idempotent in this version of QUIC. That is, a
 valid frame does not cause undesirable side effects or errors when
 received more than once.

 The Frame Type field uses a variable length integer encoding (see
Section 16) with one exception. To ensure simple and efficient

 implementations of frame parsing, a frame type MUST use the shortest
 possible encoding. Though a two-, four- or eight-byte encoding of
 the frame types defined in this document is possible, the Frame Type
 field for these frames is encoded on a single byte. For instance,
 though 0x4001 is a legitimate two-byte encoding for a variable-length
 integer with a value of 1, PING frames are always encoded as a single
 byte with the value 0x01. An endpoint MAY treat the receipt of a
 frame type that uses a longer encoding than necessary as a connection
 error of type PROTOCOL_VIOLATION.

13. Packetization and Reliability

 A sender bundles one or more frames in a QUIC packet (see
Section 12.4).

 A sender can minimize per-packet bandwidth and computational costs by
 bundling as many frames as possible within a QUIC packet. A sender
 MAY wait for a short period of time to bundle multiple frames before
 sending a packet that is not maximally packed, to avoid sending out
 large numbers of small packets. An implementation MAY use knowledge
 about application sending behavior or heuristics to determine whether
 and for how long to wait. This waiting period is an implementation
 decision, and an implementation should be careful to delay
 conservatively, since any delay is likely to increase application-
 visible latency.

 Stream multiplexing is achieved by interleaving STREAM frames from
 multiple streams into one or more QUIC packets. A single QUIC packet
 can include multiple STREAM frames from one or more streams.

 One of the benefits of QUIC is avoidance of head-of-line blocking
 across multiple streams. When a packet loss occurs, only streams
 with data in that packet are blocked waiting for a retransmission to
 be received, while other streams can continue making progress. Note
 that when data from multiple streams is bundled into a single QUIC
 packet, loss of that packet blocks all those streams from making
 progress. Implementations are advised to bundle as few streams as
 necessary in outgoing packets without losing transmission efficiency
 to underfilled packets.

Iyengar & Thomson Expires July 27, 2019 [Page 66]

Internet-Draft QUIC Transport Protocol January 2019

13.1. Packet Processing and Acknowledgment

 A packet MUST NOT be acknowledged until packet protection has been
 successfully removed and all frames contained in the packet have been
 processed. For STREAM frames, this means the data has been enqueued
 in preparation to be received by the application protocol, but it
 does not require that data is delivered and consumed.

 Once the packet has been fully processed, a receiver acknowledges
 receipt by sending one or more ACK frames containing the packet
 number of the received packet.

13.1.1. Sending ACK Frames

 An endpoint MUST NOT send more than one packet containing only an ACK
 frame per received packet that contains frames other than ACK and
 PADDING frames. An endpoint MUST NOT send a packet containing only
 an ACK frame in response to a packet containing only ACK or PADDING
 frames, even if there are packet gaps which precede the received
 packet. This prevents an indefinite feedback loop of ACKs. The
 endpoint MUST however acknowledge packets containing only ACK or
 PADDING frames when sending ACK frames in response to other packets.

 Packets containing PADDING frames are considered to be in flight for
 congestion control purposes [QUIC-RECOVERY]. Sending only PADDING
 frames might cause the sender to become limited by the congestion
 controller (as described in [QUIC-RECOVERY]) with no acknowledgments
 forthcoming from the receiver. Therefore, a sender SHOULD ensure
 that other frames are sent in addition to PADDING frames to elicit
 acknowledgments from the receiver.

 The receiver's delayed acknowledgment timer SHOULD NOT exceed the
 current RTT estimate or the value it indicates in the "max_ack_delay"
 transport parameter. This ensures an acknowledgment is sent at least
 once per RTT when packets needing acknowledgement are received. The
 sender can use the receiver's "max_ack_delay" value in determining
 timeouts for timer-based retransmission.

 Strategies and implications of the frequency of generating
 acknowledgments are discussed in more detail in [QUIC-RECOVERY].

 To limit ACK Ranges (see Section 19.3.1) to those that have not yet
 been received by the sender, the receiver SHOULD track which ACK
 frames have been acknowledged by its peer. The receiver SHOULD
 exclude already acknowledged packets from future ACK frames whenever
 these packets would unnecessarily contribute to the ACK frame size.

Iyengar & Thomson Expires July 27, 2019 [Page 67]

Internet-Draft QUIC Transport Protocol January 2019

 Because ACK frames are not sent in response to ACK-only packets, a
 receiver that is only sending ACK frames will only receive
 acknowledgements for its packets if the sender includes them in
 packets with non-ACK frames. A sender SHOULD bundle ACK frames with
 other frames when possible.

 To limit receiver state or the size of ACK frames, a receiver MAY
 limit the number of ACK Ranges it sends. A receiver can do this even
 without receiving acknowledgment of its ACK frames, with the
 knowledge this could cause the sender to unnecessarily retransmit
 some data. Standard QUIC [QUIC-RECOVERY] algorithms declare packets
 lost after sufficiently newer packets are acknowledged. Therefore,
 the receiver SHOULD repeatedly acknowledge newly received packets in
 preference to packets received in the past.

 An endpoint SHOULD treat receipt of an acknowledgment for a packet it
 did not send as a connection error of type PROTOCOL_VIOLATION, if it
 is able to detect the condition.

13.1.2. ACK Frames and Packet Protection

 ACK frames MUST only be carried in a packet that has the same packet
 number space as the packet being ACKed (see Section 12.1). For
 instance, packets that are protected with 1-RTT keys MUST be
 acknowledged in packets that are also protected with 1-RTT keys.

 Packets that a client sends with 0-RTT packet protection MUST be
 acknowledged by the server in packets protected by 1-RTT keys. This
 can mean that the client is unable to use these acknowledgments if
 the server cryptographic handshake messages are delayed or lost.
 Note that the same limitation applies to other data sent by the
 server protected by the 1-RTT keys.

 Endpoints SHOULD send acknowledgments for packets containing CRYPTO
 frames with a reduced delay; see Section 6.2.1 of [QUIC-RECOVERY].

13.2. Retransmission of Information

 QUIC packets that are determined to be lost are not retransmitted
 whole. The same applies to the frames that are contained within lost
 packets. Instead, the information that might be carried in frames is
 sent again in new frames as needed.

 New frames and packets are used to carry information that is
 determined to have been lost. In general, information is sent again
 when a packet containing that information is determined to be lost
 and sending ceases when a packet containing that information is
 acknowledged.

Iyengar & Thomson Expires July 27, 2019 [Page 68]

Internet-Draft QUIC Transport Protocol January 2019

 o Data sent in CRYPTO frames is retransmitted according to the rules
 in [QUIC-RECOVERY], until all data has been acknowledged. Data in
 CRYPTO frames for Initial and Handshake packets is discarded when
 keys for the corresponding encryption level are discarded.

 o Application data sent in STREAM frames is retransmitted in new
 STREAM frames unless the endpoint has sent a RESET_STREAM for that
 stream. Once an endpoint sends a RESET_STREAM frame, no further
 STREAM frames are needed.

 o The most recent set of acknowledgments are sent in ACK frames. An
 ACK frame SHOULD contain all unacknowledged acknowledgments, as
 described in Section 13.1.1.

 o Cancellation of stream transmission, as carried in a RESET_STREAM
 frame, is sent until acknowledged or until all stream data is
 acknowledged by the peer (that is, either the "Reset Recvd" or
 "Data Recvd" state is reached on the sending part of the stream).
 The content of a RESET_STREAM frame MUST NOT change when it is
 sent again.

 o Similarly, a request to cancel stream transmission, as encoded in
 a STOP_SENDING frame, is sent until the receiving part of the
 stream enters either a "Data Recvd" or "Reset Recvd" state, see

Section 3.5.

 o Connection close signals, including packets that contain
 CONNECTION_CLOSE frames, are not sent again when packet loss is
 detected, but as described in Section 10.

 o The current connection maximum data is sent in MAX_DATA frames.
 An updated value is sent in a MAX_DATA frame if the packet
 containing the most recently sent MAX_DATA frame is declared lost,
 or when the endpoint decides to update the limit. Care is
 necessary to avoid sending this frame too often as the limit can
 increase frequently and cause an unnecessarily large number of
 MAX_DATA frames to be sent.

 o The current maximum stream data offset is sent in MAX_STREAM_DATA
 frames. Like MAX_DATA, an updated value is sent when the packet
 containing the most recent MAX_STREAM_DATA frame for a stream is
 lost or when the limit is updated, with care taken to prevent the
 frame from being sent too often. An endpoint SHOULD stop sending
 MAX_STREAM_DATA frames when the receiving part of the stream
 enters a "Size Known" state.

 o The limit on streams of a given type is sent in MAX_STREAMS
 frames. Like MAX_DATA, an updated value is sent when a packet

Iyengar & Thomson Expires July 27, 2019 [Page 69]

Internet-Draft QUIC Transport Protocol January 2019

 containing the most recent MAX_STREAMS for a stream type frame is
 declared lost or when the limit is updated, with care taken to
 prevent the frame from being sent too often.

 o Blocked signals are carried in DATA_BLOCKED, STREAM_DATA_BLOCKED,
 and STREAMS_BLOCKED frames. DATA_BLOCKED frames have connection
 scope, STREAM_DATA_BLOCKED frames have stream scope, and
 STREAMS_BLOCKED frames are scoped to a specific stream type. New
 frames are sent if packets containing the most recent frame for a
 scope is lost, but only while the endpoint is blocked on the
 corresponding limit. These frames always include the limit that
 is causing blocking at the time that they are transmitted.

 o A liveness or path validation check using PATH_CHALLENGE frames is
 sent periodically until a matching PATH_RESPONSE frame is received
 or until there is no remaining need for liveness or path
 validation checking. PATH_CHALLENGE frames include a different
 payload each time they are sent.

 o Responses to path validation using PATH_RESPONSE frames are sent
 just once. A new PATH_CHALLENGE frame will be sent if another
 PATH_RESPONSE frame is needed.

 o New connection IDs are sent in NEW_CONNECTION_ID frames and
 retransmitted if the packet containing them is lost.
 Retransmissions of this frame carry the same sequence number
 value. Likewise, retired connection IDs are sent in
 RETIRE_CONNECTION_ID frames and retransmitted if the packet
 containing them is lost.

 o PING and PADDING frames contain no information, so lost PING or
 PADDING frames do not require repair.

 Endpoints SHOULD prioritize retransmission of data over sending new
 data, unless priorities specified by the application indicate
 otherwise (see Section 2.3).

 Even though a sender is encouraged to assemble frames containing up-
 to-date information every time it sends a packet, it is not forbidden
 to retransmit copies of frames from lost packets. A receiver MUST
 accept packets containing an outdated frame, such as a MAX_DATA frame
 carrying a smaller maximum data than one found in an older packet.

 Upon detecting losses, a sender MUST take appropriate congestion
 control action. The details of loss detection and congestion control
 are described in [QUIC-RECOVERY].

Iyengar & Thomson Expires July 27, 2019 [Page 70]

Internet-Draft QUIC Transport Protocol January 2019

13.3. Explicit Congestion Notification

 QUIC endpoints can use Explicit Congestion Notification (ECN)
 [RFC3168] to detect and respond to network congestion. ECN allows a
 network node to indicate congestion in the network by setting a
 codepoint in the IP header of a packet instead of dropping it.
 Endpoints react to congestion by reducing their sending rate in
 response, as described in [QUIC-RECOVERY].

 To use ECN, QUIC endpoints first determine whether a path supports
 ECN marking and the peer is able to access the ECN codepoint in the
 IP header. A network path does not support ECN if ECN marked packets
 get dropped or ECN markings are rewritten on the path. An endpoint
 verifies the path, both during connection establishment and when
 migrating to a new path (see Section 9).

13.3.1. ECN Counts

 On receiving a QUIC packet with an ECT or CE codepoint, an ECN-
 enabled endpoint that can access the ECN codepoints from the
 enclosing IP packet increases the corresponding ECT(0), ECT(1), or CE
 count, and includes these counts in subsequent ACK frames (see

Section 13.1 and Section 19.3). Note that this requires being able
 to read the ECN codepoints from the enclosing IP packet, which is not
 possible on all platforms.

 A packet detected by a receiver as a duplicate does not affect the
 receiver's local ECN codepoint counts; see (Section 21.7) for
 relevant security concerns.

 If an endpoint receives a QUIC packet without an ECT or CE codepoint
 in the IP packet header, it responds per Section 13.1 with an ACK
 frame without increasing any ECN counts. If an endpoint does not
 implement ECN support or does not have access to received ECN
 codepoints, it does not increase ECN counts.

 Coalesced packets (see Section 12.2) mean that several packets can
 share the same IP header. The ECN counter for the ECN codepoint
 received in the associated IP header are incremented once for each
 QUIC packet, not per enclosing IP packet or UDP datagram.

 Each packet number space maintains separate acknowledgement state and
 separate ECN counts. For example, if one each of an Initial, 0-RTT,
 Handshake, and 1-RTT QUIC packet are coalesced, the corresponding
 counts for the Initial and Handshake packet number space will be
 incremented by one and the counts for the 1-RTT packet number space
 will be increased by two.

https://datatracker.ietf.org/doc/html/rfc3168

Iyengar & Thomson Expires July 27, 2019 [Page 71]

Internet-Draft QUIC Transport Protocol January 2019

13.3.2. ECN Verification

 Each endpoint independently verifies and enables use of ECN by
 setting the IP header ECN codepoint to ECN Capable Transport (ECT)
 for the path from it to the other peer. Even if not setting ECN
 codepoints on packets it transmits, the endpoint SHOULD provide
 feedback about ECN markings received (if accessible).

 To verify both that a path supports ECN and the peer can provide ECN
 feedback, an endpoint sets the ECT(0) codepoint in the IP header of
 all outgoing packets [RFC8311].

 If an ECT codepoint set in the IP header is not corrupted by a
 network device, then a received packet contains either the codepoint
 sent by the peer or the Congestion Experienced (CE) codepoint set by
 a network device that is experiencing congestion.

 If a QUIC packet sent with an ECT codepoint is newly acknowledged by
 the peer in an ACK frame without ECN feedback, the endpoint stops
 setting ECT codepoints in subsequent IP packets, with the expectation
 that either the network path or the peer no longer supports ECN.

 Network devices that corrupt or apply non-standard ECN markings might
 result in reduced throughput or other undesirable side-effects. To
 reduce this risk, an endpoint uses the following steps to verify the
 counts it receives in an ACK frame.

 o The total increase in ECT(0), ECT(1), and CE counts MUST be no
 smaller than the total number of QUIC packets sent with an ECT
 codepoint that are newly acknowledged in this ACK frame. This
 step detects any network remarking from ECT(0), ECT(1), or CE
 codepoints to Not-ECT.

 o Any increase in either ECT(0) or ECT(1) counts, plus any increase
 in the CE count, MUST be no smaller than the number of packets
 sent with the corresponding ECT codepoint that are newly
 acknowledged in this ACK frame. This step detects any erroneous
 network remarking from ECT(0) to ECT(1) (or vice versa).

 An endpoint could miss acknowledgements for a packet when ACK frames
 are lost. It is therefore possible for the total increase in ECT(0),
 ECT(1), and CE counts to be greater than the number of packets
 acknowledged in an ACK frame. When this happens, and if verification
 succeeds, the local reference counts MUST be increased to match the
 counts in the ACK frame.

 Processing counts out of order can result in verification failure.
 An endpoint SHOULD NOT perform this verification if the ACK frame is

https://datatracker.ietf.org/doc/html/rfc8311

Iyengar & Thomson Expires July 27, 2019 [Page 72]

Internet-Draft QUIC Transport Protocol January 2019

 received in a packet with packet number lower than a previously
 received ACK frame. Verifying based on ACK frames that arrive out of
 order can result in disabling ECN unnecessarily.

 Upon successful verification, an endpoint continues to set ECT
 codepoints in subsequent packets with the expectation that the path
 is ECN-capable.

 If verification fails, then the endpoint ceases setting ECT
 codepoints in subsequent IP packets with the expectation that either
 the network path or the peer does not support ECN.

 If an endpoint sets ECT codepoints on outgoing IP packets and
 encounters a retransmission timeout due to the absence of
 acknowledgments from the peer (see [QUIC-RECOVERY]), or if an
 endpoint has reason to believe that an element on the network path
 might be corrupting ECN codepoints, the endpoint MAY cease setting
 ECT codepoints in subsequent packets. Doing so allows the connection
 to be resilient to network elements that corrupt ECN codepoints in
 the IP header or drop packets with ECT or CE codepoints in the IP
 header.

14. Packet Size

 The QUIC packet size includes the QUIC header and protected payload,
 but not the UDP or IP header.

 Clients MUST ensure they send the first Initial packet in a single IP
 packet. Similarly, the first Initial packet sent after receiving a
 Retry packet MUST be sent in a single IP packet.

 The payload of a UDP datagram carrying the first Initial packet MUST
 be expanded to at least 1200 bytes, by adding PADDING frames to the
 Initial packet and/or by combining the Initial packet with a 0-RTT
 packet (see Section 12.2). Sending a UDP datagram of this size
 ensures that the network path supports a reasonable Maximum
 Transmission Unit (MTU), and helps reduce the amplitude of
 amplification attacks caused by server responses toward an unverified
 client address, see Section 8.

 The datagram containing the first Initial packet from a client MAY
 exceed 1200 bytes if the client believes that the Path Maximum
 Transmission Unit (PMTU) supports the size that it chooses.

 A server MAY send a CONNECTION_CLOSE frame with error code
 PROTOCOL_VIOLATION in response to the first Initial packet it
 receives from a client if the UDP datagram is smaller than 1200
 bytes. It MUST NOT send any other frame type in response, or

Iyengar & Thomson Expires July 27, 2019 [Page 73]

Internet-Draft QUIC Transport Protocol January 2019

 otherwise behave as if any part of the offending packet was processed
 as valid.

 The server MUST also limit the number of bytes it sends before
 validating the address of the client, see Section 8.

14.1. Path Maximum Transmission Unit (PMTU)

 The PMTU is the maximum size of the entire IP packet including the IP
 header, UDP header, and UDP payload. The UDP payload includes the
 QUIC packet header, protected payload, and any authentication fields.
 The PMTU can depend upon the current path characteristics.
 Therefore, the current largest UDP payload an implementation will
 send is referred to as the QUIC maximum packet size.

 QUIC depends on a PMTU of at least 1280 bytes. This is the IPv6
 minimum size [RFC8200] and is also supported by most modern IPv4
 networks. All QUIC packets (except for PMTU probe packets) SHOULD be
 sized to fit within the maximum packet size to avoid the packet being
 fragmented or dropped [RFC8085].

 An endpoint SHOULD use Datagram Packetization Layer PMTU Discovery
 ([DPLPMTUD]) or implement Path MTU Discovery (PMTUD) [RFC1191]
 [RFC8201] to determine whether the path to a destination will support
 a desired message size without fragmentation.

 In the absence of these mechanisms, QUIC endpoints SHOULD NOT send IP
 packets larger than 1280 bytes. Assuming the minimum IP header size,
 this results in a QUIC maximum packet size of 1232 bytes for IPv6 and
 1252 bytes for IPv4. A QUIC implementation MAY be more conservative
 in computing the QUIC maximum packet size to allow for unknown tunnel
 overheads or IP header options/extensions.

 Each pair of local and remote addresses could have a different PMTU.
 QUIC implementations that implement any kind of PMTU discovery
 therefore SHOULD maintain a maximum packet size for each combination
 of local and remote IP addresses.

 If a QUIC endpoint determines that the PMTU between any pair of local
 and remote IP addresses has fallen below the size needed to support
 the smallest allowed maximum packet size, it MUST immediately cease
 sending QUIC packets, except for PMTU probe packets, on the affected
 path. An endpoint MAY terminate the connection if an alternative
 path cannot be found.

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201

Iyengar & Thomson Expires July 27, 2019 [Page 74]

Internet-Draft QUIC Transport Protocol January 2019

14.2. ICMP Packet Too Big Messages

 PMTU discovery [RFC1191] [RFC8201] relies on reception of ICMP
 messages (e.g., IPv6 Packet Too Big messages) that indicate when a
 packet is dropped because it is larger than the local router MTU.
 DPLPMTUD can also optionally use these messages. This use of ICMP
 messages is potentially vulnerable to off-path attacks that
 successfully guess the addresses used on the path and reduce the PMTU
 to a bandwidth-inefficient value.

 An endpoint MUST ignore an ICMP message that claims the PMTU has
 decreased below 1280 bytes.

 The requirements for generating ICMP ([RFC1812], [RFC4443]) state
 that the quoted packet should contain as much of the original packet
 as possible without exceeding the minimum MTU for the IP version.
 The size of the quoted packet can actually be smaller, or the
 information unintelligible, as described in Section 1.1 of
 [DPLPMTUD].

 QUIC endpoints SHOULD validate ICMP messages to protect from off-path
 injection as specified in [RFC8201] and Section 5.2 of [RFC8085].
 This validation SHOULD use the quoted packet supplied in the payload
 of an ICMP message to associate the message with a corresponding
 transport connection [DPLPMTUD].

 ICMP message validation MUST include matching IP addresses and UDP
 ports [RFC8085] and, when possible, connection IDs to an active QUIC
 session.

 Further validation can also be provided:

 o An IPv4 endpoint could set the Don't Fragment (DF) bit on a small
 proportion of packets, so that most invalid ICMP messages arrive
 when there are no DF packets outstanding, and can therefore be
 identified as spurious.

 o An endpoint could store additional information from the IP or UDP
 headers to use for validation (for example, the IP ID or UDP
 checksum).

 The endpoint SHOULD ignore all ICMP messages that fail validation.

 An endpoint MUST NOT increase PMTU based on ICMP messages. Any
 reduction in the QUIC maximum packet size MAY be provisional until
 QUIC's loss detection algorithm determines that the quoted packet has
 actually been lost.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc8085#section-5.2
https://datatracker.ietf.org/doc/html/rfc8085

Iyengar & Thomson Expires July 27, 2019 [Page 75]

Internet-Draft QUIC Transport Protocol January 2019

14.3. Datagram Packetization Layer PMTU Discovery

 Section 6.4 of [DPLPMTUD] provides considerations for implementing
 Datagram Packetization Layer PMTUD (DPLPMTUD) with QUIC.

 When implementing the algorithm in Section 5.3 of [DPLPMTUD], the
 initial value of BASE_PMTU SHOULD be consistent with the minimum QUIC
 packet size (1232 bytes for IPv6 and 1252 bytes for IPv4).

 PING and PADDING frames can be used to generate PMTU probe packets.
 These frames might not be retransmitted if a probe packet containing
 them is lost. However, these frames do consume congestion window,
 which could delay the transmission of subsequent application data.

 A PING frame can be included in a PMTU probe to ensure that a valid
 probe is acknowledged.

 The considerations for processing ICMP messages in the previous
 section also apply if these messages are used by DPLPMTUD.

15. Versions

 QUIC versions are identified using a 32-bit unsigned number.

 The version 0x00000000 is reserved to represent version negotiation.
 This version of the specification is identified by the number
 0x00000001.

 Other versions of QUIC might have different properties to this
 version. The properties of QUIC that are guaranteed to be consistent
 across all versions of the protocol are described in
 [QUIC-INVARIANTS].

 Version 0x00000001 of QUIC uses TLS as a cryptographic handshake
 protocol, as described in [QUIC-TLS].

 Versions with the most significant 16 bits of the version number
 cleared are reserved for use in future IETF consensus documents.

 Versions that follow the pattern 0x?a?a?a?a are reserved for use in
 forcing version negotiation to be exercised. That is, any version
 number where the low four bits of all bytes is 1010 (in binary). A
 client or server MAY advertise support for any of these reserved
 versions.

 Reserved version numbers will probably never represent a real
 protocol; a client MAY use one of these version numbers with the
 expectation that the server will initiate version negotiation; a

Iyengar & Thomson Expires July 27, 2019 [Page 76]

Internet-Draft QUIC Transport Protocol January 2019

 server MAY advertise support for one of these versions and can expect
 that clients ignore the value.

 [[RFC editor: please remove the remainder of this section before
 publication.]]

 The version number for the final version of this specification
 (0x00000001), is reserved for the version of the protocol that is
 published as an RFC.

 Version numbers used to identify IETF drafts are created by adding
 the draft number to 0xff000000. For example, draft-ietf-quic-

transport-13 would be identified as 0xff00000D.

 Implementors are encouraged to register version numbers of QUIC that
 they are using for private experimentation on the GitHub wiki at
 <https://github.com/quicwg/base-drafts/wiki/QUIC-Versions>.

16. Variable-Length Integer Encoding

 QUIC packets and frames commonly use a variable-length encoding for
 non-negative integer values. This encoding ensures that smaller
 integer values need fewer bytes to encode.

 The QUIC variable-length integer encoding reserves the two most
 significant bits of the first byte to encode the base 2 logarithm of
 the integer encoding length in bytes. The integer value is encoded
 on the remaining bits, in network byte order.

 This means that integers are encoded on 1, 2, 4, or 8 bytes and can
 encode 6, 14, 30, or 62 bit values respectively. Table 4 summarizes
 the encoding properties.

 +------+--------+-------------+-----------------------+
 | 2Bit | Length | Usable Bits | Range |
 +------+--------+-------------+-----------------------+
 | 00 | 1 | 6 | 0-63 |
 | | | | |
 | 01 | 2 | 14 | 0-16383 |
 | | | | |
 | 10 | 4 | 30 | 0-1073741823 |
 | | | | |
 | 11 | 8 | 62 | 0-4611686018427387903 |
 +------+--------+-------------+-----------------------+

 Table 4: Summary of Integer Encodings

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

Iyengar & Thomson Expires July 27, 2019 [Page 77]

Internet-Draft QUIC Transport Protocol January 2019

 For example, the eight byte sequence c2 19 7c 5e ff 14 e8 8c (in
 hexadecimal) decodes to the decimal value 151288809941952652; the
 four byte sequence 9d 7f 3e 7d decodes to 494878333; the two byte
 sequence 7b bd decodes to 15293; and the single byte 25 decodes to 37
 (as does the two byte sequence 40 25).

 Error codes (Section 20) and versions Section 15 are described using
 integers, but do not use this encoding.

17. Packet Formats

 All numeric values are encoded in network byte order (that is, big-
 endian) and all field sizes are in bits. Hexadecimal notation is
 used for describing the value of fields.

17.1. Packet Number Encoding and Decoding

 Packet numbers are integers in the range 0 to 2^62-1 (Section 12.3).
 When present in long or short packet headers, they are encoded in 1
 to 4 bytes. The number of bits required to represent the packet
 number is reduced by including the least significant bits of the
 packet number.

 The encoded packet number is protected as described in Section 5.4 of
 [QUIC-TLS].

 The sender MUST use a packet number size able to represent more than
 twice as large a range than the difference between the largest
 acknowledged packet and packet number being sent. A peer receiving
 the packet will then correctly decode the packet number, unless the
 packet is delayed in transit such that it arrives after many higher-
 numbered packets have been received. An endpoint SHOULD use a large
 enough packet number encoding to allow the packet number to be
 recovered even if the packet arrives after packets that are sent
 afterwards.

 As a result, the size of the packet number encoding is at least one
 bit more than the base-2 logarithm of the number of contiguous
 unacknowledged packet numbers, including the new packet.

 For example, if an endpoint has received an acknowledgment for packet
 0xabe8bc, sending a packet with a number of 0xac5c02 requires a
 packet number encoding with 16 bits or more; whereas the 24-bit
 packet number encoding is needed to send a packet with a number of
 0xace8fe.

 At a receiver, protection of the packet number is removed prior to
 recovering the full packet number. The full packet number is then

Iyengar & Thomson Expires July 27, 2019 [Page 78]

Internet-Draft QUIC Transport Protocol January 2019

 reconstructed based on the number of significant bits present, the
 value of those bits, and the largest packet number received on a
 successfully authenticated packet. Recovering the full packet number
 is necessary to successfully remove packet protection.

 Once header protection is removed, the packet number is decoded by
 finding the packet number value that is closest to the next expected
 packet. The next expected packet is the highest received packet
 number plus one. For example, if the highest successfully
 authenticated packet had a packet number of 0xa82f30ea, then a packet
 containing a 16-bit value of 0x9b32 will be decoded as 0xa82f9b32.
 Example pseudo-code for packet number decoding can be found in

Appendix A.

17.2. Long Header Packets

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1|1|T T|X X X X|
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+

 Figure 10: Long Header Packet Format

 Long headers are used for packets that are sent prior to the
 completion of version negotiation and establishment of 1-RTT keys.
 Once both conditions are met, a sender switches to sending packets
 using the short header (Section 17.3). The long form allows for
 special packets - such as the Version Negotiation packet - to be
 represented in this uniform fixed-length packet format. Packets that
 use the long header contain the following fields:

 Header Form: The most significant bit (0x80) of byte 0 (the first
 byte) is set to 1 for long headers.

 Fixed Bit: The next bit (0x40) of byte 0 is set to 1. Packets
 containing a zero value for this bit are not valid packets in this
 version and MUST be discarded.

Iyengar & Thomson Expires July 27, 2019 [Page 79]

Internet-Draft QUIC Transport Protocol January 2019

 Long Packet Type (T): The next two bits (those with a mask of 0x30)
 of byte 0 contain a packet type. Packet types are listed in
 Table 5.

 Type-Specific Bits (X): The lower four bits (those with a mask of
 0x0f) of byte 0 are type-specific.

 Version: The QUIC Version is a 32-bit field that follows the first
 byte. This field indicates which version of QUIC is in use and
 determines how the rest of the protocol fields are interpreted.

 DCIL and SCIL: The byte following the version contains the lengths
 of the two connection ID fields that follow it. These lengths are
 encoded as two 4-bit unsigned integers. The Destination
 Connection ID Length (DCIL) field occupies the 4 high bits of the
 byte and the Source Connection ID Length (SCIL) field occupies the
 4 low bits of the byte. An encoded length of 0 indicates that the
 connection ID is also 0 bytes in length. Non-zero encoded lengths
 are increased by 3 to get the full length of the connection ID,
 producing a length between 4 and 18 bytes inclusive. For example,
 an byte with the value 0x50 describes an 8-byte Destination
 Connection ID and a zero-length Source Connection ID.

 Destination Connection ID: The Destination Connection ID field
 follows the connection ID lengths and is either 0 bytes in length
 or between 4 and 18 bytes. Section 7.2 describes the use of this
 field in more detail.

 Source Connection ID: The Source Connection ID field follows the
 Destination Connection ID and is either 0 bytes in length or
 between 4 and 18 bytes. Section 7.2 describes the use of this
 field in more detail.

 In this version of QUIC, the following packet types with the long
 header are defined:

Iyengar & Thomson Expires July 27, 2019 [Page 80]

Internet-Draft QUIC Transport Protocol January 2019

 +------+-----------+----------------+
 | Type | Name | Section |
 +------+-----------+----------------+
 | 0x0 | Initial | Section 17.2.2 |
 | | | |
 | 0x1 | 0-RTT | Section 17.2.3 |
 | | | |
 | 0x2 | Handshake | Section 17.2.4 |
 | | | |
 | 0x3 | Retry | Section 17.2.5 |
 +------+-----------+----------------+

 Table 5: Long Header Packet Types

 The header form bit, connection ID lengths byte, Destination and
 Source Connection ID fields, and Version fields of a long header
 packet are version-independent. The other fields in the first byte
 are version-specific. See [QUIC-INVARIANTS] for details on how
 packets from different versions of QUIC are interpreted.

 The interpretation of the fields and the payload are specific to a
 version and packet type. While type-specific semantics for this
 version are described in the following sections, several long-header
 packets in this version of QUIC contain these additional fields:

 Reserved Bits (R): Two bits (those with a mask of 0x0c) of byte 0
 are reserved across multiple packet types. These bits are
 protected using header protection (see Section 5.4 of [QUIC-TLS]).
 The value included prior to protection MUST be set to 0. An
 endpoint MUST treat receipt of a packet that has a non-zero value
 for these bits after removing protection as a connection error of
 type PROTOCOL_VIOLATION.

 Packet Number Length (P): In packet types which contain a Packet
 Number field, the least significant two bits (those with a mask of
 0x03) of byte 0 contain the length of the packet number, encoded
 as an unsigned, two-bit integer that is one less than the length
 of the packet number field in bytes. That is, the length of the
 packet number field is the value of this field, plus one. These
 bits are protected using header protection (see Section 5.4 of
 [QUIC-TLS]).

 Length: The length of the remainder of the packet (that is, the
 Packet Number and Payload fields) in bytes, encoded as a variable-
 length integer (Section 16).

 Packet Number: The packet number field is 1 to 4 bytes long. The
 packet number has confidentiality protection separate from packet

Iyengar & Thomson Expires July 27, 2019 [Page 81]

Internet-Draft QUIC Transport Protocol January 2019

 protection, as described in Section 5.4 of [QUIC-TLS]. The length
 of the packet number field is encoded in the Packet Number Length
 bits of byte 0 (see above).

17.2.1. Version Negotiation Packet

 A Version Negotiation packet is inherently not version-specific.
 Upon receipt by a client, it will be identified as a Version
 Negotiation packet based on the Version field having a value of 0.

 The Version Negotiation packet is a response to a client packet that
 contains a version that is not supported by the server, and is only
 sent by servers.

 The layout of a Version Negotiation packet is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1| Unused (7) |
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Supported Version 1 (32) ...
 +-+
 | [Supported Version 2 (32)] ...
 +-+
 ...
 +-+
 | [Supported Version N (32)] ...
 +-+

 Figure 11: Version Negotiation Packet

 The value in the Unused field is selected randomly by the server.

 The Version field of a Version Negotiation packet MUST be set to
 0x00000000.

 The server MUST include the value from the Source Connection ID field
 of the packet it receives in the Destination Connection ID field.
 The value for Source Connection ID MUST be copied from the

Iyengar & Thomson Expires July 27, 2019 [Page 82]

Internet-Draft QUIC Transport Protocol January 2019

 Destination Connection ID of the received packet, which is initially
 randomly selected by a client. Echoing both connection IDs gives
 clients some assurance that the server received the packet and that
 the Version Negotiation packet was not generated by an off-path
 attacker.

 The remainder of the Version Negotiation packet is a list of 32-bit
 versions which the server supports.

 A Version Negotiation packet cannot be explicitly acknowledged in an
 ACK frame by a client. Receiving another Initial packet implicitly
 acknowledges a Version Negotiation packet.

 The Version Negotiation packet does not include the Packet Number and
 Length fields present in other packets that use the long header form.
 Consequently, a Version Negotiation packet consumes an entire UDP
 datagram.

 A server MUST NOT send more than one Version Negotiation packet in
 response to a single UDP datagram.

 See Section 6 for a description of the version negotiation process.

17.2.2. Initial Packet

 An Initial packet uses long headers with a type value of 0x0. It
 carries the first CRYPTO frames sent by the client and server to
 perform key exchange, and carries ACKs in either direction.

Iyengar & Thomson Expires July 27, 2019 [Page 83]

Internet-Draft QUIC Transport Protocol January 2019

 +-+-+-+-+-+-+-+-+
 |1|1| 0 |R R|P P|
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Token Length (i) ...
 +-+
 | Token (*) ...
 +-+
 | Length (i) ...
 +-+
 | Packet Number (8/16/24/32) ...
 +-+
 | Payload (*) ...
 +-+

 Figure 12: Initial Packet

 The Initial packet contains a long header as well as the Length and
 Packet Number fields. The first byte contains the Reserved and
 Packet Number Length bits. Between the SCID and Length fields, there
 are two additional field specific to the Initial packet.

 Token Length: A variable-length integer specifying the length of the
 Token field, in bytes. This value is zero if no token is present.
 Initial packets sent by the server MUST set the Token Length field
 to zero; clients that receive an Initial packet with a non-zero
 Token Length field MUST either discard the packet or generate a
 connection error of type PROTOCOL_VIOLATION.

 Token: The value of the token that was previously provided in a
 Retry packet or NEW_TOKEN frame.

 Payload: The payload of the packet.

 In order to prevent tampering by version-unaware middleboxes, Initial
 packets are protected with connection- and version-specific keys
 (Initial keys) as described in [QUIC-TLS]. This protection does not
 provide confidentiality or integrity against on-path attackers, but
 provides some level of protection against off-path attackers.

Iyengar & Thomson Expires July 27, 2019 [Page 84]

Internet-Draft QUIC Transport Protocol January 2019

 The client and server use the Initial packet type for any packet that
 contains an initial cryptographic handshake message. This includes
 all cases where a new packet containing the initial cryptographic
 message needs to be created, such as the packets sent after receiving
 a Version Negotiation (Section 17.2.1) or Retry packet
 (Section 17.2.5).

 A server sends its first Initial packet in response to a client
 Initial. A server may send multiple Initial packets. The
 cryptographic key exchange could require multiple round trips or
 retransmissions of this data.

 The payload of an Initial packet includes a CRYPTO frame (or frames)
 containing a cryptographic handshake message, ACK frames, or both.
 PADDING and CONNECTION_CLOSE frames are also permitted. An endpoint
 that receives an Initial packet containing other frames can either
 discard the packet as spurious or treat it as a connection error.

 The first packet sent by a client always includes a CRYPTO frame that
 contains the entirety of the first cryptographic handshake message.
 This packet, and the cryptographic handshake message, MUST fit in a
 single UDP datagram (see Section 7). The first CRYPTO frame sent
 always begins at an offset of 0 (see Section 7).

 Note that if the server sends a HelloRetryRequest, the client will
 send a second Initial packet. This Initial packet will continue the
 cryptographic handshake and will contain a CRYPTO frame with an
 offset matching the size of the CRYPTO frame sent in the first
 Initial packet. Cryptographic handshake messages subsequent to the
 first do not need to fit within a single UDP datagram.

17.2.2.1. Abandoning Initial Packets

 A client stops both sending and processing Initial packets when it
 sends its first Handshake packet. A server stops sending and
 processing Initial packets when it receives its first Handshake
 packet. Though packets might still be in flight or awaiting
 acknowledgment, no further Initial packets need to be exchanged
 beyond this point. Initial packet protection keys are discarded (see
 Section 4.10 of [QUIC-TLS]) along with any loss recovery and
 congestion control state (see Sections 5.3.1.2 and 6.9 of
 [QUIC-RECOVERY]).

 Any data in CRYPTO frames is discarded - and no longer retransmitted
 - when Initial keys are discarded.

Iyengar & Thomson Expires July 27, 2019 [Page 85]

Internet-Draft QUIC Transport Protocol January 2019

17.2.3. 0-RTT

 A 0-RTT packet uses long headers with a type value of 0x1, followed
 by the Length and Packet Number fields. The first byte contains the
 Reserved and Packet Number Length bits. It is used to carry "early"
 data from the client to the server as part of the first flight, prior
 to handshake completion. As part of the TLS handshake, the server
 can accept or reject this early data.

 See Section 2.3 of [TLS13] for a discussion of 0-RTT data and its
 limitations.

 +-+-+-+-+-+-+-+-+
 |1|1| 1 |R R|P P|
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Length (i) ...
 +-+
 | Packet Number (8/16/24/32) ...
 +-+
 | Payload (*) ...
 +-+

 0-RTT Packet

 Packet numbers for 0-RTT protected packets use the same space as
 1-RTT protected packets.

 After a client receives a Retry or Version Negotiation packet, 0-RTT
 packets are likely to have been lost or discarded by the server. A
 client MAY attempt to resend data in 0-RTT packets after it sends a
 new Initial packet.

 A client MUST NOT reset the packet number it uses for 0-RTT packets.
 The keys used to protect 0-RTT packets will not change as a result of
 responding to a Retry or Version Negotiation packet unless the client
 also regenerates the cryptographic handshake message. Sending
 packets with the same packet number in that case is likely to
 compromise the packet protection for all 0-RTT packets because the
 same key and nonce could be used to protect different content.

Iyengar & Thomson Expires July 27, 2019 [Page 86]

Internet-Draft QUIC Transport Protocol January 2019

 Receiving a Retry or Version Negotiation packet, especially a Retry
 that changes the connection ID used for subsequent packets, indicates
 a strong possibility that 0-RTT packets could be lost. A client only
 receives acknowledgments for its 0-RTT packets once the handshake is
 complete. Consequently, a server might expect 0-RTT packets to start
 with a packet number of 0. Therefore, in determining the length of
 the packet number encoding for 0-RTT packets, a client MUST assume
 that all packets up to the current packet number are in flight,
 starting from a packet number of 0. Thus, 0-RTT packets could need
 to use a longer packet number encoding.

 A client SHOULD instead generate a fresh cryptographic handshake
 message and start packet numbers from 0. This ensures that new 0-RTT
 packets will not use the same keys, avoiding any risk of key and
 nonce reuse; this also prevents 0-RTT packets from previous handshake
 attempts from being accepted as part of the connection.

17.2.4. Handshake Packet

 A Handshake packet uses long headers with a type value of 0x2,
 followed by the Length and Packet Number fields. The first byte
 contains the Reserved and Packet Number Length bits. It is used to
 carry acknowledgments and cryptographic handshake messages from the
 server and client.

 +-+-+-+-+-+-+-+-+
 |1|1| 2 |R R|P P|
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Length (i) ...
 +-+
 | Packet Number (8/16/24/32) ...
 +-+
 | Payload (*) ...
 +-+

 Figure 13: Handshake Protected Packet

 Once a client has received a Handshake packet from a server, it uses
 Handshake packets to send subsequent cryptographic handshake messages
 and acknowledgments to the server.

Iyengar & Thomson Expires July 27, 2019 [Page 87]

Internet-Draft QUIC Transport Protocol January 2019

 The Destination Connection ID field in a Handshake packet contains a
 connection ID that is chosen by the recipient of the packet; the
 Source Connection ID includes the connection ID that the sender of
 the packet wishes to use (see Section 7.2).

 Handshake packets are their own packet number space, and thus the
 first Handshake packet sent by a server contains a packet number of
 0.

 The payload of this packet contains CRYPTO frames and could contain
 PADDING, or ACK frames. Handshake packets MAY contain
 CONNECTION_CLOSE frames. Endpoints MUST treat receipt of Handshake
 packets with other frames as a connection error.

 Like Initial packets (see Section 17.2.2.1), data in CRYPTO frames at
 the Handshake encryption level is discarded - and no longer
 retransmitted - when Handshake protection keys are discarded.

17.2.5. Retry Packet

 A Retry packet uses a long packet header with a type value of 0x3.
 It carries an address validation token created by the server. It is
 used by a server that wishes to perform a stateless retry (see

Section 8.1).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1|1| 3 | ODCIL |
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Original Destination Connection ID (0/32..144) ...
 +-+
 | Retry Token (*) ...
 +-+

 Figure 14: Retry Packet

 A Retry packet (shown in Figure 14) does not contain any protected
 fields. In addition to the long header, it contains these additional
 fields:

Iyengar & Thomson Expires July 27, 2019 [Page 88]

Internet-Draft QUIC Transport Protocol January 2019

 ODCIL: The four least-significant bits of the first byte of a Retry
 packet are not protected as they are for other packets with the
 long header, because Retry packets don't contain a protected
 payload. These bits instead encode the length of the Original
 Destination Connection ID field. The length uses the same
 encoding as the DCIL and SCIL fields.

 Original Destination Connection ID: The Original Destination
 Connection ID contains the value of the Destination Connection ID
 from the Initial packet that this Retry is in response to. The
 length of this field is given in ODCIL.

 Retry Token: An opaque token that the server can use to validate the
 client's address.

 The server populates the Destination Connection ID with the
 connection ID that the client included in the Source Connection ID of
 the Initial packet.

 The server includes a connection ID of its choice in the Source
 Connection ID field. This value MUST not be equal to the Destination
 Connection ID field of the packet sent by the client. The client
 MUST use this connection ID in the Destination Connection ID of
 subsequent packets that it sends.

 A server MAY send Retry packets in response to Initial and 0-RTT
 packets. A server can either discard or buffer 0-RTT packets that it
 receives. A server can send multiple Retry packets as it receives
 Initial or 0-RTT packets. A server MUST NOT send more than one Retry
 packet in response to a single UDP datagram.

 A client MUST accept and process at most one Retry packet for each
 connection attempt. After the client has received and processed an
 Initial or Retry packet from the server, it MUST discard any
 subsequent Retry packets that it receives.

 Clients MUST discard Retry packets that contain an Original
 Destination Connection ID field that does not match the Destination
 Connection ID from its Initial packet. This prevents an off-path
 attacker from injecting a Retry packet.

 The client responds to a Retry packet with an Initial packet that
 includes the provided Retry Token to continue connection
 establishment.

 A client sets the Destination Connection ID field of this Initial
 packet to the value from the Source Connection ID in the Retry
 packet. Changing Destination Connection ID also results in a change

Iyengar & Thomson Expires July 27, 2019 [Page 89]

Internet-Draft QUIC Transport Protocol January 2019

 to the keys used to protect the Initial packet. It also sets the
 Token field to the token provided in the Retry. The client MUST NOT
 change the Source Connection ID because the server could include the
 connection ID as part of its token validation logic (see

Section 8.1.2).

 The next Initial packet from the client uses the connection ID and
 token values from the Retry packet (see Section 7.2). Aside from
 this, the Initial packet sent by the client is subject to the same
 restrictions as the first Initial packet. A client can either reuse
 the cryptographic handshake message or construct a new one at its
 discretion.

 A client MAY attempt 0-RTT after receiving a Retry packet by sending
 0-RTT packets to the connection ID provided by the server. A client
 that sends additional 0-RTT packets without constructing a new
 cryptographic handshake message MUST NOT reset the packet number to 0
 after a Retry packet, see Section 17.2.3.

 A server acknowledges the use of a Retry packet for a connection
 using the original_connection_id transport parameter (see

Section 18.1). If the server sends a Retry packet, it MUST include
 the value of the Original Destination Connection ID field of the
 Retry packet (that is, the Destination Connection ID field from the
 client's first Initial packet) in the transport parameter.

 If the client received and processed a Retry packet, it MUST validate
 that the original_connection_id transport parameter is present and
 correct; otherwise, it MUST validate that the transport parameter is
 absent. A client MUST treat a failed validation as a connection
 error of type TRANSPORT_PARAMETER_ERROR.

 A Retry packet does not include a packet number and cannot be
 explicitly acknowledged by a client.

17.3. Short Header Packets

 This version of QUIC defines a single packet type which uses the
 short packet header.

Iyengar & Thomson Expires July 27, 2019 [Page 90]

Internet-Draft QUIC Transport Protocol January 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |0|1|S|R|R|K|P P|
 +-+
 | Destination Connection ID (0..144) ...
 +-+
 | Packet Number (8/16/24/32) ...
 +-+
 | Protected Payload (*) ...
 +-+

 Figure 15: Short Header Packet Format

 The short header can be used after the version and 1-RTT keys are
 negotiated. Packets that use the short header contain the following
 fields:

 Header Form: The most significant bit (0x80) of byte 0 is set to 0
 for the short header.

 Fixed Bit: The next bit (0x40) of byte 0 is set to 1. Packets
 containing a zero value for this bit are not valid packets in this
 version and MUST be discarded.

 Spin Bit (S): The sixth bit (0x20) of byte 0 is the Latency Spin
 Bit, set as described in [SPIN].

 Reserved Bits (R): The next two bits (those with a mask of 0x18) of
 byte 0 are reserved. These bits are protected using header
 protection (see Section 5.4 of [QUIC-TLS]). The value included
 prior to protection MUST be set to 0. An endpoint MUST treat
 receipt of a packet that has a non-zero value for these bits after
 removing protection as a connection error of type
 PROTOCOL_VIOLATION.

 Key Phase (K): The next bit (0x04) of byte 0 indicates the key
 phase, which allows a recipient of a packet to identify the packet
 protection keys that are used to protect the packet. See
 [QUIC-TLS] for details. This bit is protected using header
 protection (see Section 5.4 of [QUIC-TLS]).

 Packet Number Length (P): The least significant two bits (those with
 a mask of 0x03) of byte 0 contain the length of the packet number,
 encoded as an unsigned, two-bit integer that is one less than the
 length of the packet number field in bytes. That is, the length
 of the packet number field is the value of this field, plus one.

Iyengar & Thomson Expires July 27, 2019 [Page 91]

Internet-Draft QUIC Transport Protocol January 2019

 These bits are protected using header protection (see Section 5.4
 of [QUIC-TLS]).

 Destination Connection ID: The Destination Connection ID is a
 connection ID that is chosen by the intended recipient of the
 packet. See Section 5.1 for more details.

 Packet Number: The packet number field is 1 to 4 bytes long. The
 packet number has confidentiality protection separate from packet
 protection, as described in Section 5.4 of [QUIC-TLS]. The length
 of the packet number field is encoded in Packet Number Length
 field. See Section 17.1 for details.

 Protected Payload: Packets with a short header always include a
 1-RTT protected payload.

 The header form bit and the connection ID field of a short header
 packet are version-independent. The remaining fields are specific to
 the selected QUIC version. See [QUIC-INVARIANTS] for details on how
 packets from different versions of QUIC are interpreted.

18. Transport Parameter Encoding

 The format of the transport parameters is the TransportParameters
 struct from Figure 16. This is described using the presentation
 language from Section 3 of [TLS13].

Iyengar & Thomson Expires July 27, 2019 [Page 92]

Internet-Draft QUIC Transport Protocol January 2019

 uint32 QuicVersion;

 enum {
 original_connection_id(0),
 idle_timeout(1),
 stateless_reset_token(2),
 max_packet_size(3),
 initial_max_data(4),
 initial_max_stream_data_bidi_local(5),
 initial_max_stream_data_bidi_remote(6),
 initial_max_stream_data_uni(7),
 initial_max_streams_bidi(8),
 initial_max_streams_uni(9),
 ack_delay_exponent(10),
 max_ack_delay(11),
 disable_migration(12),
 preferred_address(13),
 (65535)
 } TransportParameterId;

 struct {
 TransportParameterId parameter;
 opaque value<0..2^16-1>;
 } TransportParameter;

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 QuicVersion initial_version;

 case encrypted_extensions:
 QuicVersion negotiated_version;
 QuicVersion supported_versions<4..2^8-4>;
 };
 TransportParameter parameters<0..2^16-1>;
 } TransportParameters;

 Figure 16: Definition of TransportParameters

 The "extension_data" field of the quic_transport_parameters extension
 defined in [QUIC-TLS] contains a TransportParameters value. TLS
 encoding rules are therefore used to describe the encoding of
 transport parameters.

 QUIC encodes transport parameters into a sequence of bytes, which are
 then included in the cryptographic handshake.

Iyengar & Thomson Expires July 27, 2019 [Page 93]

Internet-Draft QUIC Transport Protocol January 2019

18.1. Transport Parameter Definitions

 This section details the transport parameters defined in this
 document.

 Many transport parameters listed here have integer values. Those
 transport parameters that are identified as integers use a variable-
 length integer encoding (see Section 16) and have a default value of
 0 if the transport parameter is absent, unless otherwise stated.

 The following transport parameters are defined:

 original_connection_id (0x0000): The value of the Destination
 Connection ID field from the first Initial packet sent by the
 client. This transport parameter is only sent by a server. A
 server MUST include the original_connection_id transport parameter
 if it sent a Retry packet.

 idle_timeout (0x0001): The idle timeout is a value in seconds that
 is encoded as an integer, see (Section 10.2). If this parameter
 is absent or zero then the idle timeout is disabled.

 stateless_reset_token (0x0002): A stateless reset token is used in
 verifying a stateless reset, see Section 10.4. This parameter is
 a sequence of 16 bytes. This transport parameter is only sent by
 a server.

 max_packet_size (0x0003): The maximum packet size parameter is an
 integer value that limits the size of packets that the endpoint is
 willing to receive. This indicates that packets larger than this
 limit will be dropped. The default for this parameter is the
 maximum permitted UDP payload of 65527. Values below 1200 are
 invalid. This limit only applies to protected packets
 (Section 12.1).

 initial_max_data (0x0004): The initial maximum data parameter is an
 integer value that contains the initial value for the maximum
 amount of data that can be sent on the connection. This is
 equivalent to sending a MAX_DATA (Section 19.9) for the connection
 immediately after completing the handshake.

 initial_max_stream_data_bidi_local (0x0005): This parameter is an
 integer value specifying the initial flow control limit for
 locally-initiated bidirectional streams. This limit applies to
 newly created bidirectional streams opened by the endpoint that
 sends the transport parameter. In client transport parameters,
 this applies to streams with an identifier with the least
 significant two bits set to 0x0; in server transport parameters,

Iyengar & Thomson Expires July 27, 2019 [Page 94]

Internet-Draft QUIC Transport Protocol January 2019

 this applies to streams with the least significant two bits set to
 0x1.

 initial_max_stream_data_bidi_remote (0x0006): This parameter is an
 integer value specifying the initial flow control limit for peer-
 initiated bidirectional streams. This limit applies to newly
 created bidirectional streams opened by the endpoint that receives
 the transport parameter. In client transport parameters, this
 applies to streams with an identifier with the least significant
 two bits set to 0x1; in server transport parameters, this applies
 to streams with the least significant two bits set to 0x0.

 initial_max_stream_data_uni (0x0007): This parameter is an integer
 value specifying the initial flow control limit for unidirectional
 streams. This limit applies to newly created unidirectional
 streams opened by the endpoint that receives the transport
 parameter. In client transport parameters, this applies to
 streams with an identifier with the least significant two bits set
 to 0x3; in server transport parameters, this applies to streams
 with the least significant two bits set to 0x2.

 initial_max_streams_bidi (0x0008): The initial maximum bidirectional
 streams parameter is an integer value that contains the initial
 maximum number of bidirectional streams the peer may initiate. If
 this parameter is absent or zero, the peer cannot open
 bidirectional streams until a MAX_STREAMS frame is sent. Setting
 this parameter is equivalent to sending a MAX_STREAMS
 (Section 19.11) of the corresponding type with the same value.

 initial_max_streams_uni (0x0009): The initial maximum unidirectional
 streams parameter is an integer value that contains the initial
 maximum number of unidirectional streams the peer may initiate.
 If this parameter is absent or zero, the peer cannot open
 unidirectional streams until a MAX_STREAMS frame is sent. Setting
 this parameter is equivalent to sending a MAX_STREAMS
 (Section 19.11) of the corresponding type with the same value.

 ack_delay_exponent (0x000a): The ACK delay exponent is an integer
 value indicating an exponent used to decode the ACK Delay field in
 the ACK frame (Section 19.3). If this value is absent, a default
 value of 3 is assumed (indicating a multiplier of 8). The default
 value is also used for ACK frames that are sent in Initial and
 Handshake packets. Values above 20 are invalid.

 max_ack_delay (0x000b): The maximum ACK delay is an integer value
 indicating the maximum amount of time in milliseconds by which the
 endpoint will delay sending acknowledgments. This value SHOULD
 include the receiver's expected delays in alarms firing. For

Iyengar & Thomson Expires July 27, 2019 [Page 95]

Internet-Draft QUIC Transport Protocol January 2019

 example, if a receiver sets a timer for 5ms and alarms commonly
 fire up to 1ms late, then it should send a max_ack_delay of 6ms.
 If this value is absent, a default of 25 milliseconds is assumed.
 Values of 2^14 or greater are invalid.

 disable_migration (0x000c): The disable migration transport
 parameter is included if the endpoint does not support connection
 migration (Section 9). Peers of an endpoint that sets this
 transport parameter MUST NOT send any packets, including probing
 packets (Section 9.1), from a local address other than that used
 to perform the handshake. This parameter is a zero-length value.

 preferred_address (0x000d): The server's preferred address is used
 to effect a change in server address at the end of the handshake,
 as described in Section 9.6. The format of this transport
 parameter is the PreferredAddress struct shown in Figure 17. This
 transport parameter is only sent by a server. Servers MAY choose
 to only send a preferred address of one address family by sending
 an all-zero address and port (0.0.0.0:0 or ::.0) for the other
 family.

 struct {
 opaque ipv4Address[4];
 uint16 ipv4Port;
 opaque ipv6Address[16];
 uint16 ipv6Port;
 opaque connectionId<0..18>;
 opaque statelessResetToken[16];
 } PreferredAddress;

 Figure 17: Preferred Address format

 If present, transport parameters that set initial flow control limits
 (initial_max_stream_data_bidi_local,
 initial_max_stream_data_bidi_remote, and initial_max_stream_data_uni)
 are equivalent to sending a MAX_STREAM_DATA frame (Section 19.10) on
 every stream of the corresponding type immediately after opening. If
 the transport parameter is absent, streams of that type start with a
 flow control limit of 0.

 A client MUST NOT include an original connection ID, a stateless
 reset token, or a preferred address. A server MUST treat receipt of
 any of these transport parameters as a connection error of type
 TRANSPORT_PARAMETER_ERROR.

Iyengar & Thomson Expires July 27, 2019 [Page 96]

Internet-Draft QUIC Transport Protocol January 2019

19. Frame Types and Formats

 As described in Section 12.4, packets contain one or more frames.
 This section describes the format and semantics of the core QUIC
 frame types.

19.1. PADDING Frame

 The PADDING frame (type=0x00) has no semantic value. PADDING frames
 can be used to increase the size of a packet. Padding can be used to
 increase an initial client packet to the minimum required size, or to
 provide protection against traffic analysis for protected packets.

 A PADDING frame has no content. That is, a PADDING frame consists of
 the single byte that identifies the frame as a PADDING frame.

19.2. PING Frame

 Endpoints can use PING frames (type=0x01) to verify that their peers
 are still alive or to check reachability to the peer. The PING frame
 contains no additional fields.

 The receiver of a PING frame simply needs to acknowledge the packet
 containing this frame.

 The PING frame can be used to keep a connection alive when an
 application or application protocol wishes to prevent the connection
 from timing out. An application protocol SHOULD provide guidance
 about the conditions under which generating a PING is recommended.
 This guidance SHOULD indicate whether it is the client or the server
 that is expected to send the PING. Having both endpoints send PING
 frames without coordination can produce an excessive number of
 packets and poor performance.

 A connection will time out if no packets are sent or received for a
 period longer than the time specified in the idle_timeout transport
 parameter (see Section 10). However, state in middleboxes might time
 out earlier than that. Though REQ-5 in [RFC4787] recommends a 2
 minute timeout interval, experience shows that sending packets every
 15 to 30 seconds is necessary to prevent the majority of middleboxes
 from losing state for UDP flows.

19.3. ACK Frames

 Receivers send ACK frames (types 0x02 and 0x03) to inform senders of
 packets they have received and processed. The ACK frame contains one
 or more ACK Ranges. ACK Ranges identify acknowledged packets. If
 the frame type is 0x03, ACK frames also contain the sum of QUIC

https://datatracker.ietf.org/doc/html/rfc4787

Iyengar & Thomson Expires July 27, 2019 [Page 97]

Internet-Draft QUIC Transport Protocol January 2019

 packets with associated ECN marks received on the connection up until
 this point. QUIC implementations MUST properly handle both types
 and, if they have enabled ECN for packets they send, they SHOULD use
 the information in the ECN section to manage their congestion state.

 QUIC acknowledgements are irrevocable. Once acknowledged, a packet
 remains acknowledged, even if it does not appear in a future ACK
 frame. This is unlike TCP SACKs ([RFC2018]).

 It is expected that a sender will reuse the same packet number across
 different packet number spaces. ACK frames only acknowledge the
 packet numbers that were transmitted by the sender in the same packet
 number space of the packet that the ACK was received in.

 Version Negotiation and Retry packets cannot be acknowledged because
 they do not contain a packet number. Rather than relying on ACK
 frames, these packets are implicitly acknowledged by the next Initial
 packet sent by the client.

 An ACK frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Largest Acknowledged (i) ...
 +-+
 | ACK Delay (i) ...
 +-+
 | ACK Range Count (i) ...
 +-+
 | First ACK Range (i) ...
 +-+
 | ACK Ranges (*) ...
 +-+
 | [ECN Counts] ...
 +-+

 Figure 18: ACK Frame Format

 ACK frames contain the following fields:

 Largest Acknowledged: A variable-length integer representing the
 largest packet number the peer is acknowledging; this is usually
 the largest packet number that the peer has received prior to
 generating the ACK frame. Unlike the packet number in the QUIC
 long or short header, the value in an ACK frame is not truncated.

https://datatracker.ietf.org/doc/html/rfc2018

Iyengar & Thomson Expires July 27, 2019 [Page 98]

Internet-Draft QUIC Transport Protocol January 2019

 ACK Delay: A variable-length integer including the time in
 microseconds that the largest acknowledged packet, as indicated in
 the Largest Acknowledged field, was received by this peer to when
 this ACK was sent. The value of the ACK Delay field is scaled by
 multiplying the encoded value by 2 to the power of the value of
 the "ack_delay_exponent" transport parameter set by the sender of
 the ACK frame. The "ack_delay_exponent" defaults to 3, or a
 multiplier of 8 (see Section 18.1). Scaling in this fashion
 allows for a larger range of values with a shorter encoding at the
 cost of lower resolution.

 ACK Range Count: A variable-length integer specifying the number of
 Gap and ACK Range fields in the frame.

 First ACK Range: A variable-length integer indicating the number of
 contiguous packets preceding the Largest Acknowledged that are
 being acknowledged. The First ACK Range is encoded as an ACK
 Range (see Section 19.3.1) starting from the Largest Acknowledged.
 That is, the smallest packet acknowledged in the range is
 determined by subtracting the First ACK Range value from the
 Largest Acknowledged.

 ACK Ranges: Contains additional ranges of packets which are
 alternately not acknowledged (Gap) and acknowledged (ACK Range),
 see Section 19.3.1.

 ECN Counts: The three ECN Counts, see Section 19.3.2.

19.3.1. ACK Ranges

 The ACK Ranges field consists of alternating Gap and ACK Range values
 in descending packet number order. The number of Gap and ACK Range
 values is determined by the ACK Range Count field; one of each value
 is present for each value in the ACK Range Count field.

 ACK Ranges are structured as follows:

Iyengar & Thomson Expires July 27, 2019 [Page 99]

Internet-Draft QUIC Transport Protocol January 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | [Gap (i)] ...
 +-+
 | [ACK Range (i)] ...
 +-+
 | [Gap (i)] ...
 +-+
 | [ACK Range (i)] ...
 +-+
 ...
 +-+
 | [Gap (i)] ...
 +-+
 | [ACK Range (i)] ...
 +-+

 Figure 19: ACK Ranges

 The fields that form the ACK Ranges are:

 Gap (repeated): A variable-length integer indicating the number of
 contiguous unacknowledged packets preceding the packet number one
 lower than the smallest in the preceding ACK Range.

 ACK Range (repeated): A variable-length integer indicating the
 number of contiguous acknowledged packets preceding the largest
 packet number, as determined by the preceding Gap.

 Gap and ACK Range value use a relative integer encoding for
 efficiency. Though each encoded value is positive, the values are
 subtracted, so that each ACK Range describes progressively lower-
 numbered packets.

 Each ACK Range acknowledges a contiguous range of packets by
 indicating the number of acknowledged packets that precede the
 largest packet number in that range. A value of zero indicates that
 only the largest packet number is acknowledged. Larger ACK Range
 values indicate a larger range, with corresponding lower values for
 the smallest packet number in the range. Thus, given a largest
 packet number for the range, the smallest value is determined by the
 formula:

 smallest = largest - ack_range

 An ACK Range acknowledges all packets between the smallest packet
 number and the largest, inclusive.

Iyengar & Thomson Expires July 27, 2019 [Page 100]

Internet-Draft QUIC Transport Protocol January 2019

 The largest value for an ACK Range is determined by cumulatively
 subtracting the size of all preceding ACK Ranges and Gaps.

 Each Gap indicates a range of packets that are not being
 acknowledged. The number of packets in the gap is one higher than
 the encoded value of the Gap field.

 The value of the Gap field establishes the largest packet number
 value for the subsequent ACK Range using the following formula:

 largest = previous_smallest - gap - 2

 If any computed packet number is negative, an endpoint MUST generate
 a connection error of type FRAME_ENCODING_ERROR indicating an error
 in an ACK frame.

19.3.2. ECN Counts

 The ACK frame uses the least significant bit (that is, type 0x03) to
 indicate ECN feedback and report receipt of QUIC packets with
 associated ECN codepoints of ECT(0), ECT(1), or CE in the packet's IP
 header. ECN Counts are only present when the ACK frame type is 0x03.

 ECN Counts are only parsed when the ACK frame type is 0x03. There
 are 3 ECN counts, as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ECT(0) Count (i) ...
 +-+
 | ECT(1) Count (i) ...
 +-+
 | ECN-CE Count (i) ...
 +-+

 The three ECN Counts are:

 ECT(0) Count: A variable-length integer representing the total
 number packets received with the ECT(0) codepoint.

 ECT(1) Count: A variable-length integer representing the total
 number packets received with the ECT(1) codepoint.

 CE Count: A variable-length integer representing the total number
 packets received with the CE codepoint.

 ECN counts are maintained separately for each packet number space.

Iyengar & Thomson Expires July 27, 2019 [Page 101]

Internet-Draft QUIC Transport Protocol January 2019

19.4. RESET_STREAM Frame

 An endpoint uses a RESET_STREAM frame (type=0x04) to abruptly
 terminate a stream.

 After sending a RESET_STREAM, an endpoint ceases transmission and
 retransmission of STREAM frames on the identified stream. A receiver
 of RESET_STREAM can discard any data that it already received on that
 stream.

 An endpoint that receives a RESET_STREAM frame for a send-only stream
 MUST terminate the connection with error STREAM_STATE_ERROR.

 The RESET_STREAM frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Application Error Code (16) |
 +-+
 | Final Size (i) ...
 +-+

 RESET_STREAM frames contain the following fields:

 Stream ID: A variable-length integer encoding of the Stream ID of
 the stream being terminated.

 Application Protocol Error Code: A 16-bit application protocol error
 code (see Section 20.1) which indicates why the stream is being
 closed.

 Final Size: A variable-length integer indicating the final size of
 the stream by the RESET_STREAM sender, in unit of bytes.

19.5. STOP_SENDING Frame

 An endpoint uses a STOP_SENDING frame (type=0x05) to communicate that
 incoming data is being discarded on receipt at application request.
 STOP_SENDING requests that a peer cease transmission on a stream.

 A STOP_SENDING frame can be sent for streams in the Recv or Size
 Known states (see Section 3.1). Receiving a STOP_SENDING frame for a
 locally-initiated stream that has not yet been created MUST be
 treated as a connection error of type STREAM_STATE_ERROR. An

Iyengar & Thomson Expires July 27, 2019 [Page 102]

Internet-Draft QUIC Transport Protocol January 2019

 endpoint that receives a STOP_SENDING frame for a receive-only stream
 MUST terminate the connection with error STREAM_STATE_ERROR.

 The STOP_SENDING frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Application Error Code (16) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 STOP_SENDING frames contain the following fields:

 Stream ID: A variable-length integer carrying the Stream ID of the
 stream being ignored.

 Application Error Code: A 16-bit, application-specified reason the
 sender is ignoring the stream (see Section 20.1).

19.6. CRYPTO Frame

 The CRYPTO frame (type=0x06) is used to transmit cryptographic
 handshake messages. It can be sent in all packet types. The CRYPTO
 frame offers the cryptographic protocol an in-order stream of bytes.
 CRYPTO frames are functionally identical to STREAM frames, except
 that they do not bear a stream identifier; they are not flow
 controlled; and they do not carry markers for optional offset,
 optional length, and the end of the stream.

 The CRYPTO frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Offset (i) ...
 +-+
 | Length (i) ...
 +-+
 | Crypto Data (*) ...
 +-+

 Figure 20: CRYPTO Frame Format

 CRYPTO frames contain the following fields:

Iyengar & Thomson Expires July 27, 2019 [Page 103]

Internet-Draft QUIC Transport Protocol January 2019

 Offset: A variable-length integer specifying the byte offset in the
 stream for the data in this CRYPTO frame.

 Length: A variable-length integer specifying the length of the
 Crypto Data field in this CRYPTO frame.

 Crypto Data: The cryptographic message data.

 There is a separate flow of cryptographic handshake data in each
 encryption level, each of which starts at an offset of 0. This
 implies that each encryption level is treated as a separate CRYPTO
 stream of data.

 Unlike STREAM frames, which include a Stream ID indicating to which
 stream the data belongs, the CRYPTO frame carries data for a single
 stream per encryption level. The stream does not have an explicit
 end, so CRYPTO frames do not have a FIN bit.

19.7. NEW_TOKEN Frame

 A server sends a NEW_TOKEN frame (type=0x07) to provide the client
 with a token to send in the header of an Initial packet for a future
 connection.

 The NEW_TOKEN frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Token Length (i) ...
 +-+
 | Token (*) ...
 +-+

 NEW_TOKEN frames contain the following fields:

 Token Length: A variable-length integer specifying the length of the
 token in bytes.

 Token: An opaque blob that the client may use with a future Initial
 packet.

19.8. STREAM Frames

 STREAM frames implicitly create a stream and carry stream data. The
 STREAM frame takes the form 0b00001XXX (or the set of values from
 0x08 to 0x0f). The value of the three low-order bits of the frame
 type determine the fields that are present in the frame.

Iyengar & Thomson Expires July 27, 2019 [Page 104]

Internet-Draft QUIC Transport Protocol January 2019

 o The OFF bit (0x04) in the frame type is set to indicate that there
 is an Offset field present. When set to 1, the Offset field is
 present. When set to 0, the Offset field is absent and the Stream
 Data starts at an offset of 0 (that is, the frame contains the
 first bytes of the stream, or the end of a stream that includes no
 data).

 o The LEN bit (0x02) in the frame type is set to indicate that there
 is a Length field present. If this bit is set to 0, the Length
 field is absent and the Stream Data field extends to the end of
 the packet. If this bit is set to 1, the Length field is present.

 o The FIN bit (0x01) of the frame type is set only on frames that
 contain the final size of the stream. Setting this bit indicates
 that the frame marks the end of the stream.

 An endpoint that receives a STREAM frame for a send-only stream MUST
 terminate the connection with error STREAM_STATE_ERROR.

 The STREAM frames are as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | [Offset (i)] ...
 +-+
 | [Length (i)] ...
 +-+
 | Stream Data (*) ...
 +-+

 Figure 21: STREAM Frame Format

 STREAM frames contain the following fields:

 Stream ID: A variable-length integer indicating the stream ID of the
 stream (see Section 2.1).

 Offset: A variable-length integer specifying the byte offset in the
 stream for the data in this STREAM frame. This field is present
 when the OFF bit is set to 1. When the Offset field is absent,
 the offset is 0.

 Length: A variable-length integer specifying the length of the
 Stream Data field in this STREAM frame. This field is present

Iyengar & Thomson Expires July 27, 2019 [Page 105]

Internet-Draft QUIC Transport Protocol January 2019

 when the LEN bit is set to 1. When the LEN bit is set to 0, the
 Stream Data field consumes all the remaining bytes in the packet.

 Stream Data: The bytes from the designated stream to be delivered.

 When a Stream Data field has a length of 0, the offset in the STREAM
 frame is the offset of the next byte that would be sent.

 The first byte in the stream has an offset of 0. The largest offset
 delivered on a stream - the sum of the offset and data length - MUST
 be less than 2^62.

19.9. MAX_DATA Frame

 The MAX_DATA frame (type=0x10) is used in flow control to inform the
 peer of the maximum amount of data that can be sent on the connection
 as a whole.

 The MAX_DATA frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Maximum Data (i) ...
 +-+

 MAX_DATA frames contain the following fields:

 Maximum Data: A variable-length integer indicating the maximum
 amount of data that can be sent on the entire connection, in units
 of bytes.

 All data sent in STREAM frames counts toward this limit. The sum of
 the largest received offsets on all streams - including streams in
 terminal states - MUST NOT exceed the value advertised by a receiver.
 An endpoint MUST terminate a connection with a FLOW_CONTROL_ERROR
 error if it receives more data than the maximum data value that it
 has sent, unless this is a result of a change in the initial limits
 (see Section 7.3.1).

19.10. MAX_STREAM_DATA Frame

 The MAX_STREAM_DATA frame (type=0x11) is used in flow control to
 inform a peer of the maximum amount of data that can be sent on a
 stream.

 A MAX_STREAM_DATA frame can be sent for streams in the Recv state
 (see Section 3.1). Receiving a MAX_STREAM_DATA frame for a locally-

Iyengar & Thomson Expires July 27, 2019 [Page 106]

Internet-Draft QUIC Transport Protocol January 2019

 initiated stream that has not yet been created MUST be treated as a
 connection error of type STREAM_STATE_ERROR. An endpoint that
 receives a MAX_STREAM_DATA frame for a receive-only stream MUST
 terminate the connection with error STREAM_STATE_ERROR.

 The MAX_STREAM_DATA frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Maximum Stream Data (i) ...
 +-+

 MAX_STREAM_DATA frames contain the following fields:

 Stream ID: The stream ID of the stream that is affected encoded as a
 variable-length integer.

 Maximum Stream Data: A variable-length integer indicating the
 maximum amount of data that can be sent on the identified stream,
 in units of bytes.

 When counting data toward this limit, an endpoint accounts for the
 largest received offset of data that is sent or received on the
 stream. Loss or reordering can mean that the largest received offset
 on a stream can be greater than the total size of data received on
 that stream. Receiving STREAM frames might not increase the largest
 received offset.

 The data sent on a stream MUST NOT exceed the largest maximum stream
 data value advertised by the receiver. An endpoint MUST terminate a
 connection with a FLOW_CONTROL_ERROR error if it receives more data
 than the largest maximum stream data that it has sent for the
 affected stream, unless this is a result of a change in the initial
 limits (see Section 7.3.1).

19.11. MAX_STREAMS Frames

 The MAX_STREAMS frames (type=0x12 and 0x13) inform the peer of the
 cumulative number of streams of a given type it is permitted to open.
 A MAX_STREAMS frame with a type of 0x12 applies to bidirectional
 streams, and a MAX_STREAMS frame with a type of 0x13 applies to
 unidirectional streams.

 The MAX_STREAMS frames are as follows:

Iyengar & Thomson Expires July 27, 2019 [Page 107]

Internet-Draft QUIC Transport Protocol January 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Maximum Streams (i) ...
 +-+

 MAX_STREAMS frames contain the following fields:

 Maximum Streams: A count of the cumulative number of streams of the
 corresponding type that can be opened over the lifetime of the
 connection.

 Loss or reordering can cause a MAX_STREAMS frame to be received which
 states a lower stream limit than an endpoint has previously received.
 MAX_STREAMS frames which do not increase the stream limit MUST be
 ignored.

 An endpoint MUST NOT open more streams than permitted by the current
 stream limit set by its peer. For instance, a server that receives a
 unidirectional stream limit of 3 is permitted to open stream 3, 7,
 and 11, but not stream 15. An endpoint MUST terminate a connection
 with a STREAM_LIMIT_ERROR error if a peer opens more streams than was
 permitted.

 Note that these frames (and the corresponding transport parameters)
 do not describe the number of streams that can be opened
 concurrently. The limit includes streams that have been closed as
 well as those that are open.

19.12. DATA_BLOCKED Frame

 A sender SHOULD send a DATA_BLOCKED frame (type=0x14) when it wishes
 to send data, but is unable to due to connection-level flow control
 (see Section 4). DATA_BLOCKED frames can be used as input to tuning
 of flow control algorithms (see Section 4.2).

 The DATA_BLOCKED frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Data Limit (i) ...
 +-+

 DATA_BLOCKED frames contain the following fields:

 Data Limit: A variable-length integer indicating the connection-
 level limit at which blocking occurred.

Iyengar & Thomson Expires July 27, 2019 [Page 108]

Internet-Draft QUIC Transport Protocol January 2019

19.13. STREAM_DATA_BLOCKED Frame

 A sender SHOULD send a STREAM_DATA_BLOCKED frame (type=0x15) when it
 wishes to send data, but is unable to due to stream-level flow
 control. This frame is analogous to DATA_BLOCKED (Section 19.12).

 An endpoint that receives a STREAM_DATA_BLOCKED frame for a send-only
 stream MUST terminate the connection with error STREAM_STATE_ERROR.

 The STREAM_DATA_BLOCKED frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Stream Data Limit (i) ...
 +-+

 STREAM_DATA_BLOCKED frames contain the following fields:

 Stream ID: A variable-length integer indicating the stream which is
 flow control blocked.

 Stream Data Limit: A variable-length integer indicating the offset
 of the stream at which the blocking occurred.

19.14. STREAMS_BLOCKED Frames

 A sender SHOULD send a STREAMS_BLOCKED frame (type=0x16 or 0x17) when
 it wishes to open a stream, but is unable to due to the maximum
 stream limit set by its peer (see Section 19.11). A STREAMS_BLOCKED
 frame of type 0x16 is used to indicate reaching the bidirectional
 stream limit, and a STREAMS_BLOCKED frame of type 0x17 indicates
 reaching the unidirectional stream limit.

 A STREAMS_BLOCKED frame does not open the stream, but informs the
 peer that a new stream was needed and the stream limit prevented the
 creation of the stream.

 The STREAMS_BLOCKED frames are as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream Limit (i) ...
 +-+

Iyengar & Thomson Expires July 27, 2019 [Page 109]

Internet-Draft QUIC Transport Protocol January 2019

 STREAMS_BLOCKED frames contain the following fields:

 Stream Limit: A variable-length integer indicating the stream limit
 at the time the frame was sent.

19.15. NEW_CONNECTION_ID Frame

 An endpoint sends a NEW_CONNECTION_ID frame (type=0x18) to provide
 its peer with alternative connection IDs that can be used to break
 linkability when migrating connections (see Section 9.5).

 The NEW_CONNECTION_ID frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence Number (i) ...
 +-+
 | Length (8) | |
 +-+-+-+-+-+-+-+-+ Connection ID (32..144) +
 | ...
 +-+
 | |
 + +
 | |
 + Stateless Reset Token (128) +
 | |
 + +
 | |
 +-+

 NEW_CONNECTION_ID frames contain the following fields:

 Sequence Number: The sequence number assigned to the connection ID
 by the sender. See Section 5.1.1.

 Length: An 8-bit unsigned integer containing the length of the
 connection ID. Values less than 4 and greater than 18 are invalid
 and MUST be treated as a connection error of type
 PROTOCOL_VIOLATION.

 Connection ID: A connection ID of the specified length.

 Stateless Reset Token: A 128-bit value that will be used for a
 stateless reset when the associated connection ID is used (see

Section 10.4).

Iyengar & Thomson Expires July 27, 2019 [Page 110]

Internet-Draft QUIC Transport Protocol January 2019

 An endpoint MUST NOT send this frame if it currently requires that
 its peer send packets with a zero-length Destination Connection ID.
 Changing the length of a connection ID to or from zero-length makes
 it difficult to identify when the value of the connection ID changed.
 An endpoint that is sending packets with a zero-length Destination
 Connection ID MUST treat receipt of a NEW_CONNECTION_ID frame as a
 connection error of type PROTOCOL_VIOLATION.

 Transmission errors, timeouts and retransmissions might cause the
 same NEW_CONNECTION_ID frame to be received multiple times. Receipt
 of the same frame multiple times MUST NOT be treated as a connection
 error. A receiver can use the sequence number supplied in the
 NEW_CONNECTION_ID frame to identify new connection IDs from old ones.

 If an endpoint receives a NEW_CONNECTION_ID frame that repeats a
 previously issued connection ID with a different Stateless Reset
 Token or a different sequence number, or if a sequence number is used
 for different connection IDs, the endpoint MAY treat that receipt as
 a connection error of type PROTOCOL_VIOLATION.

19.16. RETIRE_CONNECTION_ID Frame

 An endpoint sends a RETIRE_CONNECTION_ID frame (type=0x19) to
 indicate that it will no longer use a connection ID that was issued
 by its peer. This may include the connection ID provided during the
 handshake. Sending a RETIRE_CONNECTION_ID frame also serves as a
 request to the peer to send additional connection IDs for future use
 (see Section 5.1). New connection IDs can be delivered to a peer
 using the NEW_CONNECTION_ID frame (Section 19.15).

 Retiring a connection ID invalidates the stateless reset token
 associated with that connection ID.

 The RETIRE_CONNECTION_ID frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence Number (i) ...
 +-+

 RETIRE_CONNECTION_ID frames contain the following fields:

 Sequence Number: The sequence number of the connection ID being
 retired. See Section 5.1.2.

Iyengar & Thomson Expires July 27, 2019 [Page 111]

Internet-Draft QUIC Transport Protocol January 2019

 Receipt of a RETIRE_CONNECTION_ID frame containing a sequence number
 greater than any previously sent to the peer MAY be treated as a
 connection error of type PROTOCOL_VIOLATION.

 An endpoint cannot send this frame if it was provided with a zero-
 length connection ID by its peer. An endpoint that provides a zero-
 length connection ID MUST treat receipt of a RETIRE_CONNECTION_ID
 frame as a connection error of type PROTOCOL_VIOLATION.

19.17. PATH_CHALLENGE Frame

 Endpoints can use PATH_CHALLENGE frames (type=0x1a) to check
 reachability to the peer and for path validation during connection
 migration.

 The PATH_CHALLENGE frames are as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + Data (64) +
 | |
 +-+

 PATH_CHALLENGE frames contain the following fields:

 Data: This 8-byte field contains arbitrary data.

 A PATH_CHALLENGE frame containing 8 bytes that are hard to guess is
 sufficient to ensure that it is easier to receive the packet than it
 is to guess the value correctly.

 The recipient of this frame MUST generate a PATH_RESPONSE frame
 (Section 19.18) containing the same Data.

19.18. PATH_RESPONSE Frame

 The PATH_RESPONSE frame (type=0x1b) is sent in response to a
 PATH_CHALLENGE frame. Its format is identical to the PATH_CHALLENGE
 frame (Section 19.17).

 If the content of a PATH_RESPONSE frame does not match the content of
 a PATH_CHALLENGE frame previously sent by the endpoint, the endpoint
 MAY generate a connection error of type PROTOCOL_VIOLATION.

Iyengar & Thomson Expires July 27, 2019 [Page 112]

Internet-Draft QUIC Transport Protocol January 2019

19.19. CONNECTION_CLOSE Frames

 An endpoint sends a CONNECTION_CLOSE frame (type=0x1c or 0x1d) to
 notify its peer that the connection is being closed. The
 CONNECTION_CLOSE with a frame type of 0x1c is used to signal errors
 at only the QUIC layer, or the absence of errors (with the NO_ERROR
 code). The CONNECTION_CLOSE frame with a type of 0x1d is used to
 signal an error with the application that uses QUIC.

 If there are open streams that haven't been explicitly closed, they
 are implicitly closed when the connection is closed.

 The CONNECTION_CLOSE frames are as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (16) | [Frame Type (i)] ...
 +-+
 | Reason Phrase Length (i) ...
 +-+
 | Reason Phrase (*) ...
 +-+

 CONNECTION_CLOSE frames contain the following fields:

 Error Code: A 16-bit error code which indicates the reason for
 closing this connection. A CONNECTION_CLOSE frame of type 0x1c
 uses codes from the space defined in Section 20. A
 CONNECTION_CLOSE frame of type 0x1d uses codes from the
 application protocol error code space, see Section 20.1

 Frame Type: A variable-length integer encoding the type of frame
 that triggered the error. A value of 0 (equivalent to the mention
 of the PADDING frame) is used when the frame type is unknown. The
 application-specific variant of CONNECTION_CLOSE (type 0x1d) does
 not include this field.

 Reason Phrase Length: A variable-length integer specifying the
 length of the reason phrase in bytes. Because a CONNECTION_CLOSE
 frame cannot be split between packets, any limits on packet size
 will also limit the space available for a reason phrase.

 Reason Phrase: A human-readable explanation for why the connection
 was closed. This can be zero length if the sender chooses to not
 give details beyond the Error Code. This SHOULD be a UTF-8
 encoded string [RFC3629].

https://datatracker.ietf.org/doc/html/rfc3629

Iyengar & Thomson Expires July 27, 2019 [Page 113]

Internet-Draft QUIC Transport Protocol January 2019

19.20. Extension Frames

 QUIC frames do not use a self-describing encoding. An endpoint
 therefore needs to understand the syntax of all frames before it can
 successfully process a packet. This allows for efficient encoding of
 frames, but it means that an endpoint cannot send a frame of a type
 that is unknown to its peer.

 An extension to QUIC that wishes to use a new type of frame MUST
 first ensure that a peer is able to understand the frame. An
 endpoint can use a transport parameter to signal its willingness to
 receive one or more extension frame types with the one transport
 parameter.

 Extension frames MUST be congestion controlled and MUST cause an ACK
 frame to be sent. The exception is extension frames that replace or
 supplement the ACK frame. Extension frames are not included in flow
 control unless specified in the extension.

 An IANA registry is used to manage the assignment of frame types, see
Section 22.2.

20. Transport Error Codes

 QUIC error codes are 16-bit unsigned integers.

 This section lists the defined QUIC transport error codes that may be
 used in a CONNECTION_CLOSE frame. These errors apply to the entire
 connection.

 NO_ERROR (0x0): An endpoint uses this with CONNECTION_CLOSE to
 signal that the connection is being closed abruptly in the absence
 of any error.

 INTERNAL_ERROR (0x1): The endpoint encountered an internal error and
 cannot continue with the connection.

 SERVER_BUSY (0x2): The server is currently busy and does not accept
 any new connections.

 FLOW_CONTROL_ERROR (0x3): An endpoint received more data than it
 permitted in its advertised data limits (see Section 4).

 STREAM_LIMIT_ERROR (0x4): An endpoint received a frame for a stream
 identifier that exceeded its advertised stream limit for the
 corresponding stream type.

Iyengar & Thomson Expires July 27, 2019 [Page 114]

Internet-Draft QUIC Transport Protocol January 2019

 STREAM_STATE_ERROR (0x5): An endpoint received a frame for a stream
 that was not in a state that permitted that frame (see Section 3).

 FINAL_SIZE_ERROR (0x6): An endpoint received a STREAM frame
 containing data that exceeded the previously established final
 size. Or an endpoint received a STREAM frame or a RESET_STREAM
 frame containing a final size that was lower than the size of
 stream data that was already received. Or an endpoint received a
 STREAM frame or a RESET_STREAM frame containing a different final
 size to the one already established.

 FRAME_ENCODING_ERROR (0x7): An endpoint received a frame that was
 badly formatted. For instance, a frame of an unknown type, or an
 ACK frame that has more acknowledgment ranges than the remainder
 of the packet could carry.

 TRANSPORT_PARAMETER_ERROR (0x8): An endpoint received transport
 parameters that were badly formatted, included an invalid value,
 was absent even though it is mandatory, was present though it is
 forbidden, or is otherwise in error.

 VERSION_NEGOTIATION_ERROR (0x9): An endpoint received transport
 parameters that contained version negotiation parameters that
 disagreed with the version negotiation that it performed. This
 error code indicates a potential version downgrade attack.

 PROTOCOL_VIOLATION (0xA): An endpoint detected an error with
 protocol compliance that was not covered by more specific error
 codes.

 INVALID_MIGRATION (0xC): A peer has migrated to a different network
 when the endpoint had disabled migration.

 CRYPTO_ERROR (0x1XX): The cryptographic handshake failed. A range
 of 256 values is reserved for carrying error codes specific to the
 cryptographic handshake that is used. Codes for errors occurring
 when TLS is used for the crypto handshake are described in
 Section 4.8 of [QUIC-TLS].

 See Section 22.3 for details of registering new error codes.

20.1. Application Protocol Error Codes

 Application protocol error codes are 16-bit unsigned integers, but
 the management of application error codes are left to application
 protocols. Application protocol error codes are used for the
 RESET_STREAM frame (Section 19.4) and the CONNECTION_CLOSE frame with
 a type of 0x1d (Section 19.19).

Iyengar & Thomson Expires July 27, 2019 [Page 115]

Internet-Draft QUIC Transport Protocol January 2019

21. Security Considerations

21.1. Handshake Denial of Service

 As an encrypted and authenticated transport QUIC provides a range of
 protections against denial of service. Once the cryptographic
 handshake is complete, QUIC endpoints discard most packets that are
 not authenticated, greatly limiting the ability of an attacker to
 interfere with existing connections.

 Once a connection is established QUIC endpoints might accept some
 unauthenticated ICMP packets (see Section 14.2), but the use of these
 packets is extremely limited. The only other type of packet that an
 endpoint might accept is a stateless reset (Section 10.4) which
 relies on the token being kept secret until it is used.

 During the creation of a connection, QUIC only provides protection
 against attack from off the network path. All QUIC packets contain
 proof that the recipient saw a preceding packet from its peer.

 The first mechanism used is the source and destination connection
 IDs, which are required to match those set by a peer. Except for an
 Initial and stateless reset packets, an endpoint only accepts packets
 that include a destination connection that matches a connection ID
 the endpoint previously chose. This is the only protection offered
 for Version Negotiation packets.

 The destination connection ID in an Initial packet is selected by a
 client to be unpredictable, which serves an additional purpose. The
 packets that carry the cryptographic handshake are protected with a
 key that is derived from this connection ID and salt specific to the
 QUIC version. This allows endpoints to use the same process for
 authenticating packets that they receive as they use after the
 cryptographic handshake completes. Packets that cannot be
 authenticated are discarded. Protecting packets in this fashion
 provides a strong assurance that the sender of the packet saw the
 Initial packet and understood it.

 These protections are not intended to be effective against an
 attacker that is able to receive QUIC packets prior to the connection
 being established. Such an attacker can potentially send packets
 that will be accepted by QUIC endpoints. This version of QUIC
 attempts to detect this sort of attack, but it expects that endpoints
 will fail to establish a connection rather than recovering. For the
 most part, the cryptographic handshake protocol [QUIC-TLS] is
 responsible for detecting tampering during the handshake, though
 additional validation is required for version negotiation (see

Section 7.3.3).

Iyengar & Thomson Expires July 27, 2019 [Page 116]

Internet-Draft QUIC Transport Protocol January 2019

 Endpoints are permitted to use other methods to detect and attempt to
 recover from interference with the handshake. Invalid packets may be
 identified and discarded using other methods, but no specific method
 is mandated in this document.

21.2. Amplification Attack

 An attacker might be able to receive an address validation token
 (Section 8) from a server and then release the IP address it used to
 acquire that token. At a later time, the attacker may initiate a
 0-RTT connection with a server by spoofing this same address, which
 might now address a different (victim) endpoint. The attacker can
 thus potentially cause the server to send an initial congestion
 window's worth of data towards the victim.

 Servers SHOULD provide mitigations for this attack by limiting the
 usage and lifetime of address validation tokens (see Section 8.1.2).

21.3. Optimistic ACK Attack

 An endpoint that acknowledges packets it has not received might cause
 a congestion controller to permit sending at rates beyond what the
 network supports. An endpoint MAY skip packet numbers when sending
 packets to detect this behavior. An endpoint can then immediately
 close the connection with a connection error of type
 PROTOCOL_VIOLATION (see Section 10.3).

21.4. Slowloris Attacks

 The attacks commonly known as Slowloris [SLOWLORIS] try to keep many
 connections to the target endpoint open and hold them open as long as
 possible. These attacks can be executed against a QUIC endpoint by
 generating the minimum amount of activity necessary to avoid being
 closed for inactivity. This might involve sending small amounts of
 data, gradually opening flow control windows in order to control the
 sender rate, or manufacturing ACK frames that simulate a high loss
 rate.

 QUIC deployments SHOULD provide mitigations for the Slowloris
 attacks, such as increasing the maximum number of clients the server
 will allow, limiting the number of connections a single IP address is
 allowed to make, imposing restrictions on the minimum transfer speed
 a connection is allowed to have, and restricting the length of time
 an endpoint is allowed to stay connected.

Iyengar & Thomson Expires July 27, 2019 [Page 117]

Internet-Draft QUIC Transport Protocol January 2019

21.5. Stream Fragmentation and Reassembly Attacks

 An adversarial sender might intentionally send fragments of stream
 data in order to cause disproportionate receive buffer memory
 commitment and/or creation of a large and inefficient data structure.

 An adversarial receiver might intentionally not acknowledge packets
 containing stream data in order to force the sender to store the
 unacknowledged stream data for retransmission.

 The attack on receivers is mitigated if flow control windows
 correspond to available memory. However, some receivers will over-
 commit memory and advertise flow control offsets in the aggregate
 that exceed actual available memory. The over-commitment strategy
 can lead to better performance when endpoints are well behaved, but
 renders endpoints vulnerable to the stream fragmentation attack.

 QUIC deployments SHOULD provide mitigations against stream
 fragmentation attacks. Mitigations could consist of avoiding over-
 committing memory, limiting the size of tracking data structures,
 delaying reassembly of STREAM frames, implementing heuristics based
 on the age and duration of reassembly holes, or some combination.

21.6. Stream Commitment Attack

 An adversarial endpoint can open lots of streams, exhausting state on
 an endpoint. The adversarial endpoint could repeat the process on a
 large number of connections, in a manner similar to SYN flooding
 attacks in TCP.

 Normally, clients will open streams sequentially, as explained in
Section 2.1. However, when several streams are initiated at short

 intervals, transmission error may cause STREAM DATA frames opening
 streams to be received out of sequence. A receiver is obligated to
 open intervening streams if a higher-numbered stream ID is received.
 Thus, on a new connection, opening stream 2000001 opens 1 million
 streams, as required by the specification.

 The number of active streams is limited by the concurrent stream
 limit transport parameter, as explained in Section 4.5. If chosen
 judiciously, this limit mitigates the effect of the stream commitment
 attack. However, setting the limit too low could affect performance
 when applications expect to open large number of streams.

Iyengar & Thomson Expires July 27, 2019 [Page 118]

Internet-Draft QUIC Transport Protocol January 2019

21.7. Explicit Congestion Notification Attacks

 An on-path attacker could manipulate the value of ECN codepoints in
 the IP header to influence the sender's rate. [RFC3168] discusses
 manipulations and their effects in more detail.

 An on-the-side attacker can duplicate and send packets with modified
 ECN codepoints to affect the sender's rate. If duplicate packets are
 discarded by a receiver, an off-path attacker will need to race the
 duplicate packet against the original to be successful in this
 attack. Therefore, QUIC receivers ignore ECN codepoints set in
 duplicate packets (see Section 13.3).

21.8. Stateless Reset Oracle

 Stateless resets create a possible denial of service attack analogous
 to a TCP reset injection. This attack is possible if an attacker is
 able to cause a stateless reset token to be generated for a
 connection with a selected connection ID. An attacker that can cause
 this token to be generated can reset an active connection with the
 same connection ID.

 If a packet can be routed to different instances that share a static
 key, for example by changing an IP address or port, then an attacker
 can cause the server to send a stateless reset. To defend against
 this style of denial service, endpoints that share a static key for
 stateless reset (see Section 10.4.2) MUST be arranged so that packets
 with a given connection ID always arrive at an instance that has
 connection state, unless that connection is no longer active.

 In the case of a cluster that uses dynamic load balancing, it's
 possible that a change in load balancer configuration could happen
 while an active instance retains connection state; even if an
 instance retains connection state, the change in routing and
 resulting stateless reset will result in the connection being
 terminated. If there is no chance in the packet being routed to the
 correct instance, it is better to send a stateless reset than wait
 for connections to time out. However, this is acceptable only if the
 routing cannot be influenced by an attacker.

22. IANA Considerations

22.1. QUIC Transport Parameter Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Parameters"
 under a "QUIC Protocol" heading.

https://datatracker.ietf.org/doc/html/rfc3168

Iyengar & Thomson Expires July 27, 2019 [Page 119]

Internet-Draft QUIC Transport Protocol January 2019

 The "QUIC Transport Parameters" registry governs a 16-bit space.
 This space is split into two spaces that are governed by different
 policies. Values with the first byte in the range 0x00 to 0xfe (in
 hexadecimal) are assigned via the Specification Required policy
 [RFC8126]. Values with the first byte 0xff are reserved for Private
 Use [RFC8126].

 Registrations MUST include the following fields:

 Value: The numeric value of the assignment (registrations will be
 between 0x0000 and 0xfeff).

 Parameter Name: A short mnemonic for the parameter.

 Specification: A reference to a publicly available specification for
 the value.

 The nominated expert(s) verify that a specification exists and is
 readily accessible. Expert(s) are encouraged to be biased towards
 approving registrations unless they are abusive, frivolous, or
 actively harmful (not merely aesthetically displeasing, or
 architecturally dubious).

 The initial contents of this registry are shown in Table 6.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Iyengar & Thomson Expires July 27, 2019 [Page 120]

Internet-Draft QUIC Transport Protocol January 2019

 +--------+-------------------------------------+---------------+
 | Value | Parameter Name | Specification |
 +--------+-------------------------------------+---------------+
 | 0x0000 | original_connection_id | Section 18.1 |
 | | | |
 | 0x0001 | idle_timeout | Section 18.1 |
 | | | |
 | 0x0002 | stateless_reset_token | Section 18.1 |
 | | | |
 | 0x0003 | max_packet_size | Section 18.1 |
 | | | |
 | 0x0004 | initial_max_data | Section 18.1 |
 | | | |
 | 0x0005 | initial_max_stream_data_bidi_local | Section 18.1 |
 | | | |
 | 0x0006 | initial_max_stream_data_bidi_remote | Section 18.1 |
 | | | |
 | 0x0007 | initial_max_stream_data_uni | Section 18.1 |
 | | | |
 | 0x0008 | initial_max_streams_bidi | Section 18.1 |
 | | | |
 | 0x0009 | initial_max_streams_uni | Section 18.1 |
 | | | |
 | 0x000a | ack_delay_exponent | Section 18.1 |
 | | | |
 | 0x000b | max_ack_delay | Section 18.1 |
 | | | |
 | 0x000c | disable_migration | Section 18.1 |
 | | | |
 | 0x000d | preferred_address | Section 18.1 |
 +--------+-------------------------------------+---------------+

 Table 6: Initial QUIC Transport Parameters Entries

22.2. QUIC Frame Type Registry

 IANA [SHALL add/has added] a registry for "QUIC Frame Types" under a
 "QUIC Protocol" heading.

 The "QUIC Frame Types" registry governs a 62-bit space. This space
 is split into three spaces that are governed by different policies.
 Values between 0x00 and 0x3f (in hexadecimal) are assigned via the
 Standards Action or IESG Review policies [RFC8126]. Values from 0x40
 to 0x3fff operate on the Specification Required policy [RFC8126].
 All other values are assigned to Private Use [RFC8126].

 Registrations MUST include the following fields:

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Iyengar & Thomson Expires July 27, 2019 [Page 121]

Internet-Draft QUIC Transport Protocol January 2019

 Value: The numeric value of the assignment (registrations will be
 between 0x00 and 0x3fff). A range of values MAY be assigned.

 Frame Name: A short mnemonic for the frame type.

 Specification: A reference to a publicly available specification for
 the value.

 The nominated expert(s) verify that a specification exists and is
 readily accessible. Specifications for new registrations need to
 describe the means by which an endpoint might determine that it can
 send the identified type of frame. An accompanying transport
 parameter registration (see Section 22.1) is expected for most
 registrations. The specification needs to describe the format and
 assigned semantics of any fields in the frame.

 Expert(s) are encouraged to be biased towards approving registrations
 unless they are abusive, frivolous, or actively harmful (not merely
 aesthetically displeasing, or architecturally dubious).

 The initial contents of this registry are tabulated in Table 3.

22.3. QUIC Transport Error Codes Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Error
 Codes" under a "QUIC Protocol" heading.

 The "QUIC Transport Error Codes" registry governs a 16-bit space.
 This space is split into two spaces that are governed by different
 policies. Values with the first byte in the range 0x00 to 0xfe (in
 hexadecimal) are assigned via the Specification Required policy
 [RFC8126]. Values with the first byte 0xff are reserved for Private
 Use [RFC8126].

 Registrations MUST include the following fields:

 Value: The numeric value of the assignment (registrations will be
 between 0x0000 and 0xfeff).

 Code: A short mnemonic for the parameter.

 Description: A brief description of the error code semantics, which
 MAY be a summary if a specification reference is provided.

 Specification: A reference to a publicly available specification for
 the value.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Iyengar & Thomson Expires July 27, 2019 [Page 122]

Internet-Draft QUIC Transport Protocol January 2019

 The initial contents of this registry are shown in Table 7. Values
 from 0xFF00 to 0xFFFF are reserved for Private Use [RFC8126].

Iyengar & Thomson Expires July 27, 2019 [Page 123]

https://datatracker.ietf.org/doc/html/rfc8126

Internet-Draft QUIC Transport Protocol January 2019

 +------+---------------------------+----------------+---------------+
 | Valu | Error | Description | Specification |
 | e | | | |
 +------+---------------------------+----------------+---------------+
0x0	NO_ERROR	No error	Section 20
0x1	INTERNAL_ERROR	Implementation	Section 20
		error	
0x2	SERVER_BUSY	Server	Section 20
		currently busy	
0x3	FLOW_CONTROL_ERROR	Flow control	Section 20
		error	
0x4	STREAM_LIMIT_ERROR	Too many	Section 20
		streams opened	
0x5	STREAM_STATE_ERROR	Frame received	Section 20
		in invalid	
		stream state	
0x6	FINAL_SIZE_ERROR	Change to	Section 20
		final size	
0x7	FRAME_ENCODING_ERROR	Frame encoding	Section 20
		error	
0x8	TRANSPORT_PARAMETER_ERROR	Error in	Section 20
		transport	
		parameters	
0x9	VERSION_NEGOTIATION_ERROR	Version	Section 20
		negotiation	
		failure	
0xA	PROTOCOL_VIOLATION	Generic	Section 20
		protocol	
		violation	
0xC	INVALID_MIGRATION	Violated	Section 20
		disabled	
		migration	
 +------+---------------------------+----------------+---------------+

 Table 7: Initial QUIC Transport Error Codes Entries

Iyengar & Thomson Expires July 27, 2019 [Page 124]

Internet-Draft QUIC Transport Protocol January 2019

23. References

23.1. Normative References

 [DPLPMTUD]
 Fairhurst, G., Jones, T., Tuexen, M., and I. Ruengeler,
 "Packetization Layer Path MTU Discovery for Datagram
 Transports", draft-ietf-tsvwg-datagram-plpmtud-06 (work in
 progress), November 2018.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery-18 (work
 in progress), January 2019.

 [QUIC-TLS]
 Thomson, M., Ed. and S. Turner, Ed., "Using Transport
 Layer Security (TLS) to Secure QUIC", draft-ietf-quic-

tls-18 (work in progress), January 2019.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-datagram-plpmtud-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-18
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116

Iyengar & Thomson Expires July 27, 2019 [Page 125]

Internet-Draft QUIC Transport Protocol January 2019

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

 [SPIN] Trammell, B. and M. Kuehlewind, "The QUIC Latency Spin
 Bit", draft-ietf-quic-spin-exp-01 (work in progress),
 October 2018.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

23.2. Informative References

 [EARLY-DESIGN]
 Roskind, J., "QUIC: Multiplexed Transport Over UDP",
 December 2013, <https://goo.gl/dMVtFi>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [QUIC-INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC",

draft-ietf-quic-invariants-03 (work in progress), January
 2019.

https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://datatracker.ietf.org/doc/html/draft-ietf-quic-spin-exp-01
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://goo.gl/dMVtFi
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-03

Iyengar & Thomson Expires July 27, 2019 [Page 126]

Internet-Draft QUIC Transport Protocol January 2019

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <https://www.rfc-editor.org/info/rfc1812>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
RFC 2360, DOI 10.17487/RFC2360, June 1998,

 <https://www.rfc-editor.org/info/rfc2360>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,

RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

https://datatracker.ietf.org/doc/html/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp22
https://datatracker.ietf.org/doc/html/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://datatracker.ietf.org/doc/html/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200

Iyengar & Thomson Expires July 27, 2019 [Page 127]

Internet-Draft QUIC Transport Protocol January 2019

 [SLOWLORIS]
 RSnake Hansen, R., "Welcome to Slowloris...", June 2009,
 <https://web.archive.org/web/20150315054838/

http://ha.ckers.org/slowloris/>.

Appendix A. Sample Packet Number Decoding Algorithm

 The following pseudo-code shows how an implementation can decode
 packet numbers after header protection has been removed.

 DecodePacketNumber(largest_pn, truncated_pn, pn_nbits):
 expected_pn = largest_pn + 1
 pn_win = 1 << pn_nbits
 pn_hwin = pn_win / 2
 pn_mask = pn_win - 1
 // The incoming packet number should be greater than
 // expected_pn - pn_hwin and less than or equal to
 // expected_pn + pn_hwin
 //
 // This means we can't just strip the trailing bits from
 // expected_pn and add the truncated_pn because that might
 // yield a value outside the window.
 //
 // The following code calculates a candidate value and
 // makes sure it's within the packet number window.
 candidate_pn = (expected_pn & ~pn_mask) | truncated_pn
 if candidate_pn <= expected_pn - pn_hwin:
 return candidate_pn + pn_win
 // Note the extra check for underflow when candidate_pn
 // is near zero.
 if candidate_pn > expected_pn + pn_hwin and
 candidate_pn > pn_win:
 return candidate_pn - pn_win
 return candidate_pn

Appendix B. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

B.1. Since draft-ietf-quic-transport-17

 o Stream-related errors now use STREAM_STATE_ERROR (#2305)

 o Endpoints discard initial keys as soon as handshake keys are
 available (#1951, #2045)

https://web.archive.org/web/20150315054838/
http://ha.ckers.org/slowloris/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

Iyengar & Thomson Expires July 27, 2019 [Page 128]

Internet-Draft QUIC Transport Protocol January 2019

 o Expanded conditions for ignoring ICMP packet too big messages
 (#2108, #2161)

 o Remove rate control from PATH_CHALLENGE/PATH_RESPONSE (#2129,
 #2241)

 o Endpoints are permitted to discard malformed initial packets
 (#2141)

 o Clarified ECN implementation and usage requirements (#2156, #2201)

 o Disable ECN count verification for packets that arrive out of
 order (#2198, #2215)

 o Use Probe Timeout (PTO) instead of RTO (#2206, #2238)

 o Loosen constraints on retransmission of ACK ranges (#2199, #2245)

 o Limit Retry and Version Negotiation to once per datagram (#2259,
 #2303)

 o Set a maximum value for max_ack_delay transport parameter (#2282,
 #2301)

 o Allow server preferred address for both IPv4 and IPv6 (#2122,
 #2296)

 o Corrected requirements for migration to a preferred address
 (#2146, #2349)

B.2. Since draft-ietf-quic-transport-16

 o Stream limits are defined as counts, not maximums (#1850, #1906)

 o Require amplification attack defense after closing (#1905, #1911)

 o Remove reservation of application error code 0 for STOPPING
 (#1804, #1922)

 o Renumbered frames (#1945)

 o Renumbered transport parameters (#1946)

 o Numeric transport parameters are expressed as varints (#1608,
 #1947, #1955)

 o Reorder the NEW_CONNECTION_ID frame (#1952, #1963)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-16

Iyengar & Thomson Expires July 27, 2019 [Page 129]

Internet-Draft QUIC Transport Protocol January 2019

 o Rework the first byte (#2006)

 * Fix the 0x40 bit

 * Change type values for long header

 * Add spin bit to short header (#631, #1988)

 * Encrypt the remainder of the first byte (#1322)

 * Move packet number length to first byte

 * Move ODCIL to first byte of retry packets

 * Simplify packet number protection (#1575)

 o Allow STOP_SENDING to open a remote bidirectional stream (#1797,
 #2013)

 o Added mitigation for off-path migration attacks (#1278, #1749,
 #2033)

 o Don't let the PMTU to drop below 1280 (#2063, #2069)

 o Require peers to replace retired connection IDs (#2085)

 o Servers are required to ignore Version Negotiation packets (#2088)

 o Tokens are repeated in all Initial packets (#2089)

 o Clarified how PING frames are sent after loss (#2094)

 o Initial keys are discarded once Handshake are available (#1951,
 #2045)

 o ICMP PTB validation clarifications (#2161, #2109, #2108)

B.3. Since draft-ietf-quic-transport-15

 Substantial editorial reorganization; no technical changes.

B.4. Since draft-ietf-quic-transport-14

 o Merge ACK and ACK_ECN (#1778, #1801)

 o Explicitly communicate max_ack_delay (#981, #1781)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-15
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-14

Iyengar & Thomson Expires July 27, 2019 [Page 130]

Internet-Draft QUIC Transport Protocol January 2019

 o Validate original connection ID after Retry packets (#1710, #1486,
 #1793)

 o Idle timeout is optional and has no specified maximum (#1765)

 o Update connection ID handling; add RETIRE_CONNECTION_ID type
 (#1464, #1468, #1483, #1484, #1486, #1495, #1729, #1742, #1799,
 #1821)

 o Include a Token in all Initial packets (#1649, #1794)

 o Prevent handshake deadlock (#1764, #1824)

B.5. Since draft-ietf-quic-transport-13

 o Streams open when higher-numbered streams of the same type open
 (#1342, #1549)

 o Split initial stream flow control limit into 3 transport
 parameters (#1016, #1542)

 o All flow control transport parameters are optional (#1610)

 o Removed UNSOLICITED_PATH_RESPONSE error code (#1265, #1539)

 o Permit stateless reset in response to any packet (#1348, #1553)

 o Recommended defense against stateless reset spoofing (#1386,
 #1554)

 o Prevent infinite stateless reset exchanges (#1443, #1627)

 o Forbid processing of the same packet number twice (#1405, #1624)

 o Added a packet number decoding example (#1493)

 o More precisely define idle timeout (#1429, #1614, #1652)

 o Corrected format of Retry packet and prevented looping (#1492,
 #1451, #1448, #1498)

 o Permit 0-RTT after receiving Version Negotiation or Retry (#1507,
 #1514, #1621)

 o Permit Retry in response to 0-RTT (#1547, #1552)

 o Looser verification of ECN counters to account for ACK loss
 (#1555, #1481, #1565)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13

Iyengar & Thomson Expires July 27, 2019 [Page 131]

Internet-Draft QUIC Transport Protocol January 2019

 o Remove frame type field from APPLICATION_CLOSE (#1508, #1528)

B.6. Since draft-ietf-quic-transport-12

 o Changes to integration of the TLS handshake (#829, #1018, #1094,
 #1165, #1190, #1233, #1242, #1252, #1450, #1458)

 * The cryptographic handshake uses CRYPTO frames, not stream 0

 * QUIC packet protection is used in place of TLS record
 protection

 * Separate QUIC packet number spaces are used for the handshake

 * Changed Retry to be independent of the cryptographic handshake

 * Added NEW_TOKEN frame and Token fields to Initial packet

 * Limit the use of HelloRetryRequest to address TLS needs (like
 key shares)

 o Enable server to transition connections to a preferred address
 (#560, #1251, #1373)

 o Added ECN feedback mechanisms and handling; new ACK_ECN frame
 (#804, #805, #1372)

 o Changed rules and recommendations for use of new connection IDs
 (#1258, #1264, #1276, #1280, #1419, #1452, #1453, #1465)

 o Added a transport parameter to disable intentional connection
 migration (#1271, #1447)

 o Packets from different connection ID can't be coalesced (#1287,
 #1423)

 o Fixed sampling method for packet number encryption; the length
 field in long headers includes the packet number field in addition
 to the packet payload (#1387, #1389)

 o Stateless Reset is now symmetric and subject to size constraints
 (#466, #1346)

 o Added frame type extension mechanism (#58, #1473)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-12

Iyengar & Thomson Expires July 27, 2019 [Page 132]

Internet-Draft QUIC Transport Protocol January 2019

B.7. Since draft-ietf-quic-transport-11

 o Enable server to transition connections to a preferred address
 (#560, #1251)

 o Packet numbers are encrypted (#1174, #1043, #1048, #1034, #850,
 #990, #734, #1317, #1267, #1079)

 o Packet numbers use a variable-length encoding (#989, #1334)

 o STREAM frames can now be empty (#1350)

B.8. Since draft-ietf-quic-transport-10

 o Swap payload length and packed number fields in long header
 (#1294)

 o Clarified that CONNECTION_CLOSE is allowed in Handshake packet
 (#1274)

 o Spin bit reserved (#1283)

 o Coalescing multiple QUIC packets in a UDP datagram (#1262, #1285)

 o A more complete connection migration (#1249)

 o Refine opportunistic ACK defense text (#305, #1030, #1185)

 o A Stateless Reset Token isn't mandatory (#818, #1191)

 o Removed implicit stream opening (#896, #1193)

 o An empty STREAM frame can be used to open a stream without sending
 data (#901, #1194)

 o Define stream counts in transport parameters rather than a maximum
 stream ID (#1023, #1065)

 o STOP_SENDING is now prohibited before streams are used (#1050)

 o Recommend including ACK in Retry packets and allow PADDING (#1067,
 #882)

 o Endpoints now become closing after an idle timeout (#1178, #1179)

 o Remove implication that Version Negotiation is sent when a packet
 of the wrong version is received (#1197)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-10

Iyengar & Thomson Expires July 27, 2019 [Page 133]

Internet-Draft QUIC Transport Protocol January 2019

B.9. Since draft-ietf-quic-transport-09

 o Added PATH_CHALLENGE and PATH_RESPONSE frames to replace PING with
 Data and PONG frame. Changed ACK frame type from 0x0e to 0x0d.
 (#1091, #725, #1086)

 o A server can now only send 3 packets without validating the client
 address (#38, #1090)

 o Delivery order of stream data is no longer strongly specified
 (#252, #1070)

 o Rework of packet handling and version negotiation (#1038)

 o Stream 0 is now exempt from flow control until the handshake
 completes (#1074, #725, #825, #1082)

 o Improved retransmission rules for all frame types: information is
 retransmitted, not packets or frames (#463, #765, #1095, #1053)

 o Added an error code for server busy signals (#1137)

 o Endpoints now set the connection ID that their peer uses.
 Connection IDs are variable length. Removed the
 omit_connection_id transport parameter and the corresponding short
 header flag. (#1089, #1052, #1146, #821, #745, #821, #1166, #1151)

B.10. Since draft-ietf-quic-transport-08

 o Clarified requirements for BLOCKED usage (#65, #924)

 o BLOCKED frame now includes reason for blocking (#452, #924, #927,
 #928)

 o GAP limitation in ACK Frame (#613)

 o Improved PMTUD description (#614, #1036)

 o Clarified stream state machine (#634, #662, #743, #894)

 o Reserved versions don't need to be generated deterministically
 (#831, #931)

 o You don't always need the draining period (#871)

 o Stateless reset clarified as version-specific (#930, #986)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08

Iyengar & Thomson Expires July 27, 2019 [Page 134]

Internet-Draft QUIC Transport Protocol January 2019

 o initial_max_stream_id_x transport parameters are optional (#970,
 #971)

 o Ack Delay assumes a default value during the handshake (#1007,
 #1009)

 o Removed transport parameters from NewSessionTicket (#1015)

B.11. Since draft-ietf-quic-transport-07

 o The long header now has version before packet number (#926, #939)

 o Rename and consolidate packet types (#846, #822, #847)

 o Packet types are assigned new codepoints and the Connection ID
 Flag is inverted (#426, #956)

 o Removed type for Version Negotiation and use Version 0 (#963,
 #968)

 o Streams are split into unidirectional and bidirectional (#643,
 #656, #720, #872, #175, #885)

 * Stream limits now have separate uni- and bi-directional
 transport parameters (#909, #958)

 * Stream limit transport parameters are now optional and default
 to 0 (#970, #971)

 o The stream state machine has been split into read and write (#634,
 #894)

 o Employ variable-length integer encodings throughout (#595)

 o Improvements to connection close

 * Added distinct closing and draining states (#899, #871)

 * Draining period can terminate early (#869, #870)

 * Clarifications about stateless reset (#889, #890)

 o Address validation for connection migration (#161, #732, #878)

 o Clearly defined retransmission rules for BLOCKED (#452, #65, #924)

 o negotiated_version is sent in server transport parameters (#710,
 #959)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-07

Iyengar & Thomson Expires July 27, 2019 [Page 135]

Internet-Draft QUIC Transport Protocol January 2019

 o Increased the range over which packet numbers are randomized
 (#864, #850, #964)

B.12. Since draft-ietf-quic-transport-06

 o Replaced FNV-1a with AES-GCM for all "Cleartext" packets (#554)

 o Split error code space between application and transport (#485)

 o Stateless reset token moved to end (#820)

 o 1-RTT-protected long header types removed (#848)

 o No acknowledgments during draining period (#852)

 o Remove "application close" as a separate close type (#854)

 o Remove timestamps from the ACK frame (#841)

 o Require transport parameters to only appear once (#792)

B.13. Since draft-ietf-quic-transport-05

 o Stateless token is server-only (#726)

 o Refactor section on connection termination (#733, #748, #328,
 #177)

 o Limit size of Version Negotiation packet (#585)

 o Clarify when and what to ack (#736)

 o Renamed STREAM_ID_NEEDED to STREAM_ID_BLOCKED

 o Clarify Keep-alive requirements (#729)

B.14. Since draft-ietf-quic-transport-04

 o Introduce STOP_SENDING frame, RESET_STREAM only resets in one
 direction (#165)

 o Removed GOAWAY; application protocols are responsible for graceful
 shutdown (#696)

 o Reduced the number of error codes (#96, #177, #184, #211)

 o Version validation fields can't move or change (#121)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-04

Iyengar & Thomson Expires July 27, 2019 [Page 136]

Internet-Draft QUIC Transport Protocol January 2019

 o Removed versions from the transport parameters in a
 NewSessionTicket message (#547)

 o Clarify the meaning of "bytes in flight" (#550)

 o Public reset is now stateless reset and not visible to the path
 (#215)

 o Reordered bits and fields in STREAM frame (#620)

 o Clarifications to the stream state machine (#572, #571)

 o Increased the maximum length of the Largest Acknowledged field in
 ACK frames to 64 bits (#629)

 o truncate_connection_id is renamed to omit_connection_id (#659)

 o CONNECTION_CLOSE terminates the connection like TCP RST (#330,
 #328)

 o Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

B.15. Since draft-ietf-quic-transport-03

 o Change STREAM and RESET_STREAM layout

 o Add MAX_STREAM_ID settings

B.16. Since draft-ietf-quic-transport-02

 o The size of the initial packet payload has a fixed minimum (#267,
 #472)

 o Define when Version Negotiation packets are ignored (#284, #294,
 #241, #143, #474)

 o The 64-bit FNV-1a algorithm is used for integrity protection of
 unprotected packets (#167, #480, #481, #517)

 o Rework initial packet types to change how the connection ID is
 chosen (#482, #442, #493)

 o No timestamps are forbidden in unprotected packets (#542, #429)

 o Cryptographic handshake is now on stream 0 (#456)

 o Remove congestion control exemption for cryptographic handshake
 (#248, #476)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02

Iyengar & Thomson Expires July 27, 2019 [Page 137]

Internet-Draft QUIC Transport Protocol January 2019

 o Version 1 of QUIC uses TLS; a new version is needed to use a
 different handshake protocol (#516)

 o STREAM frames have a reduced number of offset lengths (#543, #430)

 o Split some frames into separate connection- and stream- level
 frames (#443)

 * WINDOW_UPDATE split into MAX_DATA and MAX_STREAM_DATA (#450)

 * BLOCKED split to match WINDOW_UPDATE split (#454)

 * Define STREAM_ID_NEEDED frame (#455)

 o A NEW_CONNECTION_ID frame supports connection migration without
 linkability (#232, #491, #496)

 o Transport parameters for 0-RTT are retained from a previous
 connection (#405, #513, #512)

 * A client in 0-RTT no longer required to reset excess streams
 (#425, #479)

 o Expanded security considerations (#440, #444, #445, #448)

B.17. Since draft-ietf-quic-transport-01

 o Defined short and long packet headers (#40, #148, #361)

 o Defined a versioning scheme and stable fields (#51, #361)

 o Define reserved version values for "greasing" negotiation (#112,
 #278)

 o The initial packet number is randomized (#35, #283)

 o Narrow the packet number encoding range requirement (#67, #286,
 #299, #323, #356)

 o Defined client address validation (#52, #118, #120, #275)

 o Define transport parameters as a TLS extension (#49, #122)

 o SCUP and COPT parameters are no longer valid (#116, #117)

 o Transport parameters for 0-RTT are either remembered from before,
 or assume default values (#126)

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01

Iyengar & Thomson Expires July 27, 2019 [Page 138]

Internet-Draft QUIC Transport Protocol January 2019

 o The server chooses connection IDs in its final flight (#119, #349,
 #361)

 o The server echoes the Connection ID and packet number fields when
 sending a Version Negotiation packet (#133, #295, #244)

 o Defined a minimum packet size for the initial handshake packet
 from the client (#69, #136, #139, #164)

 o Path MTU Discovery (#64, #106)

 o The initial handshake packet from the client needs to fit in a
 single packet (#338)

 o Forbid acknowledgment of packets containing only ACK and PADDING
 (#291)

 o Require that frames are processed when packets are acknowledged
 (#381, #341)

 o Removed the STOP_WAITING frame (#66)

 o Don't require retransmission of old timestamps for lost ACK frames
 (#308)

 o Clarified that frames are not retransmitted, but the information
 in them can be (#157, #298)

 o Error handling definitions (#335)

 o Split error codes into four sections (#74)

 o Forbid the use of Public Reset where CONNECTION_CLOSE is possible
 (#289)

 o Define packet protection rules (#336)

 o Require that stream be entirely delivered or reset, including
 acknowledgment of all STREAM frames or the RESET_STREAM, before it
 closes (#381)

 o Remove stream reservation from state machine (#174, #280)

 o Only stream 1 does not contribute to connection-level flow control
 (#204)

 o Stream 1 counts towards the maximum concurrent stream limit (#201,
 #282)

Iyengar & Thomson Expires July 27, 2019 [Page 139]

Internet-Draft QUIC Transport Protocol January 2019

 o Remove connection-level flow control exclusion for some streams
 (except 1) (#246)

 o RESET_STREAM affects connection-level flow control (#162, #163)

 o Flow control accounting uses the maximum data offset on each
 stream, rather than bytes received (#378)

 o Moved length-determining fields to the start of STREAM and ACK
 (#168, #277)

 o Added the ability to pad between frames (#158, #276)

 o Remove error code and reason phrase from GOAWAY (#352, #355)

 o GOAWAY includes a final stream number for both directions (#347)

 o Error codes for RESET_STREAM and CONNECTION_CLOSE are now at a
 consistent offset (#249)

 o Defined priority as the responsibility of the application protocol
 (#104, #303)

B.18. Since draft-ietf-quic-transport-00

 o Replaced DIVERSIFICATION_NONCE flag with KEY_PHASE flag

 o Defined versioning

 o Reworked description of packet and frame layout

 o Error code space is divided into regions for each component

 o Use big endian for all numeric values

B.19. Since draft-hamilton-quic-transport-protocol-01

 o Adopted as base for draft-ietf-quic-tls

 o Updated authors/editors list

 o Added IANA Considerations section

 o Moved Contributors and Acknowledgments to appendices

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls

Iyengar & Thomson Expires July 27, 2019 [Page 140]

Internet-Draft QUIC Transport Protocol January 2019

Acknowledgments

 Special thanks are due to the following for helping shape pre-IETF
 QUIC and its deployment: Chris Bentzel, Misha Efimov, Roberto Peon,
 Alistair Riddoch, Siddharth Vijayakrishnan, and Assar Westerlund.

 This document has benefited immensely from various private
 discussions and public ones on the quic@ietf.org and proto-
 quic@chromium.org mailing lists. Our thanks to all.

Contributors

 The original authors of this specification were Ryan Hamilton, Jana
 Iyengar, Ian Swett, and Alyssa Wilk.

 The original design and rationale behind this protocol draw
 significantly from work by Jim Roskind [EARLY-DESIGN]. In
 alphabetical order, the contributors to the pre-IETF QUIC project at
 Google are: Britt Cyr, Jeremy Dorfman, Ryan Hamilton, Jana Iyengar,
 Fedor Kouranov, Charles Krasic, Jo Kulik, Adam Langley, Jim Roskind,
 Robbie Shade, Satyam Shekhar, Cherie Shi, Ian Swett, Raman Tenneti,
 Victor Vasiliev, Antonio Vicente, Patrik Westin, Alyssa Wilk, Dale
 Worley, Fan Yang, Dan Zhang, Daniel Ziegler.

Authors' Addresses

 Jana Iyengar (editor)
 Fastly

 Email: jri.ietf@gmail.com

 Martin Thomson (editor)
 Mozilla

 Email: mt@lowentropy.net

Iyengar & Thomson Expires July 27, 2019 [Page 141]

