
Workgroup: QUIC Working Group

Internet-Draft:

draft-ietf-quic-version-negotiation-00

Published: 26 February 2020

Intended Status: Informational

Expires: 29 August 2020

Authors: D. Schinazi

Google LLC

E. Rescorla

Mozilla

Compatible Version Negotiation for QUIC

Abstract

QUIC does not provide a complete version negotiation mechanism but

instead only provides a way for the server to indicate that the

version the client offered is unacceptable. This document describes

a version negotiation mechanism that allows a client and server to

select a mutually supported version. Optionally, if the original and

negotiated version share a compatible Initial format, the

negotiation can take place without incurring an extra round trip.

Discussion of this work is encouraged to happen on the QUIC IETF

mailing list quic@ietf.org or on the GitHub repository which

contains the draft: https://github.com/quicwg/version-negotiation/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 August 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

mailto:quic@ietf.org
https://github.com/quicwg/version-negotiation/
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Version Negotiation Mechanism

4. Version Negotiation Transport Parameter

5. Version Downgrade Prevention

6. Supported Versions

7. Compatible Versions

8. Security Considerations

9. IANA Considerations

10. Normative References

Authors' Addresses

1. Introduction

QUIC [QUIC] does not provide a complete version negotiation (VN)

mechanism; the VN packet only allows the server to indicate that the

version the client offered is unacceptable, but doesn't allow the

client to safely make use of that information to create a new

connection with a mutually supported version. With proper safety

mechanisms in place, the VN packet can be part of a mechanism to

allow two QUIC implementations to negotiate between two totally

disjoint versions of QUIC, at the cost of an extra round trip.

However, it is beneficial to avoid that cost whenever possible,

especially given that most incremental versions are broadly similar

to the the previous version.

This specification describes a simple version negotiation mechanism

which optionally leverages similarities between versions and can

negotiate between the set of "compatible" versions in a single round

trip.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion of this work is encouraged to happen on the QUIC IETF

mailing list quic@ietf.org or on the GitHub repository which

contains the draft: https://github.com/quicwg/version-negotiation/.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Version Negotiation Mechanism

The mechanism defined in this document is straightforward: the

client maintains a list of QUIC versions it supports, ordered by

preference. Its Initial packet is sent using the version that the

server is most likely to support (in the absence of other

information, this will often be the oldest version the client

supports); that Initial packet then lists all compatible versions

(Section 7) that the client supports in the Compatible Version

fields of its transport parameters (Figure 1). Note that the

client's compatible version list always contains its currently

attempted version.

If the server supports one of the client's compatible versions,

it selects a version it supports from the client's compatible

version list. It then responds with that version in all of its

future packets (except for Retry, as below).

If the server does not support any of the client's compatible

versions, it sends a Version Negotiation packet listing all the

versions it supports.

If the server leverages compatible versions and responds with a

different version from the client's currently attempted version, it

MUST NOT select a version not offered by the client. The client MUST

validate that the version in the server's packets is one of the

compatible versions that it offered and that it matches the

negotiated version in the server's transport parameters.

If the server sends a Retry, it MUST use the same version that the

client provided in its Initial. Version negotiation takes place

after the retry cycle is over.

In order for negotiation to complete successfully, the client's

Initial packet (and initial CRYPTO frames) MUST be interpretable by

the server. This implies that servers must retain the ability to

process the Initial packet from older versions as long as they are

¶

¶

¶

*

¶

*

¶

¶

¶

mailto:quic@ietf.org
https://github.com/quicwg/version-negotiation/

Currently Attempted Version:

Previously Attempted Version:

reasonably popular. This is not generally an issue in practice as

long as the the overall structure of the protocol remains similar.

4. Version Negotiation Transport Parameter

This document registers a new transport parameter,

version_negotiation. The contents of this transport parameter depend

on whether the client or server is sending it, and are shown below:

Figure 1: Client Transport Parameter Format

The content of each field is described below:

The version that the client is using

in this Initial. This field MUST be equal to the value of the

Version field in the long header that carries this transport

parameter.

If the client is sending this Initial

in response to a Version Negotiation packet, this field contains

the version that the client used in the previous Initial packet

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Currently Attempted Version (32) |

+-+

| Previously Attempted Version (32) |

+-+

| Received Negotiation Version Count (i) ...

+-+

| [Received Negotiation Version 1 (32)] |

+-+

| [Received Negotiation Version 2 (32)] |

+-+

 ...

+-+

| [Received Negotiation Version N (32)] |

+-+

| Compatible Version Count (i) ...

+-+

| Compatible Version 1 (32) |

+-+

| [Compatible Version 2 (32)] |

+-+

 ...

+-+

| [Compatible Version N (32)] |

+-+

¶

¶

Received Negotiation Version Count:

Compatible Version Count:

Negotiated Version:

Supported Version Count:

that triggered the version negotiation packet. If the client did

not receive a Version Negotiation packet, this field SHALL be

all-zeroes.

A variable-length integer

specifying the number of Received Negotiation Version fields

following it. If the client is sending this Initial in response

to a Version Negotiation packet, the subsequent versions SHALL

include all the versions from that Version Negotiation packet in

order, even if they are not supported by the client (even if the

versions are reserved). If the client has not received a Version

Negotiation packet on this connection, this field SHALL be 0.

A variable-length integer specifying the

number of Compatible Version fields following it. The client

lists all versions compatible with Currently Attempted Version in

the subsequent Compatible Version fields, ordered by descending

preference. Note that the version in the Currently Attempted

Version field MUST be included in the Compatible Version list to

allow the client to communicate the currently attempted version's

preference.

Figure 2: Server Transport Parameter Format

The content of each field is described below:

The version that the server chose to use for

the connection. This field SHALL be equal to the value of the

Version field in the long header that carries this transport

parameter.

A variable-length integer specifying the

number of Supported Version fields following it. The server

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Negotiated Version (32) |

+-+

| Supported Version Count (i) ...

+-+

| Supported Version 1 (32) |

+-+

| [Supported Version 2 (32)] |

+-+

 ...

+-+

| [Supported Version N (32)] |

+-+

¶

¶

encodes all versions it supports in the subsequent list, ordered

by descending preference. Note that the version in the Negotiated

Version field MUST be included in the Supported Version list.

Clients MAY include versions following the pattern 0x?a?a?a?a in

their Compatible Version list, and the server in their Supported

Version list. Those versions are reserved to exercise version

negotiation (see the Versions section of [QUIC]), and MUST be

ignored when parsing these fields. On the other hand, the Received

Negotiation Version list MUST be identical to the received Version

Negotiation packet, so clients MUST NOT add or remove reserved

version from that list.

5. Version Downgrade Prevention

Clients MUST ignore any received Version Negotiation packets that

contain the version that they initially attempted.

Servers MUST validate that the client's Currently Attempted Version

matches the version in the long header that carried the transport

parameter. Similarly, clients MUST validate that the server's

Negotiated Version matches the long header version. If an endpoint's

validation fails, it MUST close the connection with an error of type

VERSION_NEGOTIATION_ERROR.

When a server parses the client's version_negotiation transport

parameter, if the Received Negotiation Version Count is not zero,

the server MUST validate that it could have sent the Version

Negotation packet described by the client in response to an Initial

of version Previously Attempted Version. In particular, the server

MUST ensure that there are no versions that it supports that are

absent from the Received Negotiation Versions, and that the ordering

matches the server's preference. If this validation fails, the

server MUST close the connection with an error of type

VERSION_NEGOTIATION_ERROR. This mitigates an attacker's ability to

forge Version Negotiation packets to force a version downgrade.

If a server operator is progressively deploying a new QUIC version

throughout its fleet, it MAY perform a two-step process where it

first progressively adds support for the new version, but without

enforcing its presence in Received Negotiation Versions. Once all

servers have been upgraded, the second step is to start enforcing

that the new version is present in Received Negotiation Versions.

This opens connections to version downgrades during the upgrade

window, since those could be due to clients communicating with both

upgraded and non-upgraded servers.

¶

¶

¶

¶

¶

¶

6. Supported Versions

The server's Supported Version list allows it to communicate the

full list of versions it supports to the client. In the case where

clients initially attempt connections with the oldest version they

support, this allows them to be notified of more recent versions the

server supports. If the client notices that the server supports a

version that is more preferable that the one initially attempted by

default, the client SHOULD cache that information and attempt the

preferred version in subsequent connections.

7. Compatible Versions

Two versions of QUIC A and B are said to be "compatible" if a

version A Initial can be used to negotiate version B and vice versa.

The most common scenario is a sequence of versions 1, 2, 3, etc. in

which all the Initial packets have the same basic structure but

might include specific extensions (especially inside the crypto

handshake) that are only meaningful in some subset of versions and

are ignored in others. Note that it is not possible to add new frame

types in Initial packets because QUIC frames do not use a self-

describing encoding, so unrecognized frame types cannot be parsed or

ignored (see the Extension Frames section of [QUIC]).

When a new version of QUIC is defined, it is assumed to not be

compatible with any other version unless otherwise specified.

Implementations MUST NOT assume compatibility between version unless

explicitly specified.

8. Security Considerations

The crypto handshake is already required to guarantee agreement on

the supported parameters, so negotiation between compatible versions

will have the security of the weakest common version.

The requirement that versions not be assumed compatible mitigates

the possibility of cross-protocol attacks, but more analysis is

still needed here.

The presence of the Attempted Version and Negotiated Version fields

mitigates an attacker's ability to forge packets by altering the

version.

9. IANA Considerations

If this document is approved, IANA shall assign the identifier

0x73DB for the version_negotiation transport parameter from the QUIC

Transport Parameter Registry and the identifier 0x53F8 for

VERSION_NEGOTIATION_ERROR from the QUIC Transport Error Codes

registry.

¶

¶

¶

¶

¶

¶

¶

[QUIC]

[RFC2119]

[RFC8174]

10. Normative References

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-27, 21 February

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-27.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
mailto:dschinazi.ietf@gmail.com
mailto:ekr@rtfm.com

	Compatible Version Negotiation for QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Version Negotiation Mechanism
	4. Version Negotiation Transport Parameter
	5. Version Downgrade Prevention
	6. Supported Versions
	7. Compatible Versions
	8. Security Considerations
	9. IANA Considerations
	10. Normative References
	Authors' Addresses

