
Workgroup: QUIC

Internet-Draft:

draft-ietf-quic-version-negotiation-04

Published: 27 May 2021

Intended Status: Standards Track

Expires: 28 November 2021

Authors: D. Schinazi

Google LLC

E. Rescorla

Mozilla

Compatible Version Negotiation for QUIC

Abstract

QUIC does not provide a complete version negotiation mechanism but

instead only provides a way for the server to indicate that the

version the client offered is unacceptable. This document describes

a version negotiation mechanism that allows a client and server to

select a mutually supported version. Optionally, if the original and

negotiated version share a compatible first flight format, the

negotiation can take place without incurring an extra round trip.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the QUIC Working Group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/quicwg/version-negotiation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 November 2021.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/quicwg/version-negotiation
https://github.com/quicwg/version-negotiation
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Server Deployments of QUIC

3. Compatible Versions

4. Version Negotiation Mechanism

4.1. Connections and Version Negotiation

4.2. Incompatible Version Negotiation

4.3. Compatible Version Negotiation

5. Version Information

6. Version Downgrade Prevention

7. Client Choice of Original Version

8. Interaction with Retry

9. Interaction with 0-RTT

10. Considerations for Future Versions

11. Security Considerations

12. IANA Considerations

12.1. QUIC Transport Parameter

12.2. QUIC Transport Error Code

13. Normative References

Acknowledgments

Authors' Addresses

1. Introduction

The version-invariant properties of QUIC [INV] define a version

negotiation (VN) packet but do not specify how an endpoint reacts

when it receives one. QUIC version 1 [QUIC] allows the server to use

a VN packet to indicate that the version the client offered is

unacceptable, but doesn't allow the client to safely make use of

that information to create a new connection with a mutually

supported version. With proper safety mechanisms in place, the VN

packet can be part of a mechanism to allow two QUIC implementations

¶

¶

https://trustee.ietf.org/license-info

Acceptable Versions:

Offered Versions:

Fully-Deployed Versions:

to negotiate between two totally disjoint versions of QUIC, at the

cost of an extra round trip. However, it is beneficial to avoid that

cost whenever possible, especially given that most incremental

versions are broadly similar to the the previous version.

This specification describes a simple version negotiation mechanism

which optionally leverages similarities between versions and can

negotiate between the set of "compatible" versions in a single round

trip.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

In this document, the Maximum Segment Lifetime (MSL) represents the

time a QUIC packet can exist in the network. Implementations can

make this configurable, and a RECOMMENDED value is one minute.

2. Server Deployments of QUIC

While this document mainly discusses a single QUIC server, it is

common for deployments of QUIC servers to include a fleet of

multiple server instances. We therefore define the following terms:

This is the set of versions supported by a

given server instance. More specifically, these are the versions

that a given server instance will use if a client sends a first

flight using them.

This is the set of versions that a given server

instance will send in a Version Negotiation packet if it receives

a first flight from an unknown version. This set will most often

be equal to the Acceptaple Versions set, except during short

transitions while versions are added or removed (see below).

This is the set of QUIC versions that is

supported and negotiated by every single QUIC server instance in

this deployment. If a deployment only contains a single server

instance, then this set is equal to the Offered Versions set,

except during short transitions while versions are added or

removed (see below).

If a deployment contains multiple server instances, software updates

may not happen at exactly the same time on all server instances.

Because of this, a client might receive a Version Negotiation packet

from a server instance that has already been updated and the

¶

¶

¶

¶

¶

¶

¶

¶

client's resulting connection attempt might reach a different server

instance which hasn't been updated yet.

However, even when there is only a single server instance, it is

still possible to receive a stale Version Negotiation packet if the

server performs its software update while the Version Negotiation

packet is in flight.

This could cause the version downgrade prevention mechanism

described in Section 6 to falsely detect a downgrade attack. To

avoid that, server operators SHOULD perform a three-step process

when they wish to add or remove support for a version:

When adding support for a new version:

The first step is to progressively add support for the new

version to all server instances. This step updates the Acceptable

Versions but not the Offered Versions nor the Fully-Deployed

Versions. Once all server instances have been updated, operators

wait for at least one MSL to allow any in-flight Version

Negotiation packets to arrive.

Then, the second step is to progressively add the new version to

Offered Versions on all server instances. Once complete,

operators wait for at least another MSL.

Finally, the third step is to progressively add the new version

to Fully-Deployed Versions on all server instances.

When removing support for a version:

The first step is to progressively remove the version from Fully-

Deployed Versions on all server instances. Once it has been

removed on all server instances, operators wait for at least one

MSL to allow any in-flight Version Negotiation packets to arrive.

Then, the second step is to progressively remove the version from

Offered Versions on all server instances. Once complete,

operators wait for at least another MSL.

Finally, the third step is to progressively remove support for

the version from all server instances. That step updates the

Acceptable Versions.

Note that this opens connections to version downgrades (but only for

partially-deployed versions) during the update window, since those

could be due to clients communicating with both updated and non-

updated server instances.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

3. Compatible Versions

If A and B are two distinct versions of QUIC, A is said to be

"compatible" with B if it is possible to take a first flight of

packets from version A and convert it into a first flight of packets

from version B. As an example, if versions A and B are absolutely

equal in their wire image and behavior during the handshake but

differ after the handshake, then A is compatible with B and B is

compatible with A.

Version compatibility is not symmetric: it is possible for version A

to be compatible with version B and for B not to be compatible with

A. This could happen for example if version B is a strict superset

of version A.

Note that version compatibility does not mean that every single

possible instance of a first flight will succeed in conversion to

the other version. A first flight using version A is said to be

"compatible" with version B if two conditions are met: first that

version A is compatible with version B, and second that the

conversion of this first flight to version B is well-defined. For

example, if version B is equal to A in all aspects except it

introduced a new frame in its first flight that version A cannot

parse or even ignore, then B could still be compatible with A as

conversions would succeed for connections where that frame is not

used. In this example, first flights using version B that carry this

new frame would not be compatible with version A.

When a new version of QUIC is defined, it is assumed to not be

compatible with any other version unless otherwise specified.

Similarly, no other version is compatible with the new version

unless otherwise specified. Implementations MUST NOT assume

compatibility between versions unless explicitly specified.

Note that both endpoints might disagree on whether two versions are

compatible or not. For example, two versions could have been defined

concurrently and then specified as compatible in a third document

much later - in that scenario one endpoint might be aware of the

compatibility document while the other may not.

4. Version Negotiation Mechanism

This document specifies two means of performing version negotiation:

one "incompatible" which requires a round trip and is applicable to

all versions, and one "compatible" that allows saving the round trip

but only applies when the versions are compatible.

The client initiates a QUIC connection by sending a first flight of

QUIC packets with a long header to the server [INV]. We'll refer to

the version of those packets as the "original version". The client's

¶

¶

¶

¶

¶

¶

first flight includes Version Information (see Section 5) which will

be used to optionally enable compatible version negotation (see

Section 4.3), and to prevent version downgrade attacks (see Section

6).

Upon receiving this first flight, the server verifies whether it

knows how to parse first flights from the original version. If it

does not, then it starts incompatible version negotiation, see

Section 4.2. If the server can parse the first flight, it can either

establish the connection using the original version, or it MAY

attempt compatible version negotiation, see Section 4.3.

Note that it is possible for a server to have the ability to parse

the first flight of a given version without fully supporting it, in

the sense that it implements enough of the version's specification

to parse first flight packets but not enough to fully establish a

connection using that version.

4.1. Connections and Version Negotiation

QUIC connections are shared state between a client and a server

[INV]. The compatible version negotiation mechanism defined in this

document (see Section 4.3) is performed as part of a single QUIC

connection; that is, the packets with the original version are part

of the same connection as the packets with the negotiated version.

In comparison, the incompatible version negotiation mechanism, which

leverages QUIC Version Negotiation packets (see Section 4.2)

conceptually operates across two QUIC connections: the connection

attempt prior to receiving the Version Negotiation packet is

distinct from the connection with the incompatible version that

follows.

4.2. Incompatible Version Negotiation

The server starts incompatible version negotiation by sending a

Version Negotiation packet. This packet SHALL include each entry

from the server's set of Offered Versions (see Section 2) in a

Supported Version field. The server MAY add reserved versions (as

defined in the Versions section of [QUIC]) in Supported Version

fields.

Upon receiving the VN packet, the client will search for a version

it supports in the list provided by the server. If it doesn't find

one, it aborts the connection attempt. Otherwise, it selects a

mutually supported version and sends a new first flight with that

version - we refer to this version as the "negotiated version".

The new first flight will allow the endpoints to establish a

connection using the negotiated version. The handshake of the

¶

¶

¶

¶

¶

¶

¶

negotiated version will exchange version information (see Section 5)

required to ensure that VN was genuine, i.e. that no attacker

injected packets in order to influence the VN process, see Section

6.

4.3. Compatible Version Negotiation

When the server can parse the client's first flight using the

original version, it can extract the client's Version Information

structure (see Section 5). This contains the list of versions that

the client thinks its first flight is compatible with.

If the server supports one of the client's compatible versions, and

the server also believes that the original version is compatible

with this version, then the server converts the client's first

flight to that version and replies to the client as if it had

received the converted first flight. The version used by the server

in its reply is refered to as the "negotiated version". The server

MUST NOT reply with a version that is not present in the client's

compatible versions, unless it is the original version.

If the server does not find a compatible version, it will use the

original version if it supports it, and if it doesn't then the

server will perform incompatible version negotiation instead, see

Section 4.2.

For the duration of the compatible version negotiation process,

clients MUST use the same 5-tuple (source and destination IP

addresses and UDP port numbers). During that time, clients MUST also

use the same Destination Connection ID, except if the server

explicitly instructs the client to use a different Destination

Connection ID (for example, a QUIC version 1 server can accomplish

this by sending an INITIAL packet with a Source Connection ID that

differed from the client's Destination Connection ID). This allows

load balancers to ensure that packets for a given connection are

routed to the same server.

5. Version Information

During the handshake, endpoints will exchange Version Information,

which is a blob of data that is defined below. In QUIC version 1,

the Version Information is transmitted using a new transport

parameter, version_information. The contents of Version Information

are shown below (using the notation from the "Notational

Conventions" section of [QUIC]):

¶

¶

¶

¶

¶

¶

Chosen Version:

Client-Sent Other Versions:

Server-Sent Other Versions:

Figure 1: Version Information Format

The content of each field is described below:

The version that the sender has chosen to use for

this connection. In most cases, this field will be equal to the

value of the Version field in the long header that carries this

data.

The contents of the Other Versions field depends on whether it is

sent by the client or by the server.

When sent by a client, the Other

Versions field lists all the versions that this first flight is

compatible with, ordered by descending preference. Note that the

version in the Chosen Version field MUST be included in this list

to allow the client to communicate the chosen version's

preference. Note that this preference is only advisory, servers

MAY choose to use their own preference instead.

When sent by a server, the Other

Versions field lists all the Fully-Deployed Versions of this

server deployment, see Section 2.

Clients and servers MAY both include versions following the pattern

0x?a?a?a?a in their Other Versions list. Those versions are reserved

to exercise version negotiation (see the Versions section of

[QUIC]), and will never be selected when choosing a version to use.

6. Version Downgrade Prevention

Clients MUST ignore any received Version Negotiation packets that

contain the version that they initially attempted. Once a client has

reacted to a Version Negotiation packet, it MUST drop all subsequent

Version Negotiation packets on that connection.

Both endpoints MUST parse their peer's Version Information during

the handshake. If parsing the Version Information failed (for

example, if it is too short or if its length is not divisible by

four), then the endpoint MUST close the connection; if the

connection was using QUIC version 1, that connection closure MUST

use a transport error of type TRANSPORT_PARAMETER_ERROR.

If the Version Information was missing, the endpoints MAY complete

the handshake if they have reason to believe the peer might not

Version Information {

 Chosen Version (32),

 Other Versions (32) ...,

}

¶

¶

¶

¶

¶

¶

¶

¶

support this extension. However, if a client has reacted to a

Version Negotiation packet and the Version Information was missing,

the client MUST close the connection; if the connection was using

QUIC version 1, that connection closure MUST use a transport error

of type VERSION_NEGOTIATION_ERROR.

If a client has reacted to a Version Negotiation packet, it MUST

validate that the server's Other Versions field does not contain the

client's original version, and that the client would have selected

the same negotiated version if it had received a Version Negotiation

packet whose Supported Versions field had the same contents as the

server's Other Versions field. If any of these checks fail, the

client MUST close the connection; if the connection was using QUIC

version 1, that connection closure MUST use a transport error of

type VERSION_NEGOTIATION_ERROR. This connection closure prevents an

attacker from being able to use forged Version Negotiation packets

to force a version downgrade.

After the process of version negotiation in this document completes,

the version in use for the connection is the version that the server

sent in the Chosen Version field of its Version Information. That

remains true even if other versions were used in the Version field

of long headers at any point in the lifetime of the connection;

endpoints MUST NOT change the version that they consider to be in

use based on the Version field of long headers as that field could

be forged by attackers.

7. Client Choice of Original Version

The client's first flight SHOULD be sent using the version that the

server is most likely to support (in the absence of other

information, this will often be the oldest version the client

supports).

8. Interaction with Retry

QUIC version 1 features retry packets, which the server can send to

validate the client's IP address before parsing the client's first

flight. This impacts compatible version negotiation because a server

who wishes to send a retry packet before parsing the client's first

flight won't have parsed the client's Version Information yet. If a

future document wishes to define compatibility between two versions

that support retry, that document MUST specify how version

negotiation (both compatible and incompatible) interacts with retry

during a handshake that requires both. For example, that could be

accomplished by having the server send a retry packet first and

validating the client's IP address before starting version

negotiation and deciding whether to use compatible version

¶

¶

¶

¶

negotiation on that connection (in that scenario the retry packet

would be sent using the original version).

9. Interaction with 0-RTT

QUIC version 1 allows sending data from the client to the server

during the handshake, by using 0-RTT packets. If a future document

wishes to define compatibility between two versions that support 0-

RTT, that document MUST address the scenario where there are 0-RTT

packets in the client's first flight. For example, this could be

accomplished by defining which transformations are applied to 0-RTT

packets. Alternatively, that document could specify that compatible

version negotiation causes 0-RTT data to be rejected by the server.

10. Considerations for Future Versions

In order to facilitate the deployment of future versions of QUIC,

designers of future versions SHOULD attempt to design their new

version such that commonly deployed versions are compatible with it.

For example, a successor to QUIC version 1 may wish to design its

transport parameters in a way that does not preclude compatibility.

Additionally, frames in QUIC version 1 do not use a self-describing

encoding, so unrecognized frame types cannot be parsed or ignored

(see the Extension Frames section of [QUIC]); this means that new

versions that wish to be very similar to QUIC version 1 and

compatible with it should avoid introducing new frames in initial

packets.

11. Security Considerations

The security of this version negotiation mechanism relies on the

authenticity of the Version Information exchanged during the

handshake. In QUIC version 1, transport parameters are authenticated

ensuring the security of this mechanism. Negotiation between

compatible versions will have the security of the weakest common

version.

The requirement that versions not be assumed compatible mitigates

the possibility of cross-protocol attacks, but more analysis is

still needed here.

12. IANA Considerations

12.1. QUIC Transport Parameter

If this document is approved, IANA shall assign the following entry

in the QUIC Transport Parameter Registry:

¶

¶

¶

¶

¶

¶

[INV]

[QUIC]

[RFC2119]

[RFC8174]

12.2. QUIC Transport Error Code

If this document is approved, IANA shall assign the following entry

in the QUIC Transport Error Codes Registry:

13. Normative References

Thomson, M., "Version-Independent Properties of QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-

invariants-13, 14 January 2021, <https://tools.ietf.org/

html/draft-ietf-quic-invariants-13>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

transport-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Acknowledgments

The authors would like to thank Martin Thomson, Mike Bishop, Nick

Banks, Ryan Hamilton, and Roberto Peon for their input and

contributions.

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

 +----------+---------------------+---------------+

 | Value | Parameter Name | Reference |

 +----------+---------------------+---------------+

 | 0xFF73DB | version_information | This document |

 +----------+---------------------+---------------+

¶

¶

 +--------+---------------------------+---------------+

 | Value | Parameter Name | Reference |

 +--------+---------------------------+---------------+

 | 0x53F8 | VERSION_NEGOTIATION_ERROR | This document |

 +--------+---------------------------+---------------+

¶

¶

https://tools.ietf.org/html/draft-ietf-quic-invariants-13
https://tools.ietf.org/html/draft-ietf-quic-invariants-13
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

Eric Rescorla

Mozilla

Email: ekr@rtfm.com

mailto:dschinazi.ietf@gmail.com
mailto:ekr@rtfm.com

	Compatible Version Negotiation for QUIC
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Server Deployments of QUIC
	3. Compatible Versions
	4. Version Negotiation Mechanism
	4.1. Connections and Version Negotiation
	4.2. Incompatible Version Negotiation
	4.3. Compatible Version Negotiation

	5. Version Information
	6. Version Downgrade Prevention
	7. Client Choice of Original Version
	8. Interaction with Retry
	9. Interaction with 0-RTT
	10. Considerations for Future Versions
	11. Security Considerations
	12. IANA Considerations
	12.1. QUIC Transport Parameter
	12.2. QUIC Transport Error Code

	13. Normative References
	Acknowledgments
	Authors' Addresses

