
Network Working Group Alan DeKok
INTERNET-DRAFT FreeRADIUS
Category: Informational
<draft-ietf-radext-dtls-00.txt>
Expires: April 8, 2011
8 October 2010

DTLS as a Transport Layer for RADIUS
draft-ietf-radext-dtls-00

Abstract

 The RADIUS protocol [RFC2865] has limited support for authentication
 and encryption of RADIUS packets. The protocol transports data "in
 the clear", although some parts of the packets can have "hidden"
 content. Packets may be replayed verbatim by an attacker, and
 client-server authentication is based on fixed shared secrets. This
 document specifies how the Datagram Transport Layer Security (DTLS)
 protocol may be used as a fix for these problems. It also describes
 how implementations of this proposal can co-exist with current RADIUS
 systems.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 8, 2011

Copyright Notice

DeKok, Alan Informational [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-radext-dtls-00.txt
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info/) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info/

DeKok, Alan Informational [Page 2]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

Table of Contents

1. Introduction ... 4
1.1. Terminology ... 4
1.2. Requirements Language 5

2. Building on Existing Foundations 6
2.1. Changes to RADIUS 6
2.2. Changes from RADIUS over TLS (RADIUS/TLS) 6

2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS 7
2.2.2. Reinforcement of RADIUS/TLS 8

3. Reception of Packets 8
3.1. Protocol Disambiguation 9

4. Connection Management 10
4.1. Server Connection Management 10

4.1.1. Table Management 10
4.2. Client Connection Management 11

5. Processing Algorithm 12
6. Diameter Considerations 14
7. IANA Considerations 14
8. Security Considerations 14

8.1. Legacy RADIUS Security 14
9. References ... 15

9.1. Normative references 15
9.2. Informative references 16

DeKok, Alan Informational [Page 3]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

1. Introduction

 The RADIUS protocol as described in [RFC2865], [RFC2866], and
 [RFC5176] has traditionally used methods based on MD5 [RFC1321] for
 per-packet authentication and integrity checks. However, the MD5
 algorithm has known weaknesses such as [MD5Attack] and [MD5Break].
 As a result, previous specifications such as [RFC5176] have
 recommended using IPSec to secure RADIUS traffic.

 While RADIUS over IPSec has been widely deployed, there are
 difficulties with this approach. The simplest point against IPSec is
 that there is no straightforward way for a RADIUS application to
 control or monitor the network security policies. That is, the
 requirement that the RADIUS traffic be encrypted and/or authenticated
 is implicit in the network configuration, and is not enforced by the
 RADIUS application.

 This specification takes a different approach. We define a method
 for using DTLS [RFC4347] as a RADIUS transport protocol. This
 approach has the benefit that the RADIUS application can directly
 monitor and control the security policies associated with the traffic
 that it processes.

 Another benefit is that RADIUS over DTLS continues to be a UDP-based
 protocol. This continuity ensures that existing network-layer
 infrastructure (firewall rules, etc.) does not need to be changed
 when RADIUS clients and servers are upgraded to support RADIUS over
 DTLS.

 This specification does not, however, solve all of the problems
 associated with RADIUS. The DTLS protocol does not add reliable or
 in-order transport to RADIUS. DTLS also does not support
 fragmentation of application-layer messages, or of the DTLS messages
 themselves. This specification therefore continues to have all of
 the issues that RADIUS currently has with order, reliability, and
 fragmentation.

1.1. Terminology

 This document uses the following terms:

RADIUS/DTLS
 This term is a short-hand for "RADIUS over DTLS".

RADIUS/DTLS client
 This term refers both to RADIUS clients as defined in [RFC2865],
 and to Dynamic Authorization clients as defined in [RFC5176], that
 implement RADIUS/DTLS.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5176

DeKok, Alan Informational [Page 4]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

RADIUS/DTLS server
 This term refers both to RADIUS servers as defined in [RFC2865],
 and to Dynamic Authorization servers as defined in [RFC5176], that
 implement RADIUS/DTLS.

silently discard
 This means that the implementation discards the packet without
 further processing. The implementation MAY provide the capability
 of logging the error, including the contents of the silently
 discarded packet, and SHOULD record the event in a statistics
 counter.

1.2. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc2119

DeKok, Alan Informational [Page 5]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

2. Building on Existing Foundations

 Adding DTLS as a RADIUS transport protocol requires a number of
 changes to systems implementing standard RADIUS. This section
 outlines those changes, and defines new behaviors necessary to
 implement DTLS.

2.1. Changes to RADIUS

 The RADIUS packet format is unchanged from [RFC2865], [RFC2866], and
 [RFC5176]. Specifically, all of the following portions of RADIUS
 MUST be unchanged when using RADIUS over DTLS:

 * Packet format
 * Permitted codes
 * Request Authenticator calculation
 * Response Authenticator calculation
 * Minimum packet length
 * Maximum packet length
 * Attribute format
 * Vendor-Specific Attribute (VSA) format
 * Permitted data types
 * Calculations of dynamic attributes such as CHAP-Challenge,
 or Message-Authenticator.
 * Calculation of "encrypted" attributes such as Tunnel-Password.
 * UDP port numbering and usage

 The RADIUS packets are encapsulated in DTLS, which acts as a
 transport layer for it. The requirements above ensure the simplest
 possible implementation and widest interoperability of this
 specification.

 The only changes made to RADIUS in this specification are the
 following two items:

 (1) The Length checks defined in [RFC2865] Section 3 MUST use the
 length of the decrypted DTLS data instead of the UDP packet
 length.

 (2) The shared secret secret used to compute the MD5 integrity
 checks and the attribute encryption MUST be "radsec".

 All other portions of RADIUS are unchanged.

2.2. Changes from RADIUS over TLS (RADIUS/TLS)

 While this specification is largely RADIUS/TLS over UDP instead of
 TCP, there are some differences between the two methods.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Informational [Page 6]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 This section goes through the [RADIUS/TLS] document in detail,
 explaining the differences between RADIUS/TLS and RADIUS/DTLS. As
 most of [RADIUS/TLS] also applies to RADIUS/DTLS, we highlight only
 the changes here, explaining how to interpret [RADIUS/TLS] for this
 specification:

 * We replace references to "TCP" with "UDP"

 * We replace references to "RADIUS/TLS" with "RADIUS/DTLS"

 * We replace references to "TLS" with "DTLS"

 Those changes are sufficient to cover the majority of the differences
 between the two specifications. The text below goes through some of
 the sections of [RADIUS/TLS], giving additional commentary only where
 necessary.

2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS

Section 2.1 does not apply to RADIUS/DTLS. The relationship between
 RADIUS packet codes and UDP ports in RADIUS/DTLS is unchanged from
 RADIUS/UDP.

Section 2.2 applies also to RADIUS/DTLS, except for the
 recommendation that implementations "SHOULD" support
 TLS_RSA_WITH_RC4_128_SHA, which does not apply to RADIUS/DTLS.

Section 2.3 applies also to RADIUS/TLS.

Section 2.4 does not apply to RADIUS/DTLS. See the comments above on
Section 2.1. The relationship between RADIUS packet codes and UDP

 ports in RADIUS/DTLS is unchanged from RADIUS/UDP.

Section 3.3 item (1) does not apply to RADIUS/DTLS. Each RADIUS
 packet is encapsulated in one DTLS packet, and there is no "stream"
 of RADIUS packets inside of a TLS session. Implementors MUST enforce
 the requirements of [RFC2865] Section 3 for the RADIUS Length field,
 using the length of the decrypted DTLS data for the checks. This
 check replaces the RADIUS method of using the length field from the
 UDP packet.

Section 3.3 item (3) does not apply to RTDLS. The relationship
 between RADIUS packet codes and UDP ports in RADIUS/DTLS is unchanged
 from RADIUS.

Section 3.3 item (4) does not apply to RADIUS/DTLS. As RADIUS/DTLS
 still uses UDP for a transport, the use of negative ICMP responses is
 unchanged from RADIUS.

https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Informational [Page 7]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

2.2.2. Reinforcement of RADIUS/TLS

 We wish to re-iterate that much of [RADIUS/TLS] applies to this
 document. Specifically, Section 4 and Section 6 of that document are
 applicable in whole to RADIUS/DTLS.

3. Reception of Packets

 As this specification permits implementations to to accept both
 traditional RADIUS and DTLS packets on the same port, we define a
 method to disambiguate between packets for the two protocols. This
 method is applicable only to RADIUS servers. RADIUS/DTLS clients
 SHOULD use connected sockets, as discussed in Section X.Y, below.

 RADIUS/DTLS servers MUST maintain a boolean flag for each RADIUS
 client that indicates whether or not it supports RADIUS/DTLS. The
 interpretation of this flag is as follows. If the flag is "false",
 then the client may support RADIUS/DTLS. Packets from the client
 need to be examined to see if they are RADIUS or RADIUS/DTLS. If the
 flag is "true" then the client supports RADIUS/DTLS, and all packets
 from that client MUST be processed as RADIUS/DTLS.

 Note that this last requirement can impose significant changes for
 RADIUS clients. Clients can no longer have multiple independent
 RADIUS implementations or processes that originate packets. We
 RECOMMEND that RADIUS/DTLS clients implement a local RADIUS proxy
 that arbitrates all RADIUS traffic.

 This flag MUST be exposed to administrators of the RADIUS server. As
 RADIUS clients are upgraded, administrators can then manually mark
 them as supporting RADIUS/DTLS.

 We recognize, however, the upgrade path from RADIUS to RADIUS/DTLS is
 important. This path requires an RADIUS/DTLS server to accept
 packets from a RADIUS client without knowing beforehand if they are
 RADIUS or DTLS. The method to distinguish between the two is defined
 in the next section.

 Once an RADIUS/DTLS server has established a DTLS session with a
 client that had the flag set to "false", it MUST set the flag to
 "true". This change forces all subsequent traffic from that client
 to use DTLS, and prevents bidding-down attacks. The server SHOULD
 also notify the administrator that it has successfully established
 the first DTLS session with that client.

DeKok, Alan Informational [Page 8]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

3.1. Protocol Disambiguation

 When a RADIUS client is not marked as supporting RADIUS/DTLS, packets
 from that client may be, or may not be DTLS. In order to provide a
 robust upgrade path, the RADIUS/DTLS server MUST examine the packet
 to see if it is RADIUS or DTLS. In order to justify the examination
 methods, we first examine the packet formats for the two protocols.

 The DTLS record format ([RFC4347] Section 4.1) is shown below, in
 pseudo-code:

 struct {
 uint8 type;
 uint16 version;
 uint16 epoch;
 uint48 sequence_number;
 uint16 length;
 uint8 fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 The RADIUS record format ([RFC2865] Section 3) is shown below, in
 pseudo-code, with AuthVector.length=16.

 struct {
 uint8 code;
 uint8 id;
 uint16 length;
 uint8 vector[AuthVector.length];
 uint8 data[RadiusPacket.length - 20];
 } RadiusPacket;

 We can see here that a number of fields overlap between the two
 protocols. The low byte of the DTLS version and the high byte of the
 DTLS epoch overlap with the RADIUS length field. The DTLS length
 field overlaps with the RADIUS authentication vector. At first
 glance, it may be difficult for an application to accept both
 protocols on the same port. However, this is not the case.

 For the initial packet of a DTLS connection, the type field has value
 22 (handshake), and the epoch and sequence number fields are
 initialized to zero. The RADIUS code value of 22 has been assigned
 as Resource-Free-Response, but it is not in wide use. In addition,
 that packet code is a response packet, and would not be sent by a
 RADIUS client to a server.

 As a result, protocol disambiguation is straightforward. If the
 first byte of the packet has value 22, it is a DTLS packet, and is a
 DTLS connection initiation request. Otherwise, it is a RADIUS

https://datatracker.ietf.org/doc/html/rfc4347#section-4.1
https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Informational [Page 9]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 packet.

 Once a DTLS session has been established, a separate tracking table
 is used to disambiguate the protocols. The definition of this
 tracking table is given in the next section.

 The full processing algorithm is given below, in Section X.Y.

4. Connection Management

 Where [RADIUS/TLS] can rely on the TCP state machine to perform
 connection tracking, this specification cannot. As a result,
 implementations of this specification will need to perform connection
 management of the DTLS session in the application layer.

4.1. Server Connection Management

 An RADIUS/DTLS server MUST maintain a table that tracks ongoing DTLS
 sessions based on a key composed of the following 4-tuple:

 * source IP address
 * source port
 * destination IP address
 * destination port

 The contents of the tracking table are a implementation-specific
 value that describes an active DTLS session. This connection
 tracking allows DTLS packets that have been received to be associated
 with an active DTLS session.

 RADIUS/DTLS servers SHOULD NOT use a "connect" API to manage DTLS
 connections, as a connected UDP socket will accept packets only from
 one source IP address and port. This limitation would prevent the
 server from engaging in the normal RADIUS practice of accepting
 packets from multiple clients on the same port.

 Note that [RFC5080] Section 2.2.2 defines a duplicate detection cache
 which tracks packets by key similar to that defined above.

4.1.1. Table Management

 This tracking table is subject to Denial of Service (DoS) attacks.
 RADIUS/DTLS servers SHOULD use the stateless cookie tracking
 technique described in [RFC4347] Section 4.2.1. DTLS sessions SHOULD
 NOT be added to the tracking table until a ClientHello packet has
 been received with an appropriate Cookie value.

 Entries in the tracking table MUST deleted when a TLS Closure Alert

https://datatracker.ietf.org/doc/html/rfc5080#section-2.2.2
https://datatracker.ietf.org/doc/html/rfc4347#section-4.2.1

DeKok, Alan Informational [Page 10]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 ([RFC5246] Section 7.2.1) or a TLS Error Alert ([RFC5246] Section
7.2.2) is received. Where the RADIUS specifications require that a

 RADIUS packet received via the DTLS session is to be "silently
 discarded", the entry in the tracking table corresponding to that
 DTLS session MUST also be deleted, the DTLS session MUST be closed,
 and any TLS session resumption parameters for that session MUST be
 discarded.

 As UDP does not offer guaranteed delivery of messages, RADIUS/DTLS
 servers MUST also maintain a timestamp per DTLS session. The
 timestamp SHOULD be updated on reception of a valid DTLS packet. The
 timestamp MUST NOT be updated in other situations. When a session
 has not been used for a period of time, the server SHOULD pro-
 actively close it, and delete the DTLS session from the tracking
 table. The server MAY cache the TLS session parameters, in order to
 provide for fast session resumption.

 This session lifetime SHOULD be exposed as configurable setting. It
 SHOULD NOT be set to less than 60 seconds, and SHOULD NOT be set to
 more than 600 seconds (10 minutes). The minimum value useful value
 for this timer is determined by the application-layer watchdog
 mechanism defined in the following section.

 RADIUS/DTLS servers SHOULD also keep track of the total number of
 sessions in the tracking table, and refuse to create new sessions
 when a large number are already being tracked. As system
 capabilities vary widely, we can only recommend that this number
 SHOULD be exposed as a configurable setting.

4.2. Client Connection Management

 RADIUS/DTLS clients SHOULD use an operating system API to "connect" a
 UDP socket. This "connected" socket will then rely on the operating
 system to perform connection tracking, and will be simpler than the
 method described above for servers. RADIUS/DTLS clients SHOULD NOT
 use "unconnected" sockets, as it causes increased complexity in the
 client application.

 Once a DTLS session is established, an RADIUS/DTLS client SHOULD use
 the application-layer watchdog algorithm defined in [RFC3539] to
 determine server responsiveness. The Status-Server packet defined in
 [RFC5997] MUST be used as the "watchdog packet" in the watchdog
 algorithm.

 RADIUS/DTLS clients SHOULD pro-actively close sessions when they have
 been idle for a period of time. We RECOMMEND that a session be
 closed when no traffic over than watchdog packets and (possibly)
 responses have been sent for three watchdog timeouts. This behavior

https://datatracker.ietf.org/doc/html/rfc5246#section-7.2.1
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc5997

DeKok, Alan Informational [Page 11]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 ensures that clients do not waste resources on the server by causing
 it to track idle sessions.

 RADIUS/DTLS clients SHOULD NOT send both normal RADIUS and
 RADIUS/DTLS packets from the same source socket. This practice
 causes increased complexity in the client application, and increases
 the potential for security breaches due to implementation issues.

 RADIUS/DTLS clients MUST NOT send both normal RADIUS and RADIUS/DTLS
 packets over the same key as defined in Section 4.1, abovre (source
 IP, source port, destination IP, destination port). Doing so would
 require that servers perform RADIUS and RADIUS/DTLS determination for
 every packet that has been received.

 RADIUS/DTLS clients SHOULD use TLS session resumption, where
 possible. This practice lowers the time and effort required to start
 a DTLS session with a server, and increases network responsiveness.

5. Processing Algorithm

 The following algorithm MUST be used by an implementation of this
 protocol. This algorithm is used to route packets to the appropriate
 destination. We assume the following variables:

 D - implementation-specific handle to an existing DTLS session

 P - UDP packet received from the network. This packet MUST
 also contain information about source IP/port, and
 destination IP/port.

 R - a RADIUS packet

 T - a tracking table used to manage ongoing DTLS sessions

 We also presume the following functions or functionality exists:

 receive_packet_from_network() - a function that reads a packet
 from the network, and returns P as above. We presume also that
 this function performs the normal RADIUS client validation, and
 does not return P if the packet is from an unknown client.

 lookup_dtls_session() - a function that takes a packet P, a table
 T, and uses P to look up the corresponding DTLS session in T. It
 returns either a session D, or a "null" indicator that no
 corresponding session exists.

 client_supports_rdtls() - a function that takes a packet P, and
 returns a boolean value as to whether or not the client

DeKok, Alan Informational [Page 12]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 originating the packet was marked as supporting RADIUS/DTLS.

 process_dtls_packet() - a function that takes a DTLS packet P, and
 a DTLS session D. It performs all necessary steps to use D to
 setup a DTLS session, and to decode P (where possible) into a
 RADIUS packet. This function is also expected to perform checks
 for TLS errors. On any fatal errors, it closes the session, and
 deletes D from the tracking table T. If a RADIUS packet is
 decoded from P, it is returned by the function as R, otherwise a
 "null" indicator is returned.

 process_dtls_clienthello() - a function that takes a DTLS packet
 P, and initiates a DTLS session. If P contains a valid DTLS
 Cookie, a DTLS session D is created, and stored in the tracking
 table T. If P does not contain a DTLS Cookie, no session is
 created, and instead a HelloVerifyRequest containing a cookie is
 sent in response. Packets containing invalid cookies are
 discarded.

 process_radius_packet() - a function that takes a RADIUS packet P,
 and processes it using the normal RADIUS methods.

 The algorithm is as follows:

 P = receive_packet_from_network()
 D = lookup_dtls_session(T, P)

 if (D || client_supports_rdtls(P)) {
 R = process_dtls_packet(D, P)
 if (R) {
 process_radius_packet(R)
 }

 } else if (first_octet_of_packet_is_22(P)) {
 process_dtls_clienthello(P)

 } else {
 process_radius_packet(P)
 }

 For simplicity, the timers necessary to perform expiry of "old"
 sessions are not included in the above algorithm. This algorithm may
 also need to be modified if the RADIUS/DTLS server supports client
 validation by methods other than source IP address.

DeKok, Alan Informational [Page 13]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

6. Diameter Considerations

 This specification is for a transport layer specific to RADIUS. As a
 result, there are no Diameter considerations.

7. IANA Considerations

 This specification does not create any new registries, nor does it
 require assignment of any protocol parameters.

8. Security Considerations

 This entire specification is devoted to discussing security
 considerations related to RADIUS. However, we discuss a few
 additional issues here.

 This specification relies on the existing DTLS, RADIUS, and
 RADIUS/TLS specifications. As a result, all security considerations
 for DTLS apply to the DTLS portion of RADIUS/DTLS. Similarly, the
 TLS and RADIUS security issues discussed in [RADIUS/TLS] also apply
 to this specification. All of the security considerations for RADIUS
 apply to the RADIUS portion of the specification.

 However, many security considerations raised in the RADIUS documents
 are related to RADIUS encryption and authorization. Those issues are
 largely mitigated when DTLS is used as a transport method. The
 issues that are not mitigated by this specification are related to
 the RADIUS packet format and handling, which is unchanged in this
 specification.

 The only new portion of the specification that could have security
 implications is a servers ability to accept both RADIUS and DTLS
 packets on the same port. The filter that disambiguates the two
 protocols is simple, and is just a check for the value of one byte.
 We do not expect this check to have any security issues.

 We also note that nothing prevents malicious clients from sending
 DTLS packets to existing RADIUS implementations, or RADIUS packets to
 existing DTLS implementations. There should therefore be no issue
 with clients sending RADIUS/DTLS packets to legacy servers that do
 not support the protocol.

8.1. Legacy RADIUS Security

 We reiterate here the poor security of the legacy RADIUS protocol.
 We RECOMMEND that all RADIUS clients and servers implement this
 specification as soon as possible. New attacks on MD5 have appeared
 over the past few years, and there is a distinct possibility that MD5

DeKok, Alan Informational [Page 14]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

 may be completely broken in the near future.

 The existence of fast and cheap attacks on MD5 could result in a loss
 of all network security that depends on RADIUS. Attackers could
 obtain user passwords, and possibly gain complete network access. It
 is difficult to overstate the disastrous consequences of a successful
 attack on RADIUS.

 We also caution implementors (especially client implementors) about
 using RADIUS/DTLS. It may be tempting to use the shared secret as
 the basis for a TLS pre-shared key (PSK) method, and to leave the
 user interface otherwise unchanged. This practice MUST NOT be used.
 The administrator MUST be given the option to use DTLS. Any shared
 secret used for RADIUS MUST NOT be used for DTLS. Re-using a shared
 secret between RADIUS and DTLS would negate all of the benefits found
 by using DTLS.

 When using PSK methods, RADIUS/DTLS clients MUST support keys (i.e.
 shared secrets) that are at least 32 characters in length.

 RADIUS/DTLS client implementors MUST expose a configuration that
 allows the administrator to choose the cipher suite. RADIUS/DTLS
 client implementors SHOULD expose a configuration that allows an
 administrator to configure all certificates necessary for
 certificate-based authentication. These certificates include client,
 server, and root certificates.

 When using PSK methods, RADIUS/DTLS servers MUST support keys (i.e.
 shared secrets) that are at least 32 characters in length.
 RADIUS/DTLS server administrators MUST use strong shared secrets for
 those PSK methods. We RECOMMEND using keys derived from a
 cryptographically secure pseudo-random number generator (CSPRNG).
 For example, a reasonable key may be 32 characters of a SHA-256 hash
 of at least 64 bytes of data taken from a CSPRNG. If this method
 seems too complicated, a certificate-based TLS method SHOULD be used
 instead.

 The previous RADIUS practice of using shared secrets that are minor
 variations of words is NOT RECOMMENDED, as it would negate nearly all
 of the security of DTLS.

9. References

9.1. Normative references

[RFC2865]
 Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.

https://datatracker.ietf.org/doc/html/rfc2865

DeKok, Alan Informational [Page 15]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

[RFC3539]
 Aboba, B. et al., "Authentication, Authorization and Accounting
 (AAA) Transport Profile", RFC 3539, June 2003.

[RFC4347]
 Rescorla E., and Modadugu, N., "Datagram Transport Layer Security",

RFC 4347, April 2006.

[RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2", RFC 5246, August 2008.

[RADIUS/TLS]
 Winter. S, et. al., "TLS encryption for RADIUS over TCP", draft-

ietf-radext-radsec-06.txt, March 2010 (work in progress)

[RFC5997]
 DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol", RFC 5997,
 August 2010.

9.2. Informative references

[RFC1321]
 Rivest, R. and S. Dusse, "The MD5 Message-Digest Algorithm", RFC

1321, April 1992.

[RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March, 1997.

[RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

[RFC5080]
 Nelson, D. and DeKok, A, "Common Remote Authentication Dial In User
 Service (RADIUS) Implementation Issues and Suggested Fixes", RFC

5080, December 2007.

[RFC5176]
 Chiba, M. et al., "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176, January
 2008.

[MD5Attack]
 Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes Vol.2 No.2, Summer 1996.

https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-radext-radsec-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-radext-radsec-06.txt
https://datatracker.ietf.org/doc/html/rfc5997
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5176

DeKok, Alan Informational [Page 16]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 8 October 2010

[MD5Break]
 Wang, Xiaoyun and Yu, Hongbo, "How to Break MD5 and Other Hash
 Functions", EUROCRYPT. ISBN 3-540-25910-4, 2005.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken with minor edits from [RFC2865] Section 3.

 The author would like to thank Mike McCauley of Open Systems
 Consultants for making a Radiator server available for inter-
 operability testing.

Authors' Addresses

 Alan DeKok
 The FreeRADIUS Server Project

http://freeradius.org

 Email: aland@freeradius.org

https://datatracker.ietf.org/doc/html/rfc2865#section-3
http://freeradius.org

DeKok, Alan Informational [Page 17]

