
Network Working Group Alan DeKok
INTERNET-DRAFT FreeRADIUS
Category: Experimental
<draft-ietf-radext-dtls-05.txt>
Expires: October 17, 2013
17 April 2013

DTLS as a Transport Layer for RADIUS
draft-ietf-radext-dtls-05

Abstract

 The RADIUS protocol [RFC2865] has limited support for authentication
 and encryption of RADIUS packets. The protocol transports data "in
 the clear", although some parts of the packets can have "obfuscated"
 content. Packets may be replayed verbatim by an attacker, and
 client-server authentication is based on fixed shared secrets. This
 document specifies how the Datagram Transport Layer Security (DTLS)
 protocol may be used as a fix for these problems. It also describes
 how implementations of this proposal can co-exist with current RADIUS
 systems.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on July 28, 2013

Copyright Notice

DeKok, Alan Experimental [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-radext-dtls-05.txt
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info/) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info/

DeKok, Alan Experimental [Page 2]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

Table of Contents

1. Introduction ... 4
1.1. Terminology ... 4
1.2. Requirements Language 5

2. Building on Existing Foundations 6
2.1. Changes to RADIUS 6
2.2. Similarities with RADIUS/TLS 7

2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS 7
2.2.2. Reinforcement of RADIUS/TLS 8

3. Transition Path .. 8
3.1. DTLS Port and Packet Types 9
3.2. Server Transition to DTLS 9

4. Client Transition .. 10
5. Connection Management 12

5.1. Server Connection Management 12
5.1.1. Session Management 13
5.1.2. Protocol Disambiguation 14
5.1.3. Processing Algorithm 15

5.2. Client Connection Management 17
6. Implementation Guidelines 18

6.1. Client Implementations 18
6.2. Server Implementations 19

7. Implementation Experience 19
8. Diameter Considerations 20
9. IANA Considerations 20
10. Security Considerations 20

10.1. Legacy RADIUS Security 21
10.2. Resource Exhaustion 22
10.3. Network Address Translation 22
10.4. Wildcard Clients 23
10.5. Session Closing 23
10.6. Clients Subsystems 23

11. References .. 24
11.1. Normative references 24
11.2. Informative references 25

DeKok, Alan Experimental [Page 3]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

1. Introduction

 The RADIUS protocol as described in [RFC2865], [RFC2866], [RFC5176],
 and others has traditionally used methods based on MD5 [RFC1321] for
 per-packet authentication and integrity checks. However, the MD5
 algorithm has known weaknesses such as [MD5Attack] and [MD5Break].
 As a result, some specifications such as [RFC5176] have recommended
 using IPSec to secure RADIUS traffic.

 While RADIUS over IPSec has been widely deployed, there are
 difficulties with this approach. The simplest point against IPSec is
 that there is no straightforward way for a RADIUS application to
 control or monitor the network security policies. That is, the
 requirement that the RADIUS traffic be encrypted and/or authenticated
 is implicit in the network configuration, and is not enforced by the
 RADIUS application.

 This specification takes a different approach. We define a method
 for using DTLS [RFC6347] as a RADIUS transport protocol. This
 approach has the benefit that the RADIUS application can directly
 monitor and control the security policies associated with the traffic
 that it processes.

 Another benefit is that RADIUS over DTLS continues to be a User
 Datagram Protocol (UDP) based protocol. This continuity ensures that
 existing network-layer infrastructure (firewall rules, etc.) does not
 need to be changed when RADIUS clients and servers are upgraded to
 support RADIUS over DTLS.

 This specification does not, however, solve all of the problems
 associated with RADIUS. The DTLS protocol does not add reliable or
 in-order transport to RADIUS. DTLS also does not support
 fragmentation of application-layer messages, or of the DTLS messages
 themselves. This specification therefore shares with traditional
 RADIUS the issues of order, reliability, and fragmentation.

1.1. Terminology

 This document uses the following terms:

RADIUS/DTLS
 This term is a short-hand for "RADIUS over DTLS".

RADIUS/DTLS client
 This term refers both to RADIUS clients as defined in [RFC2865],
 and to Dynamic Authorization clients as defined in [RFC5176], that
 implement RADIUS/DTLS.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5176

DeKok, Alan Experimental [Page 4]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

RADIUS/DTLS server
 This term refers both to RADIUS servers as defined in [RFC2865],
 and to Dynamic Authorization servers as defined in [RFC5176], that
 implement RADIUS/DTLS.

RADIUS/UDP
 RADIUS over UDP, as defined in [RFC2865].

RADIUS/TLS
 RADIUS over TLS, as defined in [RFC6614].

silently discard
 This means that the implementation discards the packet without
 further processing.

1.2. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc2119

DeKok, Alan Experimental [Page 5]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

2. Building on Existing Foundations

 Adding DTLS as a RADIUS transport protocol requires a number of
 changes to systems implementing standard RADIUS. This section
 outlines those changes, and defines new behaviors necessary to
 implement DTLS.

2.1. Changes to RADIUS

 The RADIUS packet format is unchanged from [RFC2865], [RFC2866], and
 [RFC5176]. Specifically, all of the following portions of RADIUS
 MUST be unchanged when using RADIUS/DTLS:

 * Packet format
 * Permitted codes
 * Request Authenticator calculation
 * Response Authenticator calculation
 * Minimum packet length
 * Maximum packet length
 * Attribute format
 * Vendor-Specific Attribute (VSA) format
 * Permitted data types
 * Calculations of dynamic attributes such as CHAP-Challenge,
 or Message-Authenticator.
 * Calculation of "obfuscated" attributes such as User-Password
 and Tunnel-Password.
 * UDP port numbering and relationship between code and port

 In short, the application creates a RADIUS packet via the usual
 methods, and then instead of sending it over a UDP socket, sends the
 packet to a DTLS layer for encapsulation. DTLS then acts as a
 transport layer for RADIUS, hence the names "RADIUS/UDP" and
 "RADIUS/DTLS".

 The requirement that RADIUS remain largely unchanged ensures the
 simplest possible implementation and widest interoperability of this
 specification.

 We note that the DTLS encapsulation of RADIUS means that RADIUS
 packets have an additional overhead due to DTLS. Implementations
 MUST support encapsulated RADIUS packets of 4096 in length, with a
 corresponding increase in the maximum size of the encapsulated DTLS
 packets.

 The only changes made from RADIUS/UDP to RADIUS/DTLS are the
 following two items:

 (1) The Length checks defined in [RFC2865] Section 3 MUST use the

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Experimental [Page 6]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 length of the decrypted DTLS data instead of the UDP packet
 length.

 (2) The shared secret secret used to compute the MD5 integrity
 checks and the attribute encryption MUST be "radius/dtls".

 All other aspects of RADIUS are unchanged.

2.2. Similarities with RADIUS/TLS

 While this specification can be thought of as RADIUS/TLS over UDP
 instead of the Transmission Control Protocol (TCP), there are some
 differences between the two methods. The bulk of [RFC6614] applies
 to this specification, so we do not repeat it here.

 This section explains the differences between RADIUS/TLS and
 RADIUS/DTLS, as semantic "patches" to [RFC6614]. The changes are as
 follows:

 * We replace references to "TCP" with "UDP"

 * We replace references to "RADIUS/TLS" with "RADIUS/DTLS"

 * We replace references to "TLS" with "DTLS"

 Those changes are sufficient to cover the majority of the differences
 between the two specifications. The next section reviews some more
 detailed changes from [RFC6614], giving additional commentary only
 where necessary.

2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS

 This section describes where this specification is similar to
 [RFC6614], and where it differs.

Section 2.1 applies to RADIUS/DTLS, with the exception that the
 RADIUS/DTLS port is UDP/TBD.

Section 2.2 applies to RADIUS/DTLS. Servers and clients need to be
 preconfigured to use RADIUS/DTLS for a given endpoint.

 Most of Section 2.3 applies also to RADIUS/DTLS. Item (1) should be
 interpreted as applying to DTLS session initiation, instead of TCP
 connection establishment. Item (2) applies, except for the
 recommendation that implementations "SHOULD" support
 TLS_RSA_WITH_RC4_128_SHA. This recommendation is a historical
 artifact of RADIUS/TLS, and does not apply to RADIUS/DTLS. Item (3)
 applies to RADIUS/DTLS. Item (4) applies, except that the fixed

https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc6614

DeKok, Alan Experimental [Page 7]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 shared secret is "radius/dtls", as described above.

Section 2.4 applies to RADIUS/DTLS. Client identies can be
 determined from TLS parameters, instead of relying solely on the
 source IP address of the packet.

Section 2.5 does not apply to RADIUS/DTLS. The relationship between
 RADIUS packet codes and UDP ports in RADIUS/DTLS is unchanged from
 RADIUS/UDP.

 Sections 3.1, 3.2, and 3.3 apply to RADIUS/DTLS.

Section 3.4 item (1) does not apply to RADIUS/DTLS. Each RADIUS
 packet is encapsulated in one DTLS packet, and there is no "stream"
 of RADIUS packets inside of a TLS session. Implementors MUST enforce
 the requirements of [RFC2865] Section 3 for the RADIUS Length field,
 using the length of the decrypted DTLS data for the checks. This
 check replaces the RADIUS method of using the length field from the
 UDP packet.

Section 3.4 item (3) applies to RADIUS/DTLS when the new port is
 used. When DTLS is used over the existing RADIUS/UDP ports, the
 relationship between RADIUS packet codes and UDP ports in RADIUS/DTLS
 is unchanged from RADIUS.

Section 3.4 item (4) applies to RADIUS/DTLS when the new port is
 used. When DTLS is used over the existing RADIUS/UDP ports, the use
 of negative ICMP responses is unchanged from RADIUS.

Section 3.4 item (5) applies to RADIUS/DTLS when the new port is
 used. When DTLS is used over the existing RADIUS/UDP ports, the use
 of negative ICMP responses is unchanged from RADIUS.

Section 4 does not apply to RADIUS/DTLS. Protocol compatibility
 considerations are defined in this document.

2.2.2. Reinforcement of RADIUS/TLS

 We re-iterate that much of [RFC6614] applies to this document.
 Specifically, Section 4 and Section 6 of that document are applicable
 to RADIUS/DTLS.

3. Transition Path

 Transitioning to DTLS is a process which needs to be done carefully.
 A poorly handled transition is complex for administrators, and
 potentially subject to security downgrade attacks. It is not
 sufficient to just disable RADIUS/UDP and enable RADIUS/DTLS. That

https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc6614

DeKok, Alan Experimental [Page 8]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 approach would result in timeouts, lost traffic, and network
 instabilities.

 The end result of this specification is that nearly all RADIUS/UDP
 implementations should transition to using a secure alternative. In
 some cases, RADIUS/UDP may remain where IPSec is used as a transport,
 or where implementation and/or business reasons preclude a change.
 However, long-term use of RADIUS/UDP is NOT RECOMMENDED.

 This section describes how clients and servers should transition to
 DTLS. There is a fair amount of discussion around this transition,
 as it is critical to get it correct. We expect that once
 implementations have transitioned to RADIUS/DTLS, the text in this
 section will no longer be relevant.

3.1. DTLS Port and Packet Types

 The default destination port number for RADIUS/DTLS is UDP/TBD There
 are no separate ports for authentication, accounting, and dynamic
 authorization changes. The source port is arbitrary. The text above
 in Section 2.2.1 describes issues surrounding the use of one port for
 multiple packet types, by referencing [RFC6614] Section 3.4.

3.2. Server Transition to DTLS

 When a server receives packets on the assigned RADIUS/DTLS port, all
 packets MUST be treated as being DTLS. RADIUS/UDP packets MUST NOT
 be accepted on this port. The transition path described in this
 section MUST NOT be used for that port.

 Servers MAY accept DTLS packets on the old RADIUS/UDP ports. In that
 case, we require a method to disambiguate packets between the two
 protocols. This method is applicable only to RADIUS/DTLS servers.

 The disambiguation method leverages the RADIUS/UDP requirement that
 clients be known by source IP address. RADIUS/DTLS servers MUST
 treat packets from unknown IP addresses as being DTLS. This
 requirement does not mean that the server is required to accept these
 packets. It means that if the server chooses to accept them, they
 are to be treated as being DTLS.

 For packets from known IP addresses RADIUS/DTLS servers MUST maintain
 a boolean "DTLS Required" flag for each client that indicates if it
 requires a client to use RADIUS/DTLS. If the flag is "true" then all
 packets from that client MUST be processed as RADIUS/DTLS.

 The transition to RADIUS/DTLS is performed only when the "DTLS
 Required" flag is "false". This setting means that the client is

https://datatracker.ietf.org/doc/html/rfc6614#section-3.4

DeKok, Alan Experimental [Page 9]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 known to support RADIUS/UDP, but may also support RADIUS/DTLS.
 Packets from the client need to be examined to see if they are
 RADIUS/UDP or RADIUS/DTLS. The protocol disambiguation method
 outlined below in Section 5.1.2 MUST be used to determine how
 received packets are treated.

 The "DTLS Required" flag MUST be exposed to administrators of the
 server. As clients are upgraded, administrators can then manually
 mark them as using RADIUS/DTLS. The default value for the flag
 SHOULD be "false". DTLS configuration parameters (e.g. certificates,
 pre-shared keys, etc.) SHOULD be exposed to the administrator, even
 if the "DTLS Required" flag is set to "false". Adding these
 parameters means that the client may use DTLS, though it is not
 required.

 It is RECOMMENDED that the default value for the "DTLS Required" flag
 be set to "true" when this specification has acheived wide-spread
 adoption.

 Once a RADIUS/DTLS server has established a DTLS session with a
 client that previously had the flag set to "false", the server SHOULD
 set the "DTLS Required" flag to "true". This change suggests that
 subsequent traffic from that client to use DTLS, and prevents
 bidding-down attacks. The server SHOULD also notify the
 administrator that it has successfully established the first DTLS
 session with that client.

 The above requirement means that RADIUS/DTLS servers are subject to
 downbidding attacks. A client can use DTLS for a period of time, and
 then subsequently revert to using UDP. This attack is permitted in
 order to allow an transition period from UDP to DTLS transport. It
 is RECOMMENDED that administators set the "DTLS Required" flag
 manually for each client after is has been seen to be using DTLS.

 The above requirement is largely incompatible with the use of
 multiple RADIUS/UDP clients behind a Network Address Translation
 (NAT) gateway, as noted below in Section 10.3.

 Note that this last requirement on servers can impose significant
 changes for clients. These changes are discussed in the next
 section.

4. Client Transition

 When a client sends packets to the assigned RADIUS/DTLS port, all
 packets MUST be DTLS. RADIUS/UDP packets MUST NOT be sent to this
 port. The transition path described in this section MUST NOT be used
 for packets sent to that port.

DeKok, Alan Experimental [Page 10]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 Servers MAY accept DTLS packets to the old RADIUS/UDP ports. In that
 case, we require guidelines for when to use one or the other. This
 method is applicable only to RADIUS/DTLS clients.

 RADIUS/DTLS clients MUST maintain a boolean "DTLS Required" flag for
 each server that indicates if that server requires it to use
 RADIUS/DTLS. If the flag is "true" then the server supports
 RADIUS/DTLS, and all packets sent to that server MUST be RADIUS/DTLS.
 If the flag is "false", then the server supports RADIUS/UDP, but may
 still support RADIUS/DTLS. Packets sent to that server MUST be
 RADIUS/UDP.

 The "DTLS Required" flag MUST be exposed to administrators of the
 client. As servers are upgraded, administrators can then manually
 mark them as using RADIUS/DTLS. The default value for the flag
 SHOULD be "false". DTLS configuration parameters (e.g. certificates,
 pre-shared keys, etc.) SHOULD be exposed to the administrator, even
 if the "DTLS Required" flag is set to "false".

 Adding DTLS configuration parameters means that the client MUST start
 using DTLS to the server for all new requests. The client MUST,
 however, accept RADIUS/UDP responses to any outstanding RADIUS/UDP
 requests. It is RECOMMENDED that a client wait for all responses to
 RADIUS/UDP requests before sending RADIUS/DTLS traffic to a
 particular server. This suggestion means that the server sees a
 "clean" transition from one protocol to another. Having the client
 send a mix of RADIUS/UDP and RADIUS/DTLS traffic is problematic.

 It is RECOMMENDED that the default value for the "DTLS Required" flag
 be set to "true" when this specification has acheived wide-spread
 adoption.

 RADIUS/DTLS clients SHOULD NOT probe servers to see if they support
 DTLS transport. Doing so would cause servers to immediately require
 that all new packets from the client use DTLS. This requirement may
 be difficult for a client to satisfy. Instead, clients SHOULD use
 DTLS as a transport layer only when administratively configured.

 The requirements of this specification mean that RADIUS/DTLS clients
 can no longer have multiple independent RADIUS implementations, or
 processes that originate RADIUS/UDP and RADIUS/DTLS packets.
 Instead, clients MUST use only one transport layer to communicate
 with a specific server. It is RECOMMENDED that clients use a local
 proxy as described in Section 6.1, below.

DeKok, Alan Experimental [Page 11]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

5. Connection Management

 Where [RFC6614] can rely on the TCP state machine to perform
 connection tracking, this specification cannot. As a result,
 implementations of this specification may need to perform connection
 management of the DTLS session in the application layer. This
 section describes logically how this tracking is done.
 Implementations may choose to use the method described here, or
 another, equivalent method.

 We note that [RFC5080] Section 2.2.2 already mandates a duplicate
 detection cache. The connection tracking described below can be seen
 as an extension of that cache, where entries contain DTLS sessions
 instead of RADIUS/UDP packets.

 [RFC5080] section 2.2.2 describes how duplicate RADIUS/UDP requests
 result in the retransmission of a previously cached RADIUS/UDP
 response. Due to DTLS sequence window requirements, a server MUST
 NOT retransmit a previously sent DTLS packet. Instead, it should
 cache the RADIUS response packet, and re-process it through DTLS to
 create a new RADIUS/DTLS packet, every time a retransmitted response
 is sent.

5.1. Server Connection Management

 A RADIUS/DTLS server MUST track ongoing client connections based on a
 key composed of the following 4-tuple:

 * source IP address
 * source port
 * destination IP address
 * destination port

 Note that this key is independent of IP address version (IPv4 or
 IPv6).

 Each entry associated with a key contains the following information:

Protocol Type
 A flag which is either "RADIUS/UDP" for old-style RADIUS traffic,
 or "RADIUS/DTLS" for RADIUS/DTLS connections.

DTLS Data
 An implementation-specific variable containing information about
 the active DTLS connection. For non-DTLS connections, this
 variable MUST be empty.

https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc5080#section-2.2.2

DeKok, Alan Experimental [Page 12]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

Last Taffic
 A variable containing a timestamp which indicates when this
 connection last received valid traffic.

 Each entry may contain other information, such as idle timeouts,
 connection lifetimes, and other implementation-specific data.

5.1.1. Session Management

 Session tracking is subject to Denial of Service (DoS) attacks due to
 the ability of an attacker to forge UDP traffic. RADIUS/DTLS servers
 SHOULD use the stateless cookie tracking technique described in

[RFC6347] Section 4.2.1. DTLS sessions SHOULD NOT be tracked until a
 ClientHello packet has been received with an appropriate Cookie
 value. The requirement to accept RADIUS/UDP and RADIUS/DTLS on the
 same port makes this recommendation difficult to implement in
 practice. Server implementation SHOULD therefore have a way of
 tracking partially setup DTLS connections. Servers SHOULD limit both
 the number and impact on resources of partial connections.

 Sessions (both key and entry) MUST deleted when a TLS Closure Alert
 ([RFC5246] Section 7.2.1) or a fatal TLS Error Alert ([RFC5246]
 Section 7.2.2) is received. When a session is deleted due to failed
 security, the DTLS session MUST be closed, and any TLS session
 resumption parameters for that session MUST be discarded, and all
 tracking information MUST be deleted.

 Sessions MUST also be deleted when a RADIUS packet fails validation
 due to a packet being malformed, or when it has an invalid Message-
 Authenticator, or invalid Request Authenticator. There are other
 cases when the specifications require that a packet received via a
 DTLS session be "silently discarded". In those cases,
 implementations MAY delete the underlying session as described above.
 There are few reasons to communicate with a NAS which is not
 implementing RADIUS.

 The above paragraph can be rephrased more generically. A session
 MUST be deleted when non-RADIUS traffic is received over it. This
 specification is for RADIUS, and there is no reason to allow non-
 RADIUS traffic over a RADIUS/DTLS connection. A session MUST be
 deleted when RADIUS traffic fails to pass security checks. There is
 no reason to permit insecure networks. A session SHOULD NOT be
 deleted when a well-formed, but "unexpected" RADIUS packet is
 received over it. Future specifications may extend RADIUS/DTLS, and
 we do not want to forbid those specifications.

 Once a DTLS session is established, a RADIUS/DTLS server SHOULD use
 DTLS Heartbeats [RFC6520] to determine connectivity between the two

https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.2.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.2.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.2.2
https://datatracker.ietf.org/doc/html/rfc6520

DeKok, Alan Experimental [Page 13]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 servers. A server SHOULD also use watchdog packets from the client
 to determine that the connection is still active.

 As UDP does not guarantee delivery of messages, RADIUS/DTLS servers
 which do not implement an application-layer watchdog MUST also
 maintain a "Last Traffic" timestamp per DTLS session. The timestamp
 SHOULD be updated on reception of a valid RADIUS/DTLS packet, or a
 DTLS heartbeat. The timestamp MUST NOT be updated in other
 situations. When a session has not received a packet for a period of
 time, it is labelled "idle". The server SHOULD delete idle DTLS
 sessions after an "idle timeout". The server MAY cache the TLS
 session parameters, in order to provide for fast session resumption.

 This session "idle timeout" SHOULD be exposed to the administrator as
 a configurable setting. It SHOULD NOT be set to less than 60
 seconds, and SHOULD NOT be set to more than 600 seconds (10 minutes).
 The minimum value useful value for this timer is determined by the
 application-layer watchdog mechanism defined in the following
 section.

 RADIUS/DTLS servers SHOULD also monitor the total number of sessions
 they are tracking. They SHOULD stop the creating of new sessions
 when a large number are already being tracked. This "maximum
 sessions" number SHOULD be exposed to administrators as a
 configurable setting.

 RADIUS/DTLS servers SHOULD implement session resumption, preferably
 stateless session resumption as given in [RFC5077]. This practice
 lowers the time and effort required to start a DTLS session with a
 client, and increases network responsiveness.

5.1.2. Protocol Disambiguation

 When the "DTLS Required" flag for a client is set to "false", the
 client may, or may not be sending DTLS packets. For existing
 connections, protocol disambiguation is simple, the "Protocol Type"
 field in the session tracking entry is examined. New connections
 must still be disambiguated.

 In order to provide a robust upgrade path, the RADIUS/DTLS server
 MUST examine the packet to see if it is RADIUS/UDP or RADIUS/DTLS.
 This examination method is defined here.

 We justify the examination methods by analysing the packet formats
 for the two protocols. We assume that the server has a buffer in
 which it has received a UDP packet matching no entry based on the
 4-tuple key defined above. It must then analyse this buffer to
 determine which protocol is used to process the packet.

https://datatracker.ietf.org/doc/html/rfc5077

DeKok, Alan Experimental [Page 14]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 The DTLS record format ([RFC6347] Section 4.1) is shown below, in
 pseudo-code:

 struct {
 uint8 type;
 uint16 version;
 uint16 epoch;
 uint48 sequence_number;
 uint16 length;
 uint8 fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 The RADIUS record format ([RFC2865] Section 3) is shown below, in
 pseudo-code, with AuthVector.length=16.

 struct {
 uint8 code;
 uint8 id;
 uint16 length;
 uint8 vector[AuthVector.length];
 uint8 data[RadiusPacket.length - 20];
 } RadiusPacket;

 We can see here that a number of fields overlap between the two
 protocols. At first glance, it seems difficult for an application to
 accept both protocols on the same port. However, this is not the
 case.

 The initial DTLS packet of a connection requires that the type field
 (first octet) has value 22 (handshake). The first octet of a RADIUS
 packet is the code field. The code value of 22 has been assigned as
 Resource-Free-Response. That code is intended to be a response from
 a server to a client, and will therefore never be sent by a client to
 a server.

 As a result, protocol disambiguation for new connections to a server
 is straightforward. Only the first octet of the packet needs to be
 examined to disambiguate RADIUS/DTLS from RADIUS/UDP. If that octet
 has value 22, then the packet is likely to be RADIUS/DTLS.
 Otherwise, the packet is likely to be RADIUS/UDP.

5.1.3. Processing Algorithm

 When a RADIUS/DTLS server recieves a packet, it uses the following
 algorithm to process that packet. As with RADIUS/UDP, packets from
 unknown clients MUST be silently discarded.

 The "DTLS Required" flag for that client is examined. If it is set

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1
https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Experimental [Page 15]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 to "true", then the packet MUST be processed as RADIUS/DTLS.

 If the "DTLS Required" flag is set to "false", the session is looked
 up using the 4-tuple key defined above. Packets matching an existing
 entry MUST be processed as defined by the "Protocol Type" field of
 that entry.

 If the "DTLS Required" flag is set to "false" and no matching entry
 has been found, then the first octet of the packet is examined. If
 it has value 22, then the packet MUST be processed as RADIUS/DTLS.
 Otherwise, the packet MUST be processed as RADIUS/UDP.

 In all cases, the packet MUST be checked for correctness. For
 RADIUS/UDP, any packets which are silently discarded MUST NOT affect
 the state of any variable in session tracking entry. For
 RADIUS/DTLS, any packets which are discarded by the DTLS layer MUST
 NOT affect the state of any variable in the session tracking entry.

 When the packet matches an existing key, and is accepted for
 processing by the server, it is processed via the method indicated in
 that entry. Where the packet does not match an existing key, a new
 entry is created for that key. The "Protocol Type" flag for that
 entry is set to "RADIUS/DTLS", or "RADIUS/UDP", as determined by
 examining the first octet of the packet.

 When a server has the clients "DTLS Required" flag set to "false", it
 MUST set the flag to "true" after establishing a DTLS session with
 that client. It MUST NOT set the flag to "true" until a DTLS session
 has been fully established. Doing so would mean that attackers could
 perform a DoS attack by sending forged DTLS ClientHello packets to a
 server.

 Since UDP is stateless, the potential exists for the client to
 initiate a new DTLS session using a particular 4-tuple, before the
 server has closed the old session. For security reasons, the server
 must keep the old session active until it has received secure
 notification from the client that the session is closed. Or, when
 the server has decided for itself that the session is closed. Taking
 any other action would permit unauthenticated clients to perform a
 DoS attack, by closing active DTLS session.

 As a result, servers MUST ignore any attempts to re-use an existing
 4-tuple from an active session. This requirement can likely be
 reached by simply processing the packet through the existing session,
 as with any other packet received via that 4-tuple. Non-compliant,
 or unexpected packets will be ignored by the DTLS layer.

 The above requirement is mitigated by the suggestion in Section 6.1,

DeKok, Alan Experimental [Page 16]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 below, that the client use a local proxy for all RADIUS traffic.
 That proxy can then track the ports which it uses, and ensure that
 re-use of 4-tuples is avoided. The exact process by which this
 tracking is done is outside of the scope of this document.

5.2. Client Connection Management

 Clients SHOULD use Path MTU (PMTU) discovery [RFC6520] to determine
 the PMTU between the client and server, prior to sending any RADIUS
 traffic. Once a DTLS session is established, a RADIUS/DTLS client
 SHOULD use DTLS Heartbeats [RFC6520] to determine connectivity
 between the two systems. Alternatively, RADIUS/DTLS clients may use
 the application-layer watchdog algorithm defined in [RFC3539] to
 determine server responsiveness. The Status-Server packet defined in
 [RFC5997] SHOULD be used as the "watchdog packet" in any application-
 layer watchdog algorithm.

 RADIUS/DTLS clients SHOULD pro-actively close sessions when they have
 been idle for a period of time. Clients SHOULD close a session when
 the DTLS Heartbeat algorithm indicates that the session is no longer
 active. Clients SHOULD close a session when no traffic other than
 watchdog packets and (possibly) watchdog responses have been sent for
 three watchdog timeouts. This behavior ensures that clients do not
 waste resources on the server by causing it to track idle sessions.

 A client may choose to avoid DTLS heartbeats and watchdog packets
 entirely. However, DTLS provides no signal that a session has been
 closed. There is therefore the possibility that the server closes
 the session without the client knowing. When that happens, the
 client may later transmit packets in a session, and those packets
 will be ignored by the server. The client is then forced to time out
 those packets and then the session, leading to delays and network
 instabilities.

 For these reasons, it is RECOMMENDED that RADIUS/DTLS clients
 implement DTLS heartbeats and/or watchdog packets for all DTLS
 sessions.

 DTLS sessions MUST also be deleted when a RADIUS packet fails
 validation due to a packet being malformed, or when it has an invalid
 Message-Authenticator, or invalid Response Authenticator. There are
 other cases when the specifications require that a packet received
 via a DTLS session be "silently discarded". In those cases,
 implementations MAY delete the underlying DTLS session.

 RADIUS/DTLS clients MUST NOT send both RADIUS/UDP and RADIUS/DTLS
 packets over the same key of (source IP, source port, destination IP,
 destination port) as defined in Section 4.1, above . Doing so would

https://datatracker.ietf.org/doc/html/rfc6520
https://datatracker.ietf.org/doc/html/rfc6520
https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc5997

DeKok, Alan Experimental [Page 17]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 make it impossible to correctly process either kind of packet.

 RADIUS/DTLS clients SHOULD NOT send both RADIUS/UDP and RADIUS/DTLS
 packets to different servers from the same source socket. This
 practice causes increased complexity in the client application, and
 increases the potential for security breaches due to implementation
 issues.

 RADIUS/DTLS clients SHOULD implement session resumption, preferably
 stateless session resumption as given in [RFC5077]. This practice
 lowers the time and effort required to start a DTLS session with a
 server, and increases network responsiveness.

6. Implementation Guidelines

 The text above describes the protocol. In this section, we give
 additional implementation guidelines. These guidelines are not part
 of the protocol, but may help implementors create simple, secure, and
 inter-operable implementations.

 Where a TLS pre-shared key (PSK) method is used, implementations MUST
 support keys of at least 16 octets in length. Implementations SHOULD
 support key lengths of 32 octets, and SHOULD allow for longer keys.
 The key data MUST be capable of being any value (0 through 255,
 inclusive). Implementations MUST NOT limit themselves to using
 textual keys. It is RECOMMENDED that the administration interface
 allows for the keys to be entered as hex strings.

 It is RECOMMENDED that keys be derived from a cryptographically
 secure pseudo-random number generator (CSPRNG). If managing keys is
 too complicated, a certificate-based TLS method SHOULD be used
 instead.

6.1. Client Implementations

 RADIUS/DTLS clients SHOULD use connected sockets where possible. Use
 of connected sockets means that the underlying kernel tracks the
 sessions, so that the client subsystem does not need to. It is a
 good idea to leverage existing functionality.

 RADIUS/DTLS clients SHOULD use one source when sending packets to a
 particular RADIUS/DTLS server. Doing so minimizes the number of DTLS
 session setups. It also ensures that information about the home
 server state is discovered only once.

 In practice, this means that RADIUS/DTLS clients SHOULD use a local
 proxy which arbitrates all RADIUS traffic between the client and all
 servers. The proxy SHOULD accept traffic only from the authorized

https://datatracker.ietf.org/doc/html/rfc5077

DeKok, Alan Experimental [Page 18]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 subsystems on the client machine, and SHOULD proxy that traffic to
 known servers. Each authorized subsystem SHOULD include an attribute
 which uniquely identifies that subsystem to the proxy, so that the
 proxy can apply origin-specific proxy rules and security policies.
 We suggest using NAS-Identifier for this purpose.

 The local proxy SHOULD be able to interact with multiple servers at
 the same time. There is no requirement that each server have its own
 unique proxy on the client, as that would be inefficient.

 Each client subsystem can include a subsystem-specific NAS-Identifier
 in each request. The format of this attribute is implementation-
 specific. The proxy SHOULD verify that the request originated from
 the local system, ideally via a loopback address. The proxy MUST
 then re-write any subsystem-specific NAS-Identifier to a NAS-
 Identifier which identifies the client as a whole. Or, remove NAS-
 Identifier entirely and replace it with NAS-IP-Address or NAS-
 IPv6-Address.

 In traditional RADIUS, the cost to set up a new "session" between a
 client and server was minimal. The client subsystem could simply
 open a port, send a packet, wait for the response, and the close the
 port. With RADIUS/DTLS, the connection setup is significantly more
 expensive. In addition, there may be a requirement to use DTLS in
 order to communicate with a server, so that traditional RADIUS would
 be ignored by that server. The knowledge of what protocol to use is
 best managed by a dedicated RADIUS subsystem, rather than by each
 individual subsystem on the client.

6.2. Server Implementations

 RADIUS/DTLS servers SHOULD NOT use connected sockets to read DTLS
 packets from a client. This recommendation is because a connected
 UDP socket will accept packets only from one source IP address and
 port. This limitation would prevent the server from accepting
 packets from multiple clients on the same port.

7. Implementation Experience

 Two implementations of RADIUS/DTLS exist, Radsecproxy, and jradius
 (http://www.coova.org/JRadius). Some experimental tests have been
 performed, but there are at this time no production implementations
 using RADIUS/DTLS.

Section 4.2 of [RFC6421] makes a number of recommendations about
 security properties of new RADIUS proposals. All of those
 recommendations are satisfied by using DTLS as the transport layer.

http://www.coova.org/JRadius
https://datatracker.ietf.org/doc/html/rfc6421#section-4.2

DeKok, Alan Experimental [Page 19]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

Section 4.3 of [RFC6421] makes a number of recommendations about
 backwards compatibility with RADIUS. Section 3, above, addresses
 these concerns in detail.

Section 4.4 of [RFC6421] recommends that change control be ceded to
 the IETF, and that interoperability is possible. Both requirements
 are satisfied.

Section 4.5 of [RFC6421] requires that the new security methods apply
 to all packet types. This requirement is satisfied by allowing DTLS
 to be used for all RADIUS traffic. In addition, Section 3, above,
 addresses concerns about documenting the transition from legacy
 RADIUS to crypto-agile RADIUS.

Section 4.6 of [RFC6421] requires automated key management. This
 requirement is satisfied by leveraging DTLS.

8. Diameter Considerations

 This specification defines a transport layer for RADIUS. It makes no
 other changes to the RADIUS protocol. As a result, there are no
 Diameter considerations.

9. IANA Considerations

 This specification allocates a new UDP port, called "RADIUS-DTLS".
 The references to "UDP/TBD" in this document need to be updated to
 use the allocated port number.

10. Security Considerations

 This entire specification is devoted to discussing security
 considerations related to RADIUS. However, we discuss a few
 additional issues here.

 This specification relies on the existing DTLS, RADIUS/UDP, and
 RADIUS/TLS specifications. As a result, all security considerations
 for DTLS apply to the DTLS portion of RADIUS/DTLS. Similarly, the
 TLS and RADIUS security issues discussed in [RFC6614] also apply to
 this specification. All of the security considerations for RADIUS
 apply to the RADIUS portion of the specification.

 However, many security considerations raised in the RADIUS documents
 are related to RADIUS encryption and authorization. Those issues are
 largely mitigated when DTLS is used as a transport method. The
 issues that are not mitigated by this specification are related to
 the RADIUS packet format and handling, which is unchanged in this
 specification.

https://datatracker.ietf.org/doc/html/rfc6421#section-4.3
https://datatracker.ietf.org/doc/html/rfc6421#section-4.4
https://datatracker.ietf.org/doc/html/rfc6421#section-4.5
https://datatracker.ietf.org/doc/html/rfc6421#section-4.6
https://datatracker.ietf.org/doc/html/rfc6614

DeKok, Alan Experimental [Page 20]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 The main portion of the specification that could have security
 implications is a servers ability to accept both RADIUS and DTLS
 packets on the same port. The filter that disambiguates the two
 protocols is simple, and is just a check for the value of one octet.
 We do not expect this check to have any security issues.

 We also note that nothing prevents malicious clients from sending
 DTLS packets to existing RADIUS implementations, or RADIUS packets to
 existing DTLS implementations. There should therefore be no issue
 with clients sending RADIUS/DTLS packets to legacy servers that do
 not support the protocol. These packets will be silently discarded,
 and will not change the security profile of the server.

 This specification also suggests that implementations use a
 connection tracking table. This table is an extension of the
 duplicate detection cache mandated in [RFC5080] Section 2.2.2. The
 changes given here are that DTLS-specific information is tracked for
 each table entry. Section 5.1.1, above, describes steps to mitigate
 any DoS issues which result from tracking additional information.

10.1. Legacy RADIUS Security

 We reiterate here the poor security of the legacy RADIUS protocol.
 It is RECOMMENDED that all RADIUS clients and servers implement this
 specification. New attacks on MD5 have appeared over the past few
 years, and there is a distinct possibility that MD5 may be completely
 broken in the near future.

 The existence of fast and cheap attacks on MD5 could result in a loss
 of all network security which depends on RADIUS. Attackers could
 obtain user passwords, and possibly gain complete network access. We
 cannot overstate the disastrous consequences of a successful attack
 on RADIUS.

 We also caution implementors (especially client implementors) about
 using RADIUS/DTLS. It may be tempting to use the shared secret as
 the basis for a TLS pre-shared key (PSK) method, and to leave the
 user interface otherwise unchanged. This practice MUST NOT be used.
 The administrator MUST be given the option to use DTLS. Any shared
 secret used for RADIUS/UDP MUST NOT be used for DTLS. Re-using a
 shared secret between RADIUS/UDP and RADIUS/DTLS would negate all of
 the benefits found by using DTLS.

 RADIUS/DTLS client implementors MUST expose a configuration that
 allows the administrator to choose the cipher suite. Where
 certificates are used, RADIUS/DTLS client implementors MUST expose a
 configuration which allows an administrator to configure all
 certificates necessary for certificate-based authentication. These

https://datatracker.ietf.org/doc/html/rfc5080#section-2.2.2

DeKok, Alan Experimental [Page 21]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 certificates include client, server, and root certificates.

 TLS-PSK methods are susceptible to dictionary attacks. Section 6,
 above, recommends deriving TLS-PSK keys from a CSPRNG, which makes
 dictionary attacks significantly more difficult. Servers SHOULD
 track failed client connections by TLS-PSK ID, and block TLS-PSK IDs
 which seem to be attempting brute-force searchs of the keyspace.

 The previous RADIUS practice of using shared secrets that are minor
 variations of words is NOT RECOMMENDED, as it would negate all of the
 security of DTLS.

10.2. Resource Exhaustion

 The use of DTLS allows DoS attacks, and resource exhaustion attacks
 which were not possible in RADIUS/UDP. These attacks are the similar
 to those described in [RFC6614] Section 6, for TCP.

 Session tracking as described in Section 5.1 can result in resource
 exhaustion. Servers MUST therefore limit the absolute number of
 sessions that they track. When the total number of sessions tracked
 is going to exceed the configured limit, servers MAY free up
 resources by closing the session which has been idle for the longest
 time. Doing so may free up idle resources which then allow the
 server to accept a new session.

 Servers MUST limit the number of partially open DTLS sessions. These
 limits SHOULD be exposed to the administrator as configurable
 settings.

10.3. Network Address Translation

 Network Address Translation (NAT) is fundamentally incompatible with
 RADIUS/UDP. RADIUS/UDP uses the source IP address to determine the
 shared secret for the client, and NAT hides many clients behind one
 source IP address.

 The migration flag described above in Section 3 is also tracked per
 source IP address. Using a NAT in front of many RADIUS clients
 negates the function of the flag, making it impossible to migrate
 multiple clients in a secure fashion.

 In addition, port re-use on a NAT gateway means that packets from
 different clients may appear to come from the same source port on the
 NAT. That is, a RADIUS server may receive a RADIUS/DTLS packet from
 a client IP/port combination, followed by the reception of a
 RADIUS/UDP packet from that same client IP/port combination. If this
 behavior is allowed, it would permit a downgrade attack to occur, and

https://datatracker.ietf.org/doc/html/rfc6614#section-6

DeKok, Alan Experimental [Page 22]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 would negate all of the security added by RADIUS/DTLS.

 As a result, RADIUS clients SHOULD NOT be located behind a NAT
 gateway. If clients are located behind a NAT gateway, then a secure
 transport such as DTLS MUST be used. As discussed below, a method
 for uniquely identifying each client MUST be used.

10.4. Wildcard Clients

 Some RADIUS server implementations allow for "wildcard" clients.
 That is, clients with an IPv4 netmask of other than 32, or an IPv6
 netmask of other than 128. That practice is NOT RECOMMENDED for
 RADIUS/UDP, as it means multiple clients use the same shared secret.

 When a client is a "wildcard", then RADIUS/DTLS MUST be used.
 Clients MUST be uniquely identified, and any certificate or PSK used
 MUST be unique to each client.

10.5. Session Closing

Section 5.1.1 above requires that DTLS sessions be closed when the
 transported RADIUS packets are malformed, or fail various
 authenticator checks. This requirement is due to security
 considerations.

 When an implementation has a DTLS connection, it is expected that the
 connection be used to transport RADIUS. Any non-RADIUS traffic on
 that connection means the other party is misbehaving, and a potential
 security risk. Similarly, any RADIUS traffic failing validation
 means that two parties do not share the same security parameters, and
 the session is therefore a security risk.

 We wish to avoid the situation where a third party can send well-
 formed RADIUS packets which cause a DTLS connection to close.
 Therefore, in other situations, the session may remain open in the
 face of non-conformant packets.

10.6. Clients Subsystems

 Many traditional clients treat RADIUS as subsystem-specific. That
 is, each subsystem on the client has its own RADIUS implementation
 and configuration. These independent implementations work for simple
 systems, but break down for RADIUS when multiple servers, fail-over,
 and load-balancing are required. They have even worse issues when
 DTLS is enabled.

 As noted in Section 6.1, above, clients SHOULD use a local proxy
 which arbitrates all RADIUS traffic between the client and all

DeKok, Alan Experimental [Page 23]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

 servers. This proxy will encapsulate all knowledge about servers,
 including security policies, fail-over, and load-balancing. All
 client subsystems SHOULD communicate with this local proxy, ideally
 over a loopback address. The requirements on using strong shared
 secrets still apply.

 The benefit of this configuration is that there is one place in the
 client which arbitrates all RADIUS traffic. Subsystems which do not
 implement DTLS can remain unaware of DTLS. DTLS connections opened
 by the proxy can remain open for long periods of time, even when
 client subsystems are restarted. The proxy can do RADIUS/UDP to some
 servers, and RADIUS/DTLS to others.

 Delegation of responsibilities and separation of tasks are important
 security principles. By moving all RADIUS/DTLS knowledge to a DTLS-
 aware proxy, security analysis becomes simpler, and enforcement of
 correct security becomes easier.

11. References

11.1. Normative references

[RFC2865]
 Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.

[RFC3539]
 Aboba, B. et al., "Authentication, Authorization and Accounting
 (AAA) Transport Profile", RFC 3539, June 2003.

[RFC5077]
 Salowey, J, et al., "Transport Layer Security (TLS) Session
 Resumption without Server-Side State", RFC 5077, January 2008

[RFC5080]
 Nelson, D. and DeKok, A, "Common Remote Authentication Dial In User
 Service (RADIUS) Implementation Issues and Suggested Fixes", RFC

5080, December 2007.

[RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2", RFC 5246, August 2008.

[RFC5997]
 DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol", RFC 5997,
 August 2010.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5997

DeKok, Alan Experimental [Page 24]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

[RFC6347]
 Rescorla E., and Modadugu, N., "Datagram Transport Layer Security",

RFC 6347, April 2006.

[RFC6520]
 Seggelmann, R., et al.,"Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension", RFC 6520,
 February 2012.

[RFC6614]
 Winter. S, et. al., "TLS encryption for RADIUS over TCP", RFFC
 6614, May 2012

11.2. Informative references

[RFC1321]
 Rivest, R. and S. Dusse, "The MD5 Message-Digest Algorithm", RFC

1321, April 1992.

[RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March, 1997.

[RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

[RFC5176]
 Chiba, M. et al., "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176, January
 2008.

[RFC6421]
 Nelson, D. (Ed), "Crypto-Agility Requirements for Remote
 Authentication Dial-In User Service (RADIUS)", RFC 6421, November
 2011.

[MD5Attack]
 Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes Vol.2 No.2, Summer 1996.

[MD5Break]
 Wang, Xiaoyun and Yu, Hongbo, "How to Break MD5 and Other Hash
 Functions", EUROCRYPT. ISBN 3-540-25910-4, 2005.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken with minor edits from [RFC2865] Section 3.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6520
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc6421
https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Experimental [Page 25]

INTERNET-DRAFT DTLS as a Transport Layer for RADIUS 17 April 2013

Authors' Addresses

 Alan DeKok
 The FreeRADIUS Server Project

http://freeradius.org

 Email: aland@freeradius.org

DeKok, Alan Experimental [Page 26]

http://freeradius.org

