
RADIUS Extensions Working Group S. Winter
Internet-Draft RESTENA
Intended status: Experimental M. McCauley
Expires: April 19, 2014 OSC
 October 16, 2013

NAI-based Dynamic Peer Discovery for RADIUS/TLS and RADIUS/DTLS
draft-ietf-radext-dynamic-discovery-08

Abstract

 This document specifies a means to find authoritative RADIUS servers
 for a given realm. It is used in conjunction with either RADIUS/TLS
 and RADIUS/DTLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 19, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Winter & McCauley Expires April 19, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RADIUS Peer Discovery October 2013

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3
1.2. Terminology . 3

2. Definitions . 3
2.1. DNS RR definition . 3
2.1.1. S-NAPTR . 3
2.1.2. SRV . 8
2.1.3. Remarks . 8

 2.2. Definition of the X.509 certificate property
 SubjectAltName:otherName:NAIRealm 10

3. DNS-based NAPTR/SRV Peer Discovery 11
3.1. Applicability . 11
3.2. Configuration Variables 11
3.3. Terms . 12
3.4. Realm to RADIUS server resolution algorithm 12
3.4.1. Input . 12
3.4.2. Output . 13
3.4.3. Algorithm . 13
3.4.4. Validity of results 15
3.4.5. Delay considerations 16
3.4.6. Example . 16

4. Security Considerations 19
5. Privacy Considerations 20
6. IANA Considerations . 21
7. Normative References . 22
Appendix A. Appendix A: ASN.1 Syntax of NAIRealm 23

1. Introduction

 RADIUS in all its current transport variants (RADIUS/UDP, RADIUS/TLS,
 RADIUS/DTLS) requires manual configuration of all peers (clients,
 servers).

 Where RADIUS forwarding servers are in use, the number of realms to
 be forwarded and the corresponding number of servers to configure may
 be significant. Where new realms with new servers are added or
 details of existing servers change on a regular basis, maintaining a
 single monolithic configuration file for all these details may prove
 too cumbersome to be useful.

 Furthermore, in cases where a roaming consortium consists of
 independently working branches, each with their own forwarding
 servers, and who add or change their realm lists at their own
 discretion, there is additional complexity in synchronising the
 changed data across all branches.

Winter & McCauley Expires April 19, 2014 [Page 2]

Internet-Draft RADIUS Peer Discovery October 2013

 These situations can benefit significantly from a distributed
 mechanism for storing realm and server reachability information.
 This document describes one such mechanism: storage of realm-to-
 server mappings in DNS.

 This document also specifies various approaches for verifying that
 server information which was retrieved from DNS was from an
 authorised party; e.g. an organisation which is not at all part of a
 given roaming consortium may alter its own DNS records to yield a
 result for its own realm.

1.1. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in

RFC 2119. [RFC2119]

1.2. Terminology

 RADIUS/TLS Client: a RADIUS/TLS [RFC6614] instance which initiates a
 new connection.

 RADIUS/TLS Server: a RADIUS/TLS [RFC6614] instance which listens on a
 RADIUS/TLS port and accepts new connections

 RADIUS/TLS node: a RADIUS/TLS client or server

2. Definitions

2.1. DNS RR definition

 DNS definitions of RADIUS/TLS servers can be either S-NAPTR records
 (see [RFC3958]) or SRV records. When both are defined, the
 resolution algorithm prefers S-NAPTR results (see Section 3.4 below).

2.1.1. S-NAPTR

2.1.1.1. Registration of Application Service and Protocol Tags

 This specification defines three S-NAPTR service tags:

 +-----------------+---+
 | Service Tag | Use |
 +-----------------+---+
 | aaa+auth | RADIUS Authentication, i.e. traffic as |

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc3958

Winter & McCauley Expires April 19, 2014 [Page 3]

Internet-Draft RADIUS Peer Discovery October 2013

	defined in [RFC2865]
- - - - - - - -	- - - - - - - - - - - - - - - - - - - -
aaa+acct	RADIUS Accounting, i.e. traffic as
	defined in [RFC2866]
- - - - - - - -	- - - - - - - - - - - - - - - - - - - -
aaa+dynauth	RADIUS Dynamic Authorisation, i.e.
	traffic as defined in [RFC5176]
 +--------------- --+---+

 Figure 1: List of Service Tags

 This specification defines two S-NAPTR protocol tags:

 +-----------------+---+
 | Protocol Tag | Use |
 +-----------------+---+
radius.tls	RADIUS transported over TLS as defined
	in [RFC6614]
- - - - - - - -	- - - - - - - - - - - - - - - - - - - -
radius.dtls	RADIUS transported over DTLS as defined
	in [I-D.ietf-radext-dtls]
 +-----------------+---+

 Figure 2: List of Protocol Tags

 Note well:

 The S-NAPTR service and protocols are unrelated to the IANA
 Service Name and Transport Protocol Number registry

 The delimiter '.' in the protocol tags is only a separator for
 human reading convenience - not for structure or namespacing; it
 MUST NOT be parsed in any way by the querying application or
 resolver.

 The use of the separator '.' is common also in other protocols'
 protocol tags. This is coincidence and does not imply a shared
 semantics with such protocols.

2.1.1.2. Definition of Conditions for Retry/Failure

 RADIUS is a time-critical protocol; RADIUS clients which do not
 receive an answer after a configurable, but short, amount of time,
 will consider the request failed. Due to this, there is little
 leeway for extensive retries.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc6614

Winter & McCauley Expires April 19, 2014 [Page 4]

Internet-Draft RADIUS Peer Discovery October 2013

 As a general rule, only error conditions which generate an immediate
 response from the other end are eligible for a retry of a discovered
 target. Any error condition involving time-outs, or the absence of a
 reply for more than one second during the connection setup phase is
 to be considered a failure; the next target in the set of discovered
 NAPTR targets is to be tried.

 Note that [RFC3958] already defines that a failure to identify the
 server as being authoritative for the realm is always considered a
 failure; so even if a discovered target returns a wrong credential
 instantly, it is not eligible for retry.

 Furthermore, the contacted RADIUS/TLS server verifies during
 connection setup whether or not it finds the connecting RADIUS/TLS
 client authorized or not. If the connecting RADIUS/TLS client is not
 found acceptable, the server will close the TLS connection
 immediately with an appropriate alert. Such TLS handshake failures
 are permanently fatal and not eligible for retry.

 If the TLS session setup to a discovered target does not succeed,
 that target (as identified by IP address and port number) SHOULD be
 ignored from the result set of any subsequent executions of the
 discovery algorithm at least until the target's Effective TTL has
 expired or until the entity which executes the algorithm changes its
 TLS context to either send a new client certificate or expect a
 different server certificate.

2.1.1.3. Server Identification and Handshake

 After the algorithm in this document has been executed, a RADIUS/TLS
 session as per [RFC6614] is established. Since the algorithm does
 not allow to derive confidential keying material between the RADIUS/
 TLS client (i.e. the server which executes the discovery algorithm)
 and the RADIUS/TLS server which was discovered, TLS-PSK ciphersuites
 can not be used for the subsequent TLS handshake in the RADIUS/TLS
 conversation. Only TLS ciphersuites using X.509 certificates can be
 used with this algorithm.

 There are numerous ways to define which certificates are acceptable
 for use in this context. This document defines one mandatory-to-
 implement mechanism which allows to verify whether the contacted host
 is authoritative for a NAI realm or not. It also gives one example
 of another mechanism which is currently in wide-spread deployment,
 and one possible approach based on DNSSEC which is yet unimplemented.

2.1.1.3.1. Mandatory-to-implement mechanism: Trust Roots + NAIRealm

https://datatracker.ietf.org/doc/html/rfc3958
https://datatracker.ietf.org/doc/html/rfc6614

Winter & McCauley Expires April 19, 2014 [Page 5]

Internet-Draft RADIUS Peer Discovery October 2013

 Verification of authority to provide AAA services over RADIUS/TLS is
 a two-step process.

 Step 1 is the verification of certificate wellformedness and validity
 as per [RFC5280] and whether it was issued from a root certificate
 which is deemed trustworthy by the RADIUS/TLS client.

 Step 2 is: compare the value of algorithm's variable "R" after the
 execution of step 3 of the discovery algorithm in Section 3.4.3 below
 (i.e. after a consortium name mangling, but before conversion to a
 form usable by the name resolution library) to all values of the
 contacted RADIUS/TLS server's X.509 certificate property
 "subjectAlternativeName:otherName:NAIRealm" as defined in

Section 2.2. The comparison is a byte-by-byte comparison, except for
 dot-separated parts of the value whose content is a single "*"
 character; such labels match all strings in the same part of the NAI
 realm. If at least one of the sAN:otherName:NAIRealm values matches
 the NAI realm, the server is considered authorized; if none matches,
 the server is considered unauthorized.

 Examples:

 +-----------------+---+
 | NAI realm | NAIRealm | MATCH? |
 +-----------------+---+
foo.example	foo.example	YES
foo.example	*.example	YES
bar.foo.example	*.example	NO
bar.foo.example	bar.*.example	NO (NAIRealm invalid)
bar.foo.example	*.*.example	NO (NAIRealm invalid)
sub.bar.foo.example	*.*.example	NO (NAIRealm invalid)
sub.bar.foo.example	*.bar.foo.example	YES
 +-----------------+---+

 Figure 3: Examples for NAI realm vs. certificate matching

2.1.1.3.2. Other mechanism: Trust Roots + policyOID

 Verification of authority to provide AAA services over RADIUS/TLS is
 a two-step process.

 Step 1 is the verification of certificate wellformedness and validity
 as per [RFC5280] and whether it was issued from a root certificate
 which is deemed trustworthy by the RADIUS/TLS client.

 Step 2 is: compare the values of the contacted RADIUS/TLS server's
 X.509 certificate's extensions of type "Policy OID" to a list of

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Winter & McCauley Expires April 19, 2014 [Page 6]

Internet-Draft RADIUS Peer Discovery October 2013

 configured acceptable Policy OIDs for the roaming consortium. If one
 of the configured OIDs is found in the certificate's Policy OID
 extensions, then the server is considered authorized; if there is no
 match, the server is considered unauthorized.

 This mechanism is inferior to the mandatory-to-implement mechanism in
 the previous section because all authorized servers are validated by
 the same OID value; the mechanism is not fine-grained enough to
 express authority for one specific realm inside the consortium. If
 the consortium contains members which are hostile against other
 members, this weakness can be exploited by one RADIUS/TLS server
 impersonating another if DNS responses can be spoofed by the hostile
 member.

 It should be noted that these shortcomings can be mitigated by using
 the RADIUS infrastructure only with authentication payloads which
 provide mutual authentication; that way, the final EAP server that
 was reached can be validated by the EAP peer, and any improper
 redirections to a different server will be detected.

2.1.1.3.3. Other mechanism: DNSSEC / DANE

 Where DNSSEC is used, the results of the algorithm can be trusted;
 i.e. the entity which executes the algorithm can be certain that the
 realm that triggered the discovery is actually served by the server
 that was discovered via DNS. However, this does not guarantee that
 the server is also authorized (i.e. a recognised member of the
 roaming consortium).

 The authorization can be sketched using DNSSEC+DANE as follows: if
 DANE/TLSA records of all authorized servers are put into a DNSSEC
 zone with a common, consortium-specific branch of the DNS tree, then
 the entity executing the algorithm can retrieve TLSA RRs for the
 label "realm.commonroot" and verify that the presented server
 certificate during the RADIUS/TLS handshake matches the information
 in the TLSA record.

 Example:

 Realm = "example.com"

 Common Branch = "idp.roaming-consortium.example.

 label for TLSA query = "example.com.idp.roaming-
 consortium.example.

 result of discovery algorithm for realm "example.com" =
 192.0.2.1:2083

Winter & McCauley Expires April 19, 2014 [Page 7]

Internet-Draft RADIUS Peer Discovery October 2013

 (TLS certificate of 192.0.2.1:2083 matches TLSA RR ? "PASS" :
 "FAIL")

2.1.1.3.4. Remark

 Note that RADIUS/TLS connections always mutually authenticate the
 RADIUS server and the RADIUS client. This specification provides an
 algorithm for a RADIUS client to contact and verify authorization of
 a RADIUS server only. During connection setup, the RADIUS server
 also needs to verify whether it considers the connecting RADIUS
 client authorized; this is outside the scope of this specification.

2.1.2. SRV

 This specification defines two SRV prefixes (i.e. two values for the
 "_service._proto" part of an SRV RR as per [RFC2782]):

 +-----------------+---+
 | SRV Label | Use |
 +-----------------+---+
_radiustls._tcp	RADIUS transported over TLS as defined
	in [RFC6614]
- - - - - - - -	- - - - - - - - - - - - - - - - - - - -
_radiustls._udp	RADIUS transported over DTLS as defined
	in [I-D.ietf-radext-dtls]
 +-----------------+---+

 Figure 4: List of SRV Labels

 Just like NAPTR records, the lookup and subsequent follow-up of SRV
 records may yield more than one server to contact in a prioritised
 list. [RFC2782] does not specify rules regarding "Definition of
 Conditions for Retry/Failure", nor "Server Identification and
 Handshake". This specification defines that the rules for these two
 topics as defined in Section 2.1.1.2 and Section 2.1.1.3 SHALL be
 used both for targets retrieved via an initial NAPTR RR as well as
 for targets retrieved via an initial SRV RR (i.e. in the absence of
 NAPTR RRs).

2.1.3. Remarks

 It is expected that in most cases, the SRV and/or NAPTR label used
 for the records is the DNS A-label representation of the literal
 realm name for which the server is the authoritative RADIUS server
 (i.e. the realm name after conversion according to section 5 of
 [RFC5891]).

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc5891#section-5
https://datatracker.ietf.org/doc/html/rfc5891#section-5

Winter & McCauley Expires April 19, 2014 [Page 8]

Internet-Draft RADIUS Peer Discovery October 2013

 However, arbitrary other labels or service tags may be used if, for
 example, a roaming consortium uses realm names which are not
 associated to DNS names or special-purpose consortia where a globally
 valid discovery is not a use case. Such other labels require a
 consortium-wide agreement about the transformation from realm name to
 lookup label, and/or which service tag to use.

 Examples:

 a. A general-purpose RADIUS server for realm example.com might have
 DNS entries as follows:

 example.com. IN NAPTR 50 50 "s" "aaa+auth:radius.tls" ""
 _radiustls._tcp.foobar.example.com.

 _radiustls._tcp.foobar.example.com. IN SRV 0 10 2083
 radsec.example.com.

 b. The consortium "foo" provides roaming services for its members
 only. The realms used are of the form enterprise-name.example.
 The consortium operates a special purpose DNS server for the
 (private) TLD "example" which all RADIUS servers use to resolve
 realm names. "Bad, Inc." is part of the consortium. On the
 consortium's DNS server, realm bad.example might have the
 following DNS entries:

 bad.example IN NAPTR 50 50 "a" "aaa+auth:radius.dtls" ""
 very.bad.example

 c. The eduroam consortium uses realms based on DNS, but provides its
 services to a closed community only. However, a AAA domain
 participating in eduroam may also want to expose AAA services to
 other, general-purpose, applications (on the same or other RADIUS
 servers). Due to that, the eduroam consortium uses the service
 tag "x-eduroam" for authentication purposes and eduroam RADIUS
 servers use this tag to look up other eduroam servers. An
 eduroam participant example.org which also provides general-
 purpose AAA on a different server uses the general "aaa+auth"
 tag:

 example.org. IN NAPTR 50 50 "s" "x-eduroam:radius.tls" ""
 _radiustls._tcp.eduroam.example.org.

 example.org. IN NAPTR 50 50 "s" "aaa+auth:radius.tls" ""
 _radiustls._tcp.aaa.example.org

 _radiustls._tcp.eduroam.example.org. IN SRV 0 10 2083 aaa-
 eduroam.example.org.

Winter & McCauley Expires April 19, 2014 [Page 9]

Internet-Draft RADIUS Peer Discovery October 2013

 _radiustls._tcp.aaa.example.org. IN SRV 0 10 2083 aaa-
 default.example.org.

2.2. Definition of the X.509 certificate property
 SubjectAltName:otherName:NAIRealm

 This specification retrieves IP addresses and port numbers from the
 Domain Name System which are subsequently used to authenticate users
 via the RADIUS/TLS protocol. Since the Domain Name System is not
 necessarily trustworthy (e.g. if DNSSEC is not deployed for the
 queried domain name), it is important to verify that the server which
 was contacted is authorized to service requests for the user which
 triggered the discovery process.

 The input to the algorithm is a NAI realm as specified in
Section 3.4.1. As a consequence, the X.509 certificate of the server

 which is ultimately contacted for user authentication needs to be
 able to express that it is authorized to handle requests for that
 realm.

 Current subjectAltName fields do not semantically allow to express an
 NAI realm; the field subjectAltName:dNSName is syntactically a good
 match but would inappropriately conflate DNS names and NAI realm
 names. Thus, this specification defines a new subjectAltName field
 to hold either a single NAI realm name or a wildcard name matching a
 set of NAI realms.

 The subjectAltName:otherName:sRVName field certifies that a
 certificate holder is authorized to provide a service; this can be
 compared to the target of DNS label's SRV resource record. If the
 Domain Name System is insecure, it is required that the label of the
 SRV record itself is known-correct. In this specification, that
 label is not known-correct; it is potentially derived from a
 (potentially untrusted) NAPTR resource record of another label. If
 DNS is not secured with DNSSEC, the NAPTR resource record may have
 been altered by an attacker with access to the Domain Name System
 resolution, and thus the label to lookup the SRV record for may
 already be tainted. This makes subjectAltName:otherName:sRVName not
 a trusted comparison item.

 Further to this, this specification's NAPTR entries may be of type
 "A" which do not involve resolution of any SRV records, which again
 makes subjectAltName:otherName:sRVName unsuited for this purpose.

 This section defines the NAIRealm name as a form of otherName from
 the GeneralName structure in SubjectAltName defined in [RFC5280].

 id-on-nai OBJECT IDENTIFIER ::= { id-on XXX }

https://datatracker.ietf.org/doc/html/rfc5280

Winter & McCauley Expires April 19, 2014 [Page 10]

Internet-Draft RADIUS Peer Discovery October 2013

 NAIRealm ::= UTF8String (SIZE (1..MAX))

 The NAIRealm, if present, MUST contain an NAI realm as defined in
 [I-D.ietf-radext-nai]. It MAY substitute labels on the leftmost dot-
 separated part of the NAI with the single character "*" to indicate a
 wildcard match for "all labels in this part". Further features of
 regular expressions, such as a number of characters followed by a *
 to indicate a common prefix inside the part, are not permitted.

 This subjectAltName MAY occur more than once in a certificate.

Appendix A contains the ASN.1 definition of the above objects.

3. DNS-based NAPTR/SRV Peer Discovery

3.1. Applicability

 Dynamic server discovery as defined in this document is only
 applicable for AAA transactions where a RADIUS entity which acts as a
 forwarding server for one or more realms receives a request with a
 realm for which it is not authoritative, and which no explicit next
 hop is configured. It is only applicable for

 a. new user sessions, i.e. for the initial Access-Request.
 Subsequent messages concerning this session, for example Access-
 Challenges and Access-Accepts use the previously-established
 communication channel between client and server.

 b. RADIUS DynAuth server discovery

3.2. Configuration Variables

 The algorithm contains various variables for timeouts. These
 variables are named here and reasonable default values are provided.
 Implementations wishing to deviate from these defaults should make
 they understand the implications of changes.

 DNS_TIMEOUT: maximum amount of time to wait for the complete set
 of all DNS queries to complete: Default = 3 seconds

 MIN_EFF_TTL: minimum DNS TTL of discovered targets: Default = 60
 seconds

 BACKOFF_TIME: if no conclusive DNS response was retrieved after
 DNS_TIMEOUT, do not attempt dynamic discovery before BACKOFF_TIME
 has elapsed. Default = 600 seconds

Winter & McCauley Expires April 19, 2014 [Page 11]

Internet-Draft RADIUS Peer Discovery October 2013

3.3. Terms

 Positive DNS response: a response which contains the RR that was
 queried for.

 Negative DNS response: a response which does not contain the RR that
 was queried for, but contains an SOA record along with a TTL
 indicating cache duration for this negative result.

 DNS Error: Where the algorithm states "name resolution returns with
 an error", this shall mean that either the DNS request timed out, or
 a DNS response which is neither a positive nor a negative response
 (e.g. SERVFAIL).

 Effective TTL: The validity period for discovered RADIUS/TLS target
 hosts. Calculated as: Effective TTL (set of DNS TTL values) = max {
 MIN_EFF_TTL, min { DNS TTL values } }

 SRV lookup: for the purpose of this specification, SRV lookup
 procedures are defined as per [RFC2782], but excluding that RFCs "A"
 fallback as defined in its section "Usage Rules", final "else"
 clause.

 Greedy result evaluation: The NAPTR to SRV/A/AAAA resolution may lead
 to a tree of results, whose leafs are the IP addresses to contact.
 The branches of the tree are ordered according to their order/
 preference DNS properties. An implementation is executing greedy
 result evaluation if it uses a depth-first search in the tree along
 the highest order results, attempts to connect to the corresponding
 resulting IP addresses, and only backtracks to other branches if the
 higher ordered results did not end in successful connection attempts.

3.4. Realm to RADIUS server resolution algorithm

3.4.1. Input

 For RADIUS Authentication and RADIUS Accounting server discovery,
 input I to the algorithm is the RADIUS User-Name attribute with
 content of the form "user@realm"; the literal @ sign being the
 separator between a local user identifier within a realm and its
 realm. The use of multiple literal @ signs in a User-Name is
 strongly discouraged; but if present, the last @ sign is to be
 considered the separator. All previous instances of the @ sign are
 to be considered part of the local user identifier.

 For RADIUS DynAuth Server discovery, input I to the algorithm is the
 domain name of the operator of a RADIUS realm as was communicated
 during user authentication using the Operator-Name attribute

https://datatracker.ietf.org/doc/html/rfc2782

Winter & McCauley Expires April 19, 2014 [Page 12]

Internet-Draft RADIUS Peer Discovery October 2013

 ([RFC5580], section 4.1). Only Operator-Name values with the
 namespace "1" are supported by this algorithm - the input to the
 algorithm is the actual domain name, preceeded with an "@" (but
 without the "1" namespace identifier byte of that attribute).

 Note well: The attribute User-Name is defined to contain UTF-8 text.
 In practice, the content may or may not be UTF-8. Even if UTF-8, it
 may or may not map to a domain name in the realm part. Implementors
 MUST take possible conversion error paths into consideration when
 parsing incoming User-Name attributes. This document describes
 server discovery only for well-formed realms mapping to DNS domain
 names in UTF-8 encoding. The result of all other possible contents
 of User-Name is unspecified; this includes, but is not limited to:

 Usage of separators other than @

 Encoding of User-Name in local encodings

 UTF-8 realms which fail the conversion rules as per [RFC5891]

 UTF-8 realms which end with a . ("dot") character.

 For the last bullet point, "trailing dot", special precautions should
 be taken to avoid problems when resolving servers with the algorithm
 below: they may resolve to a RADIUS server even if the peer RADIUS
 server only is configured to handle the realm without the trailing
 dot. If that RADIUS server again uses NAI discovery to determine the
 authoritative server, the server will forward the request to
 localhost, resulting in a tight endless loop.

3.4.2. Output

 Output O of the algorithm is a two-tuple consisting of: O-1) a set of
 tuples {hostname; port; order/preference; Effective TTL} - the set
 can be empty; and O-2) an integer: if the set in the first part of
 the tuple is empty, the integer contains the Effective TTL for
 backoff timeout, if the set is not empty, the integer is set to 0
 (and not used).

3.4.3. Algorithm

 The algorithm to determine the RADIUS server to contact is as
 follows:

 1. Determine P = (position of last "@" character) in I.

 2. generate R = (substring from P+1 to end of I)

https://datatracker.ietf.org/doc/html/rfc5580#section-4.1
https://datatracker.ietf.org/doc/html/rfc5891

Winter & McCauley Expires April 19, 2014 [Page 13]

Internet-Draft RADIUS Peer Discovery October 2013

 3. modify R according to agreed consortium procedures if applicable

 4. convert R to a representation usable by the name resolution
 library if needed

 5. Initialize TIMER = 0; start TIMER. If TIMER reaches
 DNS_TIMEOUT, continue at step 20.

 6. Using the host's name resolution library, perform a NAPTR query
 for R (see "Delay considerations" below). If the result is a
 negative DNS response, O-2 = Effective TTL (TTL value of the
 SOA record) and continue at step 13. If name resolution
 returns with error, O-1 = { empty set }, O-2 = BACKOFF_TIME and
 terminate.

 7. Extract NAPTR records with service tag "aaa+auth", "aaa+acct",
 "aaa+dynauth" as appropriate. Keep note of the remaining TTL of
 each of the discovered NAPTR records.

 8. If no records found, continue at step 13.

 9. For the extracted NAPTRs, perform successive resolution as
 defined in [RFC3958], section 2.2. An implementation MAY use
 greedy result evaluation according to the NAPTR order/preference
 fields (i.e. can execute the subsequent steps of this algorithm
 for the highest-order entry in the set of results, and only
 lookup the remainder of the set if necessary).

 10. If the set of hostnames is empty, O-1 = { empty set }, O-2 =
 BACKOFF_TIME and terminate.

 11. O' = (set of {hostname; port; order/preference; Effective TTL (
 all DNS TTLs that led to this hostname) } for all terminal
 lookup results).

 12. Proceed with step 18.

 13. Generate R' = (prefix R with "_radiustls._tcp." or
 "_radiustls._udp.")

 14. Using the host's name resolution library, perform SRV lookup
 with R' as label (see "Delay considerations" below).

 15. If name resolution returns with error, O-1 = { empty set }, O-2
 = BACKOFF_TIME and terminate.

https://datatracker.ietf.org/doc/html/rfc3958#section-2.2

Winter & McCauley Expires April 19, 2014 [Page 14]

Internet-Draft RADIUS Peer Discovery October 2013

 16. If the result is a negative DNS response, O-1 = { empty set },
 O-2 = min { O-2, Effective TTL (TTL value of the SOA record) }
 and terminate.

 17. O' = (set of {hostname; port; order/preference; Effective TTL (
 all DNS TTLs that led to this result) } for all hostnames).

 18. Generate O-1 by resolving hostnames in O' into corresponding A
 and/or AAAA addresses: O-1 = (set of {IP address; port; order/
 preference; Effective TTL (all DNS TTLs that led to this result
) } for all hostnames), O-2 = 0.

 19. For each element in O-1, test if the original request which
 triggered dynamic discovery was received on {IP address; port}.
 If yes, O-1 = { empty set }, O-2 = BACKOFF_TIME, log error,
 Terminate (see next section for a rationale). If no, O is the
 result of dynamic discovery. Terminate.

 20. O-1 = { empty set }, O-2 = BACKOFF_TIME, log error, Terminate.

3.4.4. Validity of results

 The dynamic discovery algorithm is used by servers which do not have
 sufficient configuration information to process an incoming request
 on their own. If the discovery algorithm result contains the
 server's own listening address (IP address and port), then this will
 either lead to a tight loop (if that DNS entry has topmost priority,
 the server would forward the request to itself, triggering dynamic
 discovery again in a perpetual loop), or lead to a potential loop
 with intermediate hops in between (the server could forward to
 another host with a higher priority, which might use DNS itself and
 forward the packet back to the first server). The underlying reason
 that enables these loops is that the server executing the discovery
 algorithm is seriously misconfigured in that it does not recognise
 the request as one that is to be processed by itself. RADIUS has no
 built-in loop detection, so any such loops would remain undetected.
 So, if step 18 of the algorithm discovers such a possible-loop
 situation, the algorithm should be aborted and an error logged. Note
 that this safeguard does not provide perfect protection against
 routing loops: other reasons include the possiblity that a subsequent
 hop has a statically configured next-hop which leads to an earlier
 host in the loop; or the algorithm execution was executed with greedy
 result evaluation, and the own address was in a lower-priority branch
 of the result set which was not retrieved from DNS at all.

 After executing the above algorithm, the RADIUS server establishes a
 connection to a home server from the result set. This connection can
 potentially remain open for an indefinite amount of time. This

Winter & McCauley Expires April 19, 2014 [Page 15]

Internet-Draft RADIUS Peer Discovery October 2013

 conflicts with the possibility of changing device and network
 configurations on the receiving end. Typically, TTL values for
 records in the name resolution system are used to indicate how long
 it is safe to rely on the results of the name resolution. If these
 TTLs are very low, thrashing of connections becomes possible; the
 Effective TTL mitigates that risk. When a connection is open and the
 smallest of the Effective TTL value which was learned during
 discovering the server has not expired, subsequent new user sessions
 for the realm which corresponds to that open connection SHOULD re-use
 the existing connection and SHOULD NOT re-execute the dynamic
 discovery algorithm nor open a new connection. To allow for a change
 of configuration, a RADIUS server SHOULD re-execute the dynamic
 discovery algorithm after the Effective TTL that is associated with
 this connection has expired. The server MAY keep the session open
 during this re-assessment to avoid closure and immediate re-opening
 of the connection should the result not have changed.

 Should the algorithm above terminate with O-1 = empty set, the RADIUS
 server SHOULD NOT attempt another execution of this algorithm for the
 same target realm before the timeout O-2 has passed.

3.4.5. Delay considerations

 The host's name resolution library may need to contact outside
 entities to perform the name resolution (e.g. authoritative name
 servers for a domain), and since the NAI discovery algorithm is based
 on uncontrollable user input, the destination of the lookups is out
 of control of the server that performs NAI discovery. If such
 outside entities are misconfigured or unreachable, the algorithm
 above may need an unacceptably long time to terminate. Many RADIUS
 implementations time out after five seconds of delay between Request
 and Response. It is not useful to wait until the host name
 resolution library signals a time-out of its name resolution
 algorithms. The algorithm therefore control execution time with
 TIMER. Execution of the NAI discovery algorithm SHOULD be non-
 blocking (i.e. allow other requests to be processed in parallel to
 the execution of the algorithm).

3.4.6. Example

 Assume

 a user from the Technical University of Munich, Germany, has a
 RADIUS User-Name of "foobar@tu-m[U+00FC]nchen.example".

Winter & McCauley Expires April 19, 2014 [Page 16]

Internet-Draft RADIUS Peer Discovery October 2013

 The name resolution library on the RADIUS forwarding server does
 not have the realm tu-m[U+00FC]nchen.example in its forwarding
 configuration, but uses DNS for name resolution and has configured
 the use of Dynamic Discovery to discover RADIUS servers.

 It is IPv6-enabled and prefers AAAA records over A records.

 It is listening for incoming RADIUS/TLS requests on 192.0.2.1, TCP
 /2083.

 May the configuration variables be

 DNS_TIMEOUT = 3 seconds

 MIN_EFF_TTL = 60 seconds

 BACKOFF_TIME = 3600 seconds

 If DNS contains the following records:

 xn--tu-mnchen-t9a.example. IN NAPTR 50 50 "s"
 "aaa+auth:radius.tls" "" _myradius._tcp.xn--tu-mnchen-t9a.example.

 xn--tu-mnchen-t9a.example. IN NAPTR 50 50 "s"
 "fooservice:bar.dccp" "" _abc123._def.xn--tu-mnchen-t9a.example.

 _myradius._tcp.xn--tu-mnchen-t9a.example. IN SRV 0 10 2083
 radsecserver.xn--tu-mnchen-t9a.example.

 _myradius._tcp.xn--tu-mnchen-t9a.example. IN SRV 0 20 2083
 backupserver.xn--tu-mnchen-t9a.example.

 radsecserver.xn--tu-mnchen-t9a.example. IN AAAA
 2001:0DB8::202:44ff:fe0a:f704

 radsecserver.xn--tu-mnchen-t9a.example. IN A 192.0.2.3

 backupserver.xn--tu-mnchen-t9a.example. IN A 192.0.2.7

 Then the algorithm executes as follows, with I =
 "foobar@tu-m[U+00FC]nchen.example", and no consortium name mangling
 in use:

 1. P = 7

 2. R = "tu-m[U+00FC]nchen.example"

 3. NOOP

Winter & McCauley Expires April 19, 2014 [Page 17]

Internet-Draft RADIUS Peer Discovery October 2013

 4. name resolution library converts R to xn--tu-mnchen-t9a.example

 5. TIMER starts.

 6. Result:

 (TTL = 47) 50 50 "s" "aaa+auth:radius.tls" ""
 _myradius._tcp.xn--tu-mnchen-t9a.example.

 (TTL = 522) 50 50 "s" "fooservice:bar.dccp" ""
 _abc123._def.xn--tu-mnchen-t9a.example.

 7. Result:

 (TTL = 47) 50 50 "s" "aaa+auth:radius.tls" ""
 _myradius._tcp.xn--tu-mnchen-t9a.example.

 8. NOOP

 9. Successive resolution performs SRV query for label
 _myradius._tcp.xn--tu-mnchen-t9a.example, which results in

 (TTL 499) 0 10 2083 radsec.xn--tu-mnchen-t9a.example.

 (TTL 2200) 0 20 2083 backup.xn--tu-mnchen-t9a.example.

 10. NOOP

 11. O' = {

 (radsec.xn--tu-mnchen-t9a.example.; 2083; 10; 60),

 (backup.xn--tu-mnchen-t9a.example.; 2083; 20; 60)

 } // minimum TTL is 47, up'ed to MIN_EFF_TTL

 12. Continuing at 18.

 13. (not executed)

 14. (not executed)

 15. (not executed)

 16. (not executed)

 17. (not executed)

Winter & McCauley Expires April 19, 2014 [Page 18]

Internet-Draft RADIUS Peer Discovery October 2013

 18. O-1 = {

 (2001:0DB8::202:44ff:fe0a:f704; 2083; 10; 60),

 (192.0.2.7; 2083; 20; 60)

 }; O-2 = 0

 19. No match with own listening address; terminate with tuple (O-1,
 O-2) from previous step.

 The implementation will then attempt to connect to two servers, with
 preference to [2001:0DB8::202:44ff:fe0a:f704]:2083.

4. Security Considerations

 The results from the execution of this algorithm are only trustworthy
 if each of the lookup steps by the name resolution library were
 cryptographically secured; i.e. if DNSSEC validation was turned on
 during the resolution AND all of the records were in a DNSSEC signed
 zone AND validation of all those records was successful.

 When using DNS without DNSSEC security extensions for at least one of
 the replies to NAPTR, SRV and A/AAAA requests as described in section

Section 3, the result O can not be trusted. Even if it can be
 trusted (i.e. DNSSEC is in use), actual authorization of the
 discovered server to provide service for the given realm needs to be
 verified. A mechanism from section Section 2.1.1.3 or equivalent
 MUST be used to verify authorization.

 The algorithm has a configurable completion time-out DNS_TIMEOUT
 defaulting to three seconds for RADIUS' operational reasons. The
 lookup of DNS resource records based on unverified user input is an
 attack vector for DoS attacks: an attacker might intentionally craft
 bogus DNS zones which take a very long time to reply (e.g. due to a
 particularly byzantine tree structure, or artificial delays in
 responses).

 To mitigate this DoS vector, implementations SHOULD consider rate-
 limiting either their amount of new executions of the dynamic
 discovery algorithm as a whole, or the amount of intermediate
 responses to track, or at least the number of pending DNS queries.
 Implementations MAY choose lower values than the default for
 DNS_TIMEOUT to limit the impact of DoS attacks via that vector. They
 MAY also continue their attempt to resolve DNS records even after
 DNS_TIMEOUT has passed; a subsequent request for the same realm might
 benefit from retrieving the results anyway. The amount of time to
 spent waiting for a result will influence the impact of a possible

Winter & McCauley Expires April 19, 2014 [Page 19]

Internet-Draft RADIUS Peer Discovery October 2013

 DoS attack; the waiting time value is implementation dependent and
 outside the scope of this specification.

 With Dynamic Discovery being enabled for a RADIUS Server, and
 depending on the deployment scenario, the server may need to open up
 its target IP address and port for the entire internet, because
 arbitrary clients may discover it as a target for their
 authentication requests. If such clients are not part of the roaming
 consortium, the RADIUS/TLS connection setup phase will fail (which is
 intended) but the computational cost for the connection attempt is
 significant. With the port for a TLS-based service open, the RADIUS
 server shares all the typical attack vectors for services based on
 TLS (such as HTTPS, SMTPS, ...). Deployments of RADIUS/TLS with
 Dynamic Discovery should consider these attack vectors and take
 appropriate counter-measures (e.g. blacklisting known-bad IPs on a
 firewall, rate-limiting new connection attempts, etc.).

5. Privacy Considerations

 The classic RADIUS operational model (known, pre-configured peers,
 shared secret security, mostly plaintext communication) and this new
 RADIUS dynamic discovery model (peer discovery with DNS, PKI security
 and packet confidentiality) differ significantly in their impact on
 the privacy of end users trying to authenticate to a RADIUS server.

 With classic RADIUS, traffic in large environments gets aggregated by
 statically configured clearinghouses. The packets sent to those
 clearinghouses and their responses are mostly unprotected. As a
 consequence,

 o All intermediate IP hops can inspect most of the packet payload in
 clear text, including the User-Name and Calling-Station-Id
 attributes, and can observe which client sent the packet to which
 clearinghouse. This allows the creation of mobility profiles for
 any passive observer on the IP path.

 o The existence of a central clearinghouse creates an opportunity
 for the clearinghouse to trivially create the same mobility
 profiles. The clearinghouse may or may not be trusted not to do
 this, e.g. by sufficiently threatening contractual obligations.

 o In addition to that, with the clearinghouse being a RADIUS
 intermediate in possession of a valid shared secret, the
 clearinghouse can observe and record even the security-critical
 RADIUS attributes such as User-Password. This risk may be
 mitigated by choosing authentication payloads which are
 cryptographically secured and do not use the attribute User-
 Password - such as certain EAP types.

Winter & McCauley Expires April 19, 2014 [Page 20]

Internet-Draft RADIUS Peer Discovery October 2013

 o There is no additional information disclosure to parties outside
 the IP path between the RADIUS client and server (in aprticular,
 no DNS servers learn about realms of current ongoing
 authentications).

 With RADIUS and dynamic discovery,

 o Passive observers on the IP path cannot inspect any part of the
 RADIUS payload. They can observe source and destination of the
 traffic flow, but can not easily use this information to create
 mobility profiles because the user who tries to authenticate is
 not identifiable due to the encrypted payload.

 o Clearinghouses can be eliminated by RADIUS clients directly
 contacting the RADIUS home server, if this is desired. The
 possibility of aggregation of user information in the
 clearinghouse thus does not manifest. Note that despite the
 technical possibility of avoid clearinghouses, they may still
 remain in operation for other reasons.

 o RADIUS clients which make use of dynamic discovery will need to
 query the Domain Name System, and use a user's realm name as the
 query label. A passive observer on the IP path between the RADIUS
 client and the DNS server(s) being queried can learn that a user
 of that specific realm was trying to authenticate at that RADIUS
 client at a certain point in time. This may or may not be
 sufficient for the passive observer to create a mobility profile.
 During the recursive DNS resolution, a fair number of DNS servers
 and the IP hops in between those get to learn that information.
 Not every single authentication triggers DNS lookups, so there is
 no one-to-one relation of leaked realm information and the number
 of authentications for that realm.

 In summary, with classic RADIUS, few intermediate entities learn very
 detailed data about every ongoing authentications, while with dynamic
 discovery, many entities learn only very little about recently
 authenticated realms.

6. IANA Considerations

 This document requests IANA registration of the following entries in
 existing registries:

 o S-NAPTR Application Service Tags registry

 * aaa+auth

 * aaa+acct

Winter & McCauley Expires April 19, 2014 [Page 21]

Internet-Draft RADIUS Peer Discovery October 2013

 * aaa+dynauth

 o S-NAPTR Application Protocol Tags registry

 * radius.tls

 * radius.dtls

 This document reserves the use of the "_radiustls" and "_radiusdtls"
 Service labels.

 This document requests the creation of a new IANA registry named
 "RADIUS/TLS SRV Protocol Registry" with the following initial
 entries:

 o _tcp

 o _udp

 This specification allocates a X.509 certificate property "NAIRealm"
 as per section Section 2.2 above, see placeholders "XXX". There is
 currently no IANA registry for the subjectAltName:otherName
 namespace. The authority for this namespace appears to be the PKIX
 working group. Before issuing the RFC, IANA should liaise with PKIX
 to ensure that a value for NAIRealm is issued; IANA should
 subsequently, prior to issuing the RFC, update the placeholders in
 said section.

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC

2865, June 2000.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3958] Daigle, L. and A. Newton, "Domain-Based Application
 Service Location Using SRV RRs and the Dynamic Delegation
 Discovery Service (DDDS)", RFC 3958, January 2005.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc3958

Winter & McCauley Expires April 19, 2014 [Page 22]

Internet-Draft RADIUS Peer Discovery October 2013

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5580] Tschofenig, H., Adrangi, F., Jones, M., Lior, A., and B.
 Aboba, "Carrying Location Objects in RADIUS and Diameter",

RFC 5580, August 2009.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

 [I-D.ietf-radext-dtls]
 DeKok, A., "DTLS as a Transport Layer for RADIUS", draft-

ietf-radext-dtls-05 (work in progress), April 2013.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",

RFC 6614, May 2012.

 [I-D.ietf-radext-nai]
 DeKok, A., "The Network Access Identifier", draft-ietf-

radext-nai-03 (work in progress), May 2013.

Appendix A. Appendix A: ASN.1 Syntax of NAIRealm

 PKIXServiceNameSAN93 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-dns-srv-name-93(40) }

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 id-pkix
 FROM PKIX1Explicit88 { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7)

https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5580
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/draft-ietf-radext-dtls-05
https://datatracker.ietf.org/doc/html/draft-ietf-radext-dtls-05
https://datatracker.ietf.org/doc/html/rfc6614
https://datatracker.ietf.org/doc/html/draft-ietf-radext-nai-03
https://datatracker.ietf.org/doc/html/draft-ietf-radext-nai-03

Winter & McCauley Expires April 19, 2014 [Page 23]

Internet-Draft RADIUS Peer Discovery October 2013

 id-mod(0) id-pkix1-explicit(18) } ;
 -- from RFC 5280

 -- In the GeneralName definition using the 1993 ASN.1 syntax
 -- includes:

 OTHER-NAME ::= TYPE-IDENTIFIER

 -- Service Name Object Identifier

 id-on OBJECT IDENTIFIER ::= { id-pkix 8 }

 id-on-nai OBJECT IDENTIFIER ::= { id-on XXX }

 -- Service Name

 naiRealm OTHER-NAME ::= { NAIRealm IDENTIFIED BY { id-on-nai }}

 NAIRealm ::= UTF8String (SIZE (1..MAX))

 END

Authors' Addresses

 Stefan Winter
 Fondation RESTENA
 6, rue Richard Coudenhove-Kalergi
 Luxembourg 1359
 LUXEMBOURG

 Phone: +352 424409 1
 Fax: +352 422473
 EMail: stefan.winter@restena.lu
 URI: http://www.restena.lu.

https://datatracker.ietf.org/doc/html/rfc5280
http://www.restena.lu

Winter & McCauley Expires April 19, 2014 [Page 24]

Internet-Draft RADIUS Peer Discovery October 2013

 Mike McCauley
 Open Systems Consultants
 9 Bulbul Place
 Currumbin Waters QLD 4223
 AUSTRALIA

 Phone: +61 7 5598 7474
 Fax: +61 7 5598 7070
 EMail: mikem@open.com.au
 URI: http://www.open.com.au.

Winter & McCauley Expires April 19, 2014 [Page 25]

http://www.open.com.au

