
Network Working Group Alan DeKok
INTERNET-DRAFT Network RADIUS
Category: Proposed Standard Avi Lior
Updates: 2865, 2866, 5176 BWS
<draft-ietf-radext-radius-extensions-01.txt>
Expires: January 6, 2012
6 June 2011

Remote Authentication Dial In User Service (RADIUS) Protocol
Extensions

draft-ietf-radext-radius-extensions-01.txt

Abstract

 The Remote Authentication Dial In User Service (RADIUS) protocol is
 nearing exhaustion of its current 8-bit attribute type space. In
 addition, experience shows a growing need for complex grouping, along
 with attributes which can carry more than 253 octets of data. This
 document defines changes to RADIUS which address all of the above
 problems.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November January 6, 2012.

Copyright Notice

DeKok, Alan Informational [Page 1]

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/draft-ietf-radext-radius-extensions-01.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info/) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info/

DeKok, Alan Informational [Page 2]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

Table of Contents

1. Introduction ... 5
1.1. Terminology ... 6
1.2. Requirements Language 6

2. Extensions to RADIUS 8
2.1. Extended Type 8
2.2. Extended Type with Flags 9
2.3. TLV Data Type 11

2.3.1. TLV Nesting 13
2.4. EVS Data Type 13
2.5. Integer64 Data Type 15
2.6. Attribute Naming and Type Identifiers 15

2.6.1. Attribute and TLV Naming 16
2.6.2. Attribute Type Identifiers 16
2.6.3. TLV Identifiers 16
2.6.4. VSA Identifiers 17

3. Attribute Definitions 18
3.1. Extended-Type-1 18
3.2. Extended-Type-2 19
3.3. Extended-Type-3 20
3.4. Extended-Type-4 21
3.5. Extended-Type-Flagged-1 21
3.6. Extended-Type-Flagged-2 23

4. Vendor Specific Attributes 24
4.1. Extended-Vendor-Specific-1 24
4.2. Extended-Vendor-Specific-2 25
4.3. Extended-Vendor-Specific-3 26
4.4. Extended-Vendor-Specific-4 28
4.5. Extended-Vendor-Specific-5 29
4.6. Extended-Vendor-Specific-6 30

5. Compatibility with traditional RADIUS 32
5.1. Attribute Allocation 32
5.2. Proxy Servers 33

6. Guidelines ... 33
6.1. Updates to RFC 6158 34
6.2. Guidelines For the New Types 34
6.3. Allocation Request Guidelines 34
6.4. TLV Guidelines 35
6.5. Implementation Guidelines 36
6.6. Vendor Guidelines 36

7. Rationale .. 36
7.1. Attribute Audit 36

8. Examples ... 37
8.1. Extended Type 38
8.2. Extended Type with Flags 39

9. IANA Considerations 42
9.1. Attribute Allocations 42

https://datatracker.ietf.org/doc/html/rfc6158

DeKok, Alan Informational [Page 3]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

9.2. RADIUS Attribute Type Tree 42
9.3. Assignment Policy 43
9.4. Extending the Attribute Type Tree 44
9.5. Extending the RADIUS Attribute Type Space 44

10. Security Considerations 45
11. References .. 45

11.1. Normative references 45
11.2. Informative references 46

Appendix A - Extended Attribute Generator Program 47

DeKok, Alan Informational [Page 4]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

1. Introduction

 Under current allocation pressure, we expect that the RADIUS
 Attribute Type space will be exhausted by 2014 or 2015. We therefore
 need a way to extend the type space, so that new specifications may
 continue to be developed. Other issues have also been shown with
 RADIUS. The attribute grouping method defined in [RFC2868] has been
 shown to be imnpractical, and a more powerful mechanism is needed.
 Multiple attributes have been defined which transport more than the
 253 octets of data originally envisioned with the protocol. Each of
 these attributes is handled as a "special case" inside of RADIUS
 implementations, instead of as a general method. We therefore also
 need a standardized method of transporting large quantities of data.
 Finally, some vendors are close to allocating all of the Attributes
 within their Vendor-Specific Attribute space. It would be useful to
 leverage changes to the base protocol for extending the Vendor-
 Specific Attribute space.

 We satisfy all of these requirements through the following
 modifications to RADIUS:

 * defining an "Extended Type" format, which adds 8 bits of "Extended
 Type" to the RADIUS Attribute Type space, by using one octet of the
 "Value" field. This method gives us a general way of extending
 the Attribute Type Space.

 * allocating 4 attributes as using the format of "Extended Type".
 This allocation extends the RADIUS Attribute Type Space by
 approximately 1000 values.

 * defining an "Extended Type with Flags" format, which inserts
 an additional "Flags" octet between the "Extended Type" octet,
 and the "Value" field. This method gives us a general way of
 adding additional functionality to the protocol.

 * defining method which uses the "Flags" field to indicate data
 fragmentation across multiple Attributes. This method provides a
 standard way for an Attribute to carry more than 253 octets of
 data.

 * allocating 2 attributes as using the format of "Extended Type with
 Flags". This allocation extends the RADIUS Attribute Type Space
 by an additional 500 values.

 * defining a new "Type Length Value" (TLV) data type. The data type
 allows an attribute to carry TLVs as "sub-attributes", which can in
 turn encapsulate other TLVs as "sub-sub-attributes." This change
 creates a standard way to group a set of Attributes.

https://datatracker.ietf.org/doc/html/rfc2868

DeKok, Alan Informational [Page 5]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 * defining a new "extended Vendor-Specific" (EVS) data type. The
 data type allows an attribute to carry Vendor-Specific Attributes
 (VSAs) inside of the new attribute formats.

 * defining a new "integer64" data type. The data type allows
 counters which track more than 2^32 octets of data.

 * allocating 6 attributes using the new EVS data type. This
 allocation extends the Vendor-Specific Attribute type space by
 over 1500 values.

 As with any protocol change, the changes defined here are the result
 of a series of compromises. We have tried to find a balance between
 flexibility, space in the RADIUS message, compatibility with existing
 deployments, and implementation difficulty.

1.1. Terminology

 This document uses the following terms:

silently discard
 This means the implementation discards the packet without further
 processing. The implementation MAY provide the capability of
 logging the error, including the contents of the silently discarded
 packet, and SHOULD record the event in a statistics counter.

invalid attribute
 This means that the Length field of an Attribute is valid (as per

[RFC2865], Section 5, top of page 25). However, the Value field of
 the attribute does not follow the format required by the data type
 defined for that Attribute. e.g. an Attribute of type "address"
 which encapsulates more than four, or less than four, octets of
 data.

1.2. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the must or must not requirements for the protocols it implements.
 An implementation that satisfies all the MUST, MUST NOT, SHOULD, and
 SHOULD NOT requirements for its protocols is said to be
 "unconditionally compliant"; one that satisfies all the MUST and MUST

https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2119

DeKok, Alan Informational [Page 6]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 NOT requirements but not all the SHOULD or SHOULD NOT requirements
 for its protocols is said to be "conditionally compliant".

DeKok, Alan Informational [Page 7]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

2. Extensions to RADIUS

 This section defines two new attribute formats; "Extended Type"; and
 "Extended Type with Flags". The formats are defined below.

2.1. Extended Type

 This section defines a new attribute format, called "Extended Type".
 A summary of the Attribute format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Value ...
 +-+

 Type

 This field is identical to the Type field of the Attribute format
 defined in [RFC2865] Section 5.

 Length

 This field is identical to the Length field of the Attribute
 format defined in [RFC2865] Section 5. Permitted values are
 between 4 and 255. If a client or server receives an Extended
 Attribute with a Length of 2 or 3, then that Attribute MUST be
 deemed to be an "invalid attribute", it SHOULD be silently
 discarded. If it is not discarded, it MUST NOT be handled in the
 same manner as a well-formed attribute.

 Note that an "invalid attribute" does not cause the entire packet
 to be discarded, or to be treated as a negative acknowledgement.
 Instead, only the "invalid attribute" is discarded.

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA. Unlike the Type field defined in

[RFC2865] Section 5, no values are allocated for experimental or
 implementation-specific use. Values 241-255 are reserved and
 SHOULD NOT be used.

 The Extended-Type is meaningful only within a context defined by
 the Type field. That is, this field may be thought of as defining
 a new type space of the form "Type.Extended-Type". See Section

2.5, below, for additional discussion.

https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2865#section-5

DeKok, Alan Informational [Page 8]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 A RADIUS server MAY ignore Attributes with an unknown
 "Type.Extended-Type".

 A RADIUS client MAY ignore Attributes with an unknown
 "Type.Extended-Type".

 Value

 This field is similar to the Value field of the Attribute format
 defined in [RFC2865] Section 5. The format of the data SHOULD be
 a valid RADIUS data type.

 The addition of the Extended-Type field decreases the maximum
 length for attributes of type "text" or "string" from 253 to 252
 octets. Where an Attribute needs to carry more than 252 octets of
 data, the "Extended Type with flags" format should be used.

 Experience has shown that the "experimental" and "implementation
 specific" attributes defined in [RFC2865] Section 5 have had little
 practical value. We therefore do not continue that practice here
 with the Extended-Type field.

2.2. Extended Type with Flags

 This section defines a new attribute format, called "Extended Type
 with Flags". It leverages the "Extended Type" format in order to
 permit the transport of attributes encapsulating more than 253 octets
 of data. A summary of the Attribute format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Flags |
 +-+
 | Value ...
 +-+

 Type

 This field is identical to the Type field of the Attribute format
 defined in [RFC2865] Section 5.

 Length

 This field is identical to the Length field of the Attribute
 format defined in [RFC2865] Section 5. Permitted values are
 between 5 and 255. If a client or server receives an "Extended

https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2865#section-5
https://datatracker.ietf.org/doc/html/rfc2865#section-5

DeKok, Alan Informational [Page 9]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Attribute with Flags" with a Length of 2, 3, or 4, then that
 Attribute MUST be deemed to be an "invalid attribute", it SHOULD
 be silently discarded. If it is not discarded, it MUST NOT be
 handled in the same manner as a well-formed attribute.

 Note that an "invalid attribute" does not cause the entire packet
 to be discarded, or to be treated as a negative acknowledgement.
 Instead, only the "invalid attribute" is discarded.

 Extended-Type

 This field is identical to the Extended-Type field defined above
 in Section 2.1.

 M (More)

 The More Flag is one (1) bit in length, and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 The More flag MUST be clear (0) if the Length field has value less
 than 255. The More flag MAY be set (1) if the Length field has
 value of 255.

 If the More flag is set (1), it indicates that the Value field has
 been fragmented across multiple RADIUS attributes. When the More
 flag is set (1), the attribute SHOULD have a Length field of value
 255; it MUST NOT have a length Field of of value 4; there MUST be
 an attribute following this one; and the next attribute MUST have
 both the same Type and Extended Type. That is, multiple fragments
 of the same value MUST be in order and MUST be consecutive
 attributes in the packet, and the last attribute in a packet MUST
 NOT have the More flag set (1).

 When the Length field of an attribute has value less than 255, the
 More flag SHOULD be clear (0).

 If a client or server receives an attribute fragment with the
 "More" flag set (1), but for which no subsequent fragment can be
 found, then the fragmented attribute is deemed to be an "invalid
 attribute" and the entire set of fragments SHOULD be silently
 discarded. If the fragmented attribute is not discarded, it MUST
 NOT be handled in the same manner as a well-formed attribute.

 Flags

 This field is 7 bits long, and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

DeKok, Alan Informational [Page 10]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Value

 This field is similar to the Value field of the Attribute format
 defined in [RFC2865] Section 5. It may contain a complete set of
 data (when the Length field has value less than 255), or it may
 contain a fragment of data (when the More field is set).

 Any interpretation of the resulting data MUST occur after the
 fragments have been reassembled. The length of the data MUST be
 taken as the sum of the lengths of the fragments (i.e. Value
 fields) from which it is constructed. The format of the data
 SHOULD be a valid RADIUS data type.

 This definition increases the RADIUS Attribute Type space as above,
 but also provides for transport of Attributes which could contain
 more than 253 octets of data.

2.3. TLV Data Type

 We define a new data type in RADIUS, called "tlv". The "tlv" data
 type is an encapsulation layer which which permits the "Value" field
 of an Attribute to contain new sub-Attributes. These sub-Attributes
 can in turn contain "Value"s of data type TLV. This capability both
 extends the attribute space, and permits "nested" attributes to be
 used. This nesting can be used to encapsulate or group data into one
 or more logical containers.

 The "tlv" data type re-uses the RADIUS attribute format, as given
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV-Type | TLV-Length | TLV-Value ...
 +-+

 TLV-Type

 The Type field is one octet. Up-to-date values of this field are
 specified by IANA. Values of zero (0) MUST NOT be used. Values
 254-255 are "Reserved" for use by future extensions to RADIUS.
 The value 26 has no special meaning.

 As with Extended-Type above, the TLV-Type is meaningful only
 within a context defined by "Type" fields of the encapsulating
 Attributes. That is, the field may be thought of as defining a
 new type space of the form "Type.Extended-Type.TLV-Type". Where
 TLVs are nested, the type space is of the form "Type.Extended-

https://datatracker.ietf.org/doc/html/rfc2865#section-5

DeKok, Alan Informational [Page 11]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Type.TLV-Type.TLV-Type", etc.

 A RADIUS server MAY ignore Attributes with an unknown "TLV-Type".

 A RADIUS client MAY ignore Attributes with an unknown "TLV-Type".

 TLV-Length

 The TLV-Length field is one octet, and indicates the length of
 this TLV including the TLV-Type, TLV-Length and TLV-Value fields.
 It MUST have a value between 3 and 255. If a client or server
 receives a TLV with an invalid TLV-Length, then the attribute
 which encapsulates that TLV MUST be deemed to be an "invalid
 attribute", it SHOULD be silently discarded. If the encapsulating
 attribute is not discarded, it MUST NOT be handled in the same
 manner as a well-formed attribute.

 Note that an "invalid attribute" does not cause the entire packet
 to be discarded, or to be treated as a negative acknowledgement.
 Instead, only the "invalid attribute" is discarded.

 TLV-Value

 The Value field is one or more octets and contains information
 specific to the Attribute. The format and length of the TLV-Value
 field is determined by the TLV-Type and TLV-Length fields.

 The TLV-Value field SHOULD encapsulate a previously defined RADIUS
 data type. Using non-standard data types is NOT RECOMMENDED. We
 note that the TLV-Value field MAY also contain one or more
 attributes of data type "tlv", which allows for simple grouping
 and multiple layers of nesting.

 The TLV-Value field is limited to containing 253 or fewer octets
 of data. Specifications which require a TLV to contain more than
 253 octets of data are incompatible with RADIUS, and need to be
 redesigned. Specifications which require the transport of empty
 Values (i.e. Length = 2) are incomaptible with RADIUS, and need to
 be redesigned.

 The TLV-Value field MUST NOT contain data using the "Extended
 Type" formats defined in this document. The base Extended
 Attributes format allows for sufficient flexibility that nesting
 them inside of a TLV offers little additional value.

 This TLV definition is compatible with the suggested format of the
 "String" field of the Vendor-Specific attribute, as defined in

[RFC2865] Section 5.26, though that specification does not discuss

https://datatracker.ietf.org/doc/html/rfc2865#section-5.26

DeKok, Alan Informational [Page 12]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 nesting.

 Vendors MAY use attributes of type "tlv" in any Vendor Specific
 Attribute. We RECOMMEND using type "tlv" for VSAs, in preference to
 any other format.

2.3.1. TLV Nesting

 TLVs may contain other TLVs. When this occurs, the "container" TLV
 MUST be completely filled by the "contained" TLVs. That is, the
 "container" TLV-Length field MUST be exactly two (2) more than the
 sum of the "contained" TLV-Length fields. If the "contained" TLVs
 over-fill the "container" TLV, the "container" TLV MUST be considered
 to be an "invalid attribute", and handled as described above.

 The depth of TLV nesting is limited only by the restrictions on the
 TLV-Length field. The limit of 253 octets of data results in a limit
 of 126 levels of nesting. However, nesting depths of more than 4 are
 NOT RECOMMENDED.

2.4. EVS Data Type

 We define a new data type in RADIUS, called "evs", for "Extended
 Vendor-Specific". The "evs" data type is an encapsulation layer
 which which permits the "Value" field of an Attribute to contain a
 Vendor-Id, followed by a Vendor-Type, and then vendor-defined data.
 This data can in turn contain valid RADIUS data types, or any other
 data as determined by the vendor.

 This data type is intended use in attributes which carry Vendor-
 Specific information, as is done with the Vendor-Specific Attribute
 (26). It is RECOMMENDED that this data type be used by a vendor only
 when the Vendor-Specific Attribute Type space has been fully
 allocated.

 Where [RFC2865] Section 5.26 makes a recommendation for the format of
 the data following the Vendor-Id, we give a strict definition.
 Experience has shown that many vendors have not followed the
 [RFC2865] recommendations, leading to interoperability issues. We
 hope here to give vendors sufficient flexibility as to meet their
 needs, while minimizing the use of non-standard VSA formats.

 The "evs" data type MAY be used in Attributes having the format of
 "Extended Type" or "Extended Type with Flags". It MUST NOT be used
 in any other Attribute definition, including standard RADIUS
 Attributes, TLVs, and VSAs.

 A summary of the "evs" data type format is shown below. The fields

https://datatracker.ietf.org/doc/html/rfc2865#section-5.26
https://datatracker.ietf.org/doc/html/rfc2865

DeKok, Alan Informational [Page 13]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vendor-Id |
 +-+
 | Vendor-Type | String
 +-+

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. It SHOULD encapsulate a
 previously defined RADIUS data type. Using non-standard data
 types is NOT RECOMMENDED. We note that the String field may be of
 data type "tlv". However, it MUST NOT be of data type "evs", as
 the use cases are unclear for one vendor delegating attribute type
 space to another vendor.

 The actual format of the information is site or application
 specific, and a robust implementation SHOULD support the field as
 undistinguished octets. We recognise that Vendors have complete
 control over the contents and format of the String field, while at
 the same time recommending that good practices be followed.

 Further codification of the range of allowed usage of this field
 is outside the scope of this specification.

 Note that unlike the format described in [RFC2865] Section 5.26, this
 data type has no "Vendor length" field. The length of the "String"
 field is implicit, and is determined by taking the "Length" of the
 encapsulating RADIUS Attribute, and subtracting the length of the
 attribute header including the 4 octets of Vendor-Id. i.e. For
 "Extended Type" attributes, the length of the String field is seven
 (7) less than the value of the Length field. For "Extended Type with
 Flags" attributes, the length of the String field is eight (8) less
 than the value of the Length field.

https://datatracker.ietf.org/doc/html/rfc2865#section-5.26

DeKok, Alan Informational [Page 14]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

2.5. Integer64 Data Type

 We define a new data type in RADIUS, called "integer64", which
 carries a 64-bit unsigned integer in network byte order.

 This data type is intended to be used in any situation where there is
 a need to have counters which can count past 2^32. The expected use
 og this data type is within Accounting-Request packets, but this data
 type SHOULD be used in any packet where 32-bit integers are expected
 to be insufficient.

 The "integer64" data type MAY be used in Attributes of any format,
 standard space, extended attributes, TLVs, and VSAs.

 A summary of the "integer64" data type format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Value ...
 +-+
 |
 +-+

Attributes having data type "integer64" MUST have the relevant Length
field set to eight more than the length of the Attribute header. For
standard space Attributes and TLVs, this means that the Length field
MUST be set to ten (10). For "Extended Type" Attributes, the Length
field MUST be set to eleven (11). For "Extended Type with Flags"
Attributes, the Length field MUST be set to twelve (12).

2.6. Attribute Naming and Type Identifiers

 Attributes have traditionally been identified by a unique name and
 number. For example, the attribute named "User-Name" has been
 allocated number one (1). This scheme needs to be extended in order
 to be able to refer to attributes of Extended Type, and to TLVs. It
 will also be used by IANA for allocating RADIUS Attribute Type
 values.

 The names and identifiers given here are intended to be used only in
 specifications. The system presented here may not be useful when
 referring to the contents of a RADIUS packet. It imposes no
 requirements on implementations, as implementations are free to
 reference RADIUS Attributes via any method they choose.

DeKok, Alan Informational [Page 15]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

2.6.1. Attribute and TLV Naming

 RADIUS specifications traditionally use names consisting of one or
 more words, separated by hyphens, e.g. "User-Name". However, these
 names are not allocated from a registry, and there is no restriction
 other than convention on their global uniqueness.

 Similarly, vendors have often used their company name as the prefix
 for VSA names, though this practice is not universal. For example,
 for a vendor named "Example", the name "Example-Attribute-Name"
 SHOULD be used instead of "Attribute-Name". The second form can
 conflict with attributes from other vendors, whereas the first form
 cannot.

 We therefore RECOMMEND that specifications give names to Attributes
 which attempt to be globally unique across all RADIUS Attributes. We
 RECOMMEND that vendors use their name as a unique prefix for
 attribute names. We recognise that these suggestion may sometimes be
 difficult to implement in practice.

 TLVs SHOULD be named with a unique prefix that is shared among
 related attributes. For example, a specification that defines a set
 of TLVs related to time could create attributes named "Time-Zone",
 "Time-Day", "Time-Hour", "Time-Minute", etc.

2.6.2. Attribute Type Identifiers

 The RADIUS Attribute Type space defines a context for a particular
 "Extended-Type" field. The "Extended-Type" field allows for 256
 possible type code values, with values 1 through 240 available for
 allocation. We define here an identification method that uses a
 "dotted number" notation similar to that used for Object Identifiers
 (OIDs), formatted as "Type.Extended-Type".

 For example, and attribute within the Type space of 241, having
 Extended-Type of one (1), is uniquely identified as "241.1".
 Similarly, an attribute within the Type space of 246, having
 Extended-Type of ten (10), is uniquely identified as "246.10".

 The algorithm used to create the Attribute Identifier is simply to
 concatenate all of the various identification fields (e.g. Type,
 Extended-Type, etc.), starting from the encapsulating attribute, down
 to the final encapsulated TLV, separated by a '.' character.

2.6.3. TLV Identifiers

 We can extend the Attribute reference scheme defined above for TLVs.
 This is done by leveraging the "dotted number" notation. As above,

DeKok, Alan Informational [Page 16]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 we define an additional TLV type space, within the "Extended Type"
 space, by appending another "dotted number" in order to identify the
 TLV. This method can be replied in sequence for nested TLVs.

 For example, let us say that "245.1" identifies RADIUS Attribute Type
 245, containing an "Extended Type" of one (1), which is of type
 "tlv". That attribute will contain 256 possible TLVs, one for each
 value of the TLV-Type field. The first TLV-Type value of one (1) can
 then be identified by appending a ".1" to the number of the
 encapsulating attribute ("241.1"), to yield "241.1.1". Similarly,
 the sequence "245.2.3.4" identifies RADIUS attribute 245, containing
 an "Extended Type" of two (2) which is of type "tlv", which in turn
 contains a TLV with TLV-Type number three (3), which in turn contains
 another TLV, wth TLV-Type number four (4).

2.6.4. VSA Identifiers

 There has historically been no method for numerically addressing
 VSAs. The "dotted number" method defined here can also be leveraged
 to create such an addressing scheme. However, as the VSAs are
 completely under the control of each individual vendor, this section
 provides a suggested practice, but does not define a standard of any
 kind.

 The Vendor-Specific Attribute has been assigned the Attribute number
 26. It in turn carries a 24-bit Vendor-Id, and possibly additional
 VSAs. Where the VSAs follow the [RFC2865] Section 5.26 recommended
 format, a VSA can be identified as "26.Vendor-Id"."Vendor-Type".

 For example, Livingston has Vendor-Id 307, and has defined an
 attribute "IP-Pool" as number 6. This VSA can be uniquely identified
 as 26.307.6.

 Note that there is no restriction on the size of the numerical values
 in this notation. The Vendor-Id is a 24-bit number, and the VSA may
 have been assigned from a 16-bit vendor-specific Attribute type
 space.

 For example, the company USR has been allocated Vendor-Id 429, and
 has defined a "Version-Id" attribute as number 32768. This VSA can
 be uniquely identified as 26.429.32768.

 Where a VSA is a TLV, the "dotted number" notation can be used as
 above: 26.VID.VSA.TLV1.TLV2.TLV3 where "TLVn" are the numerical
 values assigned by the vendor to the different nested TLVs.

https://datatracker.ietf.org/doc/html/rfc2865#section-5.26

DeKok, Alan Informational [Page 17]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

3. Attribute Definitions

 We define four (4) attributes of "Extended Type", which are allocated
 from the "Reserved" Attribute Type codes of 241, 242, 243, and 244.
 We also define two (2) attributes of "Extended Type with Flags",
 which are allocated from the "Reserved" Attribute Type codes of 245
 and 246.

 Type Name
 ---- ----
 241 Extended-Type-1
 242 Extended-Type-2
 243 Extended-Type-3
 244 Extended-Type-4
 245 Extended-Type-Flagged-1
 246 Extended-Type-Flagged-2

 The rest of this section gives a detailed definition for each
 Attribute based on the above summary.

3.1. Extended-Type-1

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type Space of 241.{1-255}.

 A summary of the Extended-Type-1 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Value ...
 +-+

 Type

 241 for Extended-Type-1.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA, in the 241.{1-255} RADIUS Attribute

DeKok, Alan Informational [Page 18]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Type Space. Further definition of this field is given in Section
2.1, above.

 String

 The String field is one or more octets. Implementations not
 supporting this specification SHOULD support the field as
 undistinguished octets.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the interpretation
 of the String field.

3.2. Extended-Type-2

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type Space of 242.{1-255}.

 A summary of the Extended-Type-2 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Value ...
 +-+

 Type

 242 for Extended-Type-2.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA, in the 242.{1-255} RADIUS Attribute
 Type Space. Further definition of this field is given in Section

2.1, above.

 String

 The String field is one or more octets. Implementations not

DeKok, Alan Informational [Page 19]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 supporting this specification SHOULD support the field as
 undistinguished octets.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the interpretation
 of the String field

3.3. Extended-Type-3

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type Space of 243.{1-255}.

 A summary of the Extended-Type-3 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Value ...
 +-+

 Type

 243 for Extended-Type-3.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA, in the 243.{1-255} RADIUS Attribute
 Type Space. Further definition of this field is given in Section

2.1, above.

 String

 The String field is one or more octets. Implementations not
 supporting this specification SHOULD support the field as
 undistinguished octets.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the interpretation
 of the String field.

DeKok, Alan Informational [Page 20]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

3.4. Extended-Type-4

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type Space of 244.{1-255}.

 A summary of the Extended-Type-4 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Value ...
 +-+

 Type

 244 for Extended-Type-4.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA, in the 244.{1-255} RADIUS Attribute
 Type Space. Further definition of this field is given in Section

2.1, above.

 String

 The String field is one or more octets. Implementations not
 supporting this specification SHOULD support the field as
 undistinguished octets.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the interpretation
 of the String Field.

3.5. Extended-Type-Flagged-1

 Description

 This attribute encapsulates attributes of the "Extended Type with
 Flags" format, in the RADIUS Attribute Type Space of 245.{1-255}.

DeKok, Alan Informational [Page 21]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 A summary of the Extended-Type-Flagged-1 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Flags |
 +-+
 | Value ...
 +-+

 Type

 245 for Extended-Type-Flagged-1

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA, in the 245.{1-255} RADIUS Attribute
 Type Space. Further definition of this field is given in Section

2.1, above.

 M (More)

 The More Flag is one (1) bit in length, and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Flags

 This field is 7 bits long, and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 String

 The String field is one or more octets. Implementations not
 supporting this specification SHOULD support the field as
 undistinguished octets.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the interpretation
 of the String field.

DeKok, Alan Informational [Page 22]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

3.6. Extended-Type-Flagged-2

 Description

 This attribute encapsulates attributes of the "Extended Type with
 Flags" format, in the RADIUS Attribute Type Space of 246.{1-255}.

 A summary of the Extended-Type-Flagged-2 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Flags |
 +-+
 | Value ...
 +-+

 Type

 246 for Extended-Type-Flagged-2

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified by IANA, in the 246.{1-255} RADIUS Attribute
 Type Space. Further definition of this field is given in Section

2.1, above.

 M (More)

 The More Flag is one (1) bit in length, and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Flags

 This field is 7 bits long, and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 String

DeKok, Alan Informational [Page 23]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 The String field is one or more octets. Implementations not
 supporting this specification SHOULD support the field as
 undistinguished octets.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the interpretation
 of the String field.

4. Vendor Specific Attributes

 We define six new attributes which can carry Vendor Specific
 information. We define four (4) attributes of the "Extended Type"
 format, with Type codes (241.26, 242.26, 243.26, 244.26), using the
 "evs" data type. We also define two (2) attributes of "Extended Type
 with Flags" format, with Type codes (245.26, 246.26), using the "evs"
 data type.

 Type.Extended-Type Name
 ------------------ ----
 241.26 Extended-Vendor-Specific-1
 242.26 Extended-Vendor-Specific-2
 243.26 Extended-Vendor-Specific-3
 244.26 Extended-Vendor-Specific-4
 245.26 Extended-Vendor-Specific-5
 246.26 Extended-Vendor-Specific-6

 The rest of this section gives a detailed definition for each
 Attribute based on the above summary.

4.1. Extended-Vendor-Specific-1

 Description

 This attribute defines a RADIUS Type Code of 241.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-1 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Vendor-Id ...
 +-+
 ... Vendor-Id (cont) | Vendor-Type |
 +-+
 | String
 +-+

DeKok, Alan Informational [Page 24]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Type.Extended-Type

 241.26 for Extended-Vendor-Specific-1

 Length

 >= 9

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the String field is eight (8) less then the value of
 the Length field.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the String field.

4.2. Extended-Vendor-Specific-2

 Description

 This attribute defines a RADIUS Type Code of 242.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-2 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

DeKok, Alan Informational [Page 25]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 | Type | Length | Extended-Type | Vendor-Id ...
 +-+
 ... Vendor-Id (cont) | Vendor-Type |
 +-+
 | String
 +-+

 Type.Extended-Type

 242.26 for Extended-Vendor-Specific-2

 Length

 >= 9

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the String field is eight (8) less then the value of
 the Length field.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the String field.

4.3. Extended-Vendor-Specific-3

 Description

 This attribute defines a RADIUS Type Code of 243.26, using the
 "evs" data type.

DeKok, Alan Informational [Page 26]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 A summary of the Extended-Vendor-Specific-3 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Vendor-Id ...
 +-+
 ... Vendor-Id (cont) | Vendor-Type |
 +-+
 | String
 +-+

 Type.Extended-Type

 243.26 for Extended-Vendor-Specific-3

 Length

 >= 9

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the String field is eight (8) less then the value of
 the Length field.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the String field.

DeKok, Alan Informational [Page 27]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

4.4. Extended-Vendor-Specific-4

 Description

 This attribute defines a RADIUS Type Code of 244.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-3 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type | Vendor-Id ...
 +-+
 ... Vendor-Id (cont) | Vendor-Type |
 +-+
 | String
 +-+

 Type.Extended-Type

 244.26 for Extended-Vendor-Specific-4

 Length

 >= 9

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

DeKok, Alan Informational [Page 28]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 The length of the String field is eight (8) less then the value of
 the Length field.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the String field.

4.5. Extended-Vendor-Specific-5

 Description

 This attribute defines a RADIUS Type Code of 245.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-5 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Flags |
 +-+
 | Vendor-Id |
 +-+
 | Vendor-Type | String
 +-+

 Type.Extended-Type

 245.26 for Extended-Vendor-Specific-5

 Length

 >= 10 (first fragment)
 >= 5 (subsequent fragments)

 When a VSA is fragmented across multiple Attributes, only the
 first Attribute contains the Vendor-Id and Vendor-Type fields.
 Subsequent Attributes contain fragments of the String field only.

 M (More)

 The More Flag is one (1) bit in length, and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Flags

DeKok, Alan Informational [Page 29]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 This field is 7 bits long, and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the String field.

4.6. Extended-Vendor-Specific-6

 Description

 This attribute defines a RADIUS Type Code of 246.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-6 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Flags |
 +-+
 | Vendor-Id |
 +-+
 | Vendor-Type | String
 +-+

DeKok, Alan Informational [Page 30]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Type.Extended-Type

 246.26 for Extended-Vendor-Specific-6

 Length

 >= 10 (first fragment)
 >= 5 (subsequent fragments)

 When a VSA is fragmented across multiple Attributes, only the
 first Attribute contains the Vendor-Id and Vendor-Type fields.
 Subsequent Attributes contain fragments of the String field only.

 M (More)

 The More Flag is one (1) bit in length, and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Flags

 This field is 7 bits long, and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Vendor-Id

 The high-order octet is 0 and the low-order 3 octets are the SMI
 Network Management Private Enterprise Code of the Vendor in
 network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the Vendor.

 String

 The String field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to

DeKok, Alan Informational [Page 31]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 determine the interpretation of the String field.

5. Compatibility with traditional RADIUS

 There are a number of potential compatibility issues with traditional
 RADIUS. This section describes them.

5.1. Attribute Allocation

 Some vendors have used Attribute Type codes from the "Reserved"
 space, as Vendor Specific Attributes. This practice is considered
 anti-social behavior, as noted in [RFC6158]. These vendor
 definitions conflict with the attributes in the RADIUS Attribute Type
 space. The conflicting definitions may make it difficult for
 implementations to support both those Vendor Attributes, and the new
 Extended Attribute formats.

 We RECOMMEND that RADIUS client and server implementations delete all
 references to these improperly defined attributes. Failing that, we
 RECOMMEND that RADIUS server implementations have a per-client
 configurable flag which indicates which type of attributes are being
 sent from the client. If the flag is set one way, the conflicting
 attributes can be interpreted as being improperly defined Vendor
 Specific Attributes. If the flag is set the other way, the attributes
 MUST be interpreted as being of the Extended Attributes format. The
 default SHOULD be to interpret the attributes as being of the
 Extended Attributes format.

 Other methods of determining how to decode the attributes into a
 "correct" form are NOT RECOMMENDED. Those methods are likely to be
 fragile and prone to error.

 We RECOMMEND that RADIUS server implementations re-use the above flag
 to determine which type of attributes to send in a reply message. If
 the request is expected to contain the improperly defined attributes,
 the reply SHOULD NOT contain Extended Attributes. If the request is
 expected to contain Extended Attributes, the reply MUST NOT contain
 the improper Attributes.

 RADIUS clients will have fewer issues than servers. Clients MUST NOT
 send improperly defined Attributes in a request. For replies,
 clients MUST interpret attributes as being of the Extended Attributes
 format, instead of the improper definitions. These requirements
 impose no change in the RADIUS specifications, as such usage by
 vendors has always been in conflict with the standard requirements
 and the standards process.

https://datatracker.ietf.org/doc/html/rfc6158

DeKok, Alan Informational [Page 32]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

5.2. Proxy Servers

 RADIUS Proxy servers will need to forward Attributes having the new
 format, even if they do not implement support for the encoding and
 decoding of those attributes. We remind implementors of the
 following text in [RFC2865] Section 2.3:

 The forwarding server MUST NOT change the order of any attributes
 of the same type, including Proxy-State.

 This requirement solves some of the issues related to proxying of the
 new format, but not all. The reason is that proxy servers are
 permitted to examine the contents of the packets that they forward.
 Many proxy implementations not only examine the attributes, but they
 refuse to forward attributes which they do not understand (i.e.
 attributes for which they have no local dictionary definitions).

 This practice is NOT RECOMMENDED. Proxy servers SHOULD forward
 attributes, even ones which they do not understand, or which are not
 in a local dictionary. When forwarded, these attributes SHOULD be
 sent verbatim, with no modifications or changes. The only exception
 to this recommendation is when local site policy dictates that
 filtering of attributes has to occur. For example, a filter at a
 visited network may require removal of certain authorization rules
 which apply to the home network, but not to the visited network.
 This filtering can sometimes be done even when the contents of the
 attributes are unknown, such as when all Vendor-Specific Attributes
 are designated for removal.

 As seen in [EDUROAM] many proxies do not follow these practices for
 unknown Attributes. Some proxies filter out unknown attributes or
 attributes which have unexpected lengths (24%, 17/70), some truncate
 the attributes to the "expected" length (11%, 8/70), some discard the
 request entirely (1%, 1/70), with the rest (63%, 44/70) following the
 recommended practice of passing the attributes verbatim. It will be
 difficult to widely use the Extended Attributes format until all non-
 conformant proxies are fixed. We therefore RECOMMEND that all
 proxies which do not support the Extended Attributes (241 through
 246) define them as being of data type "string", and delete all other
 local definitions for those attributes.

 This last change should enable wider usage of the Extended Attributes
 format.

6. Guidelines

 This specification proposes a number of changes to RADIUS, and
 therefore requires a set of guidelines, as has been done in

https://datatracker.ietf.org/doc/html/rfc2865#section-2.3

DeKok, Alan Informational [Page 33]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 [RFC6158].

6.1. Updates to RFC 6158

 This specification updates [RFC6158] by adding the data types "evs",
 "tlv" and "integer64"; defining them to be "basic" data types; and
 permitting their use subject to the restrictions outlined below.

 All other recommendations given in [RFC6158] are unchanged. New
 recommendations for the use of the new data types and attribute
 formats are given below.

6.2. Guidelines For the New Types

 We recommend the following guidelines when designing attributes using
 the new format. The items listed below are not exhaustive. As
 experience is gained with the new formats, later specifications may
 define additional guidelines.

 * The data type "evs" MUST NOT be used for standard RADIUS
 Attributes, or for TLVs, or for VSAs.

 * The data type "tlv" SHOULD NOT be used for standard RADIUS
 attributes. While its use is NOT RECOMMENDED by [RFC6158], this
 specification updates [RFC6158] to permit the "tlv" data type in
 attributes using the Extended-Type format.

 * [RFC2866] "tagged" attributes MUST NOT be defined in the
 Extended-Type space. The "tlv" data type should be used instead to
 group attributes.

 * The "integer64" data type MAY be used in any RADIUS attribute.
 The use of 64-bit integers is NOT RECOMMENDED by [RFC6158], but
 their utility is now evident.

 * For all other circumstances, the guidelines in [RFC6158] MUST
 be followed.

6.3. Allocation Request Guidelines

 The following items give guidelines for allocation requests made in a
 RADIUS specification.

 * Discretion is RECOMMENDED when requesting allocation of attributes.
 The new space is much larger than the old one, but it is not
 infinite.

https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158

DeKok, Alan Informational [Page 34]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 * When the Type spaces of 241.*, 242.*, 243.*, or 244.* are nearing
 exhaustion, a new specification SHOULD be written which requests
 allocation of one or more RADIUS Attributes from the "Reserved"
 space, using the "Extended Type" format. This process is
 preferable to allocating "small" attributes from the 256.* and
 246.* Type spaces.

 * When the Type spaces of 245.* or 246.* are nearing exhaustion, a
 new specification SHOULD be written which requests allocation of
 one or more RADIUS Attributes from the "Reserved" space, using the
 "Extended Type with flags" format.

 * All other specifications SHOULD NOT request allocation from the
 standard Attribute Type Space (i.e. Attributes 1 through 255).
 That space is deprecated, and is not to be used.

 * Attributes which encode 252 octets or less of data SHOULD
 request allocation from the Type spaces of 241.*, 242.*, 243.*,
 or 244.*.

 * Attributes which encode 253 octets or more of data MUST request
 allocation from the Type spaces of 245.* or 246.*.

 * Where a group of TLVs is strictly defined, and not expected to
 change, and and totals less than 247 octets of data, they SHOULD
 request allocation from the Type spaces of 241.*, 242.*, 243.*, or
 244.*.

 * Where a group of TLVs is loosely defined, or is expected to change,
 they SHOULD request allocation from the Type spaces of 245.* or
 246.*.

6.4. TLV Guidelines

 The following items give guidelines for specifications using TLVs.

 * when multiple attributes are intended to be grouped or managed
 together, the use of TLVs to group related attributes is
 RECOMMENDED.

 * more than 4 layers (depth) of TLV nesting is NOT RECOMMENDED.

 * Specifications SHOULD that the interpretation of an attribute
 depends only on its OID, and not on its encoding in the RADIUS
 packet.

DeKok, Alan Informational [Page 35]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

6.5. Implementation Guidelines

 * RADIUS Server implementations SHOULD support this specification
 as soon as possible.

 * RADIUS Proxy servers SHOULD forward all attributes, even ones
 which they do not understand, or which are not in a local
 dictionary. These attributes SHOULD be forwarded verbatim, with
 no modifications or changes.

 * Any attribute which is allocated from the Type spaces of 245.* or
 246.*, of data type "text", "string", or "tlv" can end up carrying
 more than 251 octets of data, up to the maximum RADIUS packet
 length (~4096 octets). Specifications defining such attributes
 SHOULD define a maximum length.

6.6. Vendor Guidelines

 * Vendors SHOULD use the existing Vendor-Specific Attribute Type
 space in preference to the new Extended-Vendor-Specific
 attributes, as this specification may take time to be widely
 deployed.

7. Rationale

 The path to extending the RADIUS protocol has been long and arduous.
 A number of proposals have been made and discarded by the RADEXT
 working group. These proposals have been judged to be either too
 bulky, too complex, too simple, or to be unworkable in practice. We
 do not otherwise explain here why earlier proposals did not obtain
 working group consensus.

 This proposal has the benefit of being simple, as the "Extended Type"
 format requires only a one octet change to the Attribute format.

7.1. Attribute Audit

 An audit of almost five thousand publicly available attributes
 [ATTR], shows the statistics summarized below. The attributes include
 over 100 Vendor dictionaries, along with the IANA assigned
 attributes:

 Count Data Type
 ----- ---------
 2257 integer
 1762 text
 273 IPv4 Address
 235 string

DeKok, Alan Informational [Page 36]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 96 other data types
 35 IPv6 Address
 18 date
 4 Interface Id
 3 IPv6 Prefix

 4683 Total

 The entries in the "Data Type" column are data types recommended by
 [RFC6158]. The "other data types" row encompasses data types not
 recommended by that document.

 Manual inspection of the dictionaries shows that approximately 20 (or
 0.5%) attributes have the ability to transport more than 253 octets
 of data. These attributes are divided between VSAs, and a small
 number of standard Attributes. The "Extended Type with Flags"
 formats is therefore important, but "long" attributes have had
 limited deployment.

8. Examples

 A few examples are presented here, in order to illustrate the
 encoding of the new attribute formats. These examples are not
 intended to be exhaustive, as many others are possible. For
 simplicity, we do not show complete packets, only attributes.

 The examples are given using a domain-specific language implemented
 by the program given in Appendix A. The language is line oriented,
 and composed of a sequence of lines matching the grammar ([RFC5234])
 given below:

 Identifier = 1*DIGIT *("." 1*DIGIT)

 HEXCHAR = HEXDIG HEXDIG

 STRING = DQUOTE 1*CHAR DQUOTE

 TLV = "{" 1*DIGIT DATA "}"

 DATA = 1*HEXCHAR / 1*TLV / STRING

 LINE = Identifier DATA

 The progam has additional restrictions on its input that are not
 reflected in the above grammar. For example, the portions of the
 Identifier which refer to Type and Extended-Type are limited to
 values between 1 and 255. We trust that the source code in Appendix

A is clear, and that these restrictions do not negatively affect the

https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc5234

DeKok, Alan Informational [Page 37]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 comprehensability of the examples.

 The program reads the input text, and interprets it as a set of
 instructions to create RADIUS Attributes. It then prints the hex
 encoding of those attributes. It implements the minimum set of
 functionality which achieves that goal. This minimalism means that
 it does not use attribute dictionaries; it does not implement support
 for RADIUS data types; it can be used to encode attributes with
 invalid data field(s); and there is no requirement for consistency
 from one example to the next. For example, it can be used to encode
 a User-Name attribute which contains non-UTF8 data, or a Framed-IP-
 Address which contains 253 octets of ASCII data. As a result, it
 cannot be used to create RADIUS Attributes for transport in a RADIUS
 message.

 However, the program correctly encodes the RADIUS attribute fields of
 "Type", "Length", "Extended-Type", "More", "Flags", "Vendor-Id",
 "Vendor-Type", and "Vendor-Length". It can therefore be used to
 encode example attributes from input which is humanly readable.

 We do not give examples of "malformed" or "invalid attributes". We
 also note that the examples show format, and not consistent meaning.
 A particular attribute type code may be used to demonstrate two
 different formats. In real specifications, attributes have a static
 definitions based on their type code.

 The examples given below are strictly for demonstration purposes
 only, and do not provide a standard of any kind.

8.1. Extended Type

 The following are a series of examples of the "Extended Type" format.

 Attribute encapsulating textual data.

 241.1 "bob"
 -> f1 06 01 62 6f 62

 Attribute encapsulating a TLV with TLV-Type of one (1).

 241.2 { 1 23 45 }
 -> f1 07 02 01 04 23 45

 Attribute encapsulating two TLVs, one after the other.

 241.2 { 1 23 45 } { 2 67 89 }
 -> f1 0b 02 01 04 23 45 02 04 67 89

DeKok, Alan Informational [Page 38]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating a TLV.

 241.2 { 1 23 45 } { 3 { 1 ab cd } }
 -> f1 0d 02 01 04 23 45 03 06 01 04 ab cd

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating two TLVs.

 241.2 { 1 23 45 } { 3 { 1 ab cd } { 2 "foo" } }
 -> f1 12 02 01 04 23 45 03 0b 01 04 ab cd 02 05 66 6f 6f

 Attribute encapsulating a TLV, which in turn encapsulates a TLV,
 to a depth of 5 nestings.

 241.1 { 1 { 2 { 3 { 4 { 5 cd ef } } } } }
 -> f1 0f 01 01 0c 02 0a 03 08 04 06 05 04 cd ef

 Attribute encapsulating an extended Vendor Specific attribute,
 with Vendor-Id of 1, and Vendor-Type of 4, which in turn
 encapsulates textual data.

 241.26.1.4 "test"
 -> f1 0c 1a 00 00 00 01 04 74 65 73 74

 Attribute encapsulating an extended Vendor Specific attribute, with
 Vendor-Id of 1, and Vendor-Type of 5, which in turn encapsulates
 a TLV with TLV-Type of 3, which encapsulates textual data.

 241.26.1.5 { 3 "test" }
 -> f1 0e 1a 00 00 00 01 05 03 06 74 65 73 74

8.2. Extended Type with Flags

 The following are a series of examples of the "Extended Type with
 flags" format.

 Attribute encapsulating textual data.

 245.1 "bob"
 -> f5 07 01 00 62 6f 62

 Attribute encapsulating a TLV with TLV-Type of one (1).

 245.2 { 1 23 45 }
 -> f5 08 02 00 01 04 23 45

DeKok, Alan Informational [Page 39]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 Attribute encapsulating two TLVs, one after the other.

 245.2 { 1 23 45 } { 2 67 89 }
 -> f5 0c 02 00 01 04 23 45 02 04 67 89

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating a TLV.

 245.2 { 1 23 45 } { 3 { 1 ab cd } }
 -> f5 0e 02 00 01 04 23 45 03 06 01 04 ab cd

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating two TLVs.

 245.2 { 1 23 45 } { 3 { 1 ab cd } { 2 "foo" } }
 -> f5 13 02 00 01 04 23 45 03 0b 01 04 ab cd 02 05 66 6f 6f

 Attribute encapsulating a TLV, which in turn encapsulates a TLV,
 to a depth of 5 nestings.

 245.1 { 1 { 2 { 3 { 4 { 5 cd ef } } } } }
 -> f5 10 01 00 01 0c 02 0a 03 08 04 06 05 04 cd ef

 Attribute encapsulating an extended Vendor Specific attribute,
 with Vendor-Id of 1, and Vendor-Type of 4, which in turn
 encapsulates textual data.

 245.26.1.4 "test"
 -> f5 0d 1a 00 00 00 00 01 04 74 65 73 74

 Attribute encapsulating an extended Vendor Specific attribute,
 with Vendor-Id of 1, and Vendor-Type of 5, which in turn
 encapsulates a TLV with TLV-Type of 3, which encapsulates
 textual data.

 245.26.1.5 { 3 "test" }
 -> f5 0f 1a 00 00 00 00 01 05 03 06 74 65 73 74

 Attribute encapsulating more than 251 octets of data. The "Data"
 portions are indented for readability.

 245.4 aa
 aa
 aa
 aa
 aaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 bb
 bb

DeKok, Alan Informational [Page 40]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 bb
 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcccccccccccccccccccc
 cccccccccc
 -> f5 ff 04 80 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
 aa
 aa
 aa
 aa
 aa
 aa aa aa aa aa aa aa aa aa ab bb bb bb bb bb bb bb bb bb bb
 bb
 bb
 bb
 bb
 bb
 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb f5 13 04 00 cc
 cc cc cc cc cc cc cc cc cc cc cc cc cc cc

 Attribute encapsulating an extended Vendor Specific attribute,
 with Vendor-Id of 1, and Vendor-Type of 6, which in turn
 encapsulates more than 251 octets of data.

 As the VSA encapsulates more than 251 octets of data, it is
 split into two RADIUS attributes. The first attribute has the
 More flag set, and carries the Vendor-Id and Vendor-Type.
 The second attribute has the More flag clear, and carries
 the rest of the data portion of the VSA. Note that the second
 attribute does not include the Vendor-Id ad Vendor-Type fields.

 The "Data" portions are indented for readability.

 245.26.1.6 aa
 aa
 aa
 aa
 aaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 bb
 bb
 bb
 bbbccccccccccccc
 ccccccccccccccccc
 -> f5 ff 1a 80 00 00 00 01 06 aa aa aa aa aa aa aa aa aa aa aa
 aa
 aa
 aa
 aa
 aa
 aa aa aa aa aa aa aa aa aa aa aa aa aa aa ab bb bb bb bb bb

DeKok, Alan Informational [Page 41]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 bb
 bb
 bb
 bb
 bb
 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb f5 17 1a 00 bb
 bb bb bb bb cc cc cc cc cc cc cc cc cc cc 13 45 67 89

9. IANA Considerations

 This document has multiple impacts on IANA, in the "RADIUS Attribute
 Types" registry. Attribute types which were previously reserved are
 now allocated, previously free attributes are marked deprecated, and
 the registry is extended from a simple 8-bit array to a tree-like
 structure, up to a maximum depth of 125 nodes.

9.1. Attribute Allocations

 IANA is requested to move the "Unassigned" numbers in the range
 144-191 from "Unassigned" to "Deprecated". This status means that
 allocations SHOULD NOT be made from this space. Instead, allocations
 SHOULD be taken from the Extended Type space, starting with lower
 numbered attributes. However, allocation from the "Deprecated" space
 MAY still be performed by publication of an IETF specification, where
 that specification requests allocation from the "Deprecated" space,
 and gives reasons why use of the Extended Type space is impossible.

 IANA is requested to move the following numbers from "Reserved", to
 allocated, with the following names:

 * 241 Extended-Type-1
 * 242 Extended-Type-2
 * 243 Extended-Type-3
 * 244 Extended-Type-4
 * 245 Extended-Type-Flagged-1
 * 246 Extended-Type-Flagged-2

 These attributes serve as an encapsulation layer for the new RADIUS
 Attribute Type tree.

9.2. RADIUS Attribute Type Tree

 Each of the attributes allocated above extends the "RADIUS Attribute
 Types" to an N-ary tree, via a "dotted number" notation. Each number
 in the tree is an 8-bit value (1 to 255). The value zero (0) MUST
 NOT be used. Currently, only one level of the tree is defined:

DeKok, Alan Informational [Page 42]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 * 241 Extended-Attribute-1
 * 241.{1-25} Unassigned
 * 241.26 Extended-Vendor-Specific-1
 * 241.{27-240} Unassigned
 * 241.{241-255} Reserved
 * 242 Extended-Attribute-2
 * 242.{1-25} Unassigned
 * 242.26 Extended-Vendor-Specific-2
 * 242.{27-240} Unassigned
 * 243 Extended-Attribute-3
 * 242.{241-255} Reserved
 * 243.{1-25} Unassigned
 * 243.26 Extended-Vendor-Specific-3
 * 243.{27-240} Unassigned
 * 243.{241-255} Reserved
 * 244 Extended-Attribute-4
 * 244.{1-25} Unassigned
 * 244.26 Extended-Vendor-Specific-4
 * 244.{27-240} Unassigned
 * 244.{241-255} Reserved
 * 245 Extended-Attribute-5
 * 245.{1-25} Unassigned
 * 245.26 Extended-Vendor-Specific-5
 * 245.{27-240} Unassigned
 * 245.{241-255} Reserved
 * 246 Extended-Attribute-6
 * 246.{1-25} Unassigned
 * 245.26 Extended-Vendor-Specific-6
 * 246.{27-240} Unassigned
 * 246.{241-255} Reserved

 The values marked "Unassigned" above are available for assignment by
 IANA in future RADIUS specifications. The values marked "Reserved"
 are reserved for future use.

9.3. Assignment Policy

 Attributes which are known to always require 252 octets or less of
 data MUST be assigned from the lowest unassigned number, e.g. 241.1,
 241.2, 241.3, etc. Attributes have the potential to transport more
 than 252 octets of data MUST be assigned from the 245.* or 246.*
 spaces, again using the lowest unassigned number, and MUST request
 assignment from the appropriate Attribute Type Space.

 The above policy can be difficult to enforce in the case of TLVs.
 For exaple, a set of TLVs may define a logical structure which totals
 less than 252 octets of data. Later extensions could assign
 additional sub-TLVs, and extend the structure to more than 252 octets

DeKok, Alan Informational [Page 43]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 of data. This capability means that TLV definitions SHOULD generally
 request assignment from the 245.* or 246.* space.

9.4. Extending the Attribute Type Tree

 New specifications may request that the tree be extended to an
 additional level or levels. The attribute MUST be of type "tlv".

 For example, a specification may request that an "Example-TLV"
 attribute be assigned, of data type "tlv". If it is assigned the
 number 245.1, then it will define an extension to the registry as
 follows:

 * 245.1 Example-TLV
 * 245.1.{1-253} Unassigned
 * 245.1.{254-255} Reserved

 Note that this example does not define an "Example-TLV" attribute.

 The number zero (0) MUST NOT be used. The last two numbers (254 and
 255) MUST be reserved for future use. All other numbers are
 available for assignment by IANA.

 The Attribute Type Tree can be extended multiple levels in one
 specification. For example, the "Example-TLV" above could contain
 another attribute, "Example-Nested-TLV", of type "tlv". It would
 define an additional extension to the registry as follows:

 * 245.1.1 Example-Nested-TLV
 * 245.1.1.{1-253} Unassigned
 * 245.1.1.{254-255} Reserved
 This process may be continued to additional levels of nesting.

 Again, this example does not define an "Example-Nested-TLV"
 attribute.

9.5. Extending the RADIUS Attribute Type Space

 The extended RADIUS Attribute Type space may eventually approach
 exhaustion. When necessary, the space SHOULD be extended by
 publication of a specification which allocates new attributes of
 either the "Extended Type", or the "Extended Type with flags" format.
 The specification SHOULD request allocation of a specific number from
 the "Reserved" RADIUS Attribute type space, such as 247. The
 attribute(s) SHOULD be given a name which follows the naming
 convention used in this document. The Extended-Type value of 26 MUST
 be allocated to a "Vendor Specific" attribute, of data type "esv".
 The Extended-Type values of 241 through 255 MUST be marked as

DeKok, Alan Informational [Page 44]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 "Reserved".

 IANA SHOULD allocate the attribute(s) as requested. For example, if
 allocation of attribute 247 is requested, the following definitions
 MUST be made in the specification, and allocated by IANA.

 * 247.1 Extended-Attribute-7
 * 247.{1-25} Unassigned
 * 247.26 Extended-Vendor-Specific-7
 * 247.{27-240} Unassigned
 * 247.{241-255} Reserved

 We note,however, that the above list is an example, and we do not
 request or perform allocation of attribute 247 in this document.

10. Security Considerations

 This document defines new formats for data carried inside of RADIUS,
 but otherwise makes no changes to the security of the RADIUS
 protocol.

 Attacks on cryptographic hashes are well known, and are getting
 better with time, as discussed in[RFC4270]. RADIUS uses the MD5 hash
 [RFC1321] for packet authentication and attribute obfuscation. There
 are ongoing efforts in the IETF to analyze and address these issues
 for the RADIUS protocol.

 As with any protocol change, code changes are required in order to
 implement the new features. These code changes have the potential to
 introduce new vulnerabilities in the software. Since the RADIUS
 server performs network authentication, it is an inviting target for
 attackers. We RECOMMEND that access to RADIUS servers be kept to a
 minimum.

11. References

11.1. Normative references

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March, 1997.

[RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2865

DeKok, Alan Informational [Page 45]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

11.2. Informative references

[RFC1321] Rivest, R. "The MD5 Message-Digest Algorithm", RFC 1321,
 April, 1992

[RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

[RFC2868] Zorn, G., et al, " RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, June 2000.

[RFC4270] Hoffman, P, and Schneier, B, "Attacks on Cryptographic Hashes
 in Internet Protocols", RFC 4270, November 2005.

[RFC5234] Crocker, D. (Ed.), and Overell, P., "Augmented BNF for Syntax
 Specifications: ABNF", RFC 5234, October 2005.

[RFC6158] DeKok, A., and Weber, G., "RADIUS Design Guidelines", RFC
6158, March 2011.

[EDUROAM] Internal Eduroam testing page, data retrieved 04 August 2010.

[ATTR] http://github.com/alandekok/freeradius-
server/tree/master/share/, data retrieved September 2010.

Acknowledgments

 This document is the result of long discussions in the IETF RADEXT
 working group. The authors would like to thank all of the
 participants who contributed various ideas over the years. Their
 feedback has been invaluable, and has helped to make this
 specification better.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc2868
https://datatracker.ietf.org/doc/html/rfc4270
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc6158
http://github.com/alandekok/freeradius-server/tree/master/share/
http://github.com/alandekok/freeradius-server/tree/master/share/

DeKok, Alan Informational [Page 46]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

Appendix A - Extended Attribute Generator Program

 This section contains "C" program source which can be used for
 testing. It reads a line-oriented text file, parses it to create
 RADIUS formatted attributes, and prints the hex version of those
 attributes to standard output.

 The input accepts a grammar similar to that given in Section 8, with
 some modifications for usability. For example, blank lines are
 allowed, lines beginning with a '#' character are interpreted as
 comments, numbers (RADIUS Types, etc.) are checked for minimum /
 maximum values, and RADIUS Attribute lengths are enforced.

 The program is included here for demonstration purposes only, and
 does not define a standard of any kind.

 --
 /*
 * Copyright (c) 2010 IETF Trust and the persons identified as
 * authors of the code. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * Neither the name of Internet Society, IETF or IETF Trust, nor the
 * names of specific contributors, may be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

DeKok, Alan Informational [Page 47]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Author: Alan DeKok <aland@networkradius.com>
 */
 #include <stdlib.h>
 #include <stdio.h>
 #include <stdint.h>
 #include <string.h>
 #include <errno.h>
 #include <ctype.h>

 static int encode_tlv(char *buffer, uint8_t *output, size_t outlen);

 static const char *hextab = "0123456789abcdef";

 static int encode_data_string(char *buffer,
 uint8_t *output, size_t outlen)
 {
 int length = 0;
 char *p;

 p = buffer + 1;

 while (*p && (outlen > 0)) {
 if (*p == '"') {
 return length;
 }

 if (*p != '\\') {
 *(output++) = *(p++);
 outlen--;
 length++;
 continue;
 }

 switch (p[1]) {
 default:
 *(output++) = p[1];
 break;

 case 'n':
 *(output++) = '\n';
 break;

 case 'r':
 *(output++) = '\r';

DeKok, Alan Informational [Page 48]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 break;

 case 't':
 *(output++) = '\t';
 break;
 }

 outlen--;
 length++;
 }

 fprintf(stderr, "String is not terminated\n");
 return 0;
 }

 static int encode_data_tlv(char *buffer, char **endptr,
 uint8_t *output, size_t outlen)
 {
 int depth = 0;
 int length;
 char *p;

 for (p = buffer; *p != '\0'; p++) {
 if (*p == '{') depth++;
 if (*p == '}') {
 depth--;
 if (depth == 0) break;
 }
 }

 if (*p != '}') {
 fprintf(stderr, "No trailing '}' in string starting "
 "with \"%s\"\n",
 buffer);
 return 0;
 }

 *endptr = p + 1;
 *p = '\0';

 p = buffer + 1;
 while (isspace((int) *p)) p++;

 length = encode_tlv(p, output, outlen);
 if (length == 0) return 0;

 return length;
 }

DeKok, Alan Informational [Page 49]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 static int encode_data(char *p, uint8_t *output, size_t outlen)
 {
 int length;

 if (!isspace((int) *p)) {
 fprintf(stderr, "Invalid character following attribute "
 "definition\n");
 return 0;
 }

 while (isspace((int) *p)) p++;

 if (*p == '{') {
 int sublen;
 char *q;

 length = 0;

 do {
 while (isspace((int) *p)) p++;
 if (!*p) {
 if (length == 0) {
 fprintf(stderr, "No data\n");
 return 0;
 }

 break;
 }

 sublen = encode_data_tlv(p, &q, output, outlen);
 if (sublen == 0) return 0;

 length += sublen;
 output += sublen;
 outlen -= sublen;
 p = q;
 } while (*q);

 return length;
 }

 if (*p == '"') {
 length = encode_data_string(p, output, outlen);
 return length;
 }

 length = 0;
 while (*p) {

DeKok, Alan Informational [Page 50]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 char *c1, *c2;

 while (isspace((int) *p)) p++;

 if (!*p) break;

 if(!(c1 = memchr(hextab, tolower((int) p[0]), 16)) ||
 !(c2 = memchr(hextab, tolower((int) p[1]), 16))) {
 fprintf(stderr, "Invalid data starting at "
 "\"%s\"\n", p);
 return 0;
 }

 *output = ((c1 - hextab) << 4) + (c2 - hextab);
 output++;
 length++;
 p += 2;

 outlen--;
 if (outlen == 0) {
 fprintf(stderr, "Too much data\n");
 return 0;
 }
 }

 if (length == 0) {
 fprintf(stderr, "Empty string\n");
 return 0;
 }

 return length;
 }

 static int decode_attr(char *buffer, char **endptr)
 {
 long attr;

 attr = strtol(buffer, endptr, 10);
 if (*endptr == buffer) {
 fprintf(stderr, "No valid number found in string "
 "starting with \"%s\"\n", buffer);
 return 0;
 }

 if (!**endptr) {
 fprintf(stderr, "Nothing follows attribute number\n");
 return 0;
 }

DeKok, Alan Informational [Page 51]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 if ((attr <= 0) || (attr > 256)) {
 fprintf(stderr, "Attribute number is out of valid "
 "range\n");
 return 0;
 }

 return (int) attr;
 }

 static int decode_vendor(char *buffer, char **endptr)
 {
 long vendor;

 if (*buffer != '.') {
 fprintf(stderr, "Invalid separator before vendor id\n");
 return 0;
 }

 vendor = strtol(buffer + 1, endptr, 10);
 if (*endptr == (buffer + 1)) {
 fprintf(stderr, "No valid vendor number found\n");
 return 0;
 }

 if (!**endptr) {
 fprintf(stderr, "Nothing follows vendor number\n");
 return 0;
 }

 if ((vendor <= 0) || (vendor > (1 << 24))) {
 fprintf(stderr, "Vendor number is out of valid range\n");
 return 0;
 }

 if (**endptr != '.') {
 fprintf(stderr, "Invalid data following vendor number\n");
 return 0;
 }
 (*endptr)++;

 return (int) vendor;
 }

 static int encode_tlv(char *buffer, uint8_t *output, size_t outlen)
 {
 int attr;
 int length;
 char *p;

DeKok, Alan Informational [Page 52]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 output[0] = attr;
 output[1] = 2;

 if (*p == '.') {
 p++;
 length = encode_tlv(p, output + 2, outlen - 2);

 } else {
 length = encode_data(p, output + 2, outlen - 2);
 }

 if (length == 0) return 0;
 if (length > (255 - 2)) {
 fprintf(stderr, "TLV data is too long\n");
 return 0;
 }

 output[1] += length;

 return length + 2;
 }

 static int encode_vsa(char *buffer, uint8_t *output, size_t outlen)
 {
 int vendor;
 int attr;
 int length;
 char *p;

 vendor = decode_vendor(buffer, &p);
 if (vendor == 0) return 0;

 output[0] = 0;
 output[1] = (vendor >> 16) & 0xff;
 output[2] = (vendor >> 8) & 0xff;
 output[3] = vendor & 0xff;

 length = encode_tlv(p, output + 4, outlen - 4);
 if (length == 0) return 0;
 if (length > (255 - 6)) {
 fprintf(stderr, "VSA data is too long\n");
 return 0;
 }

DeKok, Alan Informational [Page 53]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 return length + 4;
 }

 static int encode_evs(char *buffer, uint8_t *output, size_t outlen)
 {
 int vendor;
 int attr;
 int length;
 char *p;

 vendor = decode_vendor(buffer, &p);
 if (vendor == 0) return 0;

 attr = decode_attr(p, &p);
 if (attr == 0) return 0;

 output[0] = 0;
 output[1] = (vendor >> 16) & 0xff;
 output[2] = (vendor >> 8) & 0xff;
 output[3] = vendor & 0xff;
 output[4] = attr;

 length = encode_data(p, output + 5, outlen - 5);
 if (length == 0) return 0;

 return length + 5;
 }

 static int encode_extended(char *buffer,
 uint8_t *output, size_t outlen)
 {
 int attr;
 int length;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 output[0] = attr;

 if (attr == 26) {
 length = encode_evs(p, output + 1, outlen - 1);
 } else {
 length = encode_data(p, output + 1, outlen - 1);
 }
 if (length == 0) return 0;
 if (length > (255 - 3)) {
 fprintf(stderr, "Extended Attr data is too long\n");

DeKok, Alan Informational [Page 54]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 return 0;
 }

 return length + 1;
 }

 static int encode_extended_flags(char *buffer,
 uint8_t *output, size_t outlen)
 {
 int attr;
 int length, total;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 /* output[0] is the extended attribute */
 output[1] = 4;
 output[2] = attr;
 output[3] = 0;

 if (attr == 26) {
 length = encode_evs(p, output + 4, outlen - 4);
 if (length == 0) return 0;

 output[1] += 5;
 length -= 5;
 } else {
 length = encode_data(p, output + 4, outlen - 4);
 }
 if (length == 0) return 0;

 total = 0;
 while (1) {
 int sublen = 255 - output[1];

 if (length <= sublen) {
 output[1] += length;
 total += output[1];
 break;
 }

 length -= sublen;

 memmove(output + 255 + 4, output + 255, length);
 memcpy(output + 255, output, 4);

 output[1] = 255;

DeKok, Alan Informational [Page 55]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 output[3] |= 0x80;

 output += 255;
 output[1] = 4;
 total += 255;
 }

 return total;
 }

 static int encode_rfc(char *buffer, uint8_t *output, size_t outlen)
 {
 int attr;
 int length, sublen;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 length = 2;
 output[0] = attr;
 output[1] = 2;

 if (attr == 26) {
 sublen = encode_vsa(p, output + 2, outlen - 2);

 } else if ((*p == ' ') || ((attr < 241) || (attr > 246))) {
 sublen = encode_data(p, output + 2, outlen - 2);

 } else {
 if (*p != '.') {
 fprintf(stderr, "Invalid data following "
 "attribute number\n");
 return 0;
 }

 if (attr < 245) {
 sublen = encode_extended(p + 1,
 output + 2, outlen - 2);
 } else {

 /*
 * Not like the others!
 */
 return encode_extended_flags(p + 1, output, outlen);
 }
 }
 if (sublen == 0) return 0;

DeKok, Alan Informational [Page 56]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 if (sublen > (255 -2)) {
 fprintf(stderr, "RFC Data is too long\n");
 return 0;
 }

 output[1] += sublen;
 return length + sublen;
 }

 int main(int argc, char *argv[])
 {
 int lineno;
 size_t i, outlen;
 FILE *fp;
 char input[8192], buffer[8192];
 uint8_t output[4096];

 if ((argc < 2) || (strcmp(argv[1], "-") == 0)) {
 fp = stdin;
 } else {
 fp = fopen(argv[1], "r");
 if (!fp) {
 fprintf(stderr, "Error opening %s: %s\n",
 argv[1], strerror(errno));
 exit(1);
 }
 }

 lineno = 0;
 while (fgets(buffer, sizeof(buffer), fp) != NULL) {
 char *p = strchr(buffer, '\n');

 lineno++;

 if (!p) {
 if (!feof(fp)) {
 fprintf(stderr, "Line %d too long in %s\n",
 lineno, argv[1]);
 exit(1);
 }
 } else {
 *p = '\0';
 }

 p = strchr(buffer, '#');
 if (p) *p = '\0';

 p = buffer;

DeKok, Alan Informational [Page 57]

INTERNET-DRAFT RADIUS Extensions 6 June 2011

 while (isspace((int) *p)) p++;
 if (!*p) continue;

 strcpy(input, p);
 outlen = encode_rfc(input, output, sizeof(output));
 if (outlen == 0) {
 fprintf(stderr, "Parse error in line %d of %s\n",
 lineno, input);
 exit(1);
 }

 printf("%s -> ", buffer);
 for (i = 0; i < outlen; i++) {
 printf("%02x ", output[i]);
 }
 printf("\n");
 }

 if (fp != stdin) fclose(fp);

 return 0;
 }
 --

Author's Address

 Alan DeKok
 Network RADIUS SARL
 15 av du Granier
 38240 Meylan
 France

 Email: aland@networkradius.com
 URI: http://networkradius.com

 Avi Lior
 Bridgewater Systems Corporation
 303 Terry Fox Drive
 Suite 100
 Ottawa, Ontario K2K 3J1
 Canada

 Phone: +1 (613) 591-6655
 Email: avi@bridgewatersystems.com
 URI: http://www.bridgewatersystems.com/

http://networkradius.com
http://www.bridgewatersystems.com/

DeKok, Alan Informational [Page 58]

