
Network Working Group Alan DeKok
INTERNET-DRAFT FreeRADIUS
Category: Informational
<draft-ietf-radext-status-server-00.txt>
Expires: December 17, 2008
17 June 2008

Use of Status-Server Packets in the
Remote Authentication Dial In User Service (RADIUS) Protocol

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 20, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

RFC 2865 defines a Status-Server code for use in RADIUS, but labels
 it as "Experimental" without further discussion. This document
 describes a practical use for the Status-Server packet code, which is
 to let clients query the status of a RADIUS server. These queries,
 and responses (if any) enable the client to make more informed
 decisions. The result is a more stable, and more robust RADIUS
 architecture.

DeKok, Alan Informational [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-radext-status-server-00.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2865

INTERNET-DRAFT Status-Server Practices 17 June 2008

Table of Contents

1. Introduction ... 3
1.1. Terminology ... 3
1.2. Requirements Language 4

2. Problem Statement .. 5
2.1. Overloading Access-Request 5

2.1.1. Recommendation against Access-Request 6
2.2. Overloading Accounting-Request 6

2.2.1. Recommendation against Accounting-Request 7
2.3. Status-Server as a Solution 7

 2.3.1. Status-Server to the RADIUS Authentication port 7
2.3.2. Status-Server to the RADIUS Accounting port 8

3. Packet Format .. 8
3.1. Consistent definition for Status-Server 10

4. Implementation notes 10
4.1. Client Requirements 11
4.2. Server Requirements 13
4.3. More Robust Fail-over with Status-Server 14
4.4. Proxy Server handling of Status-Server 15
4.5. Realm Routing 15
4.6. Management Information Base (MIB) Considerations 17

4.6.1. Interaction with RADIUS Server MIBs 17
4.6.2. Interaction with RADIUS Client MIBs 18

5. Additional considerations 18
5.1. Local site testing 18
5.2. RADIUS over reliable transports 19
5.3. Other uses for Status-Server 20
5.4. Potential Uses for Status-Client 20

6. Table of Attributes 20
7. Examples ... 21

7.1. Minimal Query to Authentication Port 21
7.2. Minimal Query to Accounting Port 22
7.3. Verbose Query and Response 23

8. IANA Considerations 23
9. Security Considerations 24
10. References .. 24

10.1. Normative references 24
10.2. Informative references 24

Intellectual Property Statement 25
Disclaimer of Validity 27
Full Copyright Statement 27

DeKok, Alan Informational [Page 2]

INTERNET-DRAFT Status-Server Practices 17 June 2008

1. Introduction

 The RADIUS Working Group was formed in 1995 to document the protocol
 of the same name, and created a number of standards surrounding the
 protocol. It also defined experimental commands within the protocol,
 without elaborating further on the potential uses of those commands.
 One of the commands so defined was Status-Server ([RFC2865] Section

3.).

 This document describes how some current implementations are using
 Status-Server packets as a method for querying the status of a RADIUS
 server. These queries do not otherwise affect the normal operation
 of a server, and do not result in any side effects other than perhaps
 incrementing an internal packet counter.

 These queries are not intended to implement the application-layer
 watchdog messages described in [RFC3539] Section 3.4. That document
 describes Authentication, Authorization, and Accounting (AAA)
 protocols that run over reliable transports which handle
 retransmissions internally. Since RADIUS runs over the User Datagram
 Protocol (UDP) rather than Transport Control Protocol (TCP), the full
 watchdog mechanism is not applicable here.

 The rest of this document is laid out as follows. Section 2 contains
 the problem statement, and explanations as to why some possible
 solutions can have unwanted side effects. Section 3 defines the
 Status-Server packet format. Section 4 contains client and server
 requirements, along with some implementation notes. Section 5 lists
 additional considerations not covered in the other sections. The
 remaining text contains a RADIUS table of attributes, and discussed
 security considerations not covered elsewhere in the document.

1.1. Terminology

 This document uses the following terms:

Network Access Server (NAS)
 The device providing access to the network. Also known as the
 Authenticator (in IEEE 802.1x terminology) or RADIUS client.

Home Server
 A RADIUS server that is authoritative for user authorization and
 authentication.

Proxy Server
 A RADIUS server that acts as a Home Server to the NAS, but in turn
 proxies the request to another Proxy Server, or to a Home Server.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3539#section-3.4

DeKok, Alan Informational [Page 3]

INTERNET-DRAFT Status-Server Practices 17 June 2008

silently discard
 This means the implementation discards the packet without further
 processing. The implementation MAY provide the capability of
 logging the error, including the contents of the silently discarded
 packet, and SHOULD record the event in a statistics counter.

1.2. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

DeKok, Alan Informational [Page 4]

INTERNET-DRAFT Status-Server Practices 17 June 2008

2. Problem Statement

 It is often useful to know if a RADIUS server is alive and responding
 to requests. The most accurate way to obtain this information is to
 query the server via application protocol traffic, as other methods
 are either less accurate, or cannot be performed remotely.

 The reasons for wanting to know the status of a server are many. The
 administrator may simply be curious if the server is responding, and
 may not have access to NAS or traffic data that would give him that
 information. The queries may also be performed automatically by a
 NAS or proxy server, which is configured to send packets to a RADIUS
 server, and where that server may not be responding. That is, while

[RFC2865] Section 2.6 indicates that sending Keep-Alives is harmful,
 it may be useful to send "Are you Alive" queries to a server once it
 has been marked "dead" due to prior unresponsiveness.

 The occasional query to a "dead" server offers little additional load
 on the network or server, and permits clients to more quickly
 discover when the server returns to a responsive state. Overall,
 status queries can be a useful part of the deployment of a RADIUS
 server.

2.1. Overloading Access-Request

 One possible solution to the problem of querying server status is for
 a NAS to send specially formed Access-Request packets to a RADIUS
 server's authentication port. The NAS can then look for a response,
 and use this information to determine if the server is active or
 unresponsive.

 However, the server may see the request as a normal login request for
 a user, and conclude that a real user has logged onto that NAS. The
 server may then perform actions that are undesirable for a simple
 status query. The server may alternatively respond with an Access-
 Challenge, indicating that it believes an extended authentication
 conversation is necessary.

 Another possibility is that the server responds with an Access-
 Reject, indicating that the user is not authorized to gain access to
 the network. As above, the server may also perform local site
 actions, such as warning an administrator of failed login attempts.
 The server may also delay the Access-Reject response, in the
 traditional manner of rate-limiting failed authentication attempts.
 This delay in response means that the querying administrator is
 unsure as to whether or not the server is down, is slow to respond,
 or is intentionally delaying it's response to the query.

https://datatracker.ietf.org/doc/html/rfc2865#section-2.6

DeKok, Alan Informational [Page 5]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 In addition, using Access-Request queries may mean that the server
 may have local users configured whose sole reason for existence is to
 enable these query requests. Unless the server's policy is designed
 carefully, it may be possible for an attacker to use those
 credentials to gain unauthorized network access.

 We note that some NAS implementations currently use Access-Request
 packets as described above, with a fixed (and non configurable) user
 name and password. Implementation issues with that equipment means
 that if a RADIUS server does not respond to those qeuries, it may be
 marked as unresponsive by the NAS. This marking may happen even if
 the server is actively responding to other Access-Requests from that
 same NAS. This behavior is confusing to administrators who then need
 to determine why an active server has been marked as "unresponsive".

2.1.1. Recommendation against Access-Request

 For the reasons outlined above, NAS implementors SHOULD NOT generate
 Access-Request packets solely to see if a server is alive.
 Similarly, site administrators SHOULD NOT configure test users whose
 sole reason for existence is to enable such queries via Access-
 Request packets.

 Note that it still may be useful to configure test users for the
 purpose of performing end-to-end or in-depth testing of a servers
 policy. While this practice is wide-spread, we caution
 administrators to use it with care.

2.2. Overloading Accounting-Request

 A similar solution for the problem of querying server status may be
 for a NAS to send specially formed Accounting-Request packets to a
 RADIUS servers authentication port. The NAS can then look for a
 response, and use this information to determine if the server is
 active or unresponsive.

 As seen above with Access-Request, the server may then conclude that
 a real user has logged onto a NAS, and perform local site actions
 that are undesirable for a simple status query.

 Another consideration is that some attributes are mandatory to
 include in an Accounting-Request. This requirement forces the
 administrator to query an accounting server with fake values for
 those attributes in a test packet. These fake values increase the
 work required to perform a simple query, and may pollute the server's
 accounting database with incorrect data.

DeKok, Alan Informational [Page 6]

INTERNET-DRAFT Status-Server Practices 17 June 2008

2.2.1. Recommendation against Accounting-Request

 For the reasons outlined above, NAS implementors SHOULD NOT generate
 Accounting-Request packets solely to see if a server is alive.
 Similarly, site administrators SHOULD NOT configure accounting
 policies whose sole reason for existence is to enable such queries
 via Accounting-Request packets.

 Note that it still may be useful to configure test users for the
 purpose of performing end-to-end or in-depth testing of a servers
 policy. While this practice is wide-spread, we caution
 administrators to use it with care.

2.3. Status-Server as a Solution

 A better solution to the above problems is to use the Status-Server
 packet code. The name of the code leads us to conclude that it was
 intended for packets that query the status of a server. Since the
 packet is otherwise undefined, it does not cause interoperability
 issues to create implementation-specific definitions for it. The
 difficulty until now has been defining an inter-operable method of
 performing these queries.

 This document addresses that need.

2.3.1. Status-Server to the RADIUS Authentication port

 Status-Server SHOULD be used instead of Access-Request to query the
 responsiveness of a server. In this use-case, the protocol exchange
 between client and server is similar to the usual exchange of Access-
 Request and Access-Accept, as shown below.

 NAS RADIUS server
 --- -------------
 Status-Server/
 Message-Authenticator ->
 <- Access-Accept/
 Reply-Message

 The Status-Server packet MUST contain a Message-Authenticator
 attribute for security. The Access-Accept packet can optionally
 contain an informational Reply-Message attribute. A list of
 attributes permitted in each type of packet is given in the Table of
 attributes in Section 6, below.

DeKok, Alan Informational [Page 7]

INTERNET-DRAFT Status-Server Practices 17 June 2008

2.3.2. Status-Server to the RADIUS Accounting port

 Status-Server may be used instead of Accounting-Request to query the
 responsiveness of a server. In this use-case, the protocol exchange
 between client and server is similar to the usual exchange of
 Accounting-Request and Accounting-Response, as shown below.

 NAS RADIUS server
 --- -------------
 Status-Server/
 Message-Authenticator ->
 <- Accounting-Response

 The Status-Server packet MUST contain a Message-Authenticator
 attribute for security. The Accounting-Response packet is empty. A
 list of attributes permitted in each type of packet is given in the
 Table of attributes in Section 6, below.

3. Packet Format

 Status-Server packets re-use the RADIUS packet format, with the
 fields and values for those fields as defined [RFC2865] Section 3.
 We do not include all of the text or diagrams of that section here,
 but instead explain the differences required to implement Status-
 Server.

 The Authenticator field of Status-Server packets MUST be generated
 using the same method as that used for the Request Authenticator
 field of Access-Request packets, as given below.

 The role of the Identifier field is the same for Status-Server as for
 other packets. However, as Status-Server is taking the role of
 Access-Request or Accounting-Request packets, there is the potential
 for Status-Server requests to be in conflict with Access-Request or
 Accounting-Request packets with the same Identifier. In Section 4.2,
 below, we describe a method for avoiding these problems. This method
 MUST be used to avoid conflicts between Status-Server and other
 packet types.

 Request Authenticator

 In Status-Server Packets, the Authenticator value is a 16 octet
 random number, called the Request Authenticator. The value
 SHOULD be unpredictable and unique over the lifetime of a
 secret (the password shared between the client and the RADIUS
 server), since repetition of a request value in conjunction
 with the same secret would permit an attacker to reply with a
 previously intercepted response. Since it is expected that the

https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Informational [Page 8]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 same secret MAY be used to authenticate with servers in
 disparate geographic regions, the Request Authenticator field
 SHOULD exhibit global and temporal uniqueness.

 The Request Authenticator value in a Status-Server packet
 SHOULD also be unpredictable, lest an attacker trick a server
 into responding to a predicted future request, and then use the
 response to masquerade as that server to a future Status-Server
 request from a client.

 Similarly, the Response Authenticator field of an Access-Accept
 packet sent in response to Status-Server queries MUST be generated
 using the same method as used for for calculating the Response
 Authenticator of the Access-Accept, with the Status-Server Request
 Authenticator taking the place of the Access-Request Request
 Authenticator.

 The Response Authenticator field of an Accounting-Response packet
 sent in response to Status-Server queries MUST be generated using the
 same method as used for for calculating the Response Authenticator of
 the Accounting-Response, with the Status-Server Request Authenticator
 taking the place of the Accounting-Request Request Authenticator.

 Note that when a server responds to a Status-Server request, it MUST
 NOTE send more than one response packet.

 Response Authenticator

 The value of the Authenticator field in Access-Accept, or
 Accounting-Response packets is called the Response
 Authenticator, and contains a one-way MD5 hash calculated over
 a stream of octets consisting of: the RADIUS packet, beginning
 with the Code field, including the Identifier, the Length, the
 Request Authenticator field from the Status-Server packet, and
 the response Attributes (if any), followed by the shared
 secret. That is, ResponseAuth =
 MD5(Code+ID+Length+RequestAuth+Attributes+Secret) where +
 denotes concatenation.

 In addition to the above requirements, all Status-Server packets MUST
 include a Message-Authenticator attribute. Failure to do so would
 mean that the packets could be trivially spoofed.

 Status-Server packets MAY include NAS-Identifier, one of NAS-IP-
 Address or NAS-IPv6-Address, and Reply-Message. These attributes are
 not necessary for the operation of Status-Server, but may be useful
 information to a server that receives those packets.

DeKok, Alan Informational [Page 9]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 Other attributes SHOULD NOT be included in a Status-Server packet.
 User authentication credentials such as User-Password, CHAP-Password,
 EAP-Message, etc. MUST NOT appear in a Status-Server packet sent to a
 RADIUS authentication port. User or NAS accounting attributes such
 as Acct-Session-Id, Acct-Status-Type, Acct-Input-Octets, etc. MUST
 NOT appear in a Status-Server packet sent to a RADIUS accounting
 port.

 The Access-Accept MAY contain a Reply-Message or Message-
 Authenticator attribute. It SHOULD NOT contain other attributes.
 The Accounting-Response packets sent in response to a Status-Server
 query SHOULD NOT contain any attributes. As the intent is to
 implement a simple query instead of user authentication or
 accounting, there is little reason to include other attributes in
 either the query or the corresponding response.

 Examples of Status-Server packet flows are given below in Section 7.

3.1. Consistent definition for Status-Server

 When sent to a RADIUS accounting port, contents of the Status-Server
 packets are calculated as described above. That is, even though the
 packets are being sent to an accounting port, they are not created
 using the same method as Accounting-Request packets. This difference
 from the handling of Accounting-Request packets has a number of
 benefits.

 Having one definition for Status-Server packets is simpler than
 having different definitions for different destination ports. In
 addition, if we were to define Status-Server as being similar to
 Accounting-Request, but containing no attributes, then the packets
 could be trivially forged.

 We therefore define Status-Server consistently, and vary the response
 packets depending on the port to which the request is sent. When
 sent to an authentication port, the response to a Status-Server query
 is an Access-Accept packet. When sent to an accounting port, the
 response to a Status-Server query is an Accounting-Response packet.

4. Implementation notes

 There are a number of considerations to take into account when
 implementing support for Status-Server. This section describes
 implementation details and requirements for RADIUS clients and
 servers that support Status-Server.

 The following text applies to both authentication and accounting
 ports. We use the generic terms below to simplify the discussion:

DeKok, Alan Informational [Page 10]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 * Request packet

 An Access-Request packet sent to an authentication port, or
 an Accounting-Request packet sent to an accounting port.

 * Response packet

 An Access-Accept, Access-Challenge, or Access-Reject packet sent
 from an authentication port, or an Accounting-Response packet
 sent from an accounting port.

 Using generic terms to describe the Status-Server conversations is
 simpler than duplicating the text for both authentication and
 accounting ports.

4.1. Client Requirements

 Clients SHOULD permit administrators to globally enable or disable
 the generation of Status-Server packets. The default SHOULD be that
 it is disabled. As it is undesirable to send queries to servers that
 do not support Status-Server, clients SHOULD also have a per-server
 configuration indicating whether or not to enable Status-Server for a
 particular destination. The default SHOULD be that it is disabled.

 The client SHOULD also have a configurable global timer (Tw) that is
 used when sending periodic Status-Server queries during server fail-
 over. The default value SHOULD be 30 seconds, and the value MUST NOT
 be permitted to be set below 6 seconds. If a response has not been
 received within the timeout period, the Status-Server packet is
 deemed to have received no corresponding Response packet, and MUST be
 discarded.

 When Status-Server packets are sent from a client, they MUST NOT be
 retransmitted. Instead, the Identity field MUST be changed every
 time a packet is transmitted. The old packet should be discarded,
 and a new Status-Server packet should be generated and sent, with new
 Identity and Authenticator fields.

 Clients MUST include the Message-Authenticator attribute in all
 Status-Server packets. Failure to do so would mean that the packets
 could be trivially spoofed, leading to potential denial of service
 (DoS) attacks. Other attributes SHOULD NOT appear in a Status-Server
 packet, except as outlined below in Section 6. As the intent of the
 packet is a simple status query, there is little reason for any
 additional attributes to appear in Status-Server packets.

 The client MAY increment packet counters as a result of sending a
 Status-Server request, or receiving a Response packet. The client

DeKok, Alan Informational [Page 11]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 MUST NOT perform any other action that is normally performed when it
 receives a Response packet, such as permitting a user to have login
 access to a port.

 When a client sends Status-Server packets, those requests SHOULD NOT
 be sent from a source port that is used to send Access-Request or
 Accounting-Request packets. Clients MAY send Status-Server requests
 to both authentication and accounting destination ports from the same
 source port.

 The above suggestion for a unique source port for Status-Server
 packets aids in matching responses to requests. Since the response
 to a Status-Server packet is an Access-Accept or Accounting-Response
 packet, those responses are indistinguishable from other packets sent
 in response to an Access-Request or Accounting-Request. Therefore,
 the best way to distinguish them from other traffic is to have a
 unique port.

 A client MAY send a Status-Server packet from a source port also used
 to send Access-Request or Accounting-Request packets. In that case,
 the Identifer field MUST be unique across all outstanding requests
 for that source port, independent of the value of the RADIUS Code
 field for those outstanding requests. Once the client has either
 received a response to the Status-Server packet, or has determined
 that the Status-Server packet has timed out, it may re-use that
 Identifier in another packet.

 When the client receives a response to a Status-Server query, the
 response may be either an Access-Accept packet or an Accounting-
 Response packet, depending both on the behavior of the server, and
 the port to which the query was sent. It may be difficult for the
 client to know which Response packet to expect. Therefore, a client
 SHOULD accept either packet code as an acceptable response to a
 Status-Server query, subject to the validation requirements defined
 above for the Response Authenticator.

 That is, prior to accepting the response as valid, the client should
 check that the Response packet Code field is either Access-Accept (2)
 or Accounting-Response (5). If the code does not match one of those
 two values, the packet MUST be silently discarded. The client MUST
 then validate the Response Authenticator via the algorithm given
 above in Section 3. If the Response Authenticator is not valid, the
 packet MUST be silently discarded. If the Response Authenticator is
 valid, then the packet MUST be deemed to be a valid response from the
 server.

 If the client instead discarded the response because the packet code
 did not match what it expected, then it could erroneously discard

DeKok, Alan Informational [Page 12]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 valid responses from a server, and mark that server as unresponsive.
 This behavior would affect the stability of a RADIUS network, as
 responsive servers would erroneously be marked as unresponsive. We
 therefore recommend that clients should be liberal in what they
 accept as responses to Status-Server queries.

4.2. Server Requirements

 Servers SHOULD permit administrators to globally enable or disable
 the acceptance of Status-Server packets. The default SHOULD be that
 it is enabled. Servers SHOULD also permit adminstrators to enable or
 disable acceptance of Status-Server packets on a per-client basis.
 The default SHOULD be that it is enabled.

 Status-Server packets originating from clients that are not permitted
 to send the server Request packets MUST be silently discarded. If a
 server does not support Status-Server packets, or is configured to
 not respond to them, then it MUST silently discard the packet.

 We note that [RFC2865] Section 3 defines a number of RADIUS Codes,
 but does not make statements about which Codes are valid for port
 1812. In contrast, [RFC2866] Section 3 specifies that only RADIUS
 Accounting packets are to be sent to port 1813. This specification
 is compatible with [RFC2865], as it uses a known Code for packets to
 port 1812. This specification is not compatible with [RFC2866], as
 it adds a new code (Status-Server) that is valid for port 1812.
 However, as the category of [RFC2866] is Informational, this conflict
 is acceptable.

 Servers SHOULD silently discard Status-Server packets if they
 determine that a client is sending too many Status-Server requests in
 a particular time period. The method used by a server to make this
 determination is implementation-specific, and out of scope for this
 specification.

 If a server supports Status-Server packets, and is configured to
 respond to them, and receives a packet from a known client, it MUST
 validate the Message-Authenticator attribute as defined in [RFC3579]
 Section 3.2. Packets failing that validation MUST be silently
 discarded.

 Servers SHOULD NOT otherwise discard Status-Server packets if they
 have recently sent the client a Response packet. The query may have
 originated from an administrator who does not have access to the
 Response packet stream, or who is interested in obtaining additional
 information about the server.

 The server MAY prioritize the handling Status-Server queries over the

https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc2866#section-3
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc3579#section-3.2
https://datatracker.ietf.org/doc/html/rfc3579#section-3.2

DeKok, Alan Informational [Page 13]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 handling of other requests, subject to the rate limiting described
 above.

 The server MAY decide to not respond to a Status-Server, depending on
 local site policy. For example, a server that is running but is
 unable to perform it's normal activities MAY silently discard Status-
 Server packets. This situation can happen, for example, when a
 server requires access to a database for normal operation, but the
 connection to that database is down. Or, it may happen when the
 accept load on the server is lower than the offered load.

 Some server implementations require that Access-Request packets are
 accepted only on "authentication" ports, (e.g. 1812/udp), and that
 Accounting-Request packets are accepted only on "accounting" ports
 (e.g. 1813/udp). Those implementations SHOULD reply to Status-Server
 packets sent to an "authentication" port with an Access-Accept
 packet. Those implementations SHOULD reply to Status-Server packets
 sent to an "accounting" port with an Accounting-Response packet.

 Some server implementations accept both Access-Request and
 Accounting-Request packets on the same port, and do not distinguish
 between "authentication only" ports, and "accounting only" ports.
 Those implementations SHOULD reply to Status-Server packets with an
 Access-Accept packet.

 The server MAY increment packet counters as a result of receiving a
 Status-Server, or sending a Response packet. The server SHOULD NOT
 perform any other action that is normally performed when it receives
 a Request packet, other than sending a Response packet.

4.3. More Robust Fail-over with Status-Server

 A common problem in RADIUS client implementations is the
 implementation of a robust fail-over mechanism between servers. A
 client may have multiple servers configured, with one server marked
 as primary and another marked as secondary. If the client determines
 that the primary is unresponsive, it can "fail over" to the
 secondary, and send requests to the secondary instead of to the
 primary.

 However, it is difficult in standard RADIUS for a client to know when
 it should start sending requests to the primary again. Sending test
 Access-Requests or Accounting-Requests to see if the server is alive
 has the issues outlined above in Section 2. Clients could
 alternately send real traffic to the primary, on the hope that it is
 responsive. If the server is still unresponsive, however, the result
 may be user login failures. The Status-Server solution is an ideal
 one to solve this problem.

DeKok, Alan Informational [Page 14]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 When a client fails over from one server to another because of a lack
 of responsiveness, it SHOULD send periodic Status-Server packets to
 the unresponsive server, using the timer (Tw) defined above.

 Once three time periods have passed where Status-Server messages have
 been sent and responded to, the server should be deemed responsive
 and RADIUS requests may sent to it again. This determination should
 be made separately for each server that the client has a relationship
 with. The same algorithm should be used for both authentication and
 accounting ports. The client MUST treat each destination (ip, port)
 combination as a unique server for the purposes of this
 determination.

 The above behavior is modelled after [RFC3539] Section 3.4.1. We
 note that if a reliable transport is used for RADIUS, then the
 algorithms specified in [RFC3539] MUST be used in preference to the
 ones given here.

4.4. Proxy Server handling of Status-Server

 Many RADIUS servers can act as proxy servers, and can forward
 requests to home servers. Such servers MUST NOT proxy Status-Server
 packets. The purpose of Status-Server as specified here is to permit
 the client to query the responsiveness of a server that it has a
 direct relationship with. Proxying Status-Server queries would
 negate any usefulness that may be gained by implementing support for
 them.

 Proxy servers MAY be configured to respond to Status-Server queries
 from clients, and MAY act as clients sending Status-Server queries to
 other servers. However, those activities MUST be independent of one
 another.

4.5. Realm Routing

 RADIUS servers are commonly used in an environment where Network
 Access Identifiers (NAIs) are used as routing identifiers [RFC4282].
 In this practice, the User-Name attribute is decorated with realm
 routing information, commonly in the format of "user@realm". Since a
 particular RADIUS server may act as a proxy for more than one realm,
 the mechanism outlined above may be inadequate.

 The schematic below demonstrates this scenario.

 /-> Proxy Server P -----> Home Server for Realm A
 / \ /
 NAS X
 \ / \

https://datatracker.ietf.org/doc/html/rfc3539#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc4282

DeKok, Alan Informational [Page 15]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 \-> Proxy Server S -----> Home Server for Realm B

 That is, the NAS has relationships with two Proxy Servers, P and S.
 Each Proxy Server has relationships with Home Servers for both Realm
 A and Realm B.

 In this scenario, the Proxy Servers can determine if one or both of
 the Home Servers are dead or unreachable. The NAS can determine if
 one or both of the Proxy Servers are dead or unreachable. There is
 an additional case to consider, however.

 If Proxy Server P cannot reach the Home Server for Realm A, but the
 Proxy Server S can reach that Home Server, then the NAS cannot
 discover this information using the Status-Server queries as outlined
 above. It would therefore be useful for the NAS to know that Realm A
 is reachable from Proxy Server S, as it can then route all requests
 for Realm A to that Proxy Server. Without this knowledge, the client
 may route requests to Proxy Server P, where they may be discarded or
 rejected.

 To complicate matters, the behavior of Proxy Servers P and S in this
 situation is not well defined. Some implementations simply fail to
 respond to the request, and other implementations respond with an
 Access-Reject. If the implementation fails to respond, then the NAS
 cannot distinguish between the Proxy Server being down, or the next
 server along along the proxy chain is unreachable.

 In the worst case, failures in routing for Realm A may affect users
 Realm B. For example, if Proxy Server P can reach Realm B but not
 Realm A, and Proxy Server S can reach Realm A but not Realm B, then
 active paths exist to handle all RADIUS requests. However, depending
 on the NAS and Proxy Server implementation choices, the NAS may not
 be able to determine which server requests may be sent to in order to
 maintain network stability.

 This problem cannot, unfortunately be solved by using Status-Server
 requests. A robust solution would involve either a RADIUS routing
 table for the NAI realms, or a RADIUS "destination unreachable"
 response to authentication requests. Either solution would not fit
 into the traditional RADIUS model, and both are therefore outside of
 the scope of this specification.

 The problem is discussed here in order to define how best to use
 Status-Server in this situation, rather than to define a new
 solution.

 When a server has responded recently to a request from a client, that
 client MUST mark the server as "responsive". In the above case, a

DeKok, Alan Informational [Page 16]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 Proxy Server may be responding to requests destined for Realm A, but
 not responding to requests destined for Realm B. The client
 therefore considers the server to be responsive, as it is receiving
 responses from the server.

 The client will then continue to send requests to the Proxy Server
 for destination Realm B, even though the Proxy Server cannot route
 the requests to that destination. This failure is a known limitation
 of RADIUS, and can be partially addressed through the use of failover
 in the Proxy Servers.

 A more realistic situation than the one outlined above is where each
 Proxy Server also has multiple choices of Home Servers for a realm,
 as outlined below.

 /-> Proxy Server P -----> Home Server P
 / \ /
 NAS X
 \ / \
 \-> Proxy Server S -----> Home Server S

 In this situation, if all participants impement Status-Server as
 defined herein, any one link may be broken, and all requests from the
 NAS will still reach a home server. If two links are broken at
 different places, (i.e. not both links from the NAS), then all
 requests from the NAS will still reach a home server. In many
 situations where three or more links are broken, then requests from
 the NAS may still reach a home server.

 It is RECOMMENDED, therefore, that implementations desiring the most
 benefit from Status-Server also implement server failover. The
 combination of these two practices will maximize network reliability
 and stability.

4.6. Management Information Base (MIB) Considerations

4.6.1. Interaction with RADIUS Server MIBs

 Since Status-Server packets are sent to the defined RADIUS ports,
 they can affect the [RFC4669] and [RFC4671] RADIUS server MIBs.
 [RFC4669] defines a counter named radiusAuthServTotalUnknownTypes,
 that counts "The number of RADIUS packets of unknown type that were
 received". [RFC4671] defines a similar counter named
 radiusAcctServTotalUnknownTypes. Implementations not supporting
 Status-Server, or implementations that are configured to not respond
 to Status-Server packets MUST use these counters to track received
 Status-Server packets.

https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671

DeKok, Alan Informational [Page 17]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 If, however, Status-Server is supported and the server is configured
 to respond as described above, then the counters defined in [RFC4669]
 and [RFC4671] MUST NOT be used to track Status-Server requests or
 responses to those requests. That is, when a server fully implements
 Status-Server, the counters defined in [RFC4669] and [RFC4671] MUST
 be unaffected by the transmission or reception of packets relating to
 Status-Server.

 If a server supports Status-Server and the [RFC4669] or [RFC4671]
 MIBs, then it SHOULD also support vendor-specific MIBs containing
 similar information as the standard MIBs, but which are instead
 dedicated solely to tracking Status-Server requests and responses.
 Any definition of the server MIBs for Status-Server is outside of the
 scope of this document.

4.6.2. Interaction with RADIUS Client MIBs

 Clients implementing Status-Server MUST NOT increment [RFC4668] or
 [RFC4670] counters upon reception of Response packets to Status-
 Server queries. That is, when a server fully implements Status-
 Server, the counters defined in [RFC4668] and [RFC4670] MUST be
 unaffected by the transmission or reception of packets relating to
 Status-Server.

 If an implementation supports Status-Server and the [RFC4668] or
 [RFC4670] MIBs, then it SHOULD also support vendor-specific MIBs
 containing similar information as those MIBs, but which are instead
 dedicated solely to tracking Status-Server requests and responses.
 Any definition of the client MIBs for Status-Server is outside of the
 scope of this document.

5. Additional considerations

 There are additional topics related to the use of Status-Server that
 may be covered. As those topics do not fit well into the preceding
 sections, they are covered herein.

5.1. Local site testing

 There is at least one situation where using Access-Request or
 Accounting-Request packets may be useful, despite the recommendations
 above in Section 2.1.1 and Section 2.2.1. That situation is local
 site testing, where the RADIUS client, server, and user store are
 under the control of a single administrator or administrative entity.
 In that situation, administrators MAY configure a well-known "test"
 user to enable local site testing.

 The advantage to creating such a local user is that it is now

https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4670
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4670
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4670

DeKok, Alan Informational [Page 18]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 possible for the administrator to send a RADIUS request that performs
 end-to-end testing of the RADIUS server. As above with Status-
 Server, this testing includes RADIUS server responsiveness. It may
 also include querying databases of user authentication credentials,
 or storing accounting data to a billing database. The information
 obtained from performing those queries is that the entire RADIUS
 server infrastructure, including all of it's dependencies, is
 functioning as expected. These queries are most useful in
 deployments where an administrator has internal RADIUS server that
 proxy to other internal RADIUS servers, such as for load balancing or
 fail over.

 If used, the names used for these test users SHOULD be difficult to
 guess by an attacker. An Access-Request packet for a test user
 otherwise should be treated as follows, depending on its origin:

 o Packets from localhost (127.0.0.1 or ::1): RADIUS servers
 SHOULD treat the request according to local site policy.

 o Packets from NASes that normally originate Access-Request
 packets (i.e. not proxy servers): RADIUS servers SHOULD respond
 with an Access-Reject packet, as the use of Status-Server is
 preferred.

 o Packets from other machines controlled by the administrator:
 RADIUS servers SHOULD treat the request according to local site
 policy.

 o Packets originating from machines not controlled by the
 administrator: RADIUS servers MUST respond with an Access-Reject
 packet.

 If a RADIUS server is configured to support test users for
 Accounting-Request packets, it MAY respond with an Accounting-
 Response packet, independent of the origin of the request. However,
 any subsequent analysis of the accounting data such as billing or
 usage MUST NOT include the data for the test user.

 If these recommendations are implemented, then it may be possible in
 some situations to safely query a RADIUS server for responsiveness
 using Access-Request or Accounting-Request packets. However, this
 behavior is still NOT RECOMMENDED.

5.2. RADIUS over reliable transports

 Although RADIUS has been assigned two TCP ports (1812/tcp and
 1813/tcp) in addition to the commonly used UDP ports, there has been
 as yet no specification for using TCP as a reliable transport for

DeKok, Alan Informational [Page 19]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 RADIUS. If such a specification were to be created, then the
 transport issues discussed in [RFC3539] would apply.

 Further, when RADIUS is run over reliable transports, the watchdog
 algorithm described in [RFC3539] Section 3.4 MUST be used rather than
 the algorithm described above. For the reasons outlined above in

Section 2, Status-Server packets SHOULD be used as the watchdog
 request, in preference to Access-Request or Accounting-Request
 packets.

 Clients sending Status-Server over reliable transport MUST ensure
 that the Identifier field is unique for all requests on a particular
 connection, independent of the packet code. That is, if a Status-
 Server with a particular value in the Identifier field is sent to a
 server, the client MUST NOT simultaneously send an Access-Request or
 Accounting-Request packet with that same Identifier value, on that
 connection. Once the client has either received a response to the
 Status-Server packet, or has determined that the Status-Server packet
 has timed out, it may re-use that Identifier in another packet.

5.3. Other uses for Status-Server

 While other uses of Status-Server are possible, uses beyond those
 specified here are beyond the scope of this document. It may be
 tempting to increase the utility of Status-Server by having the
 responses carry additional information, implementors are warned that
 such uses have not been analyzed for potential security issues or
 network problems.

5.4. Potential Uses for Status-Client

 RADIUS currently defines an experimental Status-Client packet type,
 in addition to Status-Server. It could be possible to define Status-
 Client similar to Status-Server, except that it would be applicable
 to Change of Authorization, and Disconnect-Request packets, currently
 sent to a NAS on port 3799 [RFC5176].

 We do no more than mention the possibility here. Any definition of
 Status-Client is outside of the scope of this document.

6. Table of Attributes

 The following table provide a guide to which attributes may be found
 in Status-Server packets, and in what quantity. No attributes other
 than the ones listed below should be found in a Status-Server packet.

 Status- Access- Accounting-
 Server Accept Response # Attribute

https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc3539#section-3.4
https://datatracker.ietf.org/doc/html/rfc5176

DeKok, Alan Informational [Page 20]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 0-1 0 0 4 NAS-IP-Address
 0 0+ 0 18 Reply-Message
 0+ 0+ 0+ 26 Vendor-Specific
 0+ 0+ 0 31 Calling-Station-Id
 0-1 0 0 32 NAS-Identifier
 1 0-1 0-1 80 Message-Authenticator
 0-1 0 0 95 NAS-IPv6-Address

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in packet.
0-1 Zero or one instance of this attribute MAY be present in packet.
1 Exactly one instance of this attribute MUST be present in packet.

7. Examples

 A few examples are presented to illustrate the flow of packets to
 both the authentication and accounting ports. These examples are not
 intended to be exhaustive, many others are possible. Hexadecimal
 dumps of the example packets are given in network byte order, using
 the shared secret "xyzzy5461".

7.1. Minimal Query to Authentication Port

 The NAS sends a Status-Server UDP packet with minimal content to a
 RADIUS server on port 1812.

 The Request Authenticator is a 16 octet random number generated by
 the NAS. Message-Authenticator is included in order to authenticate
 that the request came from a known client.

 0c da 00 26 8a 54 f4 68 6f b3 94 c5 28 66 e3 02
 18 5d 06 23 50 12 5a 66 5e 2e 1e 84 11 f3 e2 43
 82 20 97 c8 4f a3

 1 Code = Status-Server (12)
 1 ID = 218
 2 Length = 38
 16 Request Authenticator

 Attributes:
 18 Message-Authenticator (80) = 5a665e2e1e8411f3e243822097c84fa3

 The Response Authenticator is a 16-octet MD5 checksum of the code
 (2), id (218), Length (20), the Request Authenticator from above, and
 the shared secret.

DeKok, Alan Informational [Page 21]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 02 da 00 14 ef 0d 55 2a 4b f2 d6 93 ec 2b 6f e8
 b5 41 1d 66

 1 Code = Access-Accept (2)
 1 ID = 218
 2 Length = 20
 16 Request Authenticator

 Attributes:
 None.

7.2. Minimal Query to Accounting Port

 The NAS sends a Status-Server UDP packet with minimal content to a
 RADIUS server on port 1813.

 The Request Authenticator is a 16 octet random number generated by
 the NAS. Message-Authenticator is included in order to authenticate
 that the request came from a known client.

 0c b3 00 26 92 5f 6b 66 dd 5f ed 57 1f cb 1d b7
 ad 38 82 60 80 12 e8 d6 ea bd a9 10 87 5c d9 1f
 da de 26 36 78 58

 1 Code = Status-Server (12)
 1 ID = 179
 2 Length = 38
 16 Request Authenticator

 Attributes:
 18 Message-Authenticator (80) = e8d6eabda910875cd91fdade26367858

 The Response Authenticator is a 16-octet MD5 checksum of the code
 (5), id (179), Length (20), the Request Authenticator from above, and
 the shared secret.

 02 b3 00 1a 0f 6f 92 14 5f 10 7e 2f 50 4e 86 0a
 48 60 66 9c

 1 Code = Accounting-Response (5)
 1 ID = 179
 2 Length = 20 16 Request Authenticator

 Attributes:
 None.

DeKok, Alan Informational [Page 22]

INTERNET-DRAFT Status-Server Practices 17 June 2008

7.3. Verbose Query and Response

 The NAS at 192.0.2.16 sends a Status-Server UDP packet to the RADIUS
 server on port 1812.

 The Request Authenticator is a 16 octet random number generated by
 the NAS.

 0c 47 00 2c bf 58 de 56 ae 40 8a d3 b7 0c 85 13
 f9 b0 3f be 04 06 c0 00 02 10 50 12 85 2d 6f ec
 61 e7 ed 74 b8 e3 2d ac 2f 2a 5f b2

 1 Code = Status-Server (12)
 1 ID = 71
 2 Length = 44
 16 Request Authenticator

 Attributes:
 6 NAS-IP-Address (4) = 192.0.2.16
 18 Message-Authenticator (80) = 852d6fec61e7ed74b8e32dac2f2a5fb2

 The Response Authenticator is a 16-octet MD5 checksum of the code
 (2), id (71), Length (52), the Request Authenticator from above, the
 attributes in this reply, and the shared secret.

 The Reply-Message is "RADIUS Server up 2 days, 18:40"

 02 47 00 34 46 f4 3e 62 fd 03 54 42 4c bb eb fd
 6d 21 4e 06 12 20 52 41 44 49 55 53 20 53 65 72
 76 65 72 20 75 70 20 32 20 64 61 79 73 2c 20 31
 38 3a 34 30

 1 Code = Access-Accept (2)
 1 ID = 71
 2 Length = 52
 16 Request Authenticator

 Attributes:
 32 Reply-Message (18)

8. IANA Considerations

 This specification does not create any new registries, nor does it
 require assignment of any protocol parameters.

DeKok, Alan Informational [Page 23]

INTERNET-DRAFT Status-Server Practices 17 June 2008

9. Security Considerations

 This document defines the Status-Server packet as being similar in
 treatment to the Access-Request packet, and is therefore subject to
 the same security considerations as described in [RFC2865], Section

8. Status-Server packets also use the Message-Authenticator
 attribute, and are therefore subject to the same security
 considerations as [RFC3579], Section 4.

 We reiterate that Status-Server packets MUST contain a Message-
 Authenticator attribute. Early implementations supporting Status-
 Server did not enforce this requirement, and may have been vulnerable
 to DoS attacks as a result.

 Where this document differs from [RFC2865] is that it defines a new
 request/response method in RADIUS; the Status-Server request. As
 this use is based on previously described and implemented standards,
 we know of no additional security considerations that arise from the
 use of Status-Server as defined herein.

10. References

10.1. Normative references

[RFC2865]
 Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.

[RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

[RFC3579]
 Aboba, B., Calhoun, P., "RADIUS (Remote Authentication Dial In User
 Service) Support For Extensible Authentication Protocol (EAP)", RFC

3579, September 2003.

[RFC4282]
 Aboba, B., and Beadles, M. at al, "The Network Access Identifier",

RFC 4282, December 2005.

10.2. Informative references

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March, 1997.

[RFC3539] Aboba, B., Wood, J., "Authentication, Authorization, and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3579#section-4
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4282
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3539

DeKok, Alan Informational [Page 24]

INTERNET-DRAFT Status-Server Practices 17 June 2008

[RFC4668] Nelson, D., "RADIUS Authentication Client MIB for IPv6", RFC
4668, August 2006.

[RFC4669] Nelson, D., "RADIUS Authentication Server MIB for IPv6", RFC
4669, August 2006.

[RFC4670] Nelson, D., "RADIUS Accounting Client MIB for IPv6", RFC 4670,
 August 2006.

[RFC4671] Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC 4671,
 August 2006.

[RFC5176] Chiba, M., Eklund, M., et al, "Dynamic Authorization
 Extensions to Remote Authentication Dial In User Service
 (RADIUS)", RFC 5176, January 2008.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken with minor edits from [RFC2865] Section 3.

 The author would like to thank Mike McCauley of Open Systems
 Consultants for making a Radiator server available for inter-
 operability testing.

Authors' Addresses

 Alan DeKok
 The FreeRADIUS Server Project

http://freeradius.org

 Email: aland@freeradius.org

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of

https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4670
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc2865#section-3
http://freeradius.org
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

DeKok, Alan Informational [Page 25]

INTERNET-DRAFT Status-Server Practices 17 June 2008

 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

DeKok, Alan Informational [Page 26]

http://www.ietf.org/ipr

INTERNET-DRAFT Status-Server Practices 17 June 2008

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78

DeKok, Alan Informational [Page 27]

