
Network Working Group Alan DeKok
INTERNET-DRAFT FreeRADIUS
Category: Informational
<draft-ietf-radext-status-server-05.txt>
Expires: April 12, 2009
12 October 2009

Use of Status-Server Packets in the
Remote Authentication Dial In User Service (RADIUS) Protocol

draft-ietf-radext-status-server-05

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 12, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

DeKok, Alan Informational [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-radext-status-server-05.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Status-Server Practices 12 October 2009

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document describes a deployed extension to the Remote
 Authentication Dial In User Service (RADIUS) protocol, enabling
 clients to query the status of a RADIUS server. This extension
 utilizes the Status-Server (12) Code, which was reserved for
 experimental use in RFC 2865.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2865

DeKok, Alan Informational [Page 2]

INTERNET-DRAFT Status-Server Practices 12 October 2009

Table of Contents

1. Introduction ... 4
1.1. Applicability 4
1.2. Terminology ... 5
1.3. Requirements Language 5

2. Problem Statement .. 6
2.1. Why Access-Request cannot be used 6

2.1.1. Recommendation against Access-Request 7
2.2. Why Accounting-Request cannot be used 7

2.2.1. Recommendation against Accounting-Request 8
2.3. Why Status-Server is appropriate 8

2.3.1. Status-Server Exchange 8
3. Packet Format .. 9

3.1. Single definition for Status-Server 11
4. Implementation notes 11

4.1. Client Requirements 12
4.2. Server Requirements 13
4.3. More Robust Fail-over with Status-Server 15
4.4. Proxy Server handling of Status-Server 15
4.5. Limitations of Status-Server 16
4.6. Management Information Base (MIB) Considerations 18

4.6.1. Interaction with RADIUS Server MIB modules 18
4.6.2. Interaction with RADIUS Client MIB modules 18

5. Table of Attributes 19
6. Examples ... 19

6.1. Minimal Query to Authentication Port 19
6.2. Minimal Query to Accounting Port 20
6.3. Verbose Query and Response 21

7. IANA Considerations 22
8. Security Considerations 22
9. References ... 22

9.1. Normative references 22
9.2. Informative references 23

DeKok, Alan Informational [Page 3]

INTERNET-DRAFT Status-Server Practices 12 October 2009

1. Introduction

 This document specifies a deployed extension to the Remote
 Authentication Dial In User Service (RADIUS) protocol, enabling
 clients to query the status of a RADIUS server. While the Status-
 Server Code (12) was defined as experimental in [RFC2865] Section 3,
 details of the operation and potential uses of the Code were not
 provided.

 As with the core RADIUS protocol, the Status-Server extension is
 stateless, and queries do not otherwise affect the normal operation
 of a server, nor do they result in any side effects, other than
 perhaps incrementing of an internal packet counter. Most of the
 implementations of this extension have utilized it alongside
 implementations of RADIUS as defined in [RFC2865], so that this
 document focuses solely on the use of this extension with UDP
 transport.

 The rest of this document is laid out as follows. Section 2 contains
 the problem statement, and explanations as to why some possible
 solutions can have unwanted side effects. Section 3 defines the
 Status-Server packet format. Section 4 contains client and server
 requirements, along with some implementation notes. Section 5 lists
 additional considerations not covered in the other sections. The
 remaining text contains a RADIUS table of attributes, and discusses
 security considerations not covered elsewhere in the document.

1.1. Applicability

 This protocol is being recommended for publication as an
 Informational RFC rather than as a standards-track RFC because of
 problems with deployed implementations. This includes security
 vulnerabilities. The fixes recommended here are compatible with
 existing servers that receive Status-Server packets, but impose new
 security requirements on clients that send Status-Server packets.

 Some existing implementations of this protocol do not support the
 Message-Authenticator attribute. This enables spoofing of Status-
 Server packets. In order to remedy this problem, this specification
 recommends the use of the Message-Authenticator attribute to provide
 per-packet authentication and integrity protection.

 With existing implementations of this protocol, the potential exists
 for Status-Server requests to be in conflict with Access-Request or
 Accounting-Requests packets using the same Identifier. This
 specification recommends techniques to avoid this problem.

 This specification is also limited to being a "hop by hop" query.

https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc2865

DeKok, Alan Informational [Page 4]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 When RADIUS packets transition one or more RADIUS Proxies, any
 information about the status of downstreamservers is unavailable to
 the client. In addition, it queries only the status of a RADIUS
 server, cannot carry information about specific realms.

 These limitations are discussed in more detail below.

1.2. Terminology

 This document uses the following terms:

Network Access Server (NAS)
 The device providing access to the network. Also known as the
 Authenticator (in IEEE 802.1X terminology) or RADIUS client.

RADIUS Proxy
 In order to provide for the routing of RADIUS authentication and
 accounting requests, a RADIUS proxy can be employed. To the NAS,
 the RADIUS proxy appears to act as a RADIUS server, and to the
 RADIUS server, the proxy appears to act as a RADIUS client.

silently discard
 This means the implementation discards the packet without further
 processing. The implementation MAY provide the capability of
 logging the error, including the contents of the silently discarded
 packet, and SHOULD record the event in a statistics counter.

1.3. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

DeKok, Alan Informational [Page 5]

INTERNET-DRAFT Status-Server Practices 12 October 2009

2. Problem Statement

 A common problem in RADIUS client implementations is the
 implementation of a robust fail-over mechanism between servers. A
 client may have multiple servers configured, with one server marked
 as primary and another marked as secondary. If the client does not
 receive a response to a request sent to the primary server, it can
 "fail over" to the secondary, and send requests to the secondary
 instead of to the primary server.

 However, it is possible that the lack of a response to requests sent
 to the primary server was due not to a failure within the the
 primary, but to alternative causes such as a failed link along the
 path to the destination server, or the failure of a downstream proxy
 or server. In such a situation, it may be useful for the client to
 be able to distinguish between failure causes. For example, if the
 primary server is down, then quick failover to the secondary server
 would be prudent, whereas if a downstream failure is the cause, then
 the value of failing over to a secondary server will depend on
 whether packets forwarded by the secondary will utilize independent
 links, intermediaries or destination servers.

 Since the Status-Server packet is non-forwardable, lack of a response
 may only be due to packet loss or the failure of the server in the
 destination IP address, not due to faults in downstream links,
 proxies or servers. It therefore provides an unambiguous indication
 of the status of a server.

 We note that this packet is not a "Keep-Alive" as discussed in
[RFC2865] Section 2.6. "Keep-Alives" are sent when an downstream

 server is known to be responsive. These packets are sent only when a
 server is suspected to be down, and stop being sent as soon as the
 server returns to availability.

2.1. Why Access-Request cannot be used

 One possible solution to the problem of querying server status is for
 a NAS to send specially formed Access-Request packets to a RADIUS
 server's authentication port. The NAS can then look for a response,
 and use this information to determine if the server is active or
 unresponsive.

 However, the server may see the request as a normal login request for
 a user, and conclude that a real user has logged onto that NAS. The
 server may then perform actions that are undesirable for a simple
 status query. The server may alternatively respond with an Access-
 Challenge, indicating that it believes an extended authentication
 conversation is necessary.

https://datatracker.ietf.org/doc/html/rfc2865#section-2.6

DeKok, Alan Informational [Page 6]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 Another possibility is that the server responds with an Access-
 Reject, indicating that the user is not authorized to gain access to
 the network. As above, the server may also perform local site
 actions, such as warning an administrator of failed login attempts.
 The server may also delay the Access-Reject response, in the
 traditional manner of rate-limiting failed authentication attempts.
 This delay in response means that the querying administrator is
 unsure as to whether or not the server is down, is slow to respond,
 or is intentionally delaying its response to the query.

 In addition, using Access-Request queries may mean that the server
 may have local users configured whose sole reason for existence is to
 enable these query requests. Unless the server's policy is designed
 carefully, it may be possible for an attacker to use those
 credentials to gain unauthorized network access.

 We note that some NAS implementations currently use Access-Request
 packets as described above, with a fixed (and non configurable) user
 name and password. Implementation issues with that equipment means
 that if a RADIUS server does not respond to those queries, it may be
 marked as unresponsive by the NAS. This marking may happen even if
 the server is actively responding to other Access-Requests from that
 same NAS. This behavior is confusing to administrators who then need
 to determine why an active server has been marked as "unresponsive".

2.1.1. Recommendation against Access-Request

 For the reasons outlined above, NAS implementors SHOULD NOT generate
 Access-Request packets solely to see if a server is alive.
 Similarly, site administrators SHOULD NOT configure test users whose
 sole reason for existence is to enable such queries via Access-
 Request packets.

 Note that it still may be useful to configure test users for the
 purpose of performing end-to-end or in-depth testing of a servers
 policy. While this practice is widespread, we caution administrators
 to use it with care.

2.2. Why Accounting-Request cannot be used

 A similar solution for the problem of querying server status may be
 for a NAS to send specially formed Accounting-Request packets to a
 RADIUS servers accounting port. The NAS can then look for a
 response, and use this information to determine if the server is
 active or unresponsive.

 As seen above with Access-Request, the server may then conclude that
 a real user has logged onto a NAS, and perform local site actions

DeKok, Alan Informational [Page 7]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 that are undesirable for a simple status query.

 Another consideration is that some attributes are mandatory to
 include in an Accounting-Request. This requirement forces the
 administrator to query an accounting server with fake values for
 those attributes in a test packet. These fake values increase the
 work required to perform a simple query, and may pollute the server's
 accounting database with incorrect data.

2.2.1. Recommendation against Accounting-Request

 For the reasons outlined above, NAS implementors SHOULD NOT generate
 Accounting-Request packets solely to see if a server is alive.
 Similarly, site administrators SHOULD NOT configure accounting
 policies whose sole reason for existence is to enable such queries
 via Accounting-Request packets.

 Note that it still may be useful to configure test users for the
 purpose of performing end-to-end or in-depth testing of a servers
 policy. While this practice is widespread, we caution administrators
 to use it with care.

2.3. Why Status-Server is appropriate

 A better solution to the above problems is to use the Status-Server
 packet code. The name of the code leads us to conclude that it was
 intended for packets that query the status of a server. Since the
 packet is officially undefined, but widely used as specified here,
 this document does not create inter-operability issues.

2.3.1. Status-Server Exchange

 Status-Server packets are typically sent to the destination address
 and port of a RADIUS server or proxy. A Message-Authenticator
 attribute MUST be included so as to provide per-packet authentication
 and integrity protection. A single Status-Server packet MUST be
 included within a UDP datagram. RADIUS proxies MUST NOT forward
 Status-Server packets.

 A RADIUS server or proxy implementing this specification SHOULD
 respond to a Status-Server packet with an Access-Accept
 (authentication port) or Accounting-Message (accounting port). Other
 response packet codes (such as Access-Challenge or Access-Reject) are
 NOT RECOMMENDED. The list of attributes that are permitted in
 Status-Server and Access-Accept packets responding to Status-Server
 packets are provided in the Section 6.

DeKok, Alan Informational [Page 8]

INTERNET-DRAFT Status-Server Practices 12 October 2009

3. Packet Format

 Status-Server packets reuse the RADIUS packet format, with the fields
 and values for those fields as defined [RFC2865] Section 3. We do
 not include all of the text or diagrams of that section here, but
 instead explain the differences required to implement Status-Server.

 The Authenticator field of Status-Server packets MUST be generated
 using the same method as that used for the Request Authenticator
 field of Access-Request packets, as given below.

 The role of the Identifier field is the same for Status-Server as for
 other packets. However, as Status-Server is taking the role of
 Access-Request or Accounting-Request packets, there is the potential
 for Status-Server requests to be in conflict with Access-Request or
 Accounting-Request packets with the same Identifier. In Section 4.2,
 below, we describe a method for avoiding these problems. This method
 MUST be used to avoid conflicts between Status-Server and other
 packet types.

 Request Authenticator

 In Status-Server Packets, the Authenticator value is a 16 octet
 random number, called the Request Authenticator. The value
 SHOULD be unpredictable and unique over the lifetime of a
 secret (the password shared between the client and the RADIUS
 server), since repetition of a request value in conjunction
 with the same secret would permit an attacker to reply with a
 previously intercepted response. Since it is expected that the
 same secret MAY be used to authenticate with servers in
 disparate geographic regions, the Request Authenticator field
 SHOULD exhibit global and temporal uniqueness.

 The Request Authenticator value in a Status-Server packet
 SHOULD also be unpredictable, lest an attacker trick a server
 into responding to a predicted future request, and then use the
 response to masquerade as that server to a future Status-Server
 request from a client.

 Similarly, the Response Authenticator field of an Access-Accept
 packet sent in response to Status-Server queries MUST be generated
 using the same method as used for for calculating the Response
 Authenticator of the Access-Accept sent in response to an Access-
 Request, with the Status-Server Request Authenticator taking the
 place of the Access-Request Request Authenticator.

 The Response Authenticator field of an Accounting-Response packet
 sent in response to Status-Server queries MUST be generated using the

https://datatracker.ietf.org/doc/html/rfc2865#section-3

DeKok, Alan Informational [Page 9]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 same method as used for for calculating the Response Authenticator of
 the Accounting-Response sent in response to an Accounting-Request,
 with the Status-Server Request Authenticator taking the place of the
 Accounting-Request Request Authenticator.

 Note that when a server responds to a Status-Server request, it MUST
 NOT send more than one response packet.

 Response Authenticator

 The value of the Authenticator field in Access-Accept, or
 Accounting-Response packets is called the Response
 Authenticator, and contains a one-way MD5 hash calculated over
 a stream of octets consisting of: the RADIUS packet, beginning
 with the Code field, including the Identifier, the Length, the
 Request Authenticator field from the Status-Server packet, and
 the response Attributes (if any), followed by the shared
 secret. That is, ResponseAuth =
 MD5(Code+ID+Length+RequestAuth+Attributes+Secret) where +
 denotes concatenation.

 In addition to the above requirements, all Status-Server packets MUST
 include a Message-Authenticator attribute. Failure to do so would
 mean that the packets could be trivially spoofed.

 Status-Server packets MAY include NAS-Identifier, and one of NAS-IP-
 Address or NAS-IPv6-Address. These attributes are not necessary for
 the operation of Status-Server, but may be useful information to a
 server that receives those packets.

 Other attributes SHOULD NOT be included in a Status-Server packet.
 User authentication credentials such as User-Password, CHAP-Password,
 EAP-Message, etc. MUST NOT appear in a Status-Server packet sent to a
 RADIUS authentication port. User or NAS accounting attributes such
 as Acct-Session-Id, Acct-Status-Type, Acct-Input-Octets, etc. MUST
 NOT appear in a Status-Server packet sent to a RADIUS accounting
 port.

 The Access-Accept MAY contain a Reply-Message or Message-
 Authenticator attribute. It SHOULD NOT contain other attributes.
 The Accounting-Response packets sent in response to a Status-Server
 query SHOULD NOT contain any attributes. As the intent is to
 implement a simple query instead of user authentication or
 accounting, there is little reason to include other attributes in
 either the query or the corresponding response.

 Examples of Status-Server packet flows are given below in Section 7.

DeKok, Alan Informational [Page 10]

INTERNET-DRAFT Status-Server Practices 12 October 2009

3.1. Single definition for Status-Server

 When sent to a RADIUS accounting port, contents of the Status-Server
 packets are calculated as described above. That is, even though the
 packets are being sent to an accounting port, they are not created
 using the same method as for Accounting-Requests. This difference
 has a number of benefits.

 Having a single definition for Status-Server packets is simpler than
 having different definitions for different destination ports. In
 addition, if we were to define Status-Server as being similar to
 Accounting-Request but containing no attributes, then those packets
 could be trivially forged.

 We therefore define Status-Server consistently, and vary the response
 packets depending on the port to which the request is sent. When
 sent to an authentication port, the response to a Status-Server query
 is an Access-Accept packet. When sent to an accounting port, the
 response to a Status-Server query is an Accounting-Response packet.

4. Implementation notes

 There are a number of considerations to take into account when
 implementing support for Status-Server. This section describes
 implementation details and requirements for RADIUS clients and
 servers that support Status-Server.

 The following text applies to the authentication and accounting
 ports. We use the generic terms below to simplify the discussion:

 * Request packet

 An Access-Request packet sent to an authentication port, or
 an Accounting-Request packet sent to an accounting port.

 * Response packet

 An Access-Accept, Access-Challenge, or Access-Reject packet sent
 from an authentication port, or an Accounting-Response packet
 sent from an accounting port.

 We also refer to "client" as the originator of the Status-Server
 packet, and "server" as the receiver of that packet, and the
 originator of the Response packet.

 Using generic terms to describe the Status-Server conversations is
 simpler than duplicating the text for authentication and accounting
 packets.

DeKok, Alan Informational [Page 11]

INTERNET-DRAFT Status-Server Practices 12 October 2009

4.1. Client Requirements

 Clients SHOULD permit administrators to globally enable or disable
 the generation of Status-Server packets. The default SHOULD be that
 it is disabled. As it is undesirable to send queries to servers that
 do not support Status-Server, clients SHOULD also have a per-server
 configuration indicating whether or not to enable Status-Server for a
 particular destination. The default SHOULD be that it is disabled.

 The client SHOULD also have a configurable global timer (Tw) that is
 used when sending periodic Status-Server queries during server fail-
 over. The default value SHOULD be 30 seconds, and the value MUST NOT
 be permitted to be set below 6 seconds. If a response has not been
 received within the timeout period, the Status-Server packet is
 deemed to have received no corresponding Response packet, and MUST be
 discarded.

 Clients SHOULD use a jitter of +/- 2 seconds when sending periodic
 Status-Server packets, in order to avoid synchronization.

 When Status-Server packets are sent from a client, they MUST NOT be
 retransmitted. Instead, the Identity field MUST be changed every
 time a packet is transmitted. The old packet should be discarded,
 and a new Status-Server packet should be generated and sent, with new
 Identity and Authenticator fields.

 Clients MUST include the Message-Authenticator attribute in all
 Status-Server packets. Failure to do so would mean that the packets
 could be trivially spoofed, leading to potential denial of service
 (DoS) attacks. Other attributes SHOULD NOT appear in a Status-Server
 packet, except as outlined below in Section 6. As the intent of the
 packet is a simple status query, there is little reason for any
 additional attributes to appear in Status-Server packets.

 The client MAY increment packet counters as a result of sending a
 Status-Server request, or receiving a Response packet. The client
 MUST NOT perform any other action that is normally performed when it
 receives a Response packet, such as permitting a user to have login
 access to a port.

 Clients MAY send Status-Server requests to the RADIUS destination
 ports from the same source port used to send normal Request packets.
 Other clients MAY choose to send Status-Server requests from a unique
 source port, that is not used to send Request packets.

 The above suggestion for a unique source port for Status-Server
 packets aids in matching responses to requests. Since the response
 to a Status-Server packet is an Access-Accept or Accounting-Response

DeKok, Alan Informational [Page 12]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 packet, those responses are indistinguishable from other packets sent
 in response to a Request packet. Therefore, the best way to
 distinguish them from other traffic is to have a unique port.

 A client MAY send a Status-Server packet from a source port also used
 to send Request packets. In that case, the Identifer field MUST be
 unique across all outstanding Request packets for that source port,
 independent of the value of the RADIUS Code field for those
 outstanding requests. Once the client has either received a response
 to the Status-Server packet, or has determined that the Status-Server
 packet has timed out, it may reuse that Identifier in another packet.

 Robust implementations SHOULD accept any Response packet as a valid
 response to a Status-Server packet, subject to the validation
 requirements defined above for the Response Authenticator. The code
 field of the packet matters less than the fact that a valid, signed,
 response has been received.

 That is, prior to accepting the response as valid, the client should
 check that the Response packet Code field is either Access-Accept (2)
 or Accounting-Response (5). If the code does not match any of these
 values, the packet MUST be silently discarded. The client MUST then
 validate the Response Authenticator via the algorithm given above in

Section 3. If the Response Authenticator is not valid, the packet
 MUST be silently discarded. If the Response Authenticator is valid,
 then the packet MUST be deemed to be a valid response from the
 server.

 If the client instead discarded the response because the packet code
 did not match what it expected, then it could erroneously discard
 valid responses from a server, and mark that server as unresponsive.
 This behavior would affect the stability of a RADIUS network, as
 responsive servers would erroneously be marked as unresponsive. We
 therefore recommend that clients should be liberal in what they
 accept as responses to Status-Server queries.

4.2. Server Requirements

 Servers SHOULD permit administrators to globally enable or disable
 the acceptance of Status-Server packets. The default SHOULD be that
 it is enabled. Servers SHOULD also permit adminstrators to enable or
 disable acceptance of Status-Server packets on a per-client basis.
 The default SHOULD be that it is enabled.

 Status-Server packets originating from clients that are not permitted
 to send the server Request packets MUST be silently discarded. If a
 server does not support Status-Server packets, or is configured to
 not respond to them, then it MUST silently discard the packet.

DeKok, Alan Informational [Page 13]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 We note that [RFC2865] Section 3 defines a number of RADIUS Codes,
 but does not make statements about which Codes are valid for port
 1812. In contrast, [RFC2866] Section 3 specifies that only RADIUS
 Accounting packets are to be sent to port 1813. This specification
 is compatible with [RFC2865], as it uses a known Code for packets to
 port 1812. This specification is not compatible with [RFC2866], as
 it adds a new code (Status-Server) that is valid for port 1812.
 However, as the category of [RFC2866] is Informational, this conflict
 is acceptable.

 Servers SHOULD silently discard Status-Server packets if they
 determine that a client is sending too many Status-Server requests in
 a particular time period. The method used by a server to make this
 determination is implementation-specific, and out of scope for this
 specification.

 If a server supports Status-Server packets, and is configured to
 respond to them, and receives a packet from a known client, it MUST
 validate the Message-Authenticator attribute as defined in [RFC3579]
 Section 3.2. Packets failing that validation MUST be silently
 discarded.

 Servers SHOULD NOT otherwise discard Status-Server packets if they
 have recently sent the client a Response packet. The query may have
 originated from an administrator who does not have access to the
 Response packet stream, or who is interested in obtaining additional
 information about the server.

 The server MAY prioritize the handling of Status-Server packets over
 the handling of other requests, subject to the rate limiting
 described above.

 The server MAY decide to not respond to a Status-Server, depending on
 local site policy. For example, a server that is running but is
 unable to perform its normal activities MAY silently discard Status-
 Server packets. This situation can happen, for example, when a
 server requires access to a database for normal operation, but the
 connection to that database is down. Or, it may happen when the
 accepted load on the server is lower than the offered load.

 Some server implementations require that Access-Request packets are
 accepted only on "authentication" ports, (e.g. 1812/udp), and that
 Accounting-Request packets are accepted only on "accounting" ports
 (e.g. 1813/udp). Those implementations SHOULD reply to Status-Server
 packets sent to an "authentication" port with an Access-Accept
 packet. Those implementations SHOULD reply to Status-Server packets
 sent to an "accounting" port with an Accounting-Response packet.

https://datatracker.ietf.org/doc/html/rfc2865#section-3
https://datatracker.ietf.org/doc/html/rfc2866#section-3
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc3579#section-3.2
https://datatracker.ietf.org/doc/html/rfc3579#section-3.2

DeKok, Alan Informational [Page 14]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 Some server implementations accept both Access-Request and
 Accounting-Request packets on the same port, and do not distinguish
 between "authentication only" ports, and "accounting only" ports.
 Those implementations SHOULD reply to Status-Server packets with an
 Access-Accept packet.

 The server MAY increment packet counters as a result of receiving a
 Status-Server, or sending a Response packet. The server SHOULD NOT
 perform any other action that is normally performed when it receives
 a Request packet, other than sending a Response packet.

4.3. More Robust Fail-over with Status-Server

 A client will typically fail over from one server to another because
 of a lack of responsiveness to normal RADIUS traffic. However, the
 client has few reasons to mark the server as responsive, as it is not
 being sent any packets.

 The solution is that the client SHOULD begin to send periodic Status-
 Server packets as soon as a server is determined to be unresponsive.
 The inter-packet period is Tw, as defined above in Section 4.1.
 These packets will help the client determine if the failure was due
 to the server being unresponsive, or if the problem is due to an
 downstream server being unresponsive.

 Once three time periods have passed where Status-Server packets have
 been sent and responded to, the server should be deemed responsive
 and RADIUS requests may sent to it again. This determination should
 be made separately for each server that the client has a relationship
 with. The same algorithm should be used for both authentication and
 accounting ports. The client MUST treat each destination (ip, port)
 combination as a unique server for the purposes of this
 determination.

 The above behavior is modelled after [RFC3539] Section 3.4.1. We
 note that if a reliable transport is used for RADIUS, then the
 algorithms specified in [RFC3539] MUST be used in preference to the
 ones given here.

4.4. Proxy Server handling of Status-Server

 Many RADIUS servers can act as proxy servers, and can forward
 requests to another RADIUS server. Such servers MUST NOT proxy
 Status-Server packets. The purpose of Status-Server as specified
 here is to permit the client to query the responsiveness of a server
 that it has a direct relationship with. Proxying Status-Server
 queries would negate any usefulness that may be gained by
 implementing support for them.

https://datatracker.ietf.org/doc/html/rfc3539#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc3539

DeKok, Alan Informational [Page 15]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 Proxy servers MAY be configured to respond to Status-Server queries
 from clients, and MAY act as clients sending Status-Server queries to
 other servers. However, those activities MUST be independent of one
 another.

4.5. Limitations of Status-Server

 RADIUS servers are commonly used in an environment where Network
 Access Identifiers (NAIs) are used as routing identifiers [RFC4282].
 In this practice, the User-Name attribute is decorated with realm
 routing information, commonly in the format of "user@realm". Since a
 particular RADIUS server may act as a proxy for more than one realm,
 we need to explain how the behavior defined above in Section 4.3,
 above, affects realm routing.

 The schematic below demonstrates this scenario.

 /-> RADIUS Proxy P -----> RADIUS Server for Realm A
 / \ /
 NAS X
 \ / \
 \-> RADIUS Proxy S -----> RADIUS Server for Realm B

 That is, the NAS has relationships with two RADIUS Proxies, P and S.
 Each RADIUS Proxyhas relationships with RADIUS Servers for both Realm
 A and Realm B.

 In this scenario, the RADIUS Proxies can determine if one or both of
 the RADIUS Servers are dead or unreachable. The NAS can determine if
 one or both of the RADIUS Proxies are dead or unreachable. There is
 an additional case to consider, however.

 If RADIUS Proxy P cannot reach the RADIUS Server for Realm A, but the
 RADIUS Proxy S can reach that RADIUS Server, then the NAS cannot
 discover this information using the Status-Server queries as outlined
 above. It would therefore be useful for the NAS to know that Realm A
 is reachable from RADIUS Proxy S, as it can then route all requests
 for Realm A to that RADIUS Proxy. Without this knowledge, the client
 may route requests to RADIUS Proxy P, where they may be discarded or
 rejected.

 To complicate matters, the behavior of RADIUS Proxies P and S in this
 situation is not well defined. Some implementations simply fail to
 respond to the request, and other implementations respond with an
 Access-Reject. If the implementation fails to respond, then the NAS
 cannot distinguish between the RADIUS Proxy being down, or the next
 server along the proxy chain being unreachable.

https://datatracker.ietf.org/doc/html/rfc4282

DeKok, Alan Informational [Page 16]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 In the worst case, failures in routing for Realm A may affect users
 of Realm B. For example, if RADIUS Proxy P can reach Realm B but not
 Realm A, and RADIUS Proxy S can reach Realm A but not Realm B, then
 active paths exist to handle all RADIUS requests. However, depending
 on the NAS and RADIUS Proxy implementation choices, the NAS may not
 be able to determine which server requests may be sent to in order to
 maintain network stability.

 This problem cannot, unfortunately be solved by using Status-Server
 requests. A robust solution would involve either a RADIUS routing
 table for the NAI realms, or a RADIUS "destination unreachable"
 response to authentication requests. Either solution would not fit
 into the traditional RADIUS model, and both are therefore outside of
 the scope of this specification.

 The problem is discussed here in order to define how best to use
 Status-Server in this situation, rather than to define a new
 solution.

 When a server has responded recently to a request from a client, that
 client MUST mark the server as "responsive". In the above case, a
 RADIUS Proxy may be responding to requests destined for Realm A, but
 not responding to requests destined for Realm B. The client
 therefore considers the server to be responsive, as it is receiving
 responses from the server.

 The client will then continue to send requests to the RADIUS Proxy
 for destination Realm B, even though the RADIUS Proxy cannot route
 the requests to that destination. This failure is a known limitation
 of RADIUS, and can be partially addressed through the use of failover
 in the RADIUS Proxies.

 A more realistic situation than the one outlined above is where each
 RADIUS Proxy also has multiple choices of RADIUS Servers for a realm,
 as outlined below.

 /-> RADIUS Proxy P -----> RADIUS Server P
 / \ /
 NAS X
 \ / \
 \-> RADIUS Proxy S -----> RADIUS Server S

 In this situation, if all participants implement Status-Server as
 defined herein, any one link may be broken, and all requests from the
 NAS will still reach a RADIUS Server. If two links are broken at
 different places, (i.e. not both links from the NAS), then all
 requests from the NAS will still reach a RADIUS Server. In many
 situations where three or more links are broken, then requests from

DeKok, Alan Informational [Page 17]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 the NAS may still reach a RADIUS Server.

 It is RECOMMENDED, therefore, that implementations desiring the most
 benefit from Status-Server also implement server failover. The
 combination of these two practices will maximize network reliability
 and stability.

4.6. Management Information Base (MIB) Considerations

4.6.1. Interaction with RADIUS Server MIB modules

 Since Status-Server packets are sent to the defined RADIUS ports,
 they can affect the [RFC4669] and [RFC4671] RADIUS server MIB
 modules. [RFC4669] defines a counter named
 radiusAuthServTotalUnknownTypes that counts "The number of RADIUS
 packets of unknown type that were received". [RFC4671] defines a
 similar counter named radiusAcctServTotalUnknownTypes.
 Implementations not supporting Status-Server, or implementations that
 are configured to not respond to Status-Server packets MUST use these
 counters to track received Status-Server packets.

 If, however, Status-Server is supported and the server is configured
 to respond as described above, then the counters defined in [RFC4669]
 and [RFC4671] MUST NOT be used to track Status-Server requests or
 responses to those requests. That is, when a server fully implements
 Status-Server, the counters defined in [RFC4669] and [RFC4671] MUST
 be unaffected by the transmission or reception of packets relating to
 Status-Server.

 If a server supports Status-Server and the [RFC4669] or [RFC4671] MIB
 Modules, then it SHOULD also support vendor-specific MIB extensions
 dedicated solely to tracking Status-Server requests and responses.
 Any definition of the server MIB modules for Status-Server is outside
 of the scope of this document.

4.6.2. Interaction with RADIUS Client MIB modules

 Clients implementing Status-Server MUST NOT increment [RFC4668] or
 [RFC4670] counters upon reception of Response packets to Status-
 Server queries. That is, when a server fully implements Status-
 Server, the counters defined in [RFC4668] and [RFC4670] MUST be
 unaffected by the transmission or reception of packets relating to
 Status-Server.

 If an implementation supports Status-Server and the [RFC4668] or
 [RFC4670] MIB modules, then it SHOULD also support vendor-specific
 MIB extensions dedicated solely to tracking Status-Server requests

https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4670
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4670
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4670

DeKok, Alan Informational [Page 18]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 and responses. Any definition of the client MIB module extensions
 for Status-Server is outside of the scope of this document.

5. Table of Attributes

 The following table provides a guide to which attributes may be found
 in Status-Server packets, and in what quantity. Attributes other
 than the ones listed below SHOULD NOT be found in a Status-Server
 packet.

 Status- Access- Accounting-
 Server Accept Response # Attribute

 0-1 0 0 4 NAS-IP-Address [Note 1]
 0 0+ 0 18 Reply-Message
 0+ 0+ 0+ 26 Vendor-Specific
 0-1 0 0 32 NAS-Identifier [Note 1]
 1 0-1 0-1 80 Message-Authenticator
 0-1 0 0 95 NAS-IPv6-Address [Note 1]

 [Note 1] A Status-Server SHOULD contain one of (NAS-IP-Address or
 NAS-IPv6-Address), or NAS-Identifier, or both NAS-Identifier and one
 of (NAS-IP-Address or NAS-IPv6-Address).

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in packet.
0-1 Zero or one instance of this attribute MAY be present in packet.
1 Exactly one instance of this attribute MUST be present in packet.

6. Examples

 A few examples are presented to illustrate the flow of packets to
 both the authentication and accounting ports. These examples are not
 intended to be exhaustive, many others are possible. Hexadecimal
 dumps of the example packets are given in network byte order, using
 the shared secret "xyzzy5461".

6.1. Minimal Query to Authentication Port

 The NAS sends a Status-Server UDP packet with minimal content to a
 RADIUS server on port 1812.

 The Request Authenticator is a 16 octet random number generated by
 the NAS. Message-Authenticator is included in order to authenticate
 that the request came from a known client.

DeKok, Alan Informational [Page 19]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 0c da 00 26 8a 54 f4 68 6f b3 94 c5 28 66 e3 02
 18 5d 06 23 50 12 5a 66 5e 2e 1e 84 11 f3 e2 43
 82 20 97 c8 4f a3

 1 Code = Status-Server (12)
 1 ID = 218
 2 Length = 38
 16 Request Authenticator

 Attributes:
 18 Message-Authenticator (80) = 5a665e2e1e8411f3e243822097c84fa3

 The Response Authenticator is a 16 octet MD5 checksum of the code
 (2), id (218), Length (20), the Request Authenticator from above, and
 the shared secret.

 02 da 00 14 ef 0d 55 2a 4b f2 d6 93 ec 2b 6f e8
 b5 41 1d 66

 1 Code = Access-Accept (2)
 1 ID = 218
 2 Length = 20
 16 Request Authenticator

 Attributes:
 None.

6.2. Minimal Query to Accounting Port

 The NAS sends a Status-Server UDP packet with minimal content to a
 RADIUS server on port 1813.

 The Request Authenticator is a 16 octet random number generated by
 the NAS. Message-Authenticator is included in order to authenticate
 that the request came from a known client.

 0c b3 00 26 92 5f 6b 66 dd 5f ed 57 1f cb 1d b7
 ad 38 82 60 80 12 e8 d6 ea bd a9 10 87 5c d9 1f
 da de 26 36 78 58

 1 Code = Status-Server (12)
 1 ID = 179
 2 Length = 38
 16 Request Authenticator

 Attributes:
 18 Message-Authenticator (80) = e8d6eabda910875cd91fdade26367858

DeKok, Alan Informational [Page 20]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 The Response Authenticator is a 16 octet MD5 checksum of the code
 (5), id (179), Length (20), the Request Authenticator from above, and
 the shared secret.

 02 b3 00 1a 0f 6f 92 14 5f 10 7e 2f 50 4e 86 0a
 48 60 66 9c

 1 Code = Accounting-Response (5)
 1 ID = 179
 2 Length = 20 16 Request Authenticator

 Attributes:
 None.

6.3. Verbose Query and Response

 The NAS at 192.0.2.16 sends a Status-Server UDP packet to the RADIUS
 server on port 1812.

 The Request Authenticator is a 16 octet random number generated by
 the NAS.

 0c 47 00 2c bf 58 de 56 ae 40 8a d3 b7 0c 85 13
 f9 b0 3f be 04 06 c0 00 02 10 50 12 85 2d 6f ec
 61 e7 ed 74 b8 e3 2d ac 2f 2a 5f b2

 1 Code = Status-Server (12)
 1 ID = 71
 2 Length = 44
 16 Request Authenticator

 Attributes:
 6 NAS-IP-Address (4) = 192.0.2.16
 18 Message-Authenticator (80) = 852d6fec61e7ed74b8e32dac2f2a5fb2

 The Response Authenticator is a 16-octet MD5 checksum of the code
 (2), id (71), Length (52), the Request Authenticator from above, the
 attributes in this reply, and the shared secret.

 The Reply-Message is "RADIUS Server up 2 days, 18:40"

 02 47 00 34 46 f4 3e 62 fd 03 54 42 4c bb eb fd
 6d 21 4e 06 12 20 52 41 44 49 55 53 20 53 65 72
 76 65 72 20 75 70 20 32 20 64 61 79 73 2c 20 31
 38 3a 34 30

 1 Code = Access-Accept (2)

DeKok, Alan Informational [Page 21]

INTERNET-DRAFT Status-Server Practices 12 October 2009

 1 ID = 71
 2 Length = 52
 16 Request Authenticator

 Attributes:
 32 Reply-Message (18)

7. IANA Considerations

 This specification does not create any new registries, nor does it
 require assignment of any protocol parameters.

8. Security Considerations

 This document defines the Status-Server packet as being similar in
 treatment to the Access-Request packet, and is therefore subject to
 the same security considerations as described in [RFC2865], Section

8. Status-Server packets also use the Message-Authenticator
 attribute, and are therefore subject to the same security
 considerations as [RFC3579], Section 4.

 We reiterate that Status-Server packets MUST contain a Message-
 Authenticator attribute. Early implementations supporting Status-
 Server did not enforce this requirement, and may have been vulnerable
 to DoS attacks as a result.

 Where this document differs from [RFC2865] is that it defines a new
 request/response method in RADIUS; the Status-Server request. As
 this use is based on previously described and implemented standards,
 we know of no additional security considerations that arise from the
 use of Status-Server as defined herein.

9. References

9.1. Normative references

[RFC2865]
 Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June 2000.

[RFC4282]
 Aboba, B., and Beadles, M. at al, "The Network Access Identifier",

RFC 4282, December 2005.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3579#section-4
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc4282

DeKok, Alan Informational [Page 22]

INTERNET-DRAFT Status-Server Practices 12 October 2009

9.2. Informative references

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March, 1997.

[RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

[RFC3539] Aboba, B., Wood, J., "Authentication, Authorization, and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

[RFC3579] Aboba, B., Calhoun, P., "RADIUS (Remote Authentication Dial In
 User Service) Support For Extensible Authentication Protocol
 (EAP)", RFC 3579, September 2003.

[RFC4668] Nelson, D., "RADIUS Authentication Client MIB for IPv6", RFC
4668, August 2006.

[RFC4669] Nelson, D., "RADIUS Authentication Server MIB for IPv6", RFC
4669, August 2006.

[RFC4670] Nelson, D., "RADIUS Accounting Client MIB for IPv6", RFC 4670,
 August 2006.

[RFC4671] Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC 4671,
 August 2006.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken with minor edits from [RFC2865] Section 3.

 The author would like to thank Mike McCauley of Open Systems
 Consultants for making a Radiator server available for
 interoperability testing.

Authors' Addresses

 Alan DeKok
 The FreeRADIUS Server Project

http://freeradius.org

 Email: aland@freeradius.org

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc3539
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4668
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4669
https://datatracker.ietf.org/doc/html/rfc4670
https://datatracker.ietf.org/doc/html/rfc4671
https://datatracker.ietf.org/doc/html/rfc2865#section-3
http://freeradius.org

DeKok, Alan Informational [Page 23]

