
 Internet Engineering Task Force Walter Weiss
 RAP Working Group Ellacoya Networks
 Expiration: May 2003 John Vollbrecht

draft-ietf-rap-access-bind-02.txt David Spence
 David Rago
 InterLink Networks
 Cees de Laat
 Univ. of Amsterdam
 Freek Dijkstra
 Univ. of Utrecht
 Leon Gommans
 Enterasys
 Amol Kulkarni
 Ravi Sahita
 Intel
 Kwok Ho Chan
 Nortel Networks

 Framework for Binding Access Control to COPS Provisioning

 Last Updated: 11/4/02

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/draft-ietf-rap-access-bind-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

Internet Draft Binding Authentication to Provisioning March 2002

 Status of this Memo..1
 Conventions used in this document..................................1
 Abstract...4

1. Introduction..4
2. Paradigm for the Access Bind PIB................................6
2.1. Event Handler Concepts..6
2.1.1. Example - Ethernet IP Address Authorization.................9
2.1.2. Context Data...10
2.1.3. Policy Distribution and Management.........................11
2.2. Event Handlers and Application-Specific PIBs.................12
2.3. Passive Monitoring vs. Programmatic API......................12
2.3.1. Interactions with DiffServ data path model.................13
2.3.2. The Programmatic API to the Access Bind PIB................14
3. Access Bind PIB..16
3.1. The Event Handler..16
3.1.1. Functional Description.....................................17
3.1.2. Event Criteria behavior....................................18
3.1.3. Context Data usage...19
3.1.4. Data Description...19
3.1.4.1. EventHandler class.......................................19
3.1.4.2. EventHdlrElement class...................................20
3.1.4.3. EventHdlrEventScope class................................22
3.1.4.4. EventHdlrHandleScope class...............................23
3.1.4.5. ContextData class..24
3.2. Event Handling...25
3.2.1. Functional Description.....................................25
3.2.2. COPS Client Handle...26
3.2.3. DiffServ element...26
3.2.4. Behavior of the Event and Handle Scope classes.............27
3.2.5. Context Data Entries.......................................28
3.2.6. Data Description...28
3.2.6.1. Event class..29
3.2.6.2. ContextData classes......................................29
3.2.6.2.1. CtxtL3Hdr class..29
3.2.6.2.2. Ctxt802Hdr class.......................................30
4. Identity Extensions PIB module.................................32
4.1. Functional Description.......................................32
4.1.1. Provisioning...32
4.1.2. EAP Authentication...33
4.1.2.1. EAP Message sequence.....................................33
4.1.3. PAP Authentication...35
4.1.3.1. PAP Connection sequence..................................35
4.1.4. CHAP Authentication..36
4.1.4.1. CHAP Connection sequence.................................37
4.2. Data Description...38

https://datatracker.ietf.org/doc/html/rfc2119

4.2.1. IdentityEventHdlr Class....................................38
4.2.2. EventHdlrAuthProtocol class................................39
4.2.3. AuthExt class..39
4.2.4. UserAuthExt class..40
4.2.5. AuthExtResult class..40
4.2.6. AuthEapReqExt and AuthEapRespExt classes...................40
4.2.7. AuthPapExtEntry class......................................41
4.2.8. AuthChapExtEntry class.....................................42

Internet Draft Binding Authentication to Provisioning March 2002

5. Signal Handling..43
5.1 Functional Description..43
5.2 Data Description..43
6. Programmatic Interface Between Signal and Event Handling.......44
6.1. Functional Description.......................................44
6.2. Method Description...45
6.3. Access Bind API Example......................................46
7. Message Types..49
7.1. Event Handler Provisioning Decisions.........................49
7.2. Provisioning Report..50
7.3. PDP Provisioning Decision....................................51
7.4. PDP fetching Event-specific ContextData......................51
7.5. Event-specific ContextData Response..........................52
7.6. Opaque Decision..52
7.7. Opaque Report..52
7.8. Combining Data Structures in Messages........................53
8. Access Bind Usage Examples.....................................54
8.1 Wireless LAN (802.11 Access Point) Usage Example..............54
8.1.1 Wireless LAN Access Event Handler Provisioning..............54
8.1.2 Wireless LAN Access Event Handling..........................54
8.1.3 Wireless LAN Access Event Decision..........................55
8.2 RSVP Usage Example..55
9. The AccessBind PIB Module......................................63
10. Identity Extensions PIB.......................................79
11. Application Specific RSVP Handling PIB Module.................90
12. Application Specific Dialup Handling PIB Module..............104
13. Security Considerations......................................115
14. References...116
15. Author Information and Acknowledgments.......................117

Internet Draft Binding Authentication to Provisioning March 2002

Abstract

 There is an ever-growing distinction between edge and core
 functionality. While the core continues to focus on stability and
 pure forwarding functionality, the edges increasingly need to deal
 with dynamic capabilities like QoS management, VPN encapsulations,
 encryption, dynamic steering and service monitoring. The dynamic
 deployment of these functions is dependent on specific contextual
 knowledge such as the physical location of the data stream and the
 identity of the client or system generating the data.

 In many environments, there is a requirement to both bind resource
 consumption to an identity or account, and also to quickly and
 efficiently provision the appropriate set of policies for that
 client or account. It is possible to provide this capability with a
 collection of currently available protocols. However, the
 synchronization of account and provisioning information between
 these protocols makes this approach extremely unwieldy.

 This memo offers a solution in the form of a single COPS PIB capable
 not only of supporting all the above requirements but also offering
 a scalable means for extending the provisioning capabilities as new
 technologies are standardized. Specifically, we offer a mechanism
 for provisioning the criteria for initiating dynamic event
 notifications from the PEP as well as a means for propagating
 identity credentials received by the PEP to allow the PDP to
 validate a client identity or an account as part of the event
 notification process.

1. Introduction

 There are two sides to access control. The one side is the
 negotiation between the client and the edge device (also known as

 the policy enforcement point), for example between a workstation and
 an Ethernet switch supporting authentication protocols like 802.1x
 and PPPoE. The other side of a typical access control model is an
 interaction between the edge device (PEP) and a PDP, such that the
 PDP performs the client/account validation process and notifies the
 PEP of the result. This separation of access control into two parts
 is necessary because invariably the PEP does not have the capacity
 to store all possible identities and credentials. This information
 is typically stored in a server (PDP).

 In reality access control can include authentication as one piece of
 a larger authorization process. As such, authorization has much in
 common with RSVP [RSVP]. When an RSVP service request is made, the
 PDP evaluates a set of criteria including what is being requested,
 what the availability of specific resources are, the identity of the
 requestor, and even the location of the requestor. All these
 criteria are taken into consideration before determining whether the

Internet Draft Binding Authentication to Provisioning March 2002

 RSVP request should be honored. In addition, if the request is
 honored, specific provisioning actions may be taken to bind or
 manage the request. Similarly, the ability for a PDP to respond to a
 non-RSVP service request potentially requires all the same
 information of a traditional RSVP request in order to determine
 whether the request should be accepted or rejected.

 It is also important to note that a service request should not just
 be restricted to network access. In practice, there are many
 instances where a determination of access privileges requires an
 explicit decision. For instance, there are scenarios where limited
 network access is granted based on the specific criteria, but
 subsequent authorization is required to access a premium resource
 that requires incremental authentication (via HTTP for example).
 Another possible scenario occurs when initial access is authorized
 based on one set of credentials, but usage of a specific resource
 requires an examination of an account balance. These authorizations
 will be referred to as _PEP Events_ to denote the fact that PEP is
 generating an event indicating a request for some type of service.

 In order to support the broad variety of potential PEP Events, there
 must be a way of provisioning the criteria for generating the PEP
 Event. In the most common case the PEP Event is generated as the
 result of some type of packet oriented event such as activity on a
 link, traffic of a particular type or traffic from a new, unknown IP
 address.

 This leads to a useful observation: In many cases, PEP Events need
 to be defined within the context of a network data path. In other
 words, the data path mechanisms defined in the DiffServ informal

 model [MODEL] and the DiffServ PIB [DSPIB] provide a means for
 specifying the circumstances for generating a PEP Event by reusing
 elements from the model like the qosDatapathTable table and the
 qosClfrTable table in the DiffServ PIB.

 The second circumstance for generating an event from the PEP is
 through a programmatic interface in between the PEP and an external
 service such as the policy control interface in an RSVP service. In
 these instances, this PIB is used to configure the PEP to accept
 specific events through the API. Using COPS provisioning, a PEP can
 be configured to generate events for one or more types of RSVP
 events such as a new PATH request or a new RESV request.

 Another consideration is the variety of information that can
 potentially be included in a PEP Event. For instance, a PEP Event
 could pass information about the client (domain), the physical port
 (dial up interface), L2 headers, L3 headers, encapsulation headers
 (tunnels), cookies, and additional information already negotiated
 prior to generating the PEP Event. Given the amount of information
 that could be sent with the PEP Event, it is reasonable to allow the
 PDP to configure the PEP with the set of information the PDP would
 like to have included with a specific type of PEP Event.

Internet Draft Binding Authentication to Provisioning March 2002

 PEP Events provide a convenient means for the PEP to signal an event
 that requires specific actions. A PDP authorization for access to
 specific resources (and the potential verification of identity) is
 one example of an event that not only requires a response but also
 some potential provisioning work. It is interesting to note how
 neatly RSVP decision support fits into this model. In the original
 COPS design [COPS], the RESV request was sent in a COPS request and
 a COPS response message determined whether the reservation should be
 accepted or not. The enhancements provided by this PIB not only
 allow RSVP messages to generate PEP events (also called access
 requests), but also explicitly provision QoS resources, using COPS-
 PR [COPSPR], to support the reservation. This generalizes COPS for
 RSVP and allows it to evolve to the COPS-PR model.

 There are a number of situations where Events and associated
 provisioning need to be negotiated quickly. Mobile-IP applications
 in particular require speedy resolution of PEP Events. This implies
 that the combination of PEP Events and provisioning needs to be
 completed with the minimum number of communication legs (round
 trips).

2. Paradigm for the Access Bind PIB

 There are several key aspects to this PIB. First there is the

 ability to provisioning for future authorization events, known as
 PEP Events. Second, there is a set of tables that are used to notify
 the PDP of an attempt to access managed resources. These tables can
 also include credentials necessary to verify client identity.
 Finally, there are tables that determine how dialogs (COPS Request
 Handles) between the PEP and PDP should be grouped. In order to
 provide concurrency between competing events and provisioning
 requests, there must be a means for determining which PEP Events
 require a new COPS Request Handle and which should use existing
 handles.

2.1. Event Handler Concepts

 This section introduces the concept of an Event Handler. Much of
 what is described in this paper is based on the Event Handler.

 Event Handlers are implemented in PEPs and configured by PDPs. Event
 Handlers are provisioned by standard COPS-PR protocol sequences. A
 PEP will announce what Event Handlers are available in the
 capabilities table of the COPS-PR Request message. The PDP will
 provision the Event Handlers with Decision messages.

 Once an Event Handler is provisioned it is responsible for
 identifying packets or API requests that require the PDP to be
 notified with an Event Message.

 The general model for Event Message requests includes a client, a
 Policy Enforcement Point (PEP) and a Policy Decision Point (PDP). In

Internet Draft Binding Authentication to Provisioning March 2002

 this model, the PEP is the interface to the client, and the Event
 Handler is the part of the PEP that is responsible for recognizing
 the conditions for client authorization, generating the Event
 Message to the PDP, and communicating with the Client, if necessary,
 to get identity or other information.

 The Event Handler takes a signal or message from the client and
 translates it into an Event Message to send to the PDP. It takes the
 provisioning Decision from the PDP and, in cases where the client is
 aware of the authorization process, does what is needed to
 communicate the Decision to the client.

 The Event Message is sent from the PEP to the PDP. The PDP uses the
 Event Message to determine the appropriate provisioning steps. In
 some cases identity verification may require sending some
 intermediate messages to authenticate the client prior to
 provisioning the PEP with the policies appropriate to the client.
 The PEP then returns a Report to the PDP confirming what was
 provisioned by the Decision.

 | C |->Access Request->| | | |
 | L | | |-Event Message---------->| |
 | I | <-(optional)-> |PEP | <-(optional)-> |PDP |
 | E | | |<-Provisioning Decision -| |
 | N |<-Access Decision-| | | |
 |__T_| |____| --> Access Report ----->|____|

 Figure 2.1: Access Control Protocol Sequence

 This paper is primarily concerned with the function of the Event
 Handler and the communication between the PEP and PDP. Communication
 between the Client and PEP is assumed to be something like PPP or
 802.1, and the capabilities described here should work with any
 Client/PEP communication method.

 The PEP Event Message and PDP Provisioning Decision sequence is
 similar to the _classical_ COPS RSVP model. The Report confirming
 that the Decision was installed correctly on the PEP is an extra
 message beyond what is included in the RSVP sequence. We believe
 this is a good approach, but expect further discussion (It is
 interesting to note that RADIUS does not send an acknowledgement of
 Access Accepts/Rejects, and the DIAMETER drafts specify no
 acknowledgement, but do expect a negative message if the Reply
 cannot be processed correctly).

 An Event Handler is a data path element in the PEP. Each Event
 Handler has a _selector_ that identifies packets that should cause
 Event Messages (See section 3.1.2). The selector essentially divides
 all packets into two categories, in the first, the Event Handler is
 responsible for generating Event Messages; in the other, it just
 passes the packets to the next data path element. For example, if an

Internet Draft Binding Authentication to Provisioning March 2002

 Event Handler's selector is _All new source IP addresses_, an
 incoming packet's Source IP address is examined and if it is old,
 the packet is passed on to the next data path element without
 further processing. If the source IP address is new or unknown, an
 Event Message is generated and this packet may follow a different
 sequence of data path elements.

 Event Messages are grouped by COPS Request Handles. Each Event
 Message may cause a new COPS Request Handle to be generated or a set
 of Event Messages may all share the same COPS Request Handle. The
 distinction between selector and Request Handle is spelled out in

section 3.1.4.4). Attributes in the Access Bind PIB are provided to
 identify which COPS Request Handle a given Event Message should use.

 Event Handlers are designed to detect conditions in the PEP that

 result in the sending of Event Messages to the PDP. The Access Bind
 PIB defines a class to specify the criteria for generating an event.
 In some cases an event is appropriate every time the criteria is
 met. In other instances an event is appropriate only on the first
 occurrence. The provisioning of the event criteria using traditional
 classifiers can be difficult since it is often the case that the PDP
 can't anticipate what the PEP will see. For instance, when it is
 desirable to generate events every time a new user or device is
 recognized, the PDP can't anticipate which devices will be
 recognized or the order in which they will occur. Filter expressions
 can be constructed that enable the description of a set of packet
 fields that must match and a set of packet fields that collectively
 represent a new, unique combination. The expressive capability of
 the Access Bind PIB allows the PDP to indicate to the PEP that one
 event should be generated the first time a Src IP address has been
 seen by the PEP, but not generate events for subsequent packets with
 the same Src IP address.

 One interesting problem associated with event driven provisioning is
 avoiding blocking of one event due to provisioning activity for a
 different event. On the other hand, there are situations where
 serialization or ordering of events is important. We use COPS
 Request Handles to address both these needs. However, this requires
 explicit provisioning to indicate when new handles should be
 provisioned and which events should be processed through which
 handles. The approach taken in this paper is that the scope of the
 COPS Request Handle is defined by one or more Filter entries. Some
 of the filters are defined in the COPS Framework PIB [FWPIB] as well
 as PIB modules defined in this document. For example, if a Filter
 object specifies SRC IP address (10.20.0.0) and SRC IP Mask
 (FF.FF.0.0) each new IP address within the range 10.20.0.0 and
 10.20.255.255 will trigger the creation of a new Handle. For this
 example, any packet with a SRC IP address that generates a new Event
 Message will use the existing handle if that handle was already
 defined for that specific SRC IP address.

 When a packet arrives at the Event Handler, it first checks if it
 meets the criteria for generating an Event (event criteria will be

Internet Draft Binding Authentication to Provisioning March 2002

 discussed later). In the example above, a packet with a SRC IP
 address of 10.25.12.100 would not match the range criteria and would
 be passed to the next data path element. If it is selected, then a
 check is made to see if it matches the criteria for an existing COPS
 Request Handle.

 If it does not match the criteria for an existing COPS Request
 Handle, then the PEP instantiates a new Request Handle and sends an
 Event Message to the PDP using the new Handle. In either case the

 PDP analyzes the Event Message, possibly sending additional messages
 back to the PEP to support authentication and provisioning for the
 new address. If authentication was performed, a final Authentication
 Result object is sent to the PEP to indicate the authentication was
 successful or not. This is needed to allow the PAP, CHAP and EAP
 authentication processes to report success back to the
 authenticating user.

2.1.1. Example - Ethernet IP Address Authorization

 This (relatively simple) example assumes an edge device has an
 Ethernet interface and wants to require each new Source IP address
 arriving at one Ethernet port to be authorized before getting general
 access to the network. Assume also that some clients are to get
 preferred access (via DiffServ Marking).

 In the example, the PEP is configured with a classifier that has
 explicit entries for each source address that has already been
 authenticated and a default classifier element matching all addresses
 that has an Event Handler as the next element. Since the default
 classifier element is only used if none of the other classifier
 elements match, the Event Handler is only invoked for new Src IP
 addresses that have not yet been explicitly provisioned into the
 classifier. Each non-default classifier element points to another
 classifier that lists the policies uniquely for that Src IP address.
 The addresses of _premium_ users are assigned a high QoS while the
 addresses of _normal_ users are assigned best effort QoS. Since the
 Event Handler is not terminating any packets, the Event Handler
 passes all packets through to the Best Effort Queue.

 When the PEP comes up it sends information about its Event Handlers
 to the PDP in a capabilities table. After capability negotiation is
 complete, the PDP provisions a set of policies that configure the
 Event Handlers behind the Ethernet interface's data path. Each Event
 Handler Table will have a pointer to a (tagged) set of
 EventHandlerElement Tables that provide Filter matching and COPS
 Request Handle matching rules. In this case, the EventHandlerElement
 table will be provisioned to generate unique Request Handles and
 Events the first time it matches a new _SourceIPAddress._

 Once the Event Handler is setup, it is able to process packets
 arriving at the Ethernet Interface. The Event Handler looks at all
 packets with Src IP addresses that have not been explicitly been

Internet Draft Binding Authentication to Provisioning March 2002

 defined in the upstream Classifier and uses the event matching rules
 to check if the packet contains an unknown Src IP address within the
 configured range. If the packet matches an event matching rule, the

 Event Handler checks what information the PDP requires from the
 Client (e.g. username and credential), and collects this
 information. The PEP then checks to see if it should use an existing
 Request Handle or create a new one. In this example, each new
 address gets a unique COPS Request Handle so that all the address-
 specific (user specific) policies (and feedback information) are
 managed through a single COPS dialog. A unique handle also has the
 benefit of automatically removing all objects provisioned through
 the Handle when the Handle is deleted (the user ends their session).
 After the Request Handle is set up, an Event Message is sent to the
 PDP containing the user information including address, port, and
 credential information.

 The PDP checks the information passed in the Event Message,
 authenticates the client (if required), and decides which policy
 should apply to that IP address. It sends a Provisioning Decision,
 containing the appropriate policy (add classifier element for the
 new address and set the next element of the classifier element to
 the _premium_ queue) to the PEP using the newly created Request
 Handle.

 Additional examples using the Access Bind PIB to support RSVP,
 802.11, and other protocols are described in section 8.

2.1.2. Context Data

 As mentioned previously, Event Messages frequently require
 information beyond just the identity of the client. Information
 about the physical interface, the protocols being used, and the
 protocol bindings (VLANs, IP addresses, etc.) may also be required
 to provide enough information to the PDP to provide proper
 provisioning guidance. Therefore a mechanism is required that allows
 the PDP to specify what information is needed.

 With the advent of Tunnels, the same headers can be repeated
 (nested) within a single client message. This makes identification
 of specific attributes such as IP Addresses difficult because it is
 unclear whether the PDP needs the IP Address in the innermost or
 outermost header. This gets even more complicated when more than two
 layers are involved (i.e. VLAN and MPLS label stacking). The
 ContextData class, described in more detail below, allows the PDP to
 explicitly specify the set of nested headers that it needs more
 details on. This can either be specified in from the outermost
 header or the innermost header, as well as all headers of a
 particular type.

 Since the volume of information can be quite large and is very
 device and interface specific, it is appropriate to organize the
 information into manageable chunks. This approach was a compromise
 between two extremes. One extreme is one large data structure with

Internet Draft Binding Authentication to Provisioning March 2002

 all possible information. The other extreme is specifying each
 attribute explicitly. The first extreme is not viable because it is
 difficult to adapt to new types of information. The second
 alternative is very configuration intensive, particularly for header
 data that must distinguish inner and outer headers. The choice to
 group context data into classes and request the data at the class
 level is not without problems. If the PDP is only interested in a
 single attribute within a given class, there is no way to specify
 this. Hence the PEP has to fill in the entire class and the PDP has
 to parse the entire class to find the appropriate attribute.

 In order for the PDP to specify which chunks of context data it
 needs, this PIB defines a table called the ContextData class that
 allows the PDP to specify the tables it needs. This table is
 discussed in more detail in sections 3.1.3 and 3.1.4.5. The messages
 used to send ContextData are discussed in section 7

2.1.3. Policy Distribution and Management

 One of the purposes of this paper is to demonstrate how
 authorization and authentication can be bound to traditional COPS
 provisioning. Stated somewhat differently, this paper provides the
 means for seamlessly integrating outsourcing with provisioning using
 only PIBs. Authorization, Authentication, and COPS/RSVP are all
 forms of outsourcing because they are all triggered by events in the
 PEP and depend on decision support from the PDP. Earlier sections
 have gone into fair detail in describing how the PEP can generate
 Event Messages. However, we have not yet discussed how these
 semantics integrate with traditional COPS-PR provisioning semantics.

 There are two aspects to provisioning that need to be considered.
 First is the provisioning of the Event Handlers themselves. Section

2.1 went into some detail describing how Event Handlers are
 provisioned using policy decisions. More details on the Event
 Handler tables can be found in sections 3.1.1 and 3.1.4. In addition
 the provisioning messages used to configure Event Handlers are also
 described in section 7.1.

 The second aspect of provisioning is the use of standard
 provisioning decisions to bind policies to authorized clients. The
 goal in binding events to policies was to minimize reconfiguration.

 The process for this binding is as follows. An Event Handler can be
 configured to generate COPS Request Handles and trigger an Event
 Message based on specific criteria. These criteria explicitly scope
 the Request Handle. For example, if the criteria were one per unique
 source IP address, then there would be one Request Handle for each
 unique source IP address and all policies bound to that Request

 Handle would typically operate on all traffic with that source IP
 address. Note that the criteria that scope a Request Handle could
 also be a unique protocol, unique VLAN, or each unique RSVP RESV
 message. It is also worth noting that the Request Handle bounding

Internet Draft Binding Authentication to Provisioning March 2002

 criteria could also be a unique combination of field values such as
 a VLAN and TCP Port Number.

 With the scope of a Handle specified, the Event Handler can
 instantiate new Handles in conjunction with the Event Message.

 This PIB has been designed to provision Event Handlers as well as
 Policies once and bind them together dynamically. As described
 above, each Request Handle can manage a set of policies. However, in
 most cases, these policies reference data path elements that are
 shared by multiple Handles. For example, a new IP address may
 generate a unique Request Handle that in turn provisions one or more
 elements in the Classifier table. However, these elements may in
 turn point to other data path elements, such as queues or meters
 that are shared across multiple independent IP address classifier
 elements.

2.2. Event Handlers and Application-Specific PIBs
 The Access Bind PIB is actually a modular set of PIBs. The Common
 PIB contains the Event Handler and it's associated structures. An
 extension PIB is also provided to support user authentication. This
 PIB is provided because only a subset of Events require identity
 management. Other PIBS are included in this document to support a
 variety of applications. In the future, these PIBS may be specified
 in independent documents. The Application-Specific PIBs minimize the
 number of COPS-PR classes that must be implemented in order to
 support Event Handler functionality for the many applications that
 require policy outsourcing.

2.3. Passive Monitoring vs. Programmatic API
 The Event Handler is designed to operate in two specific scenarios.
 The first is a passive monitoring environment. In this mode, the
 Event Handler can be provisioned to detect specific types of traffic
 and generate events to the PDP based on the traffic. The Event
 Handler does not alter the packets in any way. However, packets may
 be sent to different packet processing engines depending on the
 decisions the PDP installs after responding to the event. The
 Passive Monitoring mode was designed to operate within the context
 of the DiffServ data path model. This model is discussed in more
 detail in Section 2.3.1.

 In the second scenario, no packets are analyzed because some
 intermediate system is processing the packets and generating events.

 In this mode, the system needs the help of the PDP to continue
 processing. Therefore, the system uses a signaling API to interact
 with the Event Handler, which in turn generates the events and
 receives the decisions. This mode is particularly useful for RSVP.
 Since the RSVP engine is processing the actual PATH and RESV
 messages, there are no packets for the Event Handler to process or
 analyze. In fact, the traditional COPS model defines a mapping of
 the RSVP policy engine to COPS messages. The Access Bind PIB is
 constructed to support a programmatic interface to the Event
 Handler. Further, the Programmatic API uses the same mechanisms as

Internet Draft Binding Authentication to Provisioning March 2002

 the passive monitoring mode to configure new policies in
 intermediate systems. For instance, a RESV event received by the
 Event Handler through the programmatic interface and propagated to
 the PDP allows the PDP to generate data path decisions that can be
 installed in the intermediate system through the programmatic API.
 The concepts behind this model are discussed in greater depth in

Section 2.3.2.

 It is worth noting that both these modes are abstractions that may
 be equally applicable. It is possible to represent a service using
 the data path model and it is possible to represent a packet
 processing engine as a service with a programmatic interface to the
 PEP. It is a design decision that dictates the preferred approach
 for processing PEP events. The advantage of the passive monitoring
 approach is that it can more accurately represent the behavior of
 the system. However the API is more tolerant in the areas of filter
 definition and COPS request handle management.

2.3.1. Interactions with DiffServ data path model

 The DiffServ model [MODEL] and PIB [DSPIB] allow for flexible
 addition of new Data Path Functional Elements. The Event Handler is
 one such new Data Path Functional Element. Previous sections have
 already described how this PIB extends the existing DiffServ
 Informal Model and the DiffServ PIB. However, it is worth describing
 how this PIB enhances the basic DiffServ model. First and foremost,
 this new PIB provides a means for scaling the basic DiffServ model
 to the edges of the network that can have many interfaces and many
 specialized services. Previous PIBs only supported the static
 configuration of data paths. This meant that dynamic events such as
 binding of new clients to existing or new services were difficult to
 support because there was no way to anticipate new clients. In
 addition most provisioning was managing Classifiers on a per client
 per service basis, which scales geometrically as the number of
 clients and services increases.

 This PIB addresses this problem by preserving the basic data path

 semantics but separating the creation of dynamic (event driven)
 policies into a new data path component. This provides a stable data
 path for the generation of authorizations while also supporting a
 stable data path for the services that various clients may make use
 of. The linchpin of this PIB is the Event Handler, a new type of
 demultiplexor, that separates streams of traffic into individually
 grouped triggers that in turn support dynamic authorization. The
 policy provisioning that results from these events can be bound back
 to pre-defined policies to minimize the changes required to support
 new clients. As a result, with these PIB modules, service policies
 can be added or removed at the session level rather than the raw
 data path level.

 So far we have only discussed the value of authorizing a client when
 the link notices a new IP address. However, it is worth noting that
 because the Event Handler is part of the data path definition, it is

Internet Draft Binding Authentication to Provisioning March 2002

 far more flexible. For instance, the Event Handler can be placed
 behind a Classifier to explicitly authorize access to a specific
 part of the network or specific services. The Event Handler can also
 be the FailNext element behind a meter resulting in an authorization
 for the use of out-of-profile traffic. Bandwidth Brokers can use
 this approach or an Event Handler trapping RSVP RESV messages to
 support dynamic bandwidth allocation decisions. MPLS LSRs and LERs
 can use this to detect label path addition or modification events.

 The integration of Event Handler as a Data Path Functional Element
 allows seamless integration with DiffServ provisioning.
 DiffServ network device mechanism policy control continues to be
 supported with the use of DiffServ PIB [DSPIB] with added
 functionality at the edge of the network with usage of the Event
 Handler.

 The Policy Server level interaction with DiffServ comes naturally
 with the integration of Event Handler as a Data Path Functional
 Element when the network data model is common and scoped
 appropriately in the schema level, with the Event Handler becoming
 stimuli for DiffServ provisioning.

2.3.2. The Programmatic API to the Access Bind PIB

 The programmatic API to the Access Bind PIB is actually an
 implementation specific abstraction that allows intermediate systems
 to interact with the Event Handler. This PIB only defines the
 messages that enable the Event Handler to generate events on behalf
 of intermediate systems. Since implementations of intermediate
 systems such as RSVP vary greatly both in features and usage, the
 actual API that maps the RSVP policy engine to the Event Handler is

 dependent on the actual outsourcing requirements of the intermediate
 engine. However, the Access Bind PIB is extremely flexible and can
 accommodate a broad range of events and policy decisions.

 The typical programmatic API will have interfaces (methods) that
 parallel the sequence of messages seen in the data path mode of
 operation. The intermediate system will first invoke the API to
 register itself with the PDP. The COPS-PR side of the API would
 generate a Capabilities message indicating that the device supports
 the protocol or service represented by the intermediate system. The
 functionality of the API will be described by using RSVP as an
 example. It should be noted that any other service (such as SIP,
 H.323, or 3GPP-go) that needs to outsource policy requests would
 work the same way. In the case of RSVP, the API might be a function
 like EventHdlrRegister(RSVP-type). The API would in turn generate a
 COPS-PR capabilities message indicating that RSVP can be provisioned
 and monitored through the event handler.

 The next step is a response from the PDP that provisions a set of
 controls. The first is the provisioning of the Event Handler that
 will interact with RSVP via the API. When the Event Handler is
 provisioned, the RSVP service is notified that it may now outsource

Internet Draft Binding Authentication to Provisioning March 2002

 RSVP reservation requests to the PDP through the API. Second, there
 may be several provisioning tasks that are configured in the RSVP
 service through the API. In many implementations of RSVP there may
 be many reservations requiring varying levels of QoS but only a few
 Queues to support the scheduling of various RSVP flows. In these
 situations the PDP may provision some or all of these queues using
 the Framework [FWPIB] and DiffServ PIB [DSPIB]. The API can then be
 used to map these provisioning requests to the actual RSVP
 implementation within the RSVP service. This allows the pre-
 configuration of queues, schedulers.

 When a reservation is processed by the RSVP service, the API is used
 to notify the event handler of a new RSVP event. When the event
 handler is provisioned some of the provisioned structures specify
 what events (RESV, PATH, etc.) the PDP will respond to and what
 information must be included in an event message. The API may be
 invoked with a method like EventGenReq() with parameters that
 describe the type of message and the context data that the PDP
 requires and the COPS request handle to use for this reservation.

 When the PDP completes the processing of the event, a set of
 decisions are sent back to the PEP. These decisions are handed to
 the RSVP service via the API. The decisions will determine how the
 reservation is to be processed. If several queues were pre-
 provisioned, the decisions may provision a classifier matching the

 reservation's flow (4-tuple) and a meter that rate limits the
 traffic to the R-SPEC [RSVP]. The decisions would also indicate that
 the classifier should have the meter as the next element and that
 the meter would have the appropriate (pre-provisioned) queue as its
 next element. The API may be implemented as a synchronous or
 asynchronous interface. If the interface is synchronous, the API
 will return an indication back to the event handler as to whether
 the decisions were successfully installed or not. If the interface
 is asynchronous, the API will call the event handler explicitly to
 indicate success or failure. In either case, an explicit decision
 result message must be sent back to the PDP so that both the PEP and
 PDP are kept in sync on which policies have been installed in the
 PEP.

 When the RSVP service determines that the reservation should be torn
 down, the API is used to close/terminate the COPS Request Handle.
 This action will cause both the PEP and the PDP to remove the
 decisions associated with this reservation (the classifier and
 meter).

Internet Draft Binding Authentication to Provisioning March 2002

3. Access Bind PIB

 Figure 3.1 shows the basic operation of the Access Bind PIB. In the
 first phase, the Event Handler is provisioned in the PEP. This
 process enables the PEP to trap the configured events and pass them
 to the PDP. The process of trapping events may involve an
 intermediate step of authenticating the user or device. This step is
 represented in Figure 3.1 as an event message with possible
 authentication message exchanges between the PDP and the
 user/device. After the event (and optional authentication has been
 processed by the PDP, the PDP can provision the PEP with a set of
 policies specific to that user, device, or event. When the decision
 policies are installed, the PEP notifies the PDP that the install
 has succeeded or failed. In addition, if authentication was
 involved, the user or device may be notified that the authentication
 process has completed.

 time
 | +---+ +---+ +---+
 | | | | |-- provisioning req. ->| |

 | | | | |<-- provisioning ------| |
 | | U |-- traffic ----------->| | | |
 | | s |<-- (authentication) ->| P | | P |
 | | e | | E |-- event (w/ authen) ->| D |
 | | r |<-- (authentication) --+ P +-- (authentication) -->| P |
 | | | | |<-- decision ----------| |
 | | |<-- decision ----------| |-- decision success -->| |
 V +---+ +---+ +---+

 Figure 3.1: Typical message sequence when a trigger occurs.

 In many scenarios, no identity management will be required and the
 authentication steps will not occur. This is why identity management
 classes have been place in a separate PIB, which is discussed in
 more detail in Section 4.

Section 3.1 will describe how the PDP installs an event handler into
 a PEP, and when the PEP should trigger an event. Section 3.2, about
 the event handling, will describe the actions that the PEP needs to
 perform when an action is triggered. This chapter will focus on
 generic event handlers; Section 5 will describe additional classes
 required to support event handlers within the context of specific
 signaling applications. Chapter 7 will describe the message sequence
 that follows the event request, as well as the message sequence
 associated with identity authentication.

3.1. The Event Handler

 This Section will describe the concept of Events, Event Handlers,
 Event Handler Element, Event Handler Event Scopes, and Event Handler
 Handle Scopes.

Internet Draft Binding Authentication to Provisioning March 2002

 In the framework described in this document, only events that match
 a predefined set of criteria can be sent from the PEP to the PDP.
 The main purpose of the Event Handler is to provision the PEP with
 that set of criteria. If the criteria provisioned by the PEP are
 met, the PEP must send an Event message to the PDP.

3.1.1. Functional Description

 The PDP provisions the event handler onto the PEP. However, the PEP
 is the first machine to contact the PDP, typically at boot time of
 the PEP. The PEP and the PDP communicate with each other using
 common COPS-PR messages. After the PEP send a capability message
 indicating that it supports event handlers, the PDP will respond by
 provisioning the PEP with a set of configuration elements. These
 elements may include one or more instances (PRIs) of the Event

 Handler class, the EventHdlrElement class, the EventHdlrScope class
 and optionally the ContextDataPointer class. The PEP will respond to
 this configuration request with a common COPS-PR report message
 indicating that these elements have been successfully provisioned.

 | P |---- COPS-PR Capability message -->| P |
 | E |<--- - COPS PR Decision -------------| D |
 | P |---- COPS-PR Report State -------->| P |

 Figure 3.2: The PEP initialization sequence

 The COPS Decision message that the PDP sends to the PEP should
 contain at least one EventHandler Instance. The EventHandler Entry
 is the base object which defines the behavior of the PEP when no
 event criteria are met. Each EventHandler is accompanied with one or
 more EventHandlerElements. Each EventHandlerElement describes the
 action which the PEP should take in case one of the event criteria
 is met.

 The EventHandler and the set of EventHandlerElements are grouped
 together because each EventHandlerElement in the same group has the
 same TagId in the eventHdlrElementGrpId attribute. The EventHandler
 is associated with this group because it has the same value in the
 eventHdlrElementGrpId attribute.

 The EventHandlerElement objects specify what actions should be taken
 if an event is triggered. To specify when an event must be
 triggered, the EventHandlerElement uses zero or more
 EventHdlrEventScopes. The Scopes are also grouped using a TagId, and
 have a precedence field. Each scope defines a simple condition, and
 all scopes from one group together form a complex boolean expression
 based on the eventHdlrEventScopePrecedence fields. If two scopes in
 the same group have a different precedence number, then the event
 criteria for the EventHandlerElement is met if one of the scopes
 condition is met. If two scopes in the same group have the same
 eventHdlrEventScopePrecedece fields, the event criteria are only met
 if BOTH conditions of the EventHdlrElements are met.

Internet Draft Binding Authentication to Provisioning March 2002

 Take for example, an EventHandlerElement with an
 eventHdlrElementEventScope TagId (and thus the
 eventHdlrEventScopeGroup TagReferenceId of a certain
 group) set to 5, and there are 3 scopes in the group 5, with the
 eventHdlrEventScopePrecedence set to 2, 3, and 3 respectively for
 scope A, B and C. Then, only an event is triggered if (the criteria
 of scope A OR (the criteria of scope B or the criteria of scope C))
 are met. The exact rules are explained in section 3.2.4.

3.1.2. Event Criteria behavior

 One key aspect of the EventHdlrElement is the Event Criteria
 attribute. This attribute is used to describe whether unique events
 are one time events or repeatable events. For instance, every RSVP
 message may need to result in an Event Message. However, an Event
 Message may only be appropriate the first time a new Src IP address
 is seen. After that no events should be generated for that address.
 However other new addresses should still generate Event Messages.
 The Event Criteria attribute defines the frequency with which events
 should be generated. If the Event Criteria is set to 'One_Time',
 only one event will ever be generated for that EventHdlrElement when
 the first match occurs, irrespective of the number of subsequent
 matches. If the Event Criteria is set to 'Every_Time', each match
 will result in an Event Message. A hybrid case is defined called
 'On_Change'. This option allows a subset of the filter attributes to
 be required for matching and a different set of attributes that must
 from a unique n-tuple in order to generate an Event Message. See

Section 3.2.2 for more details of the behavior of the 'On_Change'
 attribute.

 Whenever traffic arrives at the EventHandler for which an Event
 Message has not already been generated, it is compared against the
 FilterEntry objects of the EventHdlrEventScope objects referenced by
 the EventHdlrElement. If it matches the criteria specified in all of
 the FilterEntry objects, a new Event Message is generated and sent
 to the PDP. The value of EventHdlrElement's EventCriteria attribute
 in conjunction with the value of the Event Scope class's ChangeFlag
 attribute determine whether an Event Message will be generated.

 For example, if a FilterEntry object specifies SRC IP address
 (10.20.0.0) and SRC IP Mask (FF.FF.0.0) and the EventCriteria is set
 to 'One_Time', the first address in the range of 10.20.0.0 and
 10.20.255.255 will generate an event and no events will follow. If
 the EventCriteria is set to 'Every_Time' for the same attribute
 settings, each time a packet contains an IP address within the range
 an Event Message will be generated. If the EventCriteria is set to
 'On_Change' and the eventHdlrEventScopeChangeFlag is set to True,
 each new IP address within the range 10.20.0.0 and 10.20.255.255
 will trigger a new Event Message. However, as soon as a specific Src
 IP address like 10.20.15.109 has generated an Event Message, that
 specific address will no longer generate an event. If the
 EventCriteria is set to 'On_Change' and the
 eventHdlrEventScopeChangeFlag is set to False for the example

Internet Draft Binding Authentication to Provisioning March 2002

 address range, than the eventHdlrEventScope instance with the
 ChangeFlag set to 'True' will determine uniqueness. In this
 scenario, the address range is acting as a strict filter that must
 be met without regard to which address in the range is responsible

 or whether that address has been seen previously.

 When multiple fields are specified for the filter and the ChangeFlag
 is set to 'True', each unique combination of field values generates
 an event. For example, if the SRC IP is assigned a range of
 10.10.10.224 to 10.10.10.255 and DST Ports 80 to 90 then
 10.10.10.240+80, 10.10.10.240+81, and 10.10.10.250+80 would all
 generate separate events. The combination of supporting multiple
 filters and being able to control precedence allows for the
 construction of both lists (10.10.x.x and 10.15.x.x) and
 combinations of disjoint headers in a single match criteria (any
 combination of 10.10.x.x and VLANs 100 to 120). See Section 3.2.4
 for a detailed example of filter construction.

3.1.3. Context Data usage

 For each application signaling protocol there are different pieces
 of information that the PDP needs in order to make a provisioning
 decision. In some cases the PDP may need IP header information. In
 other cases, it may need some state information internal to the PEP
 such as the activity timer for a connection or the number of bytes
 originating from a particular IP address. Since there are a huge
 number of potentially interesting pieces of information that the PDP
 may need, sending all the information can be expensive both in
 processor and bandwidth overhead. To address this issue, each
 EventHandlerElement instance can be independently provisioned with a
 list of classes that the PEP should send as part of an Event
 message. This list is constructed with a tag reference to a class
 called ContextData. Each instance of a ContextData class contains a
 class identifier (PRC). The class identifier specifies the type of
 ContextData class that should be passed with the Event message.

 Typically a class will represent an autonomous structure such as an
 IP header or the fields of a RSVP reservation table entry. In some
 instances such as tunneling, there may be a list of entries that are
 applicable to the event. For this reason, the ContextData class has
 attributes that allow the PDP to indicate whether a specific entry
 in the list (relative to the beginning or end of the list) or all
 the entries in the list should be sent with an Event message. See

Section 3.1.4.5 for details on organization of this class. Also see
 Sections 3.2.5 and 3.2.6.2.

3.1.4. Data Description

 The following sections the classes defined in the Access Bind PIB.

3.1.4.1. EventHandler class

Internet Draft Binding Authentication to Provisioning March 2002

 Instances of the Event Handler PRC are provisioned by the PDP on the
 PEP to catch specific events. The Event Handlers reference a group
 of eventHdlrElement PRIs that contain the scope of the event and
 specify the context data to send to the PDP when an event is caught.

 The attributes of the EventHandler Class are as follows:

 eventHandlerId (InstanceId)
 Identifies an instance of this class.

 eventHandlerElements (TagReferenceId)
 A reference to a group of eventHdlrElement instances, each
 of which determines the scope (criteria for generating a new
 request) and what context information to send in a request.

 eventHandlerNonMatchNext (Prid)
 The data path for 'out of scope' traffic_ that is not
 matched by one of the eventHdlrElement's filter clauses.

3.1.4.2. EventHdlrElement class

 The PDP installs EventHandlerElements as part of constructing the
 event handler. EventHandlerElements describe when events will be
 generated and which COPS request handles will be used to send the
 requests.

 The purpose of the EventHdlrElement is to specify the
 characteristics of the EventHandler. The attributes in the
 EventHdlrElement provide maximal reuse by allowing multiple
 instances of an EventHandler to reuse the same EventHdlrElement
 instance. Each Instance of this PRC belongs to a group of
 eventHdlrElement PRIs. The group is identified by the
 eventHdlrElementGrpId attribute. These are provisioned by the PDP on
 the PEP to catch specific events. This PRC contains the scope of the
 event and specifies the context data type to send to the PDP when an
 event is caught.

 Each EventHdlrElement constitutes a unique event semantic. Since the
 Event Scope, Handle Scope and Context Data are all bound to the
 EventHdlrElement, different EventHdlrElements can have different
 Event Scope (matching rules), Handle Scope (Handle generation
 rules), and Context Data (event specific data passed with the Event
 Message). This is why Event objects generated by the PEP reference
 both the Event Handler and the Event Handler Element that generated
 the event.

 One key aspect of the EventHdlrElement is the Event Criteria
 attribute. This attribute is used to describe whether unique events
 are one time events or repeatable events. For instance, every RSVP
 message may need to result in a Event Message. However, an Event
 Message may only be appropriate the first time a new Src IP address

 is seen. After that no events should be generated for that address.
 However other new addresses should still generate Event Messages.

Internet Draft Binding Authentication to Provisioning March 2002

 The Event Criteria attribute defines the frequency with which events
 should be generated. If the Event Criteria is set to 'One_Time',
 only one event will ever be generated for that EventHdlrElement when
 the first match occurs, irrespective of the number of subsequent
 matches. If the Event Criteria is set to 'Every_Time', each match
 will result in an Event Message. A hybrid case is defined called
 'On_Change'. This option allows a subset of the filter attributes to
 be required for matching and a different set of attributes that must
 from a unique n-tuple in order to generate an Event Message. See

Section 3.2.4 for more details of the behavior of the 'On_Change'
 attribute.

 The EventHdlrHandleScope is optional. If it is not specified, it's
 behavioral rules are taken from the EventHdlrEventScope objects
 associated with the relevant EventHdlrElement. In other words, the
 criteria for generating Request Handles will be identical to the
 criteria for generating Event Messages when the EventHdlrHandleScope
 is not explicitly specified.

 The attributes of the EventHdlrElement class are:

 eventHdlrElementId (InstanceId)
 identifies the object

 eventHdlrElementEventCriteria (Unsigned32)
 Indicates when an event is generated. Valid options are
 'one_time', 'every_time' and 'on_change'. This attribute
 allows event Handlers to distinguish one time events (ignore
 after the first match) from recurring events (generate an
 event every time a match occurs). An enum type is also
 define to specify that a new event should be generated when
 a specific set of fields change. This is important for
 protocols like RSVP because messages are sent both to
 demonstrate that the reservation is active and to notify
 hops of changes to reservations. Since only changes need to
 propagate to the PDP, the 'on_change' option indicates that
 those events should be generated selectively.

 eventHdlrElementGrpId (TagId)
 Group identifier. All instances with the same group
 identifier belong to one group and can be referenced
 collectively from an eventHandler instance.

 eventHdlrElementEventScope (TagReferenceId)
 Identifies a group of eventHdlrEventScope entries associated

 with this eventHdlrElement instance.

 eventHdlrElementHandleScope TagReferenceId)
 Identifies a group of eventHdlrHandleScope entries
 associated with this eventHdlrElement instance. This is an
 optional attribute.

 eventHdlrElementContext (TagReferenceId)

Internet Draft Binding Authentication to Provisioning March 2002

 Identifies a list of ContextDataTable entries associated
 with this eventHdlrElement instance.

 eventHdlrElementMatchNext (Prid)
 The data path for traffic in scope.

3.1.4.3. EventHdlrEventScope class

 This PRC defines the scope of an event handler element using
 references to filters defined in the Framework PIB or in some other
 PIBs. These filters may describe specific protocol properties for
 which events need to be generated. These filter references are
 grouped using a TagId, and this group is then referenced from the
 eventHdlrElement PRC.

 Whenever traffic arrives at the EventHandler for which an Event
 Message has not already been generated, it is compared against the
 FilterEntry objects of the EventHdlrEventScope objects referenced by
 the EventHdlrElement. If it matches the criteria specified in all of
 the FilterEntry objects, a new Event Message is generated and sent
 to the PDP. The value of EventHdlrElement's EventCriteria attribute
 in conjunction with the value of the Event Scope class's ChangeFlag
 attribute determine whether an Event Message will be generated.

 For example, if a FilterEntry object specifies SRC IP address
 (10.20.0.0) and SRC IP Mask (FF.FF.0.0) and the EventCriteria is set
 to One_Time, the first address in the range of 10.20.0.0 and
 10.20.255.255 will generate an event and no events will follow. If
 the EventCriteria is set to Every_Time for the same attribute
 settings, each time a packet contains an IP address within the range
 an Event Message will be generated. If the EventCriteria is set to
 On_Change and the eventHdlrEventScopeChangeFlag is set to True, each
 new IP address within the range 10.20.0.0 and 10.20.255.255 will
 trigger a new Event Message. However, as soon as a specific Src IP
 address like 10.20.15.109 has generated an Event Message, that
 specific address will no longer generate an event. If the
 EventCriteria is set to On_Change and the
 eventHdlrEventScopeChangeFlag is set to False for the example
 address range, than the eventHdlrEventScope instance with the
 ChangeFlag set to True will determine uniqueness. In this scenario,

 the address range is acting as a strict filter that must be met
 without regard to which address in the range is responsible or
 whether that address has been seen previously.

 When multiple fields are specified for the filter and the ChangeFlag
 is set to true, each unique combination of field values generates an
 event. For example, if the SRC IP is assigned a range of
 10.10.10.224 to 10.10.10.255 and DST Ports 80 to 90 then
 10.10.10.240+80, 10.10.10.240+81, and 10.10.10.250+80 would all
 generate separate events. The combination of supporting multiple
 filters and being able to control precedence allows for the
 construction of both lists (10.10.x.x and 10.15.x.x) and
 combinations of disjoint headers in a single match criteria (any

Internet Draft Binding Authentication to Provisioning March 2002

 combination of 10.10.x.x and VLANs 100 to 120). See Section 4.6 for
 a detailed example of filter construction.

 The attributes of this class are:

 eventHdlrEventScopeId (InstanceId)
 Identifies this object

 eventHdlrEventScopeGroup (TagId)
 Contains the tag by which the EventHdlrElement references
 this object. This is the means by which a list of filters
 can be associated with an EventHandler.

 eventHdlrEventScopeFilter (PRID)
 Points to a FilterEntry object (as defined in the Framework
 PIB) that specifies the filter for this EventHdlrEventScope
 object

 eventHdlrEventScopePrecedence (Integer)
 Represents the precedence of this criterion with respect to
 other criteria within the same group. When the precedence is
 unique, the instance represents an alternative criterion (an
 OR function). When the precedence for two or more instances
 of the eventHdlrEventScope class is the same, the attributes
 within all the instances are treated collectively as a
 single filter criteria.

 eventHdlrEventScopeChangeFlag (TruthValue)
 Boolean value, if set to 'true' indicates that a new event
 should be generated if any of the assigned fields in the
 associated filter change.

3.1.4.4. EventHdlrHandleScope class

 This PRC defines the scope of Request Handles generated by the PEP

 due to events caught by the Event Handler Element. Each instance of
 this PRC references filters defined in the Framework PIB or some
 other signaling-protocol specific filter PRCs. These filters may
 describe specific protocol properties to which this Event Handler is
 sensitive. Essentially this table defines when a new COPS Request
 Handles must be created by the PEP based on protocol properties. The
 Event Handler may be set up to be sensitive to specific field values
 and/or the uniqueness of a set of values considered together. This
 accommodates various behaviors of signaling protocols. These filter
 references are grouped using a TagId, and this group is then
 referenced from the eventHdlrElement PRC via the
 eventHdlrElementHandleScope TagReference.

 The behavior of the EventHdlrHandleScope class is identical to the
 behavior of the EventHdlrEventScope. The only difference is the
 EventHdlrEventScope determines when new Events are created and the
 EventHdlrHandleScope determines when new COPS Request Handles are
 created. It is important to note that the attributes determining

Internet Draft Binding Authentication to Provisioning March 2002

 when a new Handle is created MUST be a subset of the filter
 attributes and filter values specified for the EventHdlrEventScope.
 The reason for this is that an Event Message MUST use one of the
 available Request Handles to notify the PDP of an Event. If the
 attributes and values used in the EventHdlrEventScope are not a
 superset of the attributes and values EventHdlrHandleScope, then
 there may be no valid Handle over which the Event Message can be
 sent to the PDP.

 The EventHdlrHandleScope is optional. If it is not specified, it's
 behavioral rules are taken from the EventHdlrEventScope objects
 associated with the relevant EventHdlrElement. In other words, the
 criteria for generating Request Handles will be identical to the
 criteria for generating Event Messages when the EventHdlrHandleScope
 is not explicitly specified.

 See Sections 3.1.2 and 3.2.4 for more details on the operational
 behavior of this class.

 eventHdlrHandleScopeId (InstanceId)
 An arbitrary integer index that uniquely identifies an
 instance of the eventHdlrHandleScopeTable class.

 eventHdlrHandleScopeGroup (TagId)
 Represents the binding between the eventHdlrElementEntry and
 the eventHdlrHandleScope entries. A group of
 eventHdlrHandleScope entries constitutes the criteria for
 defining the scope of the Handles generated.

 eventHdlrHandleScopeFilter (Prid)
 Pointer to a filter to be used as the criteria.

 eventHdlrHandleScopePrecedence (INTEGER)
 Represents the precedence of this criterion with respect to
 other criteria within the same group. When the precedence is
 unique, the instance represents an alternative criteria (an
 ORing function). When the precedence for two or more
 instances of the eventHdlrHandleScope class is the same, the
 attributes within all the instances are treated collectively
 as a single filter criteria.

 eventHdlrHandleScopeChangeFlag (TruthValue)
 Boolean value, if set to 'true' indicates that a new Handle
 should be generated if any of the assigned fields in the
 associated filter change.

3.1.4.5. ContextData class

 This PRC specifies the context information to send to the PDP when
 an event is caught. The context information to send is described in
 terms of the PRC data types to include in the request, the level of
 encapsulated data and the interface information for that request.

Internet Draft Binding Authentication to Provisioning March 2002

 The attributes of this class are:

 ContextDataId (InstanceId)
 Identifies this object

 ContextDataGroup (TagId)
 Defines the grouping of contextData instances that are
 applicable to a given eventHdlrElement.

 ContextDataIfElement (PrcIdentifier)
 The OID of a class whose instance is to be included with
 the PEP request or event-specific ContextData Response.

 ContextDataEncapsulation (Integer)
 This attribute allows one to distinguish between inner and
 outer headers when there are multiple encapsulated headers
 of the same type in a packet.

 A value of:
 0 means all headers,
 positive number 'n' means the 'n'th header starting
 from the outermost,
 negative number 'n' means the 'n'th header starting from
 the innermost.

3.2. Event Handling

 As soon as the PEP detects a situation described by an event
 handler, it must trigger an event. If an event is triggered, the PEP
 must send a message to the PDP that installs the event handler. This
 section describes how this message looks like.

3.2.1. Functional Description

 The event message that the PEP needs to send to the PDP is a common
 COPS-PR request message, containing exactly one event data
 structure, and optionally zero or more context data classes,
 depending on which eventHandlerElement triggered the event. Context
 Data classes are described in chapter 4.

 An event message typically represents an access request of a client,
 the decision for which the PEP outsources to the PDP. See Figure
 3.3.

 time
 | +---+ +---+
 | | |-- provisioning req. ->| |
 | | |<-- provisioning ------| |
 | | P | | P |
 | | E |--- event ------------>| D |
 | | P | | P |
 | | |<-- decision ----------| |
 V +---+ +---+

Internet Draft Binding Authentication to Provisioning March 2002

 Figure 3.3: Simple message sequence for provisioning and events.

3.2.2. COPS Client Handle

 The event and the decision are associated with each other using the
 COPS Client Handle, which is described in section 2.2.1 of RFC 2748.
 Each COPS message contains this Client Handle, which serves as an
 identifier to match request and response, and can later be used to
 remove an earlier install decision.

 Because the COPS Client Handle serves as a connection between the
 request and the decision, there must not be more then one
 outstanding COPS request with the same Client Handle. It is possible
 to have multiple outstanding COPS requests, as long as their Client
 Handle is different.

 For most applications, the PEP will generate a new unique COPS
 Client Handle for each event. However, in some situation it can be

https://datatracker.ietf.org/doc/html/rfc2748#section-2.2.1

 useful if the same client handle is used for multiple events. This
 implies that the second even can only be sent after the PDP sent a
 response for the first event. The PDP can explicitly specify when
 the PEP must use a new COPS Client Handle, by using the
 eventHdlrElementHandleScope. This should point to a scope, similar
 to the eventHdlrElementEventScope. Only when the criteria in the
 eventHdlrElementHandleScope matches, the PEP must create a new COPS
 Client Handle.

3.2.3. DiffServ element

 In case the Event Handler is part of a DiffServ model, the
 EventHandler acts as a Classifying DiffServ element. If no criteria
 are met, the ingress traffic for this element is forwarded to the
 DiffServ element specified by the eventHandlerNonMatchNext attribute
 in the EventHandler instance. If a criteria is met, traffic
 belonging to this ingress dataflow is dropped (or forwarded to the
 PDP, as is shown in chapter 7), until the PDP responds to the
 outstanding request. If the response is affirmative, the properties
 of the ingress dataflow, as specified by the
 eventHdlrElementEventCriteria and eventHdlrEventScopeChangeFlags are
 stored, typically in a lookup-table, and all traffic coming from
 this ingress dataflow is forwarded to the DiffServ element specified
 by the eventHdlrElementMatchNext attribute. If the response from the
 PDP is negative, the authorization failed, and the PEP can just
 forward the traffic to the eventHandlerNonMatchNext until an event
 is triggered.

 An affirmative reply from the PDP is defined as a COPS-PR Decision
 message with the command in the Decision flag object set to Install
 (section 2.2.6 of RFC 2748). An example of how the EventCriteria and
 ChangeFlags specify a filter is given in 3.1.2, while section 3.2.4
 further clarifies the scopes.

Internet Draft Binding Authentication to Provisioning March 2002

3.2.4. Behavior of the Event and Handle Scope classes

 The rules for interpreting Handle Scope and Event Scope are the
 same. One is applied to Handles and the other is applied to Events.

 Some of the classes used by the Access Bind PIB are the Filter
 classes described in the COPS-PR Framework PIB [FWPIB]. These
 classes allow a PDP to specify a set of 802.1 and IP header field
 values that can be matched against packets. The Event Scope and
 Handle Scope classes can use these filter classes as well as other
 filter classes to define the criteria for generating an event.

 Each scope class (Event Scope or Handle Scope) instance has a

https://datatracker.ietf.org/doc/html/rfc2748#section-2.2.6

 precedence value associated with it. When two or more scope class
 instances of the same type (event vs. handle) have the same
 precedence number, they are considered part of the same rule. For
 example, table 3.1 lists a set of Event Scope class instances, their
 precedence values and the filter field names and values associated
 with each instance (FName is the field name):

 Instance Precedence FName/Val FName/Val FName/Val
 -------- ---------- --------- --------- ---------
 1* 2 W/20 X/2-4
 2* 1 A/5-6 B/15 C/10-11
 3 2 W/14 Y/500-550
 4 2 Q/4-9 R/92

 Table 3.1: List of Filter rules

 This example would result in the following two filter expressions:
 1. (A=5 or A=6) and (B=15) and (C=10 or C=11 or C=12)
 2. (W=20 or W=14) and (X=2-4) and (Y=500-550) and (Q=4-9) and (R=92)

 If the EventCriteria was set to 'One Time', then if either 1 or 2 is
 matched, one event will be generated and this particular Event
 Handler Element will generate no further events. Note that if
 matches occur but the 'One Time' event has already been generated,
 the Event Hander Element's MatchNext attribute may still determine
 what the next forwarding action is for the packet event even though
 no event is generated.

 If the EventCriteria was set to 'Every Time', then every matching
 packet will cause an event. If the EventCriteria was set to 'On
 Change', then events will be generated the first time a unique
 combination of attributes is seen. Setting the ChangeFlag to 'True'
 in the EventScope class (denoted by the asterisks next to the
 Instance number in Table 3.1), identifies the set of attributes for
 which unique combinations of values generated new events. The
 ChangeFlag is applied to the attribute, not the specific instance of
 the filter. Therefore, even though instance 3 does not have the
 ChangeFlag set, the values for attribute W specified in instance 3

Internet Draft Binding Authentication to Provisioning March 2002

 will be treated as if the ChangeFlag was set for that attribute, as
 per example 8 below.

 Continuing the example above the following table shows a stream of
 packets and whether an event will be generated.

 1. A=5, B=19, C=10 No Event (B did not match)
 2. A=5, B=15, C=10 Event (Unique pairing of A & C)
 3. A=6, B=15, C=11 Event (Unique pairing of A & C)

 4. W=20, X=2, Y=500, Q=4, R=92 Event (Unique pairing of W & X)
 5. W=20, X=2, Y=505, Q=9, R=92 No Event (Already have a
 matched for W & X)
 6. A=5, B=15, C=11 Event (Unique pairing of A & C)
 7. A=5, B=15, C=10 No Event (Already have a
 matched for A & C)
 8. W=20, X=3, Y=502, Q=7, R=95 No Event (no match on R)
 9. W=14, X=2, Y=500, Q=4, R=92 Event (Unique pairing of W & X)

3.2.5. Context Data Entries

Section 3.1.3 described the ContextData class and how it is used to
 provision the set of event-specific information elements that must
 be included with each Event Message. This section provides an
 overview of the format of the actual information elements.

 Each Context Data Entry is organized to logically describe a layer
 or grouping of attributes. The downside of this strategy is that
 when a specific entry is requested, all the fields in the entry must
 be filled before the entry can be sent to the PDP. This is a
 compromise between forcing the PDP to describe all the fields
 explicitly and making the PEP send all attributes of possible
 interest. Since a given PDP knows better what it needs to generate a
 decision than a PEP, the second alternative is extremely unwieldy.
 On the other hand, forcing the PDP to describe all the fields
 necessary for a given event, would create an explosion of object
 definitions.

 In sections 3.2.6.2, there are two classes that are defined as part
 of the Access Bind PIB. These objects define the relevant fields of
 a Ethernet header and a IP header. It was determined that these
 headers existed in a large enough cross-section of application-
 specific signaling PIBs, that they belonged in the Access Bind PIB.
 This does not impact those application-specific signaling PIBs that
 don't use one or both headers. Since the PDP request only those
 headers relevant to each application specific event, these classes
 do not need to be implemented in order to meet the compliance
 requirements for this PIB.

3.2.6. Data Description

 This section describes the behavior of all classes associated with
 the generation of event messages to the PDP.

Internet Draft Binding Authentication to Provisioning March 2002

3.2.6.1. Event class

 Instances of this table represent events that occurred at the PEP.
 The events reference the event handler instance and the specific

 event handler element that the event was caught by.

 The attributes of this class are:

 eventId (InstanceId)
 Identifies this object

 eventEventHdlr (ReferenceId)
 This attribute allows a PEP to indicate to the PDP that this
 event was generated due to the referenced Event Handler.
 This attribute references an event handler via the
 indirection PRC frwkReference, since the event handler and
 event could potentially belong to a different PIB contexts.

 eventCause (ReferenceId)
 This attribute references the specific instance in a group
 of event Handler elements belonging to an event Handler that
 resulted in this event. This attribute references a specific
 event handler element via the indirection PRC frwkReference,
 since the event handler element and event could potentially
 belong to a different PIB contexts.

3.2.6.2. ContextData classes

 This section contains examples of classes that might be referenced
 by the ContextData class as classes that must be included in the
 Event Message for various types of eventHdlrElements.

 There are two kinds of ContextData classes depending on the type of
 PEP. Some PEPs receive traffic from many users over a shared port
 such as an Ethernet port. They recognize new users based on
 information in the headers of incoming packets. For them, the
 ContextData will come from packet headers. The L3HeaderData class
 is an example of this kind of ContextData class. Other PEPs receive
 traffic from one user per interface. For them, the context data
 will be information about the interface. The
 CtxtDialupInterfaceFramedProtocol class is an example of this kind
 of ContextData class.

3.2.6.2.1. CtxtL3Hdr class

 This class specifies level three header data. This class is used to
 inform the PDP of the details of the IP header that caused the PEP
 Event Message to be generated.

 The attributes of this class are:

Internet Draft Binding Authentication to Provisioning March 2002

 CtxtL3HdrId (InstanceId)
 identifies this object

 CtxtL3HdrSrcAddrType (Enum)
 specifies the type of the packet's layer 3 source address

 CtxtL3HdrSrcAddr
 the packet's layer 3 source address

 CtxtL3HdrDstAddrType (Enum)
 specifies the type of the packet's layer 3 destination
 address

 CtxtL3HdrDstAddr
 the packet's layer 3 destination address

 CtxtL3HdrProtocol
 the packet's protocol field

 CtxtL3HdrSrcPort
 the packet's source port field

 CtxtL3HdrDstPort
 the packet's destination port field

 CtxtL3HdrDscp
 the packet's Type of Service (Diffserv Code Point)field

 CtxtL3HdrEcn (boolean)
 Indicates whether this packet is ECN capable (True) or not
 (False)

 CtxtL3HdrIpOpt
 IP Options

 CtxtL3HdrEncap
 The Encap allows the PEP to indicate where this header is in
 relation to other IP headers found in the packet (with
 tunnels). This value can be either positive or negative
 depending on how the EventHandler (or the Session-specific
 Context Data request) was specified using negative or
 positive numbers.

 A negative n means return the nth layer from the innermost
 header. A positive n means return the nth layer from the
 outermost header.

3.2.6.2.2. Ctxt802Hdr class

 This class specifies IEEE 802.1 header data. This class is used to
 inform the PDP of the details of the 802 header that caused the PEP

 Event Message to be generated.

Internet Draft Binding Authentication to Provisioning March 2002

 The attributes of this class are:

 Ctxt802HdrId (InstanceId)
 identifies this object

 Ctxt802HdrSrcAddr
 the frame's source MAC address

 Ctxt802HdrDstAddr
 the frame's destination MAC address

 Ctxt802HdrProtocol
 the layer 2 frame's protocol field

 Ctxt802HdrPriority
 the layer 2 frame's priority field (only used if the frame
 is using the 802.q header extension)

 Ctxt802HdrVlan
 the layer 2 frame's VLAN field (only used if the frame is
 using the 802.q header extension)

 Ctxt802HdrEncap
 The Encap allows the PEP to indicate where this header is in
 relation to other IP headers found in the packet (with
 tunnels). This value can be either positive or negative
 depending on how the Event Handler (or the explicitly
 requested PDP Context Data request) was specified using
 negative or positive numbers.

 A negative n means return the nth layer from the innermost
 header. A positive n means return the nth layer from the
 outermost header.

Internet Draft Binding Authentication to Provisioning March 2002

4. Identity Extensions PIB module

 The Access Bind PIB provides a basic framework for processing PEP
 events. A subset of events require identity management of some type.
 In some cases this means that the PDP, PEP and end system are
 involved in some type of authentication process. An Identity
 Extensions PIB is provided that extends the EventHandler class and
 adds some Authentication Protocol specific classes. This PIB is
 described in detail below.

4.1. Functional Description

 In the operational model for this PIB, the Authentication Server is
 a specific function of the PDP. The main purpose of the
 authentication portions of this PIB is to verify the validity of
 client credentials by an Authentication Server. The verification
 process itself may do this whilst ensuring some level of
 authenticity, confidentiality and integrity. Messages exchanged
 between a Client and Authentication Server (PDP) may remain
 confidential to PEP's and Proxy Servers. The message integrity may
 be ensured by some hashing algorithm so PEP's and Proxy's may
 inspect but not modify the content of authentication messages.
 Clients, PEP's, Proxy's and PDP's will always need some security
 method to ensure message authenticity.

 Some authentication protocols explicitly consider proxies by
 allowing the payload to be carried over a variety of transports.
 Others depend on the termination point of the connection to
 explicitly proxy the authentication, when that is necessary. In
 order to demonstrate the general utility of this model, a variety of
 client authentication protocols will be considered in this document.
 For each protocol, the negotiation mechanism will be described and
 the mapping to this framework will be detailed.

4.1.1. Provisioning

 The PEP will not start an authentication sequence with the client if
 it hasn't been told to do that. It will only do so when a specific
 event occurs. The PDP tells the PEP exactly when this event should
 be triggered. This process is called provisioning.

 The provisioning starts with the initial Provisioning Request, which

 is typically sent at boot time. The PEP sends up capability PRC's
 indicating the types of authentication it can handle. The PDP will
 reply by setting the following Access Bind PRC's:
 a. identEventHandler (IdentityEventHandler)
 b. identEventhdlrAuthProtocol
 c. eventHdlrElement
 d. eventHdlrEventScope
 e. eventHdlrHandleScope
 f. contextData

Internet Draft Binding Authentication to Provisioning March 2002

 and an additional PRC instance referred to by the
 eventhdlrEventScopeFilter in the eventhdlrEventScope table,
 indicating how the signaling trigger is recognized.

 In case the PDP wants the PEP to perform an authentication when an
 event is triggered, provisions an Identity Event Handler
 (identEventHandler) instead of the standard Event Handler. The
 Identity Event Handler has a few extra attributes in the class to
 allow the PDP to indicate what authentication protocols to use and
 whether authentication is mandatory. This is done by setting the
 identEventhdlrRequestAuth in the identEventHdlr to true and
 optionally letting the identEventHdlrAuthProtocol field reference a
 eventHdlrAuthProtocol tagid to indicate which authentication
 protocols should be used for the authentication.

 As soon as the PDP has provisioned the PEP to watch for certain
 traffic that triggers an event, the PEP is ready to start an
 authentication.

4.1.2. EAP Authentication

 The most significant aspect distinguishing EAP [EAP] from other
 authentication protocols is that EAP assumes the negotiation is
 between the client and the authentication server. In anticipation of
 the fact that the terminating point of a connection such as PPP or
 L2TP is not necessarily the same as the agent managing client
 authentication, EAP encapsulates it's negotiation process in a
 separate header that can be forwarded in entirety to the server.
 This mechanism provides extra security by preventing intermediate
 proxies from monitoring or managing authentication credentials.

 EAP supports a number of different authentication mechanisms
 including MD5, TLS, and One-Time-Password authentication.

 The terminology used in [EAP] differs from the terminology used in
 this document. In particular, the peer, as defined in section 1.2 of
 [EAP], is referred to as 'Client' in this document. Similarly, the

 'authenticator' is called a PEP in this document and 'back-end
 server' is called the Authentication Server function of the PDP (or
 just PDP) in this document.

4.1.2.1. EAP Message sequence

 The generic sequence of transmissions between the PEP and PDP has
 already been described in section 2. In particular, figure 2.1 gives
 an overview of the messages involved between the Client workstation,
 PEP and PDP. EAP messages are embedded in PPP packets in the
 communication between the Client and the PEP. In the communication
 between the PEP and PDP, the EAP messages are embedded in COPS
 Request, COPS Decision and COPS Report messages. Figure 4.1 shows
 how EAP may be used to retrieve credentials from the client
 workstation by the PDP.

Internet Draft Binding Authentication to Provisioning March 2002

 time
 | +---+ +---+ +---+
 | | | | |-- COPS-PRC exchange ---->| |
 | | | | |<- COPS-Dec eventHandler -| |
 | | |-- PPP traffic ----->| | | |
 | | |<- PPP LCP Req-EAP --| | | |
 | | U |-- PPP LCP ACK-EAP ->| P | | P |
 | | s |<- PPP EAP Req Id ---| E | | D |
 | | e |-- PPP EAP Res Id -->| P | | P |
 | | r | | |-- COPS-Req Ses-EAP ---->| |
 | | | | |<- COPS-Dec EAP Req Chal -| |
 | | |<- PPP EAP Req Chal -| | | |
 | | |- PPP EAP Res Chal ->| | | |
 | | | | |- COPS-Rep EAP Res Chal ->| |
 | | | | | | |
 | | | | |<- COPS-Dec EAP Success --| |
 | | |<- PPP EAP success --| | | |
 V +---+ +---+ +---+

 Figure 4.1: Embedding of EAP messages between the Client workstation
 and the PEP, and between the PEP and PDP. The EAP messages may be
 opaque to the PEP.

 Typically, when the PEP boots up, it sends it's capabilities to the
 PDP in a COPS message and is than configured by the PDP with one or
 more datapathEventHandlers specifying the criteria for generating
 PEP Event Messages. The first message after this provisioning
 process from the PEP to the PDP is a new Event Message. The PEP
 sends a COPS request to the PDP containing a new instance of the
 Event table. The eventEventHdlr attribute in the Event table entry

 is a ReferenceId that points to a dpeventHandler entry indicating
 (by means of the dpEventHdlrAuthProtocol) that EAP is a valid
 protocol to use for this Event. Also, the eventCause attribute in
 the Event table entry is a ReferenceId that points to an
 eventhdlrElement indication of which Filter (by means of the
 eventhdlrEventScope) triggered the event.

 All EAP messages necessary to complete the authentication process
 will be forwarded to the PDP. All of the negotiation occurs between
 the Client and the PDP and should, except for the EAP message code
 field, not be examined by the PEP. In order to support multiple EAP
 protocols, this PIB supports a generic EAP request class and EAP
 response class. Each class has a single string attribute
 (authEapReqExtSpecific and authEapRespExtSpecific, respectively)
 within which the entire EAP message is passed.

 Although figure 4.1 shows two EAP messages going from the PDP to the
 Client and two EAP messages being returned from the client to the
 PDP, the actual number of messages exchanged can be any amount. The
 PDP may continue to retrieve additional credentials from the client
 for as long as it wishes. As soon as the PDP has all the necessary

Internet Draft Binding Authentication to Provisioning March 2002

 credentials from the client, the PDP may continue to provision the
 PEP with policies. This is action is not shown in figure 4.1.

 The PDP should end the EAP negotiation with an EAP Success or an EAP
 Failure message. If the PDP sends a EAP Success, the PEP must from
 then on use the matchNext Prid to determine the next processing
 filter for data defined by the values described using the
 eventhdlrEventScope.

4.1.3. PAP Authentication

 PAP (Password Authentication Protocol), as described in section 2 of
 [AUTH] is a very simple authentication mechanism used over PPP. It
 is not considered to be a secure mechanism, since it sends passwords
 over the wire in clear text format. However, where one-time
 passwords are used, this security concern is mitigated. It is
 described here nonetheless for illustration purposes and because it
 may still be used among ISPs, or in situations where another layer
 already performs encryption for security.

 The terminology used in [AUTH] differs from the terminology used in
 this document. In particular, the peer as defined in section 1.2 of
 [AUTH] is referred to as 'Client' in this document. Similar, the
 'authenticator' is called PEP in this document.

4.1.3.1. PAP Connection sequence

 Figure 4.2 shows how PAP may be used to retrieve credentials from
 the client workstation by the PDP.

 time
 | +---+ +---+ +---+
 | | | | |-- COPS-PRC exchange ---->| |
 | | | | |<- COPS-Dec eventHandler -| |
 | | |-- PPP traffic ----->| | | |
 | | |<- PPP LCP Req-PAP --| | | |
 | | U |-- PPP LCP ACK-PAP ->| P | | P |
 | | s |-- PPP PAP Id, Pwd ->| E | | D |
 | | e | | P |-- COPS-Req event, -->| P |
 | | r | | |-- userPapExt -->| |
 | | | | | | |
 | | | | |<- COPS-Dec eventElement -| |
 | | | | |<- COPS-Dec authResult ---| |
 | | |<- PPP PAP ack ------| | | |
 V +---+ +---+ +---+

 Figure 4.2: Embedding of PAP messages between the Client workstation
 and the PEP, and between the PEP and PDP.

 When the dpEventHandler has been configured to require
 authentication, a PEP Event message will not be generated until

Internet Draft Binding Authentication to Provisioning March 2002

 after a minimal set of credentials have been negotiated with the
 client. For PAP, this means that a PEP Event Message will not be
 generated until after the authRealm and authUsername have been
 determined. This means that that the PEP must receive a PAP Identity
 message before it can send the PEP Event Message.

 The Client will send the Identity and Password to the PEP. The PEP
 will embed the password into the userPapExt datastructure and send
 this to the PDP. Since this datastructure inherits the fields of the
 userAuthExt data structure and the extAuth data structure, it will
 also contain the PAP identity attribute inserted into the
 authUsername attribute of this Instance.

 The first connection from the PEP to the PDP is an alert that an
 event was triggered. The PEP sends an Event Message over COPS to the
 PDP containing a new instance of the Event table. The eventEventHdlr
 attribute in the Event table entry is a ReferenceId that points to a
 dpeventHandler entry indicating (by means of the
 dpEventHdlrAuthProtocol) that PAP is a valid protocol to use for
 this Event. Also, the eventCause attribute in the Event table entry
 is a ReferenceId that points to an eventhdlrElement indication which

 Filter (by means of the eventhdlrEventScope) did trigger the event.
 Along with this new instance of the Event table, the PEP must also
 send an instance of the AuthPapExt table.

 Besides these required instances, the PEP might have been configured
 by the PDP to sent additional information about the client to the
 PDP. For example in the case of a dialup connection between the
 Client and the PEP, the PDP might specify using a contextData
 instance that the PEP should also sent an instance of a
 ctxtDialupInterface.

 The PDP performs the PAP authentication. When the authentication is
 complete and the PDP is ready to authorize the event, the PDP
 optionally provisions the PEP with policies. This sequence of
 messages should terminate with a PDP Provisioning Decision (a COPS-
 PR Decision message). The PDP Provisioning Decision contains an
 instance of the AuthExtResult table with the authExtAuthSuccess set
 to either TRUE or FALSE. The PEP must upon receipt of this COPS
 Decision message, send PAP ACK or NACK message to the client. Also,
 if the authExtAuthSuccess attribute was true, then the PEP should
 keep track of this particular data, defined by the unique values of
 the fields specified using the eventhdlrEventScope.

4.1.4. CHAP Authentication

 CHAP (Challenge Authentication Protocol) [CHAP] is a strong
 authentication mechanism, which eliminates the need to send
 passwords in the clear, like PAP does. With CHAP, the Authenticator
 generates a challenge key, sends it to the Peer (Client) and the
 client responds with a cryptographically hashed response that
 depends upon the Challenge and a secret key. The PDP checks the

Internet Draft Binding Authentication to Provisioning March 2002

 secret key by performing the same encryption and comparing the
 results.

 The terminology used in [CHAP] differs from the terminology used in
 this document. In particular, the peer as defined in section 1.2 of
 [CHAP] is referred to as 'Client' in this document. Similar, the
 'authenticator' is called PEP in this document.

4.1.4.1. CHAP Connection sequence

 Figure 4.3 shows how CHAP may be used to retrieve credentials from
 the client workstation by the PDP.

 time
 | +---+ +---+ +---+

 | | | | |-- COPS-PRC exchange ---->| |
 | | | | |<- COPS-Dec eventHandler -| |
 | | |-- PPP traffic ----->| | | |
 | | |<- PPP LCP Req-CHAP -| | | |
 | | U |- PPP LCP ACK-CHAP ->| P | | P |
 | | s |<- PPP CHAP Chal ----| E | | D |
 | | e |-- PPP CHAP Ident, ->| P | | P |
 | | r |-- Id, Resp ->| | | |
 | | | | |-- COPS-Req event-CHAP -->| |
 | | | | |-- COPS-Rep CHAP Resp, -->| |
 | | | | |-- Chal -->| |
 | | | | | | |
 | | | | |<- COPS-Dec eventElement -| |
 | | | | |<- COPS-Dec authResult ---| |
 | | |<- PPP CHAP ack -----| | | |
 V +---+ +---+ +---+

 Figure 4.3: Embedding of CHAP messages between the Client
 workstation and the PEP, and between the PEP and PDP.

 As soon as the PEP finished negotiating CHAP as the Authentication
 protocol, it generates a challenge itself, and sends this to the
 Client. The client will respond to this authentication request by
 sending his or her identity, an identifier and the response. The
 response is a cryptographically encrypted hash based on the
 challenge and secret key (password).

 The identifier is only used to keep track of CHAP messages, and
 needs to be used by the PEP to recover the associated challenge.

 The first connection from the PEP to the PDP is a notice of a new
 Event. The PEP sends an Event Message to the PDP containing a new
 instance of the Event Table. The eventEventHdlr attribute in the
 Event table entry is a ReferenceId that points to a dpeventHandler
 entry indicating (by means of the dpEventHdlrAuthProtocol) that CHAP
 is a valid protocol to use for this Event. Also, the eventCause

Internet Draft Binding Authentication to Provisioning March 2002

 attribute in the Event table entry is a ReferenceId that points to
 an eventhdlrElement indication of which Filter (by means of the
 eventhdlrEventScope) did trigger the event. Along with this new
 instance of the Event table, the PEP must also send an instance of
 the AuthChapExt table.

 Note that having the PEP issue the challenge allows the PEP to
 perpetrate fraud by issuing a replayed request (assuming that the
 PEP and PDP are in different domains). The only guard against this
 is for the PDP to check that multiple authentication requests for

 the same client have unique challenges. This may be slow. PDP and
 Authentication server developers who feel this is a security issue
 may want to use EAP-MD5 authentication rather then CHAP
 authentication, since EAP-MD5 addresses this problem by letting the
 PDP generate the challenge.

 Besides these required instances, the PEP might have been configured
 by the PDP to send additional information about the client to the
 PDP. For example in the case of a dialup connection between the
 Client and the PEP, the PDP might specify using a contextData
 instance that the PEP should also sent an instance of a
 ctxtDialupInterface.

 The PDP performs the CHAP authentication. When the authentication is
 complete and the PDP is ready to authorize the client, the PDP may
 choose to provision the PEP with policies for this client, which was
 probably the intention of starting this authentication process in
 the first place. This sequence of messages should terminate with a
 PDP Provisioning Decision (a COPS-PR Decision message). The PDP
 Provisioning Decision contains an instance of the AuthExtResult
 table with the authExtAuthSuccess set to either TRUE or FALSE. The
 PEP must upon receipt of this COPS Decision message, send PAP ACK or
 NACK message to the client. Also, if the authExtAuthSuccess
 attribute was true, then the PEP should keep track of this
 particular data, defined by the unique values of the fields
 specified using the eventhdlrEventScope.

4.2. Data Description

 This section describes each of the classes defined in the Identity
 Extension PIB module.

4.2.1. IdentityEventHdlr Class
 This PRC is an extension of the EventHandler PRC. This extension
 illustrates the use of the EventHandler PRC concept for
 authentication usage. Instances of this PRC are provisioned by the
 PDP on the PEP to catch specific events that require authentication
 processing. This PRC references a group of eventHdlrAuthProtocol
 instances that define a set of Authentication mechanisms to use if
 an access event is caught by this event Handler. From its base class
 (Event Handler) this PRC also references a group of eventHdlrElement
 PRIs that contain the scope of the access event and specify the
 context data to send to the PDP when an access event is caught.

Internet Draft Binding Authentication to Provisioning March 2002

 The attributes of this class are:
 identityEventHdlrRequestAuth (TruthValue)
 Boolean flag, if set to 'true' requires authentication data

 to be sent in the Event Message sent to the PDP.

 identityEventHdlrAuthProtocol (TagReferenceId)
 References a group of identityHdlrAuthProtocol instances,
 each of which specifies an authentication mechanism.

4.2.2. EventHdlrAuthProtocol class

 This class allows a PDP to configure the set of authentication
 mechanisms that are allowed for users or devices that must
 authenticate in order to have access control policies assigned to
 them.

 The attributes of this class are:

 eventHdlrAuthProtocolId (InstanceId)
 Identifies this object

 eventHdlrAuthProtocolGroup (TagId)
 Represents a binding between an datapathEventHdlrTable
 instance and a list of eventHdlrAuthProtocolTable instances.

 eventHdlrAuthProtocolAuthMechanism (Enum)
 Specifies an authentication mechanism to be used in Event
 Messages triggered by the EventHandler referencing this
 EventHdlrAuthProtocol object. The value is from an
 enumerated list initially consisting of (PAP, CHAP, EAP-MD5,
 and EAP-TLS)

4.2.3. AuthExt class

 This is an abstract PRC. This PRC can be extended by authentication
 PRCs that contain attributes specific to that authentication
 protocol. An instance of the extended class is created by the PEP
 and sent to the PDP. The PDP may send information back to the PEP or
 may use the information to authenticate the PEP's Event Message.
 This PRC itself should not be instantiated.

 Typically this class and it's subclasses are included as part of an
 event message containing the Event class (Section 3.2.6.1).

 The data in this class is passed between the PDP and the client with
 little or no involvement of the PEP except to forward it in the
 appropriate AuthExt class instance. The PEP is not meant to store
 AuthExt objects. As such, this class, along with all its extending
 classes, is meant to be 'transient'. Its instances are temporary and
 are deleted by the PEP after a certain time or event. The PDP, in
 its decisions, must not refer to instances of this class that are

Internet Draft Binding Authentication to Provisioning March 2002

 sent by the PEP in its requests. Likewise, the PEP must not refer to
 instances sent by the PDP. Also, since instances are deleted, it is
 possible for InstanceIds to be reused.

 The AuthExt class is extended for each authentication mechanism
 supported. As a base class, it is never instantiated.

 The attributes of this class are:

 AuthExtId (InstanceId)
 identifies this object

4.2.4. UserAuthExt class
 This is a concrete PRC used to contain user authentication fields.
 This PRC extends the base PRC authExtEntry.

 The attributes of this class are:
 userAuthExtRealm (OCTET STRING)
 The user realm octet string.

 userAuthExtUsername (OCTET STRING)
 The Username octet string.

4.2.5. AuthExtResult class

 All authentication message sequences conclude with an authentication
 result message sent from the PDP to the PEP. This message is usually
 accompanied by one or more provisioning decisions associated with
 the authenticated identity. The AuthExtResult class extends the
 AuthExt class. It contains the Authentication result Boolean flag.

 The attributes that this class adds to the base class are:

 AuthExtSuccessful (TruthValue)
 A Boolean flag set to true if the authentication (via CHAP
 or PAP) was successful.

4.2.6. AuthEapReqExt and AuthEapRespExt classes

 The EAP messages are embedded in COPS by sending an instance of the
 authEapReqExt or authEapRespExt table, which each have an attribute
 (Specific) to encapsulate the appropriate EAP messages necessary for
 the authentication mechanism. The authEapReqExt table is owned and
 managed by the PEP, while the authEapReqExt table is owned and
 managed by the PDP. Put another way, the PDP generates authEapReqExt
 instances that it sends in Decision messages and the PEP generates
 authEapRespExt instances that it sends in Report messages. Since
 neither the PEP nor the PDP needs to maintain the messages

 permanently, the same instance of each class is used when more than
 one exchange is required in each direction.

Internet Draft Binding Authentication to Provisioning March 2002

 Since both AuthEapReqExt and AuthEapRespExt are extensions of the
 AuthExt class, they both inherit the attributes of AuthExt.

 AuthEapReXXExt table attributes Attribute type
 ------------------------------- --------------
 authExtId InstanceId
 authExtEvent ReferenceId
 authEapReXXExtSpecific OCTET STRING

 Figure 4.4: Data elements in AuthEapReqExt and AuthEapRespExt tables

 The AuthEapReXXExt class contains three attributes. The instanceId
 is used to uniquely define the instance in the table. However, since
 EAP messages are meant to be opaque, they should not be referenced.
 Because the purpose of the classes is to carry EAP messages and each
 message is transient instances of these tables are temporary and
 should not be referred to. The Event attribute points to the Event
 table entry for which EAP is being negotiated. The format of EAP
 packages being passed by the AuthEapReXXExt classes is described in
 [EAP].

4.2.7. AuthPapExtEntry class

 The PAP information is embedded in the PEP Event Message by sending
 an instance of the authPapExt table. Since the authPapExt table is
 an extension of the userAuthExt table, which is an extansion of the
 authExt table, the authPapExt inherits the attributes of these
 tables.

 AuthPapExt table attributes Attribute type
 --------------------------- --------------
 authExtId InstanceId
 authExtEvent ReferenceId
 authRealm OCTET STRING
 authUsername OCTET STRING
 authPapExtPwd OCTET STRING

 Figure 4.5: Atributes of the AuthPapExt table.

 The AuthPapExt contains five attributes. The instanceId is used to
 uniquely define the instance in the table. However, since the PAP
 password is sent to the PDP once and is needed by neither the PDP
 nor the PEP after the client is authenticated, the instance should

 not be referenced after it is used the first time. The Event
 attribute points to the Event table entry for which PAP is being
 negotiated.

 The result of the authentication for PAP is sent in the
 AuthExtResult table. Since the authExtResult table is an extension
 of the AuthExt table, it inherits the attributes of AuthExt.

Internet Draft Binding Authentication to Provisioning March 2002

 AuthExtResult table attributes Attribute type
 ------------------------------ --------------
 authExtId InstanceId
 authExtEvent ReferenceId
 authExtAuthSuccess Truth Value

 Figure 4.6: Atributes of the AuthExtResult table.

 The AuthExtResult is sent by the PDP to the PEP. If the
 authentication was successful and the PEP should from now on use the
 matchNext Prid to determine the next processing filter (the next
 component down the internal datapath in the PEP) for all traffic
 defined by the values of the parameters as set in the
 eventhdlrHandlerScope.

4.2.8. AuthChapExtEntry class

 The CHAP information is embedded in the Event Message by sending an
 instance of the authChapExt table. Since the authChapExt table is an
 extension of the userAuthExt table, which is an extansion of the
 authExt table, the authChapExt table inherits the attributes of
 these tables.

 AuthChapExt table attributes Attribute type
 ---------------------------- --------------
 authExtId InstanceId
 authExtEvent ReferenceId
 authRealm OCTET STRING
 authUsername OCTET STRING
 authChapExtId Unsigned32
 authChapExtChal OCTET STRING
 authChapExtResp OCTET STRING

 Figure 4.7: Data elements of the AuthChapExtEntry datastructure.

 The AuthChapExtId is generated by the PEP. The ID value is sent to

 the client. When the client endpoint (Peer) generates a CHAP
 response it includes the same ID, and the ID is then included in
 this attribute when it is sent to the PDP.

 The AuthChapExtEntry contains seven attributes. The instanceId is
 used to uniquely define the instance in the table. However, since
 the CHAP information is sent to the PDP once and is needed by
 neither the PDP nor the PEP after the client is authenticated, the
 instance should not be referenced after it is used the first time.
 The Event attribute points to the Event table entry for which PAP is
 being negotiated.

Internet Draft Binding Authentication to Provisioning March 2002

 The authChapExtChal attribute is the challenge generated by the PEP.
 The PDP may check the challenge to see if it is different from
 challenges used earlier. This to provides an increased level of
 security. The Response and the Id is taken from the CHAP message
 sent by the client and put into the AuthChapExtEntry by the PEP.

 The authChapExtResp is calculated by the client and forwarded by the
 PEP to the PDP.

5. Signal Handling

5.1 Functional Description

5.2 Data Description

Internet Draft Binding Authentication to Provisioning March 2002

6. Programmatic Interface Between Signal and Event Handling

 The programmatic interface between signal and event handling (Access
 Bind API) allows flexible implementation of signal handling
 mechanisms loosely coupled to the event handling capability provided
 by the Access Bind. This flexibility allows multiple different
 types of signaling technology be used and integrated using Access
 Bind.

6.1. Functional Description

 The Access Bind API consist of multiple phases of operation:
 The notification and specification of Event Handling needs by the
 signal handling mechanism. We call this signal handling
 Registration with event handling.
 The result of the Registration indicated by event handling of Access
 Bind.
 The indication by signal handling for event generation.
 The indication of event result by event handling.
 Signal handling state information notification.
 Registration session termination.

 Each of the above phases uses PRCs defined in the Access Bind
 Framework PIB and COPS-PR functionality.

 When the signaling mechanism initializes or realize it requires
 event handling assistance, it shall register with event handling
 using the EventHdlrReg() method. This acts as an indication to
 event handling what services signal handling need and can also
 indicate the capability of signal handling if necessary. These
 service requirement and capability are indicated using PRC
 definitions. Event handling uses these requirement and signal
 handling capability, together with event handling capability to
 generate the initial COPS REQ message that carry instances of the

 capability and limitation PRC as they are defined in [FRWKPIB].

 The Registration result is generated based on the COPS DEC message
 received by event handling. This sets up and creates corresponding
 entries in eventHandlerTable, eventHdlrElementTable,
 eventHdlrEventScopeTable, eventHdlrHandleScopeTable, and
 contextDataTable. Some of the content of these entries may be from
 information provided by signal handling during registration. Event
 handling shall use EventHdlrRegRsp() to provide the registration
 result to signal handling. The amount of information included in
 with the registration result is based on the functionality of the
 signal handling mechanism and may include provisioning information
 for the signal handling mechanism.

 After the registration is completed, the event handling is ready for
 event requests from signal handling. This is provided by the
 EventGenReq() method. The signal handling mechanism must provide
 the corresponding information necessary for the event generation.
 This includes, in the form of PRIs, information necessary for event

Internet Draft Binding Authentication to Provisioning March 2002

 handling and PDP to determine the event result. This may include
 information on what the event result signal handling is expecting
 for the specific event. The EventGenReq() shall cause event
 handling to create an entry in eventTable and send a COPS REQ
 message. Signal handling also have the responsibility for
 indicating how the COPS Request Handles are used and re-used for
 specific EventGenReq() invocation.

 Upon receive of COPS DEC message from PDP, event handling uses
 EventRslt() to communicate to signal handling the event result. The
 result can be as simple as a yes/no response or as complex as
 indicating in detail everything signal handling need to do to
 process the event result. The degree of complexity is determined by
 the signal handling mechanism. Event handling and this API in
 Access Bind are flexible to handle this spectrum of complexity. The
 event result can also affect event handling for integration of the
 dynamic nature of event and the possibly more static setup of data
 path usage.

 Signal handling is required to indicate to event handling its
 response for accepting/implementing the event result by using the
 EventStateUpd() method. This information provided by signal
 handling is again dependent on the signal handling mechanism and can
 be simple or complex. The EventStateUpd() method is also used by
 signal handling to indicate any asynchronous state changes or usage
 indications.

 When either signal handling or event handling wants to end the event

 handler session registration, the EventHdlrRegTerm() method is used.

6.2. Method Description

 EventHdlrReg(), called by signal handling
 Indicates to event handling the services needed by signal
 handling.

 Parameters may include:
 Signal Handling Type (COPS Client-Type).
 Signal Handling Capability/Limitation (as PIB PRCs).

 EventHdlrRegRsp(), called by event handling
 Indicates the success/failure of the registration. For
 successful registration, may provision the signal handler for
 event generation and other signal handling tasks.

 Parameters may include:
 Registration Success/Failure
 Signal handler provisioning PRCs

 EventGenReq(), called by signal handling.

Internet Draft Binding Authentication to Provisioning March 2002

 Event generation request. Used to request for service from
 event handling. Triggers the sending of COPS REQ message to
 PDP.

 Parameters may include:
 EventState, indicate create new or reuse existing event
 state (COPS Handle). When reuse, ID for existing event
 state.

 AssociationInfo, the association for this event state.
 This can be interface or service identification.

 SignalInfo, the signal handling specific information. The
 signaling information needed for correct event handling.

 EventRslt(), called by event handling Event result.
 Containing the information in a COPS DEC message for handling
 the event.

 Parameters may include:
 EventState, indicate for which event state (COPS Handle)
 this result is for.
 ResultInfo, contains signal handling specific information.

 EventStateUpd(), called by signal handling
 For Event State update due to signal handling info changes,
 including to indicate the Event Result have been implemented.
 This may also be used for usage feedback purposes. This
 triggers the generation of COPS Report message.

 Parameters may include:
 EventState, indicate for which event state (COPS Handle)
 this update is for.
 UpdateInfo, the state information being updated.

 EventStateTerm(), called by either signal or event handling
 Event state termination.
 Removes the event state.

 Parameters may include:
 EventState, indicate which event state to terminate.
 TermInfo, the termination information, e.g. reason code.

 EventHdlrRegTerm(), called by either signal or event handling
 Registration termination.
 Ends the current registration.

6.3. Access Bind API Example

 As an example, using RSVP as the signaling protocol for an unicast
 flow between sender S1 and receiver R1 through a RSVP and Policy
 aware router as in Figure 6.1.

Internet Draft Binding Authentication to Provisioning March 2002

 +-----------------+
 | |
 | PDP |
 | |
 +--------+--------+
 |
 |
 +--------+--------+
 | PEP |
 +-----------------+
 | |
 R1 ------------+if1 RSVP if2+------------ S1
 | |
 +-----------------+

 Figure 6.1: Signal/Event Handling API _ RSVP Example

 When the signaling protocol is RSVP, the API is used as follows:
 1. EventHdlrReg() called by Signal Handling
 RSVP Signal Handling indicates to the generic Event Handling
 its need to communicate to the PDP via COPS-PR.

 This will have Event Handling generate:
 COPS REQ msg containing PRCs:
 Framework PIB Capability/Limitation PRC for
 - Event Handler (eventHandler/HdlrElement/etc)
 - Signal Handler specific trigger filters
 - Signal Handler provisioning PRCs
 That indicate what signal handling needs from PDP

 2. EventHdlrRegRsp() called by Event Handling
 Indication of success/failure of Event Handler initialization.

 This is caused by the event handler receiving:
 A COPS DEC msg, and may include instances of PRCs that:
 - Provisions the Signal Handler for event generation.
 (i.e. eventHandler/HdlrElement/HdlrEventScope and RSVP
 Filter PRC instances)
 - Provisions the Signal Handler if supported.
 (i.e. enable RSVP multicast, refresh timers)

 3. EventGenReq() called by Signal Handling
 Event Generation Request.

 For RSVP, this is used as indication of PSB or RSB state
 changes, when receiving or about to send RSVP messages,
 requiring Policy Decisions.

 Parameters:

Internet Draft Binding Authentication to Provisioning March 2002

 EventState, indicate create new or reuse existing event
 state (COPS Handle). When reuse, ID for existing event
 state.
 AssociationInfo, the association for this event state. For
 RSVP this is the In/Out Interface identification.
 SignalInfo, the signal handling specific information. For
 RSVP, this contains PRCs for In/Out/Allocate Context,
 Path/ResV/PathErr/ResVErr signal message type, and the
 RSVP objects themselves (as carried by the COPS-RSVP
 ClientSI).

 This causes the sending of a COPS REQ message.

 4. EventRslt() called by Event Handling
 Event Result.
 For RSVP, this is the decision from the PDP for a previously
 generated event.

 Parameters:
 EventState, indicate for which event state (COPS Handle)
 this result is for.
 ResultInfo, contains the signal handling specific
 information. For RSVP, this contains PRCs for
 In/Out/Allocate Context, Path/ResV/PathErr/ResVErr signal
 message type, and the RSVP objects themselves (as carried
 by the COPS-RSVP ClientSI).

 5. EventStateUpd() called by Signal Handling
 For Event State update due to signal handling info changes. To
 indicate the Event Result have been implemented.
 For RSVP, this is used for generating the COPS Report message.

 Parameters:
 EventState, indicate for which event state (COPS Handle)
 this update is for.
 UpdateInfo, the state information being updated. For RSVP,
 used to indicate report type.

 6. EventTerm() called by either Signal or Event Handling
 Event Terminiation.
 Removes the Event State.

 Parameters:
 EventState, indicate which event state is to be terminated.
 TermInfo, termination information. For RSVP, reason code.

Internet Draft Binding Authentication to Provisioning March 2002

7. Message Types

 All PIB messages have some form of transactional semantics. Most all
 transactions consist of requests and responses. Typical provisioning
 PIBs have the PDP sending a provisioning decision to the PEP and the
 PEP responding with a success or fail. This PIB uses this paradigm
 in some cases, but it also uses a paradigm where the PEP initiates
 an event and the PDP responds with a success or fail. The specific

 use of this paradigm is with the PEP Access Event Message, which is
 triggered by a PEP event and requires authentication success or
 failure semantics as part of the Provisioning Decision. This section
 discusses both paradigms and how the various classes defined in
 sections 3 and 4 are combined to form the various message
 interactions described in sections 2, 3 and 4.

 Each message description in this section will include the purpose of
 the message, the COPS-PR message type, the direction of the message,
 and the class instances typically found in the message.

7.1. Event Handler Provisioning Decisions

 The Event Handler Provisioning Decision message is a COPS-PR
 Decision message used by the PDP to provision each Event Handler in
 the PEP. It is likely to be a piece of a larger Decision message
 that provisions other data path components that occur either before
 or after the Event Handler in the data path. However, it could also
 be sent as a part of unrelated data path or other provisioning
 components. Event Handler provisioning typically includes the
 EventHandler class, the EventHdlrElement class, the
 EventHdlrEventScope class, often the EventHdlrHandleScope class and
 the ContextData class. An optional set of EventHdlrAuthProtocol
 class instances may be sent if an IdentityEventHdlr object is set up
 for Access Event Messages.

 Because the EventHdlrElement, ContextData, EventHdlrEventScope, and
 the EventHdlrHandleScope classes all describe configuration details
 of the EventHandler, any of these class instances may be shared by
 multiple EventHandler instances. Therefore, in many cases, an
 EventHandler Provisioning Decision will contain only an EventHandler
 that references instances of the other classes defined in previous
 Provisioning Decisions. In addition, these classes can also be
 provisioned individually in anticipation of being applied to an
 EventHandler. However, because there is a relationship between the
 EventHandler and EventHdlrElement classes, there is an order
 dependency between the classes. For instance, an EventHdlrEventScope
 must be provisioned at the same time or before an EventHdlrElement
 making use of the EventHdlrEventScope. EventHdlrElement, ContextData
 and data path class instances referenced by an EventHandler must be
 provisioned at the same time or before the EventHandler is
 provisioned.

Internet Draft Binding Authentication to Provisioning March 2002

 When the PEP receives an EventHandler Provisioning Decision, it MUST
 always respond with a Provisioning Report indicating success or
 failure.

 Note that additional EventHdlrElements can simply be added to an
 existing EventHandler by using the TagId (group identifier) for the
 EventHandler to which the element is to be added. Additional
 EventHdlrEventScope or EventHdlrHandleScope instances can be added
 similarly by adding PRIs with the TagId value of the group these
 instances are to be added to. This allows incremental updates to be
 made to the Event Handlers.

7.2. Provisioning Report

 A report MUST follow all provisioning decisions described in section
7.1. This report may not have any class instances in it. However, it

 explicitly notifies the PDP that the provisioning was successful or
 whether it failed. If many structures were simultaneously
 provisioned in the Provisioning Decision and a failure occurred,
 none of the class instances will be accepted by the PEP. Hence it is
 possible that subsequent Provisioning Decisions occur with a smaller
 subset of the class instances or an alternative set of class
 instances that can satisfy the service policies defined in the PDP.

 7.3. PEP Event Message
 A PEP Event Message is generated by the PEP to indicate that a new
 class of traffic has been identified by the Event Handler. This
 Event Message possibly uses a new COPS Request Handle. The decision
 to use a new COPS Request Handle or reuse an existing Handle is
 based on the EventHdlrHandleScope information configured in the
 Event Handler. The Handle Scope information is a set of criteria
 that is protocol specific, and specifies the set of fields in the
 protocol that the Event Handler is sensitive towards. The PEP Event
 Message is essentially a COPS-PR Request message. The PEP Event
 Message MUST always include an instance of the Event class. This
 Event instance references the EventHandlerElement instance and
 EventHandler instance that caught the event. This allows the PDP to
 identify events belonging to each Event Handler. Other Classes that
 may be a part of a PEP Event Message include one or more instances
 of protocol specific Context Data and Interface data classes and
 optionally an instance of one of the Authentication Extension
 classes (for example, if the Event is an access event).

 When authentication protocols such as PAP or CHAP are in use, the
 PIB assumes that the UserId, Challenge, and Password will all be
 determined by the PEP prior to generating the PEP Access Event
 Message. EAP is an exception to this rule because EAP assumes a
 direct negotiation between the Endpoint and the Authentication
 server. For EAP, it is assumed that the Endpoint generates a
 response to the EAP Identity Request message before the PEP sends
 the Access Event Message. This allows the PEP to fill in the
 Username and Realm in the UserAuthExt table. However, for this
 scenario, it is also assumed that the PEP Access Event Message will

Internet Draft Binding Authentication to Provisioning March 2002

 include the EAP Identity Response in the authEapRespExtSpecific
 attribute of the AuthEapRespExtEntry class. Subsequent EAP
 negotiation will be performed with the Opaque Decision and Opaque
 Report message types. When the negotiation is complete the PDP sends
 a Provisioning Decision message (that includes an instance of the
 AuthExtResult class specifying success or failure). Note that all
 interactions resulting from a given Event Message (including
 authentication negotiation) are performed within the context of a
 single COPS Request Handle. The COPS Request Handle provides an
 independent dialog between the PDP and the PEP to fully process an
 Access Event Message in a synchronous way.

7.3. PDP Provisioning Decision

 When the PDP has all the necessary information to determine what
 policies to provision for the event that was generated by the PEP,
 and it has completed any intermediate data path provisioning that
 the event may be dependent on, the PDP SHOULD generate a PDP
 Provisioning Decision message. The PDP Provisioning Decision message
 only contains the instances of the classes the PDP wants to
 configure as a result of the event. In addition to this message the
 PDP MAY also send unsolicited Provisioning responses on other COPS
 handles to add policies that may be shared across events.

 The PEP is the only entity that knows when traffic is no longer
 flowing through a particular session (either because of a timer
 expiring or because of a physical link termination). Therefore the
 lifetime of a COPS Request handle is always controlled by the PEP.
 The PDP MAY advise the PEP that the Handle is no longer valid via a
 provisioning update. However, the ultimate dispensation of the
 Request Handle and the associated tables are always determined by
 the PEP. The PDP MAY also indicate that a traffic flow may no longer
 have access to resources by changing the data path to drop packets
 arriving for that traffic flow. Since the PDP can modify the data
 path such that all packets for the flow will be dropped, both
 alternatives achieve the same semantics. Since a COPS-PR
 Provisioning Decision is used, the PEP MUST send a report back to
 the PDP to confirm that there are no problems with the data path
 change requested by the PDP.

 The PEP MAY delete the COPS Request Handle simply by notifying the
 PDP via a Delete Request Message that the provisioned policies for
 that Handle are no longer valid.

 When a COPS Request Handle is removed, all contained class instances
 MUST be removed as well. Typically these will include header and
 authentication table instances.

7.4. PDP fetching Event-specific ContextData

 The ContextData class MAY be specified either during the
 configuration of the EventHandler to indicate what context data
 should be sent with each PEP Event Message or it MAY be used by the

Internet Draft Binding Authentication to Provisioning March 2002

 PDP to get additional context data for an event after it receives an
 Event Message. In the latter case, the PDP MAY send a solicited
 decision that specifies ContextData for the last Event Message
 received on the same Request Handle. The ContextData message
 contains PRC names to retrieve the specific information. This
 information may be needed to either authorize a pending event,
 monitor a set of policies bound to the handle or get more context
 information regarding the event. Since each ContextData class only
 retrieves a specific subset of the information regarding the event
 within the context of a Request Handle, a single request message MAY
 contain multiple instances of the ContextData class, thereby
 supporting the retrieval of as much event-specific information as
 needed in a single message.

 The COPS-PR message type used by the PDP to fetch Event-specific
 ContextData is a Provisioning Decision message. When the PEP
 receives a message from the PDP asking for Event-specific
 ContextData, it MUST send an Event-specific ContextData message in a
 COPS Request message back to the PDP. This request message MUST use
 the same COPS Request Handle. Since the TagId in the ContextData
 class is only used when the ContextData class is configured with an
 EventHandler, the TagId attribute should not be set when the class
 is used in an Event-specific ContextData Fetch.

 The updated Event-specific ContextData Request from the PEP SHOULD
 contain a set of Header and Interface context data class instances.
 Since the updated request uses the same Request Handle, the PDP
 knows which event is being updated by more context data. Using PDP
 Fetched ContextData messages precludes the PDP from provisioning the
 PEP to allow multiple simultaneous Event Messages outstanding on the
 same Handle.

7.5. Event-specific ContextData Response

 The Event-specific ContextData Response message is used to report
 specific interface and/or packet header information back to the PDP.
 This message is implemented as a COPS-PR Report message. A Report
 message MAY include any number of Interface or Header table
 instances. However, because Reference Identifiers to the Event table
 are not specified in the header or interface data tables, a Report
 message may contain header and interface data for one and only one
 Event or the most recent Event Message received on that specific

 COPS Request Handle.

7.6. Opaque Decision

 An Opaque Decision message is used to send specialized
 authentication messages from the PDP to the PEP. Specifically, this
 type of COPS-PR Decision message is used to pass EAP request
 messages via authEapReqExt table instances.

7.7. Opaque Report

Internet Draft Binding Authentication to Provisioning March 2002

 An Opaque Report message is used to send specialized authentication
 messages from the PEP to the PDP. Specifically, this type of COPS-PR
 Report message is used to pass EAP response messages via
 authEapRespExt table instances.

7.8. Combining Data Structures in Messages

 In the most degenerate case, the PDP provisions the EventHandler to
 only send the Event object when an event occurs. The PDP then
 requests Event-specific Context Data that the PEP will respond to
 with a Report Message. In addition, if EAP authentication is
 required, a sequence of Opaque Decisions and Opaque Reports are also
 required. Finally, if new data paths need to be provisioned
 (including specialized EventHandlers), normal Provisioning Decision
 and Report messages must also be exchanged. Note that these
 provisioning decisions may be on separate COPS Request Handles.

 In some environments, for example authorization, it is essential to
 complete the transaction as quickly as possible. The way to
 accelerate this process is to combine as many messages into a single
 message as possible.

Internet Draft Binding Authentication to Provisioning March 2002

8. Access Bind Usage Examples

 Following examples on how the Access Bind PIB PRCs are used provide
 some additional clarifications on the PRC definitions. But they by
 no means indicate all the PRCs needed for the application given by
 the example. And providing these examples here does not indicate
 where the application specific PRCs should be defined. These
 examples are provided only to assist better and easier understanding
 of the Access Bind PIB.

8.1 Wireless LAN (802.11 Access Point) Usage Example

 A wireless LAN Access Point (AP) is pictured in Figure 7.1.1 below.
 This is based roughly on 802.11/802.1x concepts. The following is
 meant to give an indication of how the Access Bind PIB could be
 included in such an AP. Note that this is an exercise to see if the
 concepts fit together, not a proposal for exactly how they would
 fit.

 The AP shown below includes a _Service Manager_ (SM), which
 interfaces with the wireless data interface. For incoming wireless
 data it separates management frames and level 2 frames. In the
 following we will deal particularly with Associate and ReAssociate
 Management Frames.

 The SM (as interpreted here) takes Associate and Reassociate
 management frames and creates a temporary Port Access Entity PAE for
 the association. The PAE must then be authenticated and provisioned
 by an external Authentication Server (AS). Communication with the
 AS is assumed in this model to be mediated by a Policy Enforcement
 Point (PEP, which is part of the AP. The AS acts as a Policy
 Decision Point (PDP).

8.1.1 Wireless LAN Access Event Handler Provisioning

 In a Access PIB implementation the figure shows the SM sending a REQ
 at boot time to tell the AS that it is up and what capabilities it
 has. The PDP returns a configuration to support the SM. In
 particular, this configuration includes provisioning information for
 how to instantiate a PAE and what trigger information should be sent
 by the instantiated PAE to the PDP.
 The Event Handler Provisioning is supported by the Access Bind PIB
 by using the following PRCs in the decision (DEC) message:
 - eventHandler
 - eventhdlrElement
 - eventhdlrEventScope

 With eventhdlrEventScopeFilter indicating how the signaling protocol
 is recognized.

8.1.2 Wireless LAN Access Event Handling

Internet Draft Binding Authentication to Provisioning March 2002

 When an event (here a Associate or ReAssociate) is detected the
 SM/event handler instantiates and initializes a PAE. The initial
 PAE instance includes an access port which splits internally into a
 controlled and uncontrolled port.

 The controlled port is what is used to pass data from the access
 port to the external Ethernet. It is controlled in that there is a
 switch that must be turned on by the authenticator before data can
 flow. It may also have QoS parameters that can be controlled by the
 AS. In its initial state the controlled port drops all incoming
 frames.

 The uncontrolled port connects to an internal authenticator. The
 authenticator creates the initial trigger. In some cases it may
 need to send an EAP frame back to the Station prior to sending the
 initial trigger, and other times it may have enough information from
 the initial Associate or ReAssociate to create the trigger
 immediately.

 The Access Event Handling is supported by the Access Bind PIB.

 The PEP creates an instance of event PRC, with eventEventhdlr
 referencing the eventHandler, and eventCasue referencing
 eventhdlrElement provisioned in Access Event Handler Provisioning
 above.

 This event PRI will be sent by the PEP to the PDP in a REQ using a
 new COPS Request Handle. This REQ message may contain additional

 PRIs as dictated by how a specific signaling protocol should be
 handled.

8.1.3 Wireless LAN Access Event Decision

 The AS/PDP decides whether the trigger contains enough information
 to make an authentication decision. If not, it may initiate an EAP
 dialog through the authenticatior to the STATION.

 Once it has enough information the PDP makes a decision and sends a
 Provisioning message to the AP that sets QoS parameters and _closes_
 the switch on the controlled port.

 The decision (DEC) message sent by the PDP to the PEP will be using
 the same COPS Request Handle created in Access Event Handling above.
 The content (PRCs) carried by the DEC message will depend on the
 functionality need to be provided. It may be command to _close_ the
 switch on the controlled port, it may contain QoS parameters. This
 step is very similar to, if not the same as, provisioning using the
 DiffServ PIB.

8.2 RSVP Usage Example

Internet Draft Binding Authentication to Provisioning March 2002

 RSVP is a signaling protocol used for a variety of purposes
 including some call setup applications and MPLS label distribution
 for traffic engineering. RSVP uses a number of message types to
 negotiate both the hop-by-hop path and the service requirements
 between a sender and one or more receivers.

 Some RSVP messages contain information that helps determine whether
 the reservation should be accepted or not. However, the router may
 not equipped with sufficient context to take advantage of the
 information in determining whether to accept or reject an RSVP
 message. COPS was designed to pass specific RSVP messages to a PDP
 (Policy Server). The PDP could then analyze the RSVP message and
 usually determine whether to accept or reject the reservation.

 With the advent of COPS-PR, it became possible to construct more
 sophisticated policies beyond simple accept or reject messages.
 However, these more sophisticated policies were targeted for
 DiffServ rather than RSVP. With the definition of the AccessBind
 PIB, it becomes possible to provision a router not only to specify
 which RSVP messages should be sent to the PDP, but also to use
 existing PIBs to specify how the QoS requirements in a RSVP
 reservation should be supported in a specific router implementation.

 Two types RSVP specific structures are added to AccessBind to

 support RSVP. In order to provision the EventHandler class to detect
 RSVP messages, a number of filter classes must be defined. These
 filter classes are general purpose and could be used both by
 EventHandlers and by Classifiers although the semantics of the
 filter class are somewhat different for each. The other group of
 classes is the Context Data classes that pass some or all parts of
 the RSVP message to the PDP when the EventHandler generates an
 event.

 Because COPS assumes that all RSVP message objects are sent to the
 PDP, each well known RSVP object will be assigned a unique Context
 Data PRC identifier and the rest of the RSVP object's attributes
 will be part of the PIB class in the same order and format as in the
 original RSVP object. The actual PRC mappings for these objects can
 be found in the PIB definition. For details on the operation of
 these objects refer to [RSVP] and [INTSERV]. In addition, a PIB
 class is also defined to support unrecognized RSVP objects.

 A Context Data PIB class is also specified to describe the relevant
 RSVP common header attributes. The attributes in the common header
 that will be specified are:
 1. The RSVP MsgType attribute, which distinguishes a PATH message
 from a RESV or PATHerr message.
 2. The RSVP Flags attribute is used to indicate whether Refresh
 Reduction is possible or not.
 3. The Send TTL (Time To Live) attribute, provides a easy
 mechanism for determining whether non-RSVP hops have been
 traversed by comparing this field with the IP TTL field.
 4. The In Interface (if known)

Internet Draft Binding Authentication to Provisioning March 2002

 5. The Out Interface (if known)

 A special context data class, called AllRSVPMsgObjects, is defined
 to simplify the process of specifying the set of RSVP objects to be
 included with a COPS-PR Event message. Rather than explicitly
 specifying every context data class that should be included with the
 Event message, this class (when referenced by PRC through the
 ContextDataIfElement attibute of the ContextData class) indicates
 that all RSVP objects, including the common header class described
 above, should be encapsulated and propagated to the PDP. All Refresh
 Reduction related RSVP objects (MESSAGE_ID, MESSAGE_ID_ACK, and
 MESSAGE_ID_NACK) are explicitly excluded from being sent to the PDP
 when the AllRSVPMessageObjects attribute is set to True. These
 objects are specifically for purpose of synchronizing state between
 RSVP hops and bears no value in the policy decision process.
 However, a context data PIB object is defined for each of these
 classes in the event that a PDP determines that it needs these
 objects.

 The EventScope classes have been specified to roughly follow the
 same mappings as the Context Data PIB classes. However, since the
 typical criteria for outsourcing a RSVP message are usually rather
 simple, only a subset of the RSVP objects require mappings to COPS-
 PR filter classes. If some implementations require support for
 filtering additional objects, it is trivial to extend the filters.
 Note that the filters bound to EventHandlers determine whether a
 matching packet should generate an Event or not.

 The RSVP objects that will be mapped to filters in this
 specification will include the RSVP common header, the RSVP Dclass
 object, the RSVP session object, and the RSVP style object. The last
 three are used to describe various characteristics of the data
 traffic for which the reservation is being performed. Since the
 filters can describe both AND and OR semantics, the challenge is in
 organizing the fields of the objects to simplify filter expressions
 as much as possible. Since this is the primary goal the appropriate
 attributes of each object have been combined into a single PIB
 class. The RSVP filter PIB class contains the following attributes.
 The fields marked with asterisks will be represented as masked
 values (for IP addresses) and ranges (for UDP/TCP ports) to add
 flexibility.

 RSVP MsgType
 RSVP Flags
 Send TTL
 DCLASS DSCP
 Session Dest IP*
 Session Protocol
 Session Dest Port*
 Filter Src IP*
 Filter Src Port*
 Style value

Internet Draft Binding Authentication to Provisioning March 2002

 This paper does not address reservation specification (TSPEC and
 FLOWSPEC) modifications that depend on the RSVP refresh model. RSVP
 refresh reduction [REFRESH] is assumed as a simplifying assumption
 for this application of the Access Bind PIB. However, if support for
 traditional RSVP refresh is desirable, it can be supported in this
 model by adding explicit filters for the RSVP FlowSpec and RSVP
 Tspec objects as specified in [IntServ].

 In order to support RSVP outsourcing with the AccessBind PIB the
 Event Handler must be provisioned with the appropriate settings to
 recognize specific RSVP messages, create new request handles, and
 generate events (outsourcing requests). After we have described how

 this is accomplished, we will show the actual message flows involved
 in the RSVP outsourcing process.

 The specific PIB classes that need to be provisioned are the
 EventHandler, EventhdlrElemenet, ContextData, EventhdlrHandleScope,
 and EventhdlrEventScope. The EventHandler provides a termination
 point for processing RSVP messages. As RSVP messages arrive, they
 are directed to the EventHandler by a classifier. In this scenario
 the EventHandler as behaving as a termination point for all RSVP
 messages. Hence, the EventHandler class is provisioned with no data
 path elements following the EventHandler. Therefore, the attribute
 eventhdlrNonMatchNext is left unassigned.

 Alternatively, the EventHandler can also be provisioned such that
 RSVP and non-RSVP packets alike pass through the EventHandler, but
 only RSVP messages invoke events. In this case, the attribute
 eventhdlrNonMatchNext would specify the next data path element that
 should process any packets not matching the EventHandler's criteria
 (non RSVP packets).

 The EventhdlrElement class identifies a specific category of events.
 Suppose one wanted to generate different Events for PATH messages
 and RESV messages. This could be done by configuring one
 EventhdlrElement to only match PATH messages and another
 EventhdlrElement to only match RESV messages. Event messages contain
 a reference to the EventhdlrElement that generated the event.
 Therefore, it is possible to generate different events from the same
 EventHandler.

 The EventhdlrElement contains two main semantics. First, it
 specifies the criteria for creating new Request Handles. Each
 Request Handle constitutes a unique dialog between the PEP and PDP.
 The second semantic is the criteria for generating events. In some
 situations, it is desirable to generate a one-time event and not
 generate events when similar messages are seen later. A good example
 of this is RSVP Refresh messages. When RSVP Refresh messages are
 used to indicate that the reservation is still active, generating
 events for each message is inappropriate. In contrast, when Refresh
 Reduction [Refresh] is active, only reservation changes are
 propagated as full RSVP messages. In this situation, every message
 may constitute an Event.

Internet Draft Binding Authentication to Provisioning March 2002

 With RSVP it is usually appropriate to assign a unique COPS-PR
 Request Handle for every new RSVP session. Since EventHandlers are
 typically bound to an interface data path, the RSVP Path message and
 the Resv message will be processed on different data paths.
 Therefore, unique events and unique COPS-PR Request Handles will

 typically be assigned for each message type. However, this is not
 significant since the provisioning objectives for Path messages are
 different from the provisioning objectives for Resv messages. For
 RSVP, the EventhdlrElement will use the Tag Reference
 EventhdlrElementHandleScope to describe the criteria for creating a
 unique handle. Each EventhdlrHandleScope object will contain
 pointers to the RSVP filter objects mentioned earlier to describe
 the various fields whose combination of values constitute a unique
 handle.

 Typically, the Filter class used is the RSVP filter class. For this
 class, the session attributes (SessionDestIP, SessionDestPort, and
 SessionProtocol) will be assigned wildcard values and all other
 attributes assigned to NULL to indicate that any combination of
 these attributes constitutes a unique handle. When various messages
 arrive that require the generation of an event and that have a newly
 unique combination of the filter attribute values, a new request
 handle will be assigned. When a message arrives for which a previous
 message has already generated a handle, that handle is used to pass
 the appropriate event to the PDP.

 The other class pointed to by the EventhdlrElement is the
 EventhdlrEventScope. This class describes the criteria for
 generating an event. Typically, the MsgType attribute in conjunction
 with the session attributes will be wildcarded and the other fields
 assigned to NULL to indicate that all RSVP messages should be sent
 to the PDP. This describes the criteria for an event: Every time a
 unique combination of all these attributes occurs, generate a new
 event.

 In many cases it may make sense to assign the filter attributes
 (SessionDestIP and SessionDestPort) to the EventhdlrEventScope
 and/or EventhdlrHandleScope class. This would be done when it is
 desirable to notify of the PDP of the need to allocate additional
 resources to a set of reserved flows going to the same destination
 but originating from different sources.

 A new COPS-PR Request Handle MUST only be created when a valid event
 occurs. If a packet matches the criteria described by
 EventhdlrHandleScope but does not match any EventhdlrEventScope
 criteria, a COPS-PR Request Handle must not be generated.

 This version of the paper only describes how RSVP can be supported
 when Refresh Reduction [REFRESH] is being used. The complexity of
 addressing the distinction between RSVP refresh messages and
 reservation update messages is too great to be addressed in this
 version. Any RSVP message containing bundle messages (MsgType 12)

Internet Draft Binding Authentication to Provisioning March 2002

 MUST be decomposed and each message in the bundle must be
 iteratively processed through the EventHandler as if individual RSVP
 messages were generated from the RSVP neighbor. Whether
 EventhdlrMatchNext applies to the individual sub-messages or the
 bundled message is beyond the scope of this paper.

 Irrespective of whether Refresh Reduction is in use or not, the RSVP
 daemon is responsible for aging out reservations that are no longer
 valid. As with traditional COPS, when a reservation is aged out, the
 RSVP daemon or other entity responsible for aging out reservations
 MUST take responsibility for deleting COPS Request Handles. This
 allows the PDP to clean up state associated with the reservation and
 ensures the proper removal of any policies in the PEP specifically
 assigned through the COPS Request Handle.

 Figure 7.1 shows how the various Event Handler objects would be
 provisioned in a router to ensure that an event is generated for
 every RSVP message.

Internet Draft Binding Authentication to Provisioning March 2002

 +-------------------+
 |EventHandler |
 | Id=EH1 |
 | NonMatchNext=<NUL>|
 | ElementRef=(Elem1)|
 +-------------+-----+
 |
 V
 +------------------+ +-----------------+
EH_Element		ContextData
Id=Elem1		Id=CD1
MatchNext=<NUL>		DataGroup=RSVP
Criteria=AllMatch		IfElement=(PRC)-+--AllRSVPMsgObjects
Context=(RSVP)---+--->	DataEncap=0	
EventScope=(MSG)-+--+ +-----------------+		
HandleScope=(HD)		
 +-------------+----+ +-------------------+
 | | |
 | | +-------------+ | +-------------+
 | +->|EventScope | +-->|EventScope |
 | | Id=Ev1 | | Id=Ev2 |
 | | Group=MSG | | Group=MSG |
 | | Filter=(F1)-+--+ | Filter=(R1)-+--+
 | | Precedence=1| | | Precedence=1| |
 | | ChangeFlag=?| | | ChangeFlag=?| |
 | +-------------+ | +-------------+ |
 | | |
 | +-------------+ V V
 | |HandleScope | +-------------+ +------------+
 +->| Id=Hd1 | +->|IpFilter | |RsvpFilter |
 | | Group=HD | | | Id=F1 | | Id=R1 |
 | | Filter=(F1)-+--+ | Protocol=46 | | DestIP=* |
 | | Precedence=1| +-------------+ | Protocol=* |
 | +-------------+ | DestPort=* |
 | +------------+ | SrcIP=* |
 | +-------------+ +->|RsvpFilter | | SrcPort=*
 | |HandleScope | | | Id=R2 | +------------+
 +->| Id=Hd2 | | | DestIP=* |
 | Group=HD | | | Protocol=* |
 | Filter=(R2)-+--+ | DestPort=* |
 | Precedence=1| +------------+
 +-------------+
 Fig 8.1: Representation of an Event Handler for RSVP

 Figure 8.1 represents the set of PIB classes that would be
 provisioned in order to indicate to the PEP that RSVP messages
 should generate unique events for any combination of filters or
 sessions. However, all messages using the same unique session will

 share the same COPS Request Handle.

 When an RSVP message arrives at the PEP with an new combination of
 session attribute values, the PEP will create a new COPS Request
 Handle. Following this, an Event message will be generated

Internet Draft Binding Authentication to Provisioning March 2002

 containing an Event object with references to EventHandler EH1 and
 EventhdlrElement Elem1. These two pieces of information allow the
 PDP to determine which provisioned EventHandler and which specific
 event type generated the event. In addition the Event message also
 contains a set of Context Data objects. Since the AllRSVPMsgObjects
 class was specified in the ContextData class, all RSVP objects are
 encapsulated in COPS-PR PIB classes and sent to the PDP in the Event
 message.

 When the PDP receives the Event message, it determines what policies
 to provision in the PEP. Suppose the RSVP message was a reservation
 request for a controlled load service with a bandwidth allocation of
 1 Mbps and session object contained (SessionDestIP = 1.2.3.4,
 SessionProtocol=UDP, SessionDestPort=7788). If the router's
 implementation only supported 4 queues with respective bandwidth
 allocations of 20Mb, 40Mb, 30Mb, and 10Mb, the PDP may decide that
 allocating the reservation to queue 3 can satisfy the reservation
 request. Hence, a PDP might generate a provisioning policy as a
 result of the PEP's Event message that creates a new Classifier
 Element and Filter that matches all 1.2.3.4:7788 traffic and directs
 it to queue 3.

Internet Draft Binding Authentication to Provisioning March 2002

9. The AccessBind PIB Module

 --
 -- The AccessBind PIB Module
 --

 ACCESSBIND-PIB PIB-DEFINITIONS ::= BEGIN

 IMPORTS
 Unsigned32, Integer32, MODULE-IDENTITY,
 MODULE-COMPLIANCE, OBJECT-TYPE, OBJECT-GROUP, pib
 FROM COPS-PR-SPPI
 InstanceId, Prid
 FROM COPS-PR-SPPI-TC
 RoleCombination, PrcIdentifierOid
 FROM FRAMEWORK-TC-PIB
 InetAddress, InetAddressType
 FROM INET-ADDRESS-MIB
 TruthValue, PhysAddress
 FROM SNMPv2-TC;

 accessBindPib MODULE-IDENTITY
 SUBJECT-CATEGORIES { all }
 LAST-UPDATED "200202202002Z"
 ORGANIZATION "IETF RAP WG"
 CONTACT-INFO "
 Walter Weiss
 Ellacoya Networks
 7 Henry Clay Drive
 Merrimack, NH 03054
 Phone: 603-879-7364
 E-mail: wweiss@ellacoya.com
 "
 DESCRIPTION
 "A PIB module containing the set of classes to
 configure generic event handlers, and outsource
 events as they occur. One application of this PIB is
 to bind authorization and authentication to COPS
 Provisioning."

 ::= { pib 4 } -- xxx to be assigned by IANA

 --
 -- The branch OIDs in the AccessBind PIB
 --

 eventClasses OBJECT IDENTIFIER ::= { accessBindPib 1 }
 eventHdlrClasses OBJECT IDENTIFIER ::= { accessBindPib 2 }
 contextClasses OBJECT IDENTIFIER ::= { accessBindPib 3 }

Internet Draft Binding Authentication to Provisioning March 2002

 --
 -- Event Table
 --
 -- Instances of this table represent events that occurred at
 -- the PEP. The events reference the event handler instance
 -- and the specific event handler element that the event was
 -- caught by.
 eventTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "An instance of this class is created by the PEP and sent
 to the PDP. As a result of this event, The PDP may send
 additional unsolicited decisions to the PEP after
 sending the mandatory solicited decision for the event."

 ::= { eventClasses 1 }

 eventEntry OBJECT-TYPE
 SYNTAX EventEntry
 STATUS current
 DESCRIPTION
 "An instance of the eventTable PRC."

 PIB-INDEX { eventId }
 UNIQUENESS { }

 ::= { eventTable 1 }

 EventEntry ::= SEQUENCE {
 eventId InstanceId,
 eventEventHdlr ReferenceId,
 eventCause ReferenceId

 }

 eventId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify this event."

 ::= { eventEntry 1 }

 eventEventHdlr OBJECT-TYPE
 SYNTAX ReferenceId
 PIB-REFERENCES { frwkReferenceEntry }
 STATUS current
 DESCRIPTION
 "This attribute allows a PEP to indicate to the PDP that
 this event was generated due to the referenced Event
 Handler. This attribute references an event handler via
 the indirection PRC frwkReference, since the event

Internet Draft Binding Authentication to Provisioning March 2002

 handler and event could potentially belong to a different
 PIB contexts."

 ::= { eventEntry 2 }

 eventCause OBJECT-TYPE
 SYNTAX ReferenceId
 PIB-REFERENCES { frwkReferenceEntry }
 STATUS current
 DESCRIPTION
 "This attribute references the specific instance in a
 group of event Handler elements belonging to an event
 Handler that resulted in this event. This attribute
 references a specific event handler element via the
 indirection PRC frwkReference, since the event handler
 element and event could potentially belong to a different
 PIB contexts."

 ::= { eventEntry 3 }

 --
 -- EventHandler Table
 --
 -- Instances of this PRC are provisioned by the PDP on the PEP
 -- to catch specific events. The Event Handlers reference a

 -- group of eventHdlrElement PRIs that contain the scope of
 -- the event and specify the context data to send to the PDP
 -- when an event is caught.

 eventHandlerTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventHandlerEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "The eventHandlerTable specifies for what events the PEP
 should send a request to the PDP. As a result of this
 request, the PDP may send configuration changes to the
 PEP. An instance of this class defines the circumstances
 for generating a request, and provides the means for
 specifying the contents of the PEP Request. Hence, the
 eventHandlerTable can be said to create eventTable
 entries. "

 ::= { eventHdlrClasses 1 }

 eventHandlerEntry OBJECT-TYPE
 SYNTAX EventHandlerEntry
 STATUS current
 DESCRIPTION

Internet Draft Binding Authentication to Provisioning March 2002

 "eventTable entry."
 PIB-INDEX { eventHandlerId }
 UNIQUENESS { eventHandlerElements,
 eventHandlerNonMatchNext
 }

 ::= { eventHandlerTable 1}

 EventHandlerEntry ::= SEQUENCE {
 eventHandlerId InstanceId,
 eventHandlerElements TagReferenceId,
 eventHandlerNonMatchNext Prid
 }

 eventHandlerId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the eventHandlerTable class."

 ::= { eventHandlerEntry 1}

 eventHandlerElements OBJECT-TYPE

 SYNTAX TagReferenceId
 PIB-TAG { eventHdlrElementGrpId }
 STATUS current
 DESCRIPTION
 "A reference to a group of eventHdlrElement instances,
 each of which determines the scope (criteria for
 generating a new request) and what context information
 to send in a request."

 ::= { eventHandlerEntry 2}

 eventHandlerNonMatchNext OBJECT-TYPE
 SYNTAX Prid
 STATUS current
 DESCRIPTION
 "The data path for 'out of scope' traffic."

 ::= { eventHandlerEntry 3}

 --
 -- EventHdlrElement Table
 --
 -- Each Instance of this PRC belongs to a group of
 -- eventHdlrElement PRIs. The group is identified by the
 -- eventHdlrElementGrpId attribute. These are provisioned by
 -- the PDP on the PEP to catch specific events. This PRC
 -- contain the scope of the event and specify the context data
 -- type to send to the PDP when an event is caught.

Internet Draft Binding Authentication to Provisioning March 2002

 eventHdlrElementTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventHdlrElementEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "The eventHdlrElementTable specifies a single eventHdlr
 element's scope via a reference to a group of filters and
 the context data type and encapsulation meta-information
 that the PEP needs to send an event notification to the
 PDP."

 ::= { eventHdlrClasses 2 }

 eventHdlrElementEntry OBJECT-TYPE
 SYNTAX EventHdlrElementEntry
 STATUS current
 DESCRIPTION
 "eventTable entry."

 PIB-INDEX { eventHdlrElementId }
 UNIQUENESS { eventHdlrElementEventCriteria,
 eventHdlrElementGrpId,
 eventHdlrElementEventScope,
 eventHdlrElementHandleScope,
 eventHdlrElementContext,
 eventHdlrElementMatchNext
 }

 ::= { eventHdlrElementTable 1}

 EventHdlrElementEntry ::= SEQUENCE {
 eventHdlrElementId InstanceId,
 eventHdlrElementEventCriteria Unsigned32,
 eventHdlrElementGrpId TagId,
 eventHdlrElementEventScope TagReferenceId,
 eventHdlrElementHandleScope TagReferenceId,
 eventHdlrElementContext TagReferenceId,
 eventHdlrElementMatchNext Prid
 }

 eventHdlrElementId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the eventHdlrElementTable class."

 ::= { eventHdlrElementEntry 1}

 eventHdlrElementEventCriteria OBJECT-TYPE
 SYNTAX Unsigned32 {
 one_time(1),
 every_time(2),

Internet Draft Binding Authentication to Provisioning March 2002

 on_change(3)
 }
 STATUS current
 DESCRIPTION
 "Indicates when an event is generated. Valid options are
 one_time, every_time and on_change. This attribute allows
 event Handlers to distinguish one time events (ignore
 after the first match) from recurring events (generate an
 event every time a match occurs). A enum type was also
 define to specify that a new event should be generated
 when a specific set of fields change. This is important
 for protocols like RSVP because messages are sent both to
 demonstrate that the reservation is active and to notify

 hops of changes to reservations. Since only changes need
 to propagate to the PDP, the on_change option indicates
 that that events should be generated selectively.

 This criteria controls behavior of both, the EventScope
 and the HandleScope."

 ::= { eventHdlrElementEntry 2}

 eventHdlrElementGrpId OBJECT-TYPE
 SYNTAX TagId -- corresponding Tag Reference in
 -- eventHandlerEntry
 STATUS current
 DESCRIPTION
 "Group identifier. All instances with the same group
 identifier belong to one group and can be referenced
 collectively from an eventHandler instance."

 ::= { eventHdlrElementEntry 3}

 eventHdlrElementEventScope OBJECT-TYPE
 SYNTAX TagReferenceId
 PIB-TAG { eventHdlrEventScopeGroup }
 STATUS current
 DESCRIPTION
 "Identifies a group of eventHdlrEventScope entries
 associated with this eventHdlrElement instance."

 ::= { eventHdlrElementEntry 4}

 eventHdlrElementHandleScope OBJECT-TYPE
 SYNTAX TagReferenceId
 PIB-TAG { eventHdlrHandleScopeGroup }
 STATUS current
 DESCRIPTION
 "Identifies a group of eventHdlrHandleScope entries
 associated with this eventHdlrElement instance. This is
 an optional attribute. If it is not present the
 semantics of the Handle processing is interpreted as
 identical to the Event Scope handling specified in the

Internet Draft Binding Authentication to Provisioning March 2002

 EventScope objects"

 ::= { eventHdlrElementEntry 5}

 eventHdlrElementContext OBJECT-TYPE
 SYNTAX TagReferenceId
 PIB-TAG { contextDataGroup }
 STATUS current

 DESCRIPTION
 "Identifies a list of ContextDataTable entries
 associated with this eventHdlrElement instance."

 ::= { eventHdlrElementEntry 6}

 eventHdlrElementMatchNext OBJECT-TYPE
 SYNTAX Prid
 STATUS current
 DESCRIPTION
 "The data path for traffic in scope."

 ::= { eventHdlrElementEntry 7}

 --
 -- EventHdlrEventScope Table
 --
 -- This PRC defines the scope of an event handler element using
 -- references to filters defined in the Framework PIB or in some
 -- other PIBs. These filters may describe specific protocol
 -- properties for which events need to be generated. These filter
 -- references are grouped using a TagId, and this group is then
 -- referenced from the eventHdlrElement PRC.

 eventHdlrEventScopeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventHdlrEventScopeEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "This class defines the criteria to be used for
 partitioning various portions of traffic."

 ::= { eventHdlrClasses 3 }

 eventHdlrEventScopeEntry OBJECT-TYPE
 SYNTAX EventHdlrEventScopeEntry
 STATUS current
 DESCRIPTION
 "An instance of this class defines an individual
 criterion to be used towards generating an event."
 PIB-INDEX { eventHdlrEventScopeId }
 UNIQUENESS { eventHdlrEventScopeGroup,
 eventHdlrEventScopeFilter
 }

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { eventHdlrEventScopeTable 1}

 EventHdlrEventScopeEntry::= SEQUENCE {
 eventHdlrEventScopeId InstanceId,
 eventHdlrEventScopeGroup TagId,
 eventHdlrEventScopeFilter Prid,
 eventHdlrEventScopePrecedence INTEGER,
 eventHdlrEventScopeChangeFlag TruthValue
 }

 eventHdlrEventScopeId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies an
 instance of the eventHdlrEventScopeTable class."

 ::= { eventHdlrEventScopeEntry 1}

 eventHdlrEventScopeGroup OBJECT-TYPE
 SYNTAX TagId -- corresponding TagReference
 -- defined in eventHdlrElementEntry
 STATUS current
 DESCRIPTION
 "Represents the binding between the eventHdlrElementEntry
 and the eventHdlrEventScope entries. A group of
 eventHdlrEventScope entries constitutes the criteria for
 partitioning various portions of traffic."

 ::= { eventHdlrEventScopeEntry 2}

 eventHdlrEventScopeFilter OBJECT-TYPE
 SYNTAX Prid
 STATUS current
 DESCRIPTION
 "Pointer to a filter to be used as the criteria."
 ::= { eventHdlrEventScopeEntry 3}

 eventHdlrEventScopePrecedence OBJECT-TYPE
 SYNTAX INTEGER
 STATUS current
 DESCRIPTION
 "Represents the precedence of this criterion with respect
 to other criteria within the same group. When the
 precedence is unique, the instance represents an
 alternative criteria (an ORing function). When the
 precedence for two or more instances of the
 eventHdlrEventScope class is the same, the attributes
 within all the instances are treated collectively as a
 single filter criteria with the following rules:
 1. If the filters are not of the same type, the filters
 are AND'ed as a whole eg (RSVP and IP)

Internet Draft Binding Authentication to Provisioning March 2002

 2. If the filter types are the same, the attribute values
 are OR'ed and the attributes themselves are AND'ed,
 for example, two IP filters with src protocol values
 56 and 57 respectively and dst protocol values 20 and
 25 , would be treated as the condition (src port (56
 or 57) AND dst port (20 or 25)."

 ::= { eventHdlrEventScopeEntry 4}

 eventHdlrEventScopeChangeFlag OBJECT-TYPE
 SYNTAX TruthValue
 STATUS current
 DESCRIPTION
 "Boolean value, if set to 'true' indicates that a new
 event should be generated if any of the assigned fields
 in the associated filter change."

 ::= { eventHdlrEventScopeEntry 5}

 --
 --
 -- ContextData Table
 --
 -- This PRC specifies the context information to send to the PDP
 -- when an event is caught. The context information to send is
 -- described in terms of the PRC data types to include in the
 -- request, the level of encapsulated data and the interface
 -- information for that request.

 contextDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ContextDataEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "This class points to the context information to be
 included with a request."

 ::= { contextClasses 1 }

 contextDataEntry OBJECT-TYPE
 SYNTAX ContextDataEntry
 STATUS current
 DESCRIPTION
 "An instance of this class contains the type description
 (the assigned OID) of the class which needs to be filled
 in by the PEP and included with a PEP request."
 PIB-INDEX { contextDataId }

 UNIQUENESS { }

 ::= { contextDataTable 1}

Internet Draft Binding Authentication to Provisioning March 2002

 ContextDataEntry::= SEQUENCE {
 contextDataId InstanceId,
 contextDataGroup TagId,
 contextDataIfElement PrcIdentifierOid,
 contextDataEncapsulation INTEGER
 }

 contextDataId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies an
 instance of the contextDataTable class."

 ::= { contextDataEntry 1}

 contextDataGroup OBJECT-TYPE
 SYNTAX TagId --corresponding TagReference
 --defined in eventHdlrElement
 STATUS current
 DESCRIPTION
 "Defines the grouping of contextData instances
 that are applicable to a given eventHdlrElement. When
 instances of this PRC are sent to the PEP without the
 event Handler information, this attribute is unused."

 ::= { contextDataEntry 2}

 contextDataIfElement OBJECT-TYPE
 SYNTAX PrcIdentifierOid
 STATUS current
 DESCRIPTION
 "The OID of a class whose instance is to be included with
 the PEP request or event-specific ContextData Response."

 ::= { contextDataEntry 3}

 contextDataEncapsulation OBJECT-TYPE
 SYNTAX INTEGER
 STATUS current
 DESCRIPTION
 "This attribute allows one to distinguish between inner
 and outer headers when there are multiple encapsulated

 headers of the same type in a packet.

 A value of:
 0 means all headers,
 positive number 'n' means the 'n'th header starting
 from the outermost,
 negative number 'n' means the 'n'th header starting from
 the innermost."
 ::= { contextDataEntry 4}

Internet Draft Binding Authentication to Provisioning March 2002

 --
 -- Layer 3 Header Data PRC
 --

 ctxtL3HdrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ctxtL3HdrEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "An instance of this class is created by the PEP and
 sent to the PDP to provide the PDP with information it
 requested in the ContextData PRC. The PDP uses
 this PRC to make Authentication/Provisioning
 decisions."

 ::= { contextClasses 2 }

 ctxtL3HdrEntry OBJECT-TYPE
 SYNTAX CtxtL3HdrEntry
 STATUS current
 DESCRIPTION
 "An instance of the ctxtL3HdrTable PRC."

 PIB-INDEX { ctxtL3HdrId }
 UNIQUENESS { }

 ::= { ctxtL3HdrTable 1 }

 CtxtL3HdrEntry::= SEQUENCE {
 ctxtL3HdrId InstanceId,
 ctxtL3HdrSrcAddrType InetAddressType,
 ctxtL3HdrSrcAddr InetAddress,
 ctxtL3HdrDstAddrType InetAddressType,
 ctxtL3HdrDstAddr InetAddress,
 ctxtL3HdrProtocol Unsigned32,
 ctxtL3HdrSrcPort Unsigned32,
 ctxtL3HdrDstPort Unsigned32,

 ctxtL3HdrDscp Unsigned32,
 ctxtL3HdrEcn TruthValue,
 ctxtL3HdrIpOpt OCTET STRING,
 ctxtL3HdrEncap Integer32
 }

 ctxtL3HdrId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify an instance of this
 provisioning class."

 ::= { ctxtL3HdrEntry 1 }

Internet Draft Binding Authentication to Provisioning March 2002

 ctxtL3HdrSrcAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to specify
 the type of the packet's source L3 address)."

 ::= { ctxtL3HdrEntry 2 }

 ctxtL3HdrSrcAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 " The packet's source L3 address."

 ::= { ctxtL3HdrEntry 3 }

 ctxtL3HdrDstAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to specify
 the type of the packet's destination L3 address."

 ::= { ctxtL3HdrEntry 4 }

 ctxtL3HdrDstAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The packet's destination L3 address."

 ::= { ctxtL3HdrEntry 5 }

 ctxtL3HdrProtocol OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The packet's protocol field."

 ::= { ctxtL3HdrEntry 6 }

 ctxtL3HdrSrcPort OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "This attribute binds an existing upstream session to
 this session instance."

 ::= { ctxtL3HdrEntry 7 }

Internet Draft Binding Authentication to Provisioning March 2002

 ctxtL3HdrDstPort OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "This attribute binds an existing upstream session to
 this session instance."

 ::= { ctxtL3HdrEntry 8 }

 ctxtL3HdrDscp OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "DiffServ CodePoint."

 ::= { ctxtL3HdrEntry 9 }

 ctxtL3HdrEcn OBJECT-TYPE
 SYNTAX TruthValue
 STATUS current
 DESCRIPTION
 "PEP sets this attribute to true(1) if ECN capable."

 ::= { ctxtL3HdrEntry 10 }

 ctxtL3HdrIpOpt OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current

 DESCRIPTION
 "IP Options field in the packet."

 ::= { ctxtL3HdrEntry 11 }

 ctxtL3HdrEncap OBJECT-TYPE
 SYNTAX Integer32
 STATUS current
 DESCRIPTION
 "This attribute specifies which encapsulated header is
 being described. The sign on this value will be the same
 as the value specified in the ContextData
 instance that requested this header. If the original
 ContextData instance specified a
 ContextDataEncapsulation value of zero (meaning
 return all headers), then all instances of this attribute
 MUST be expressed as positive numbers.

 A value of:

 positive number 'n' means the 'n'th header starting
 from the outermost,
 negative number 'n' means the 'n'th header starting from
 the innermost."

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { ctxtL3HdrEntry 12 }

 --
 -- 802.1 Header Data PRC
 --

 ctxt802HdrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Ctxt802HdrEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "An instance of this class is created by the PEP and sent
 to the PDP to provide the PDP with information it
 requested in the ContextData PRC. The PDP uses this PRC
 to make Authorization/Provisioning decisions."

 ::= { contextClasses 3 }

 ctxt802HdrEntry OBJECT-TYPE
 SYNTAX Ctxt802HdrEntry
 STATUS current
 DESCRIPTION

 "An instance of the ctxt802HdrTable PRC."

 PIB-INDEX { ctxt802HdrId }
 UNIQUENESS { }

 ::= { ctxt802HdrTable 1 }

 Ctxt802HdrEntry::= SEQUENCE {
 ctxt802HdrId InstanceId,
 ctxt802HdrSrcAddr PhysAddress,
 ctxt802HdrDstAddr PhysAddress,
 ctxt802HdrProtocol Unsigned32,
 ctxt802HdrPriority Unsigned32,
 ctxt802HdrVlan Unsigned32,
 ctxt802HdrEncap Integer32
 }

 ctxt802HdrId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify an instance of this
 provisioning class."

 ::= { ctxt802HdrEntry 1 }

 ctxt802HdrSrcAddr OBJECT-TYPE
 SYNTAX PhysAddress

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 " The packet's source MAC address."

 ::= { ctxt802HdrEntry 2 }

 ctxt802HdrDstAddr OBJECT-TYPE
 SYNTAX PhysAddress
 STATUS current
 DESCRIPTION
 "The packet's destination MAC address."

 ::= { ctxt802HdrEntry 3 }

 ctxt802HdrProtocol OBJECT-TYPE
 SYNTAX Unsigned32 (0..'ffff'h)
 STATUS current
 DESCRIPTION

 "The L2 packet's protocol field."

 ::= { ctxt802HdrEntry 4 }

 ctxt802HdrPriority OBJECT-TYPE
 SYNTAX Unsigned32 (0..7)
 STATUS current
 DESCRIPTION
 "The L2 packet's priority field. This attribute is only
 valid for packets using the 802.1q header extension."

 ::= { ctxt802HdrEntry 5 }

 ctxt802HdrVlan OBJECT-TYPE
 SYNTAX Unsigned32 (1..4094)
 STATUS current
 DESCRIPTION
 "The L2 packet's VLAN field. This attribute is only valid
 for packets using the 802.1q header extension."

 ::= { ctxt802HdrEntry 6 }

 ctxt802HdrEncap OBJECT-TYPE
 SYNTAX Integer32
 STATUS current
 DESCRIPTION
 "This attribute specifies which encapsulated header is
 being described. The sign on this value will be the same
 as the value specified in the ContextData
 instance that requested this header. If the original
 ContextData instance specified an
 ContextDataEncapsulation value of zero (meaning
 return all headers), then all instances of this attribute

Internet Draft Binding Authentication to Provisioning March 2002

 MUST be expressed as positive numbers.

 A value of:
 positive number 'n' means the 'n'th header starting
 from the outermost,
 negative number 'n' means the 'n'th header starting from
 the innermost."

 ::= { ctxt802HdrEntry 7 }

 --
 -- conformance section tbd
 --

 END

Internet Draft Binding Authentication to Provisioning March 2002

10. Identity Extensions PIB

 --
 -- The AccessBind Identity Extensions PIB Module
 --

 ACCESSBIND-IDENTEXT-PIB PIB-DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, MODULE-COMPLIANCE,
 OBJECT-TYPE, OBJECT-GROUP, pib
 FROM COPS-PR-SPPI

 InstanceId, Prid
 FROM COPS-PR-SPPI-TC
 TruthValue
 FROM SNMPv2-TC;

 accessBindIdentityExtPib MODULE-IDENTITY
 SUBJECT-CATEGORIES { all }
 LAST-UPDATED "200211032002Z"
 ORGANIZATION "IETF RAP WG"
 CONTACT-INFO "
 Walter Weiss
 Ellacoya Networks
 7 Henry Clay Drive
 Merrimack, NH 03054
 Phone: 603-879-7364
 E-mail: wweiss@ellacoya.com
 "
 DESCRIPTION
 "A PIB module containing the set of classes to
 associate authentication protocols with configured
 event handlers, and outsource authentication events
 as they occur."

 ::= { pib 7 } -- xxx to be assigned by IANA

 --
 -- The branch OIDs in the AccessBind Signalling PIB
 --

 identEventHdlrClasses OBJECT IDENTIFIER ::= {
 accessBindIdentityExtPib 1 }
 identAuthClasses OBJECT IDENTIFIER ::= {
 accessBindIdentityExtPib 2 }

 --
 -- Identity Event Handler Table
 --
 -- This PRC is an extension of the EventHandler PRC. This
 -- extension illustrates the use of the EventHandler PRC
 -- concept for authentication usage. Instances of this PRC are

Internet Draft Binding Authentication to Provisioning March 2002

 -- provisioned by the PDP on the PEP to catch specific access
 -- events. This PRC references a group of
 -- eventHdlrAuthProtocol instances which define a set of
 -- Authentication mechanisms to use if an access event is
 -- caught by this event Handler. From its base class (Event
 -- Handler) this PRC also references a group of

 -- eventHdlrElement PRIs that contain the scope of the
 -- access event and specify the context data to send to the
 -- PDP when an access event is caught.

 identityEventHdlrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF IdentityEventHdlrEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "The identityEventHdlrTable specifies for what access
 events the PEP should send an access request to the PDP.
 As a result of this access request, the PEP may send
 configuration changes to the PEP or specific policies for
 specific users. An instance of this class defines the
 circumstances for generating an access request, and
 provides the means for specifying the authentication
 mechanisms and contents of the PEP Request. Hence, the
 identityEventHdlrTable can be said to create eventTable
 entries for user access. "

 ::= { identEventHdlrClasses 1 }

 identityEventHdlrEntry OBJECT-TYPE
 SYNTAX IdentityEventHdlrEntry
 STATUS current
 DESCRIPTION
 "identityEventHdlrTable entry."
 EXTENDS { eventHandlerEntry }
 UNIQUENESS { eventHandlerElements,
 eventHandlerNonMatchNext,
 identityEventHdlrRequestAuth
 }

 ::= { identityEventHdlrTable 1}

 IdentityEventHdlrEntry ::= SEQUENCE {
 identityEventHdlrRequestAuth TruthValue,
 identityEventHdlrAuthProtocol TagReferenceId
 }

 identityEventHdlrRequestAuth OBJECT-TYPE
 SYNTAX TruthValue
 STATUS current
 DESCRIPTION
 "Boolean flag, if set to 'true' requires authentication
 data to be sent in the request sent to the PDP with the
 access event."

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { identityEventHdlrEntry 1}

 identityEventHdlrAuthProtocol OBJECT-TYPE
 SYNTAX TagReferenceId
 PIB-TAG { eventHdlrAuthProtocolGroup }
 STATUS current
 DESCRIPTION
 "References a group of eventHdlrAuthProtocol instances,
 each of which specifies an authentication mechanism."

 ::= { identityEventHdlrEntry 2}

 --
 -- EventHdlrAuthProtocol Table
 --
 -- This PRC specifies the Auth Mechanism to use in the Access
 -- request when a identity Event Handler is configured to
 -- catch access events.
 --

 eventHdlrAuthProtocolTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventHdlrAuthProtocolEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "This class lists the authentication protocols that can
 be used for an access request."

 ::= { identEventHdlrClasses 2 }

 eventHdlrAuthProtocolEntry OBJECT-TYPE
 SYNTAX EventHdlrAuthProtocolEntry
 STATUS current
 DESCRIPTION
 "An instance of this class describes an authentication
 protocol that may be used for an access request.
 Instances of this class that share the same TagId value
 collectively constitute a list of authentication
 protocols that may be used for a given access request"
 PIB-INDEX { eventHdlrAuthProtocolId }
 UNIQUENESS { eventHdlrAuthProtocolGroup,
 eventHdlrAuthProtocolAuthMechanism
 }

 ::= { eventHdlrAuthProtocolTable 1}

 EventHdlrAuthProtocolEntry::= SEQUENCE {
 eventHdlrAuthProtocolId InstanceId,
 eventHdlrAuthProtocolGroup TagId,

Internet Draft Binding Authentication to Provisioning March 2002

 eventHdlrAuthProtocolAuthMechanism INTEGER
 }

 eventHdlrAuthProtocolId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies an
 instance of the ContextDataTable class."

 ::= { eventHdlrAuthProtocolEntry 1}

 eventHdlrAuthProtocolGroup OBJECT-TYPE
 SYNTAX TagId -- corresponding TagReference
 -- in identityEventHdlrEntry
 STATUS current
 DESCRIPTION
 "Represents a binding between an identityEventHdlrTable
 instance and a list of eventHdlrAuthProtocolTable
 instances."

 ::= { eventHdlrAuthProtocolEntry 2}

 eventHdlrAuthProtocolAuthMechanism OBJECT-TYPE
 SYNTAX INTEGER {
 PAP (0),
 CHAP_MD5 (1),
 CHAP_MS (2),
 EAP_MD5(3),
 EAP_TLS(4)
 }
 STATUS current
 DESCRIPTION
 "The authentication protocol that may be used for an
 access request. Based on this attribute the
 corresponding Auth Extensions PRC must be used as
 defined under the identAuthClasses branch. For
 CHAP_MD5, and CHAP_MS, the same authChapExtTable must
 be used."
 ::= { eventHdlrAuthProtocolEntry 3}

 --
 -- Authentication Extension Tables
 --

 --
 -- AuthExtensions Base Table

 --

 authExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthExtEntry
 PIB-ACCESS install-notify

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "This is an abstract PRC. This PRC can be extended by
 authentication PRCs that contain attributes specific to
 that authentication protocol. An instance of the extended
 class is created by the PEP and sent to the PDP. The PDP
 may send information back to the PEP or may uses the
 information to authenticate the PEP's access request.
 This PRC itself should not be instantiated.

 This is a 'transient' class. Its instances are temporary
 and are deleted by the PEP after a certain time/event.
 Thus it must not be referred to by the server."

 ::= { identAuthClasses 1 }

 authExtEntry OBJECT-TYPE
 SYNTAX AuthExtEntry
 STATUS current
 DESCRIPTION
 "Entry oid for the AuthExtTable PRC."

 PIB-INDEX { authExtId }
 UNIQUENESS { }

 ::= { authExtTable 1 }

 AuthExtEntry ::= SEQUENCE {
 authExtId InstanceId
 }

 authExtId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify an instance of the
 entended provisioning class."

 ::= { authExtEntry 1 }

 --
 -- UserAuthExt Table
 --

 userAuthExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF UserAuthExtEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "This is a concrete PRC used to contain user
 authentication fields. This PRC extends the base PRC
 authExtEntry."

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { identAuthClasses 2 }

 userAuthExtEntry OBJECT-TYPE
 SYNTAX UserAuthExtEntry
 STATUS current
 DESCRIPTION
 "Entry for the UserAuthExtTable PRC. InstanceId's for
 this extended PRC are assigned by the base PRC AuthExt
 [SPPI]."

 EXTENDS { authExtEntry }
 UNIQUENESS { }

 ::= { userAuthExtTable 1 }

 UserAuthExtEntry ::= SEQUENCE {
 userAuthExtRealm OCTET STRING,
 userAuthExtUsername OCTET STRING
 }

 userAuthExtRealm OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "user realm octet string."

 ::= { userAuthExtEntry 1 }

 userAuthExtUsername OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "Username octet string."

 ::= { userAuthExtEntry 2 }

 --
 -- AuthChapExt Table
 --

 authChapExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthChapExtEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "This is a concrete PRC used to contain CHAP
 authentication fields. This PRC extends the PRC
 userAuthExtEntry."

 ::= { identAuthClasses 3 }

Internet Draft Binding Authentication to Provisioning March 2002

 authChapExtEntry OBJECT-TYPE
 SYNTAX AuthChapExtEntry
 STATUS current
 DESCRIPTION
 "Entry oid for the AuthChapExtTable PRC. InstanceId's for
 this extended PRC are assigned by the base PRC [SPPI]."

 EXTENDS { userAuthExtEntry }
 UNIQUENESS { }

 ::= { authChapExtTable 1 }

 AuthChapExtEntry::= SEQUENCE {
 authChapExtId Unsigned32,
 authChapExtChal OCTET STRING,
 authChapExtResp OCTET STRING
 }

 authChapExtId OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "CHAP Id field."

 ::= { authChapExtEntry 1 }

 authChapExtChal OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "CHAP Challenge octet string. The challenge is generated
 by the PEP."

 ::= { authChapExtEntry 2 }

 authChapExtResp OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "CHAP Challenge Response octet string. The challenge
 response is sent to the PDP along with the challenge."

 ::= { authChapExtEntry 3 }

 --
 -- AuthPapExt Table
 --

 authPapExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthPapExtEntry
 PIB-ACCESS notify

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "This is a concrete PRC used to contain PAP
 authentication fields. This PRC extends the PRC
 userAuthExtEntry."

 ::= { identAuthClasses 4 }

 authPapExtEntry OBJECT-TYPE
 SYNTAX AuthPapExtEntry
 STATUS current
 DESCRIPTION
 "Entry oid for the AuthPapExtTable PRC. InstanceId's for
 this extended PRC are assigned by the base PRC [SPPI]."

 EXTENDS { userAuthExtEntry }
 UNIQUENESS { }

 ::= { authPapExtTable 1 }

 AuthPapExtEntry::= SEQUENCE {
 authPapExtPwd OCTET STRING
 }

 authPapExtPwd OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION

 "PAP password octet string."

 ::= { authPapExtEntry 1 }

 --
 -- AuthExtResult Table
 --

 authExtResultTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthExtResultEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "This is a concrete PRC used to contain authentication
 results. This PRC extends the base PRC authExtEntry."

 ::= { identAuthClasses 5 }

 authExtResultEntry OBJECT-TYPE
 SYNTAX AuthExtResultEntry
 STATUS current

Internet Draft Binding Authentication to Provisioning March 2002

 DESCRIPTION
 "Entry for the authExtResultTable PRC. InstanceId's for
 this extended PRC are assigned by the base PRC AuthExt
 [SPPI]."

 EXTENDS { authExtEntry }
 UNIQUENESS { }

 ::= { authExtResultTable 1 }

 AuthExtResultEntry ::= SEQUENCE {
 authExtResultSuccess TruthValue
 }

 authExtResultSuccess OBJECT-TYPE
 SYNTAX TruthValue
 STATUS current
 DESCRIPTION
 "Set to 'true' if authentication was successful, else
 false."

 ::= { authExtResultEntry 1 }

 --
 -- AuthEapReqExt Table
 --

 authEapReqExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthEapReqExtEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "This is a concrete PRC used to contain EAP
 authentication fields. This PRC extends the base PRC
 authExtEntry. The PEP uses this PRC to send EAP messages
 to the PDP."

 ::= { identAuthClasses 6 }

 authEapReqExtEntry OBJECT-TYPE
 SYNTAX AuthEapReqExtEntry
 STATUS current
 DESCRIPTION
 "Entry oid for the authEapReqExtTable PRC. InstanceId's
 for this extended PRC are assigned by the base PRC
 [SPPI]."

 EXTENDS { authExtEntry }
 UNIQUENESS { }

 ::= { authEapReqExtTable 1 }

Internet Draft Binding Authentication to Provisioning March 2002

 AuthEapReqExtEntry::= SEQUENCE {
 authEapReqExtSpecific OCTET STRING
 }

 authEapReqExtSpecific OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "Opaque EAP Request octet string."

 ::= { authEapReqExtEntry 1 }

 --
 -- AuthEapRespExt Table
 --

 authEapRespExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthEapRespExtEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION
 "This is a concrete PRC used to contain EAP
 authentication fields. This PRC extends the base PRC
 authExtEntry. The PDP responds using this PRC for EAP
 exchanges."

 ::= { identAuthClasses 7 }

 authEapRespExtEntry OBJECT-TYPE
 SYNTAX AuthEapRespExtEntry
 STATUS current
 DESCRIPTION
 "Entry oid for the authEapRespExtTable PRC. InstanceId's
 for this extended PRC are assigned by the base PRC
 [SPPI]."

 EXTENDS { authExtEntry }
 UNIQUENESS { }

 ::= { authEapRespExtTable 1 }

 AuthEapRespExtEntry::= SEQUENCE {
 authEapRespExtSpecific OCTET STRING
 }

 authEapRespExtSpecific OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "Opaque EAP Response octet string."

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { authEapRespExtEntry 1 }

 --
 -- conformance section tbd
 --

 END

Internet Draft Binding Authentication to Provisioning March 2002

11. Application Specific RSVP Handling PIB Module

 --
 -- The AccessBind RSVP Handling PIB Module
 --

 ACCESSBIND-APP-RSVP-PIB PIB-DEFINITIONS ::= BEGIN

 IMPORTS
 Unsigned32, Integer32, MODULE-IDENTITY,
 MODULE-COMPLIANCE, OBJECT-TYPE, OBJECT-GROUP, pib

 FROM COPS-PR-SPPI
 InstanceId, Prid
 FROM COPS-PR-SPPI-TC
 InetAddress, InetAddressType
 FROM INET-ADDRESS-MIB;

 accessBindAppRsvpPib MODULE-IDENTITY
 SUBJECT-CATEGORIES { all }
 LAST-UPDATED "200211032002Z"
 ORGANIZATION "IETF RAP WG"
 CONTACT-INFO "
 Walter Weiss
 Ellacoya Networks
 7 Henry Clay Drive
 Merrimack, NH 03054
 Phone: 603-879-7364
 E-mail: wweiss@ellacoya.com
 "
 DESCRIPTION
 "A PIB module containing the set of classes to
 be used with the access bind PIB framework classes
 to configure RSVP specific event handlers, and
 outsource RSVP events as they occur."

 ::= { pib 5 } -- xxx to be assigned by IANA

 --
 -- The branch OIDs in the AccessBind PIB
 --

 contextClasses OBJECT IDENTIFIER ::= {
 accessBindAppRsvpPib 1
 }
 filterClasses OBJECT IDENTIFIER ::= {
 accessBindAppRsvpPib 2
 }

 --
 -- The RSVP Filter table

Internet Draft Binding Authentication to Provisioning March 2002

 --
 rsvpFilterTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RsvpFilterEntry
 PIB-ACCESS install
 STATUS current
 DESCRIPTION

 "RSVP specific filter table."

 ::= { filterClasses 1 }

 rsvpFilterEntry OBJECT-TYPE
 SYNTAX RsvpFilterEntry
 STATUS current
 DESCRIPTION
 " RSVP specific filter table entry."

 PIB-INDEX { rsvpFilterId }
 UNIQUENESS { }

 ::= { rsvpFilterTable 1 }

 RsvpFilterEntry ::= SEQUENCE {
 rsvpFilterId InstanceId,
 rsvpFilterFlags OCTET STRING,
 rsvpFilterSendTTL Unsigned32,
 rsvpFilterDClassDscp Integer32,
 rsvpFilterSessionDestAddrType InetAddressType,
 rsvpFilterSessionDestAddr InetAddress,
 rsvpFilterSessionDestAddrMask Unsigned32,
 rsvpFilterSessionProtocol Integer32,
 rsvpFilterSessionDestPort Unsigned32,
 rsvpFilterSessionSrcAddrType InetAddressType,
 rsvpFilterSessionSrcAddr InetAddress,
 rsvpFilterSessionSrcAddrMask Unsigned32,
 rsvpFilterSessionSrcPort Unsigned32,
 rsvpFilterStyleValue OCTET STRING
 }

 rsvpFilterId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the class."

 ::= { rsvpFilterEntry 1 }

 rsvpFilterFlags OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "The Flags carried in the RSVP header. Currently all

Internet Draft Binding Authentication to Provisioning March 2002

 these flags should be set to zero."

 ::= { rsvpFilterEntry 2 }

 rsvpFilterSendTTL OBJECT-TYPE
 SYNTAX Unsigned32 (0..255)
 STATUS current
 DESCRIPTION
 "The IP TTL value with which the message was sent."

 ::= { rsvpFilterEntry 3 }

 rsvpFilterDClassDscp OBJECT-TYPE
 SYNTAX Integer32 (-1| 0..63)
 STATUS current
 DESCRIPTION
 "The DClass dscp value."

 ::= { rsvpFilterEntry 4 }

 rsvpFilterSessionDestAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to
 specify the type of the destination IP address."

 ::= { rsvpFilterEntry 5 }

 rsvpFilterSessionDestAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The destination IP address."

 ::= { rsvpFilterEntry 6 }

 rsvpFilterSessionDestAddrMask OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The length of a mask for the matching of the
 destination IP address.."

 ::= { rsvpFilterEntry 7 }

 rsvpFilterSessionProtocol OBJECT-TYPE
 SYNTAX Integer32 (-1 | 0..255)
 STATUS current
 DESCRIPTION
 "The IP protocol to match against the packet's
 protocol. A value of -1 means match all."

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { rsvpFilterEntry 8 }

 rsvpFilterSessionDestPort OBJECT-TYPE
 SYNTAX Unsigned32 (0..65535)
 STATUS current
 DESCRIPTION
 "The packet's Layer 4 destination port."

 ::= { rsvpFilterEntry 9 }

 rsvpFilterSessionSrcAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to
 specify the type of the source IP address."

 ::= { rsvpFilterEntry 10 }

 rsvpFilterSessionSrcAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The source IP address."

 ::= { rsvpFilterEntry 11 }

 rsvpFilterSessionSrcAddrMask OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The length of a mask for the matching of the source
 IP address."

 ::= { rsvpFilterEntry 12 }

 rsvpFilterSessionSrcPort OBJECT-TYPE
 SYNTAX Unsigned32 (0..65535)
 STATUS current
 DESCRIPTION
 "The packet's Layer 4 source port."

 ::= { rsvpFilterEntry 13 }

 rsvpFilterStyleValue OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION

 "The RSVP packet's Style value."

 ::= { rsvpFilterEntry 14 }

Internet Draft Binding Authentication to Provisioning March 2002

 --
 -- RSVP Common Context Data
 --

 ctxtRsvpTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtRsvpEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 ""

 ::= { contextClasses 1 }

 ctxtRsvpEntry OBJECT-TYPE
 SYNTAX CtxtRsvpEntry
 STATUS current
 DESCRIPTION
 ""

 PIB-INDEX { ctxtRsvpId }
 UNIQUENESS { }

 ::= { ctxtRsvpTable 1 }

 CtxtRsvpEntry ::= SEQUENCE {
 ctxtRsvpId InstanceId,
 ctxtRsvpMsgType INTEGER,
 ctxtRsvpFlags OCTET STRING,
 ctxtRsvpSendTTL Unsigned32,
 ctxtRsvpInIntfId Unsigned32,
 ctxtRsvpInIntfAddrType InetAddressType,
 ctxtRsvpInIntfAddr InetAddress,
 ctxtRsvpOutIntfId Unsigned32,
 ctxtRsvpOutIntfAddrType InetAddressType,
 ctxtRsvpOutIntfAddr InetAddress
 }

 ctxtRsvpId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the class."

 ::= { ctxtRsvpEntry 1 }

 ctxtRsvpMsgType OBJECT-TYPE
 SYNTAX INTEGER {
 Path (1),
 PathErr (2),
 Resv (3),
 ResvErr (4)
 }

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "The RSVP message type."

 ::= { ctxtRsvpEntry 2 }

 ctxtRsvpFlags OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "The RSVP flags contained in the message header.
 They are currently undefined and should be set to
 zero."

 ::= { ctxtRsvpEntry 3 }

 ctxtRsvpSendTTL OBJECT-TYPE
 SYNTAX Unsigned32 (0..255)
 STATUS current
 DESCRIPTION
 "The IP TTL value."

 ::= { ctxtRsvpEntry 4 }

 ctxtRsvpInIntfId OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The Interface Id."

 ::= { ctxtRsvpEntry 5 }

 ctxtRsvpInIntfAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to
 specify the type of the In Interface IP address."

 ::= { ctxtRsvpEntry 6 }

 ctxtRsvpInIntfAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The In Interface IP address."

 ::= { ctxtRsvpEntry 7 }

 ctxtRsvpOutIntfId OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION

Internet Draft Binding Authentication to Provisioning March 2002

 "The Out Interface Id."

 ::= { ctxtRsvpEntry 8 }

 ctxtRsvpOutIntfAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to
 specify the type of the Out Interface IP address."

 ::= { ctxtRsvpEntry 9 }

 ctxtRsvpOutIntfAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The Out Interface IP address."

 ::= { ctxtRsvpEntry 10 }

 --
 -- RSVP Path Context Data
 --

 ctxtRsvpPathTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtRsvpPathEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 ""

 ::= { contextClasses 2 }

 ctxtRsvpPathEntry OBJECT-TYPE
 SYNTAX CtxtRsvpPathEntry
 STATUS current
 DESCRIPTION
 ""

 PIB-INDEX { ctxtRsvpPathId }
 UNIQUENESS { }

 ::= { ctxtRsvpPathTable 1 }

 CtxtRsvpPathEntry ::= SEQUENCE {
 ctxtRsvpPathId InstanceId,
 ctxtRsvpPathTokenRate Unsigned32
 }

 ctxtRsvpPathId OBJECT-TYPE
 SYNTAX InstanceId

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the class."

 ::= { ctxtRsvpPathEntry 1 }

 ctxtRsvpPathTokenRate OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The token bucket rate for the TSPEC."

 ::= { ctxtRsvpPathEntry 2 }

 --
 -- RSVP PathErr Context Data
 --

 ctxtRsvpPathErrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtRsvpPathErrEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 ""

 ::= { contextClasses 3 }

 ctxtRsvpPathErrEntry OBJECT-TYPE
 SYNTAX CtxtRsvpPathErrEntry
 STATUS current
 DESCRIPTION
 ""

 PIB-INDEX { ctxtRsvpPathErrId }
 UNIQUENESS { }

 ::= { ctxtRsvpPathErrTable 1 }

 CtxtRsvpPathErrEntry ::= SEQUENCE {
 ctxtRsvpPathErrId InstanceId,
 ctxtRsvpPathErrTokenRate Unsigned32,
 ctxtRsvpPathErrErrorAddrType InetAddressType,
 ctxtRsvpPathErrErrorAddr InetAddress,
 ctxtRsvpPathErrErrorCode Unsigned32,
 ctxtRsvpPathErrErrorValue Unsigned32
 }

 ctxtRsvpPathErrId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies

Internet Draft Binding Authentication to Provisioning March 2002

 an instance of the class."

 ::= { ctxtRsvpPathErrEntry 1 }

 ctxtRsvpPathErrTokenRate OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The token bucket rate for the TSPEC."

 ::= { ctxtRsvpPathErrEntry 2 }

 ctxtRsvpPathErrErrorAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type IP address in error."

 ::= { ctxtRsvpPathErrEntry 3 }

 ctxtRsvpPathErrErrorAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current

 DESCRIPTION
 "The Error IP address."

 ::= { ctxtRsvpPathErrEntry 4 }

 ctxtRsvpPathErrErrorCode OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The RSVP error code."

 ::= { ctxtRsvpPathErrEntry 5 }

 ctxtRsvpPathErrErrorValue OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The RSVP error value."

 ::= { ctxtRsvpPathErrEntry 6 }

 --
 -- RSVP Resv Context Data
 --

 ctxtRsvpResvTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtRsvpResvEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION

Internet Draft Binding Authentication to Provisioning March 2002

 ""

 ::= { contextClasses 4 }

 ctxtRsvpResvEntry OBJECT-TYPE
 SYNTAX CtxtRsvpResvEntry
 STATUS current
 DESCRIPTION
 ""

 PIB-INDEX { ctxtRsvpResvId }
 UNIQUENESS { }

 ::= { ctxtRsvpResvTable 1 }

 CtxtRsvpResvEntry ::= SEQUENCE {
 ctxtRsvpResvId InstanceId,
 ctxtRsvpResvFSpecGrp TagReferenceId,

 ctxtRsvpResvSvcType INTEGER,
 ctxtRsvpResvTokenRate Unsigned32
 }

 ctxtRsvpResvId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the class."

 ::= { ctxtRsvpResvEntry 1 }

 ctxtRsvpResvFSpecGrp OBJECT-TYPE
 SYNTAX TagReferenceId
 PIB-TAG { ctxtRsvpFilterSpecTagId }
 STATUS current
 DESCRIPTION
 "Identifies a group of Filter Spec entries."

 ::= { ctxtRsvpResvEntry 2 }

 ctxtRsvpResvSvcType OBJECT-TYPE
 SYNTAX INTEGER {
 Controlled_Load(1),
 Guaranteed(2)
 }
 STATUS current
 DESCRIPTION
 "An enum describing the type of service."

 ::= { ctxtRsvpResvEntry 3 }

 ctxtRsvpResvTokenRate OBJECT-TYPE
 SYNTAX Unsigned32

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "The token bucket rate for the TSPEC."

 ::= { ctxtRsvpResvEntry 4 }

 --
 -- RSVP ResvErr Context Data
 --

 ctxtRsvpResvErrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtRsvpResvErrEntry
 PIB-ACCESS notify

 STATUS current
 DESCRIPTION
 ""

 ::= { contextClasses 5 }

 ctxtRsvpResvErrEntry OBJECT-TYPE
 SYNTAX CtxtRsvpResvErrEntry
 STATUS current
 DESCRIPTION
 ""

 PIB-INDEX { ctxtRsvpResvErrId }
 UNIQUENESS { }

 ::= { ctxtRsvpResvErrTable 1 }

 CtxtRsvpResvErrEntry ::= SEQUENCE {
 ctxtRsvpResvErrId InstanceId,
 ctxtRsvpResvErrFSpecGrp TagReferenceId,
 ctxtRsvpResvErrSvcType INTEGER,
 ctxtRsvpResvErrTokenRate Unsigned32,
 ctxtRsvpResvErrErrorAddrType InetAddressType,
 ctxtRsvpResvErrErrorAddr InetAddress,
 ctxtRsvpResvErrErrorCode Unsigned32,
 ctxtRsvpResvErrErrorValue Unsigned32
 }

 ctxtRsvpResvErrId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the class."

 ::= { ctxtRsvpResvErrEntry 1 }

 ctxtRsvpResvErrFSpecGrp OBJECT-TYPE
 SYNTAX TagReferenceId
 PIB-TAG { ctxtRsvpFilterSpecTagId }

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "Identifies a group of Filter Spec entries."

 ::= { ctxtRsvpResvErrEntry 2 }

 ctxtRsvpResvErrSvcType OBJECT-TYPE
 SYNTAX INTEGER {

 Controlled_Load(1),
 Guaranteed(2)
 }
 STATUS current
 DESCRIPTION
 "An enum describing the type of service."

 ::= { ctxtRsvpResvErrEntry 3 }

 ctxtRsvpResvErrTokenRate OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The token bucket rate for the TSPEC."

 ::= { ctxtRsvpResvErrEntry 4 }

 ctxtRsvpResvErrErrorAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type IP address in error."

 ::= { ctxtRsvpResvErrEntry 5 }

 ctxtRsvpResvErrErrorAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The Error IP address."

 ::= { ctxtRsvpResvErrEntry 6 }

 ctxtRsvpResvErrErrorCode OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "The RSVP error code."

 ::= { ctxtRsvpResvErrEntry 7 }

 ctxtRsvpResvErrErrorValue OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION

Internet Draft Binding Authentication to Provisioning March 2002

 "The RSVP error value."

 ::= { ctxtRsvpResvErrEntry 8 }

 --
 -- RSVP Filter Spec Context Data
 --

 ctxtRsvpFilterSpecTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtRsvpFilterSpecEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 ""

 ::= { contextClasses 6 }

 ctxtRsvpFilterSpecEntry OBJECT-TYPE
 SYNTAX CtxtRsvpFilterSpecEntry
 STATUS current
 DESCRIPTION
 ""

 PIB-INDEX { ctxtRsvpFilterSpecId }
 UNIQUENESS { }

 ::= { ctxtRsvpFilterSpecTable 1 }

 CtxtRsvpFilterSpecEntry::= SEQUENCE {
 ctxtRsvpFilterSpecId InstanceId,
 ctxtRsvpFilterSpecTagId TagId,
 ctxtRsvpFilterSpecAddrType InetAddressType,
 ctxtRsvpFilterSpecAddr InetAddress,
 ctxtRsvpFilterSpecPort Unsigned32
 }

 ctxtRsvpFilterSpecId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An arbitrary integer index that uniquely identifies
 an instance of the class."

 ::= { ctxtRsvpFilterSpecEntry 1 }

 ctxtRsvpFilterSpecTagId OBJECT-TYPE
 SYNTAX TagId
 STATUS current
 DESCRIPTION
 "Identifies the group of Filter Spec PRIs that this
 PRI belongs to."

 ::= { ctxtRsvpFilterSpecEntry 2 }

Internet Draft Binding Authentication to Provisioning March 2002

 ctxtRsvpFilterSpecAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 STATUS current
 DESCRIPTION
 "The address type enumeration value [INETADDR] to
 specify the type of the IP address."

 ::= { ctxtRsvpFilterSpecEntry 3 }

 ctxtRsvpFilterSpecAddr OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "The Filter Spec IP address."

 ::= { ctxtRsvpFilterSpecEntry 4 }

 ctxtRsvpFilterSpecPort OBJECT-TYPE
 SYNTAX Unsigned32 (0..65535)
 STATUS current
 DESCRIPTION
 "The packet's Layer 4 destination port."

 ::= { ctxtRsvpFilterSpecEntry 5 }

 END

Internet Draft Binding Authentication to Provisioning March 2002

12. Application Specific Dialup Handling PIB Module

 --
 -- The AccessBind Dialup Application PIB Module
 --

 ACCESSBIND-APP-DIALUP-PIB PIB-DEFINITIONS ::= BEGIN

 IMPORTS
 Unsigned32, Integer32, MODULE-IDENTITY,
 MODULE-COMPLIANCE, OBJECT-TYPE, OBJECT-GROUP, pib
 FROM COPS-PR-SPPI
 InstanceId
 FROM COPS-PR-SPPI-TC
 InetAddress, InetAddressType
 FROM INET-ADDRESS-MIB;

 accessBindAppDialupPib MODULE-IDENTITY
 SUBJECT-CATEGORIES { all }
 LAST-UPDATED "200211032002Z"
 ORGANIZATION "IETF RAP WG"
 CONTACT-INFO "
 Walter Weiss
 Ellacoya Networks
 7 Henry Clay Drive
 Merrimack, NH 03054
 Phone: 603-879-7364
 E-mail: wweiss@ellacoya.com
 "
 DESCRIPTION
 "A PIB module containing the set of classes to
 be used with the access bind PIB framework classes
 to configure dialup event handlers, and outsource
 dialup events as they occur."

 ::= { pib 5 } -- xxx to be assigned by IANA

 --
 -- The branch OIDs in the AccessBind PIB
 --

 contextClasses OBJECT IDENTIFIER ::= {
 accessBindAppDialupPib 1
 }

 --

 -- CtxtDialupInterface Table
 --

 ctxtDialupInterfaceTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtDialupInterfaceEntry
 PIB-ACCESS notify

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "Dialup Interface context data."

 ::= { contextClasses 1 }

 ctxtDialupInterfaceEntry OBJECT-TYPE
 SYNTAX CtxtDialupInterfaceEntry
 STATUS current
 DESCRIPTION
 "Entry oid of the ctxtDialupInterfaceTable PRC."

 PIB-INDEX { ctxtDialupInterfaceId }
 UNIQUENESS { }

 ::= { ctxtDialupInterfaceTable 1 }

 CtxtDialupInterfaceEntry::= SEQUENCE {
 ctxtDialupInterfaceId InstanceId,
 ctxtDialupInterfaceNASPort Integer32,
 ctxtDialupInterfaceNASPortId OCTET STRING,
 ctxtDialupInterfaceNASPortType INTEGER,
 ctxtDialupInterfaceCalledStationId OCTET STRING,
 ctxtDialupInterfaceCallingStationId OCTET STRING,
 ctxtDialupInterfaceConnectInfo OCTET STRING
 }

 ctxtDialupInterfaceId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify an instance of this
 provisioning class."

 ::= { ctxtDialupInterfaceEntry 1 }

 ctxtDialupInterfaceNASPort OBJECT-TYPE
 SYNTAX Integer32
 STATUS current
 DESCRIPTION
 "This Attribute indicates the physical port number

 of the NAS which is authenticating the user. It is
 only used in Access-Request packets. Note that this
 is using 'port' in its sense of a physical
 connection on the NAS, not in the sense of a TCP or
 UDP port number."

 ::= { ctxtDialupInterfaceEntry 2 }

 ctxtDialupInterfaceNASPortId OBJECT-TYPE
 SYNTAX OCTET STRING

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "This Attribute contains a text string which
 identifies the port of the NAS which is
 authenticating the user. It is only used in
 Access-Request and Accounting-Request packets. Note
 that this is using 'port' in its sense of a physical
 connection on the NAS, not in the sense of a TCP or
 UDP port number. "

 ::= { ctxtDialupInterfaceEntry 3 }

 ctxtDialupInterfaceNASPortType OBJECT-TYPE
 SYNTAX INTEGER {
 radAsync(0),
 radSync(1),
 radIsdnSync(2),
 radIsdnAsyncV120(3),
 radIsdnAsyncV110(4),
 radVirtual(5),
 radPIAFS(6),
 radHdlcClearChannel(7),
 radX25(8),
 radX75(9),
 radG3Fax(10),
 radSDSL(11),
 radAdslCAP(12),
 radAdslDMT(13),
 radIdsl(14),
 radEthernet(15),
 radXdsl(16),
 radCable(17),
 radWirelessOther(18),
 radWirelessIEEE80211(19)
 }
 STATUS current

 DESCRIPTION
 "This Attribute indicates the type of the physical
 port of the NAS which is authenticating the user.
 It can be used instead of or in addition to the
 radNasPort (5) attribute. It is only used in
 Access-Request packets. Either radNasPort (5) or
 radNasPortType or both SHOULD be present in an
 Access-Request packet, if the NAS differentiates
 among its ports.

 A value of 'radAsync(0)' indicates Async.

 A value of 'radSync(1)' indicates Sync.

 A value of 'radIsdnSync(2)' indicates ISDN Sync.

 A value of 'radIsdnAsyncV120(3)' indicates ISDN

Internet Draft Binding Authentication to Provisioning March 2002

 Async V.120.

 A value of 'radIsdnAsyncV110(4)' indicates ISDN
 Async V.110.

 A value of 'radVirtual(5)' indicates Virtual.
 Virtual refers to a connection to the NAS via some
 transport protocol, instead of through a physical
 port. For example, if a user telnetted into a NAS to
 authenticate himself as an Outbound-User, the
 Access-Request might include radNasPortType =
 Virtual as a hint to the RADIUS server that the user
 was not on a physical port.

 A value of 'radPIAFS(6)' indicates PIAFS. PIAFS is a
 form of wireless ISDN commonly used in Japan, and
 stands for PHS (Personal Handyphone System) Internet
 Access Forum Standard (PIAFS).

 A value of 'radHdlcClearChannel(7)' indicates HDLC
 Clear Channel.

 A value of 'radX25(8)' indicates X.25.

 A value of 'radX75(9)' indicates X.75.

 A value of 'radG3Fax(10)' indicates G.3 Fax.

 A value of 'radSDSL(11)' indicates SDSL _ Symmetric
 DSL.

 A value of 'radAdslCAP(12)' indicates ADSL-CAP -
 Asymmetric DSL, Carrierless Amplitude Phase
 Modulation.

 A value of 'radAdslDMT(13)' indicates ADSL-DMT -
 Asymmetric DSL, Discrete Multi-Tone.

 A value of 'radIdsl(14)' indicates IDSL _ ISDN
 Digital Subscriber Line.

 A value of 'radEthernet(15)' indicates Ethernet.

 A value of 'radXdsl(16)' indicates xDSL - Digital
 Subscriber Line of unknown type.

 A value of 'radCable(17)' indicates Cable.

 A value of 'radWirelessOther(18)' indicates
 Wireless - Other.

 A value of 'radWirelessIEEE80211(19)' indicates
 Wireless - IEEE 802.11."

Internet Draft Binding Authentication to Provisioning March 2002

 ::= { ctxtDialupInterfaceEntry 4 }

 ctxtDialupInterfaceCalledStationId OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "This Attribute allows the NAS to send in the
 Access-Request packet the phone number that the user
 called, using Dialed Number Identification (DNIS) or
 similar technology. Note that this may be different
 from the phone number the call comes in on. It is
 only used in Access-Request packets."

 ::= { ctxtDialupInterfaceEntry 5 }

 ctxtDialupInterfaceCallingStationId OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "This Attribute allows the NAS to send in the
 Access-Request packet the phone number that the user
 is calling from, using Dialed Number Identification
 (DNIS) or similar technology. Note that this may be
 different from the phone number called. It is only

 used in Access-Request packets."

 ::= { ctxtDialupInterfaceEntry 6 }

 ctxtDialupInterfaceConnectInfo OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "This Attribute allows the NAS to send in the
 Access-Request packet the phone number that the call
 came from, using Automatic Number Identification
 (ANI) or similar technology. It is only used in
 Access-Request packets."

 ::= { ctxtDialupInterfaceEntry 7 }

 --- CtxtDialupInterfaceFramedProtocol Table

 ctxtDialupIfFramedProtocolTable OBJECT-TYPE
 SYNTAX SEQUENCE OF
 CtxtDialupIfFramedProtocolEntry
 PIB-ACCESS notify

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "."

 ::= { contextClasses 2 }

 ctxtDialupIfFramedProtocolEntry OBJECT-TYPE
 SYNTAX CtxtDialupIfFramedProtocolEntry
 STATUS current
 DESCRIPTION
 "Entry oid of the ctxtDialupIfFramedProtocolTable
 PRC."

 PIB-INDEX { ctxtDialupIfFramedProtocolId }
 UNIQUENESS { }

 ::= { ctxtDialupIfFramedProtocolTable 1 }

 CtxtDialupIfFramedProtocolEntry ::= SEQUENCE {
 ctxtDialupIfFramedProtocolId InstanceId,
 ctxtDialupIfFramedProtocolProt INTEGER,

 ctxtDialupIfFramedProtocolMTU Integer32,
 ctxtDialupIfFramedProtocolCompression INTEGER,
 ctxtDialupIfFramedProtocolPortLimit Unsigned32,
 ctxtDialupIfFramedProtocolIpAddress InetAddress,
 ctxtDialupIfFramedProtocolIpNetmask InetAddress
 }

 ctxtDialupIfFramedProtocolId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify an instance of this
 provisioning class."

 ::= { ctxtDialupIfFramedProtocolEntry 1 }

 ctxtDialupIfFramedProtocolProt OBJECT-TYPE
 SYNTAX INTEGER {
 radPPP(1),
 radSLIP(2),
 radARAP(3),
 radGandalf(4),
 radXylogics(5),
 radX75Synchronous(6)
 }
 STATUS current
 DESCRIPTION
 "This Attribute indicates the framing to be used for
 framed access. It MAY be used in both Access-
 Request and Access-Accept packets.

Internet Draft Binding Authentication to Provisioning March 2002

 A value of 'radPPP(1)' represents PPP.

 A value of 'radSLIP(2)' represents SLIP.

 A value of 'radARAP(3)' represents AppleTalk Remote
 Access Protocol (ARAP).

 A value of 'radGandalf(4)' represents Gandalf
 proprietary SingleLink/MultiLink protocol.

 A value of 'radXylogics(5)' represents Xylogics
 proprietary IPX/SLIP.

 A value of 'radX75Synchronous(6)' represents X.75
 Synchronous."

 ::= { ctxtDialupIfFramedProtocolEntry 2 }

 ctxtDialupIfFramedProtocolMTU OBJECT-TYPE
 SYNTAX Integer32
 STATUS current
 DESCRIPTION
 "This Attribute indicates the Maximum Transmission
 Unit to be configured for the user, when it is not
 negotiated by some other means (such as PPP). It
 MAY be used in Access-Accept packets. It MAY be
 used in an Access-Request packet as a hint by the
 NAS to the server that it would prefer that value,
 but the server is not required to honor the hint."

 ::= { ctxtDialupIfFramedProtocolEntry 3 }

 ctxtDialupIfFramedProtocolCompression OBJECT-TYPE
 SYNTAX INTEGER {
 radNone(0),
 radVJ(1),
 radIPXheader(2),
 radStacLZS(3)
 }
 STATUS current
 DESCRIPTION
 "This Attribute indicates a compression protocol to
 be used for the link. It MAY be used in Access-
 Accept packets. It MAY be used in an Access-Request
 packet as a hint to the server that the NAS would
 prefer to use that compression, but the server is
 not required to honor the hint.

 More than one compression protocol Attribute MAY be
 sent. It is the responsibility of the NAS to apply
 the proper compression protocol to appropriate link

Internet Draft Binding Authentication to Provisioning March 2002

 traffic.

 A value of 'radNone(0)' indicates None.

 A value of 'radVJ(1)' indicates VJ TCP/IP header
 compression.

 A value of 'radIPXheader(2)' indicates IPX header
 compression.

 A value of 'radStacLZS(3)' indicates Stac-LZS

 compression."

 ::= { ctxtDialupIfFramedProtocolEntry 4 }

 ctxtDialupIfFramedProtocolPortLimit OBJECT-TYPE
 SYNTAX Unsigned32
 STATUS current
 DESCRIPTION
 "This Attribute sets the maximum number of ports to
 be provided to the user by the NAS. This Attribute
 MAY be sent by the server to the client in an
 Access-Accept packet. It is intended for use in
 conjunction with Multilink PPP [10] or similar uses.
 It MAY also be sent by the NAS to the server as a
 hint that that many ports are desired for use, but
 the server is not required to honor the hint."

 ::= { ctxtDialupIfFramedProtocolEntry 5 }

 ctxtDialupIfFramedProtocolIpAddress OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "This Attribute indicates the address to be
 configured for the user. It MAY be used in Access-
 Accept packets. It MAY be used in an Access-Request
 packet as a hint by the NAS to the server that it
 would prefer that address, but the server is not
 required to honor the hint."

 ::= { ctxtDialupIfFramedProtocolEntry 6 }

 ctxtDialupIfFramedProtocolIpNetmask OBJECT-TYPE
 SYNTAX InetAddress
 STATUS current
 DESCRIPTION
 "This Attribute indicates the IP netmask to be
 configured for the user when the user is a router to
 a network. It MAY be used in Access-Accept packets.

Internet Draft Binding Authentication to Provisioning March 2002

 It MAY be used in an Access-Request packet as a hint
 by the NAS to the server that it would prefer that
 netmask, but the server is not required to honor the
 hint."

 ::= { ctxtDialupIfFramedProtocolEntry 7 }

 --- CtxtDialupIfLoginService Table

 ctxtDialupIfLoginServiceTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtDialupIfLoginServiceEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "Base class."

 ::= { contextClasses 3 }

 ctxtDialupIfLoginServiceEntry OBJECT-TYPE
 SYNTAX CtxtDialupIfLoginServiceEntry
 STATUS current
 DESCRIPTION
 "Entry oid of the ctxtDialupIfLoginServiceTable
 PRC."

 PIB-INDEX { ctxtDialupIfLoginServiceId }
 UNIQUENESS { }

 ::= { ctxtDialupIfLoginServiceTable 1 }

 CtxtDialupIfLoginServiceEntry::= SEQUENCE {
 ctxtDialupIfLoginServiceId InstanceId,
 ctxtDialupIfLoginServiceIpHost InetAddress
 }

 ctxtDialupIfLoginServiceId OBJECT-TYPE
 SYNTAX InstanceId
 STATUS current
 DESCRIPTION
 "An index to uniquely identify an instance of this
 provisioning class."

 ::= { ctxtDialupIfLoginServiceEntry 1 }

 ctxtDialupIfLoginServiceIpHost OBJECT-TYPE
 SYNTAX InetAddress

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current

 DESCRIPTION
 "."

 ::= { ctxtDialupIfLoginServiceEntry 2 }

 --- CtxtDialupIfLoginLat Table (Extends
 --- CtxtDialupIfLoginService)

 ctxtDialupIfLoginLatTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CtxtDialupIfLoginLatEntry
 PIB-ACCESS notify
 STATUS current
 DESCRIPTION
 "Extended class."

 ::= { contextClasses 4 }

 ctxtDialupIfLoginLatEntry OBJECT-TYPE
 SYNTAX CtxtDialupIfLoginLatEntry
 STATUS current
 DESCRIPTION
 "Entry oid of the ctxtDialupIfLoginLatTable PRC."
 EXTENDS { ctxtDialupIfLoginServiceEntry }
 UNIQUENESS { }

 ::= { ctxtDialupIfLoginLatTable 1 }

 CtxtDialupIfLoginLatEntry::= SEQUENCE {
 ctxtDialupIfLoginLatService OCTET STRING,
 ctxtDialupIfLoginLatNode OCTET STRING,
 ctxtDialupIfLoginLatGroup OCTET STRING,
 ctxtDialupIfLoginLatPort OCTET STRING
 }

 ctxtDialupIfLoginLatService OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "."

 ::= { ctxtDialupIfLoginLatEntry 1 }

 ctxtDialupIfLoginLatNode OBJECT-TYPE
 SYNTAX OCTET STRING

Internet Draft Binding Authentication to Provisioning March 2002

 STATUS current
 DESCRIPTION
 "."

 ::= { ctxtDialupIfLoginLatEntry 2 }

 ctxtDialupIfLoginLatGroup OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "."

 ::= { ctxtDialupIfLoginLatEntry 3 }

 ctxtDialupIfLoginLatPort OBJECT-TYPE
 SYNTAX OCTET STRING
 STATUS current
 DESCRIPTION
 "."

 ::= { ctxtDialupIfLoginLatEntry 4 }

 END

Internet Draft Binding Authentication to Provisioning March 2002

13. Security Considerations

 A COPS client-type implemented within the framework outlined in this
 document necessarily transmits sensitive authentication credentials
 between the PEP and the PDP. The COPS protocol provides optional
 message level security for authentication, replay protection, and
 message integrity for communications occurring between the PEP and
 the PDP by the use of the COPS Message Integrity Object [COPS].
 Additionally, COPS optionally reuses existing protocols for security
 such as IPSEC [IPSEC] or TLS to authenticate and secure COPS
 communications. Careful consideration should be given to using these
 mechanisms to reduce the probability of compromising authentication
 credentials. Furthermore, using these mechanisms cannot protect
 communication between an external authentication server and the PDP.
 So, when the PDP acts a proxy for an authentication server,
 consideration must be given to securing communications between the
 PDP and the authentication server as well. A discussion of
 applicable security techniques would be specific to any given
 authentication protocol and is outside the scope of this document.

Internet Draft Binding Authentication to Provisioning March 2002

14. References

 [MODEL] Y. Bernet, S. Blake, A. Smith, D. Grossman, "An Informal
 Management Model for Diffserv Routers,"

draft-ietf-diffserv-model-06.txt, February 2002.

 [DSPIB] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, C.
 Bell, A. Smith, F. Reichmeyer, "Differentiated
 Services Quality of Service Policy Information Base,"

draft-ietf-diffserv-pib-03.txt, March 2, 2001.

 [FWPIB] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, R.
 Sahita, A. Smith, F. Reichmeyer, _Framework Policy
 Information Base,"

draft-ietf-rap-frameworkpib-04.txt, March 1, 2001.

 [AUTH] B. Lloyd, W. Simpson, _PPP Authentication Protocols,_
RFC 1334, October 1992.

 [CHAP] W. Simpson, "PPP Challenge Handshake Authentication
 Protocol (CHAP)", RFC 1994, August 1996.

 [EAP] L. Blunk, J. Vollbrecht, _PPP Extensible Authentication
 Protocol (EAP)_, RFC 2284, March 1998.

 [NAI] B. Aboba, M. Beadles, _The Network Access Identifier,_
RFC 2486, January 1999.

 [IPSEC] R. Atkinson, "Security Architecture for the Internet
 Protocol", RFC 2401, August 1995.

 [COPS] D. Durham, et al., "The COPS (Common Open Policy Service)
 Protocol", RFC 2748, January 2000.

 [COPSPR] K. Chan, et al., "COPS Usage for Policy Provisioning
 (COPS-PR)", RFC 3084, March 2001.

 [RSVP] R. Braden, et al., " Resource ReSerVation Protocol (RSVP) _
 Version 1 Functional Specification ", September 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-pib-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-frameworkpib-04.txt
https://datatracker.ietf.org/doc/html/rfc1334
https://datatracker.ietf.org/doc/html/rfc1994
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2486
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2748
https://datatracker.ietf.org/doc/html/rfc3084

Internet Draft Binding Authentication to Provisioning March 2002

15. Author Information and Acknowledgments

 Walter Weiss
 Ellacoya Networks
 7 Henry Clay Drive
 Merrimack, NH 03054
 Phone: +1 603 879 7364
 E-mail: wweiss@ellacoya.com

 John Vollbrecht
 Interlink Networks, Inc.
 775 Technology Drive, Suite 200
 Ann Arbor, MI 48108
 Phone: +1 734 821 1205
 E-Mail: jrv@interlinknetworks.com

 David Spence
 Interlink Networks, Inc.
 775 Technology Drive, Suite 200
 Ann Arbor, MI 48108
 Phone: +1 734 821 1203
 E-Mail: dspence@interlinknetworks.com

 David Rago
 Interlink Networks, Inc.
 775 Technology Drive, Suite 200
 Ann Arbor, MI 48108
 Phone: +1 734 821 1241
 E-Mail: drago@interlinknetworks.com

 Freek Dijkstra
 Physics and Astronomy Department
 Utrecht University
 Princetonplein 5
 3584 CC Utrecht
 The Netherlands
 Phone: +31 30 2537724
 Email: F.Dijkstra@phys.uu.nl

 Cees de Laat
 Faculty of Science, Informatics Institute,
 University of Amsterdam
 Kruislaan 403
 1098 SJ Amsterdam
 The Netherlands
 Phone: +31 20 5257590
 E-Mail: delaat@science.uva.nl

 Leon Gommans
 Enterasys Networks EMEA,
 Kerkplein 24
 2841 XM Moordrecht
 The Netherlands

Internet Draft Binding Authentication to Provisioning March 2002

 Phone: +31 182 379278
 E-Mail: leon.gommans@enterasys.com

 Amol Kulkarni
 Intel
 2111 NE 25th Avenue
 Hillsboro, OR 97124
 Phone: 503.712.1168
 E-Mail: Amol.Kulkarni@intel.com

 Ravi Sahita
 Intel
 2111 NE 25th Avenue
 Hillsboro, OR 97124
 Phone: 503.712.1554
 E-Mail: Ravi.Sahita@intel.com

 Kwok Ho Chan
 Nortel Networks
 600 Technology Park Drive
 Billerica, MA 01821 USA
 Phone: +1 978 288 8175
 E-Mail: khchan@nortelnetworks.com

