
RAP Working Group R. Hess
Internet Draft Intel
Expires December 2001 June 2001

Cryptographic Authentication for RSVP POLICY_DATA Objects

draft-ietf-rap-auth-policy-data-00.txt

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026. Internet-Drafts are working documents of
 the Internet Engineering Task Force (IETF), its areas, and its
 working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 The distribution of this memo is unlimited. This memo is filed as
 <draft-ietf-rap-auth-policy-data-00.txt> and expires December 31,
 2001. Please send comments to the author.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document describes the format and use of the INTEGRITY option
 within RSVP's POLICY_DATA object to provide integrity and
 authentication of POLICY_DATA objects within RSVP messages.

Expires December 2001 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rap-auth-policy-data-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-rap-auth-policy-data-00.txt

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

1. Introduction

 The Resource ReSerVation Protocol (RSVP) [1] is a protocol for
 setting up distributed state in routers and hosts, and in particular
 for reserving resources to implement integrated service. RSVP allows
 particular users to obtain preferential access to network resources,
 under the control of an admission control mechanism. Permission to
 make a reservation will depend both upon the availability of the
 requested resources along the path of the data, and upon satisfaction
 of policy rules.

 Policy based admission control will occur at Policy Enforcement
 Points (PEPs); for the purposes of this document these nodes are
 policy aware RSVP systems. Policy data are distributed among PEPs
 using POLICY_DATA objects in RSVP messages. Initially, the
 enforcement of policy rules may concentrate on border nodes between
 autonomous systems. As such, POLICY_DATA objects may traverse policy
 ignorant RSVP systems (PINs) whose capabilities are limited to
 default policy handling [2].

 To ensure the integrity of this policy based admission control
 mechanism, PEPs require the ability to protect their POLICY_DATA
 objects against corruption and spoofing. The RSVP integrity
 mechanism [3] works hop-by-hop, which, unfortunately, is
 insufficient for our needs as it places trust with the POLICY_DATA
 object in PINs. What is required is an integrity mechanism
 analogous to RSVP's, but one what works PEP peer to PEP peer. This
 document defines such a mechanism. The proposed scheme transmits an
 authenticating digest of the POLICY_DATA object, computed using a
 secret Authentication Key and a keyed-hash algorithm. This scheme
 provides protection against forgery or object modification. The
 INTEGRITY option of each POLICY_DATA object is tagged with a one-
 time-use sequence number. This allows the message receiver to
 identify playbacks and hence to thwart replay attacks. The proposed
 mechanism does not afford confidentiality, since messages stay in the
 clear; however, the mechanism is also exportable from most countries,
 which would be impossible were a privacy algorithm to be used. Note:
 this document uses the terms "sender" and "receiver" differently from
 [3]. They are used here to refer to policy aware RSVP systems
 (a.k.a. PEPs) that face each other either across an RSVP hop or
 through one or more PINs, the "sender" being the system generating
 POLICY_DATA objects.

 The message replay prevention algorithm is quite simple. The sender
 generates packets with monotonically increasing sequence numbers. In
 turn, the receiver only accepts packets that have a larger sequence
 number than the previous packet. To start this process, a receiver
 handshakes with the sender to get an initial sequence number. This

 memo discusses ways to relax the strictness of the in-order delivery
 of messages as well as techniques to generate monotonically
 increasing sequence numbers that are robust across sender failures
 and restarts.

Expires December 2001 [Page 2]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 The proposed mechanism is independent of a specific cryptographic
 algorithm, but this document describes the use of Keyed-Hashing for
 Message Authentication using HMAC-MD5 [4]. As noted in [4], there
 exist stronger hashes, such as HMAC-SHA1; where warranted,
 implementations will do well to make them available. However, in the
 general case, [4] suggests that HMAC-MD5 is adequate to the purpose
 at hand and has preferable performance characteristics. [4] also
 offers source code and test vectors for this algorithm, a boon to
 those who would test for interoperability. HMAC-MD5 is required as a
 baseline to be universally included in policy aware RSVP
 implementations providing cryptographic authentication, with other
 proposals optional (see Section 6 on Conformance Requirements).

1.1. Conventions used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [5].

1.2. Why not use the Standard IPsec Authentication Header?

 One obvious question is why, since there exists a standard
 authentication mechanism, IPsec [6,7], we would choose not to use it.
 The use of IPsec was rejected for the following reasons.

 The security associations in IPsec are based on destination address.
 It is not clear that POLICY_DATA objects are well defined for either
 source or destination based security associations, as a router must
 forward PATH and PATH TEAR messages using the same source address as
 the sender listed in the SENDER TEMPLATE. RSVP traffic may otherwise
 not follow exactly the same path as data traffic. Using either
 source or destination based associations would require opening a new
 security association among the routers for which a reservation
 traverses.

 In addition, it was noted that neighbor relationships between PEPs
 are not limited to those that face one another across a communication
 channel. POLICY_DATA objects may traverse PINs, which are not
 necessarily visible to the sending system. These arguments suggest
 the use of a key management strategy based on PEP to PEP associations
 instead of IPsec.

2. Data Structures

2.1. INTEGRITY Option Format

 The Options List of a POLICY_DATA object consists of a sequence of
 "objects," which are type-length-value encoded fields having specific
 purposes. The information required for PEP peer to PEP peer

 integrity checking is carried in an INTEGRITY option. The same
 INTEGRITY option type is used for both IPv4 and IPv6.

Expires December 2001 [Page 3]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 The INTEGRITY Option format is defined to be identical to RSVP's
 INTEGRITY object as defined in [8], Section 2.1. For clarity, the
 format is reproduced below.

 o Keyed Message Digest INTEGRITY Option: Class = 4, C-Type = 1

 +-------------+-------------+-------------+-------------+
 | Length | 4 | 1 |
 +-------------+-------------+-------------+-------------+
 | Flags | 0 (Reserved)| |
 +-------------+-------------+ +
 | Key Identifier |
 +-------------+-------------+-------------+-------------+
 | |
 | Sequence Number |
 +-------------+-------------+-------------+-------------+
 | |
 // Keyed Message Digest //
 | |
 +-------------+-------------+-------------+-------------+

 Length: 16 bits

 The total length of the INTEGRITY Option in octets. Must
 always be a multiple of 4.

 Flags: An 8-bit field with the following format:

 Flags

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | H | |
 | F | 0 |
 +---+---+---+---+---+---+---+---+

 Currently only one flag (HF) is defined. The remaining flags
 are reserved for future use and MUST be set to 0.

 o Bit 0: Handshake Flag (HF) concerns the integrity
 handshake mechanism (Section 4.3). POLICY_DATA object
 senders willing to respond to integrity handshake
 messages SHOULD set this flag to 1 whereas those that
 will reject integrity handshake messages SHOULD set this
 to 0.

 Reserved: 8 bits

 Unused at this time. This field MUST be set to 0.

Expires December 2001 [Page 4]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 Key Identifier: 48 bits

 An unsigned 48-bit number that MUST be unique for a given
 sender. Locally unique Key Identifiers can be generated using
 some combination of the address (IP or MAC or LIH) of the
 sending interface and the key number. The combination of the
 Key Identifier and the sending system's IP address uniquely
 identifies the security association (Section 2.2).

 Sequence Number: 64 bits

 An unsigned monotonically increasing, unique sequence number.

 Sequence Number values may be any monotonically increasing
 sequence that provides the INTEGRITY option (of each
 POLICY_DATA object) with a tag that is unique for the
 associated key's lifetime. Details on sequence number
 generation are presented in Section 3.

 Keyed Message Digest: Variable length

 The digest MUST be a multiple of 4 octets long. For HMAC-MD5,
 it will be 16 octets long.

2.2. Security Association

 The sending and receiving systems maintain a security association for
 each authentication key that they share. This security association
 includes the following parameters:

 o Authentication algorithm and algorithm mode being used.

 o Key used with the authentication algorithm.

 o Lifetime of the key.

 o Associated sending interface and other security association
 selection criteria [REQUIRED at Sending System].

 o Source Address of the sending system [REQUIRED at Receiving
 System].

 o Latest sending sequence number used with this key identifier
 [REQUIRED at Sending System].

 o List of last N sequence numbers received with this key
 identifier [REQUIRED at Receiving System].

Expires December 2001 [Page 5]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

3. Generating Sequence Numbers

 In this section we describe methods that could be chosen to generate
 the sequence numbers used in the INTEGRITY option of a POLICY_DATA
 object in a RSVP message. As previous stated, there are two
 important properties that MUST be satisfied by the generation
 procedure. The first property is that the sequence numbers are
 unique, or one-time, for the lifetime of the integrity key that is in
 current use. A receiver can use this property to unambiguously
 distinguish between a new or a replayed object. The second property
 is that the sequence numbers are generated in monotonically
 increasing order, modulo 2^64. This is required to greatly reduce
 the amount of saved state, since a receiver only needs to save the
 value of the highest sequence number seen to avoid a replay attack.
 Since the starting sequence number might be arbitrarily large, the
 modulo operation is required to accommodate sequence number roll-over
 within some key's lifetime. This solution draws from TCP's approach
 [9].

 The sequence number field is chosen to be a 64-bit unsigned quantity.
 This is large enough to avoid exhaustion over the key lifetime. For
 example, if a key lifetime was conservatively defined as one year,
 there would be enough sequence number values to send POLICY_DATA
 objects at an average rate of about 585 gigaObjects per second. A
 32-bit sequence number would limit this average rate to about 136
 objects per second.

 The ability to generate unique monotonically increasing sequence
 numbers across a failure and restart implies some form of stable
 storage, either local to the device or remotely over the network.
 Three sequence number generation procedures are described below.

3.1. Simple Sequence Numbers

 The most straightforward approach is to generate a unique sequence
 number using an object counter. Each time a POLICY_DATA object is
 transmitted for a given key, the sequence number counter is
 incremented. The current value of this counter is continually or
 periodically saved to stable storage. After a restart, the counter
 is recovered using this stable storage. If the counter was saved
 periodically to stable storage, the count should be recovered by
 increasing the saved value to be larger than any possible value of
 the counter at the time of the failure. This can be computed,
 knowing the interval at which the counter was saved to stable
 storage and incrementing the stored value by that amount.

3.2. Sequence Numbers Based on a Real Time Clock

 Most devices will probably not have the capability to save sequence
 number counters to stable storage for each key. A more universal
 solution is to base sequence numbers on the stable storage of a real
 time clock. Many computing devices have a real time clock module

Expires December 2001 [Page 6]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 that includes stable storage of the clock. These modules generally
 include some form of nonvolatile memory to retain clock information
 in the event of a power failure.

 In this approach, we could use an NTP based timestamp value as the
 sequence number. The roll-over period of a NTP timestamp is about
 136 years, much longer than any reasonable lifetime of a key. In
 addition, the granularity of the NTP timestamp is fine enough to
 allow the generation of a POLICY_DATA object every 200 picoseconds
 for a given key. Many real time clock modules do not have the
 resolution of an NTP timestamp. In these cases, the least
 significant bits of the timestamp can be generated using an object
 counter, which is reset every clock tick. For example, when the real
 time clock provides a resolution of 1 second, the 32 least
 significant bits of the sequence number can be generated using an
 object counter. The remaining 32 bits are filled with the 32 least
 significant bits of the timestamp. Assuming that the recovery time
 after failure takes longer than one tick of the real time clock, the
 object counter for the low order bits can be safely reset to zero
 after a restart.

3.3. Sequence Numbers Based on a Network Recovered Clock

 If the device does not contain any stable storage of sequence number
 counters or of a real time clock, it could recover the real time
 clock from the network using NTP. Once the clock has been recovered
 following a restart, the sequence number generation procedure would
 be identical to the procedure described above.

4. POLICY_DATA Object Processing

 Implementations SHOULD allow specification of interfaces that are to
 be secured, for either sending objects, or receiving them, or both.
 The sender must ensure that all POLICY_DATA objects sent on secured
 sending interfaces include an INTEGRITY option, generated using the
 appropriate Key. Receivers verify whether POLICY_DATA objects,
 except of the type "Integrity Challenge" (Section 4.3), arriving on a
 secured receiving interface contain the INTEGRITY option. If the
 INTEGRITY option is absent, the receiver discards the object.

 Security associations are simplex - the keys that a sending system
 uses to sign its objects may be different from the keys that its
 receivers use to sign theirs. Hence, each association is associated
 with a unique sending system and (possibly) multiple receiving
 systems.

 Each sender SHOULD have distinct security associations (and keys) per
 secured sending interface (or LIH). While administrators may

 configure all the routers and hosts on a subnet (or for that matter,
 in their network) using a single security association,
 implementations MUST assume that each sender may send using a
 distinct security association on each secured interface. At the

Expires December 2001 [Page 7]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 sender, security association selection is based on the interface
 through which the object is sent. This selection MAY include
 additional criteria, such as the destination address (when sending
 the object unicast, over a broadcast LAN with a large number of
 hosts) or user identities at the sender or receivers [10]. Finally,
 all intended object recipients should participate in this security
 association. Route flaps in a non RSVP cloud might cause objects for
 the same receiver to be sent on different interfaces at different
 times. In such cases, the receivers should participate in all
 possible security associations that may be selected for the
 interfaces through which the object might be sent.

 Receivers select keys based on the Key Identifier and the sending
 system's IP address. The Key Identifier is included in the INTEGRITY
 option. The sending system's address can be obtained from the
 Originating RSVP_HOP option. Since the Key Identifier is unique for
 a sender, this method uniquely identifies the key.

 The integrity mechanism slightly modifies the processing rules for
 POLICY_DATA objects, both when including the INTEGRITY option in a
 policy object sent over a secured sending interface and when
 accepting a policy object received on a secured receiving interface.
 These modifications are detailed below.

4.1. INTEGRITY Generation

 For a POLICY_DATA object sent over a secured sending interface, the
 object is created as follows:

 (1) The INTEGRITY option is inserted in the appropriate place, and
 its location in the POLICY_DATA object is remembered for later
 use.

 (2) The sending interface and other appropriate criteria (as
 mentioned above) are used to determine the Authentication Key
 and the hash algorithm to be used.

 (3) The unused flags and the reserved field in the INTEGRITY
 option MUST be set to 0. The Handshake Flag (HF) should be
 set according to rules specified in Section 2.1.

 (4) The sending sequence number MUST be updated to ensure a
 unique, monotonically increasing number. It is then placed in
 the Sequence Number field of the INTEGRITY option.

 (5) The Keyed Message Digest field is set to zero.

 (6) The Key Identifier is placed into the INTEGRITY option.

Expires December 2001 [Page 8]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

4.2. INTEGRITY Reception

 (7) A copy of the RSVP SESSION object is temporarily appended to
 the end of the POLICY_DATA object (for computational purposes
 only, without changing the length of the POLICY_DATA object).
 The flags field of the SESSION object is set to 0. This
 concatenation is considered as the message for which a digest
 is to be computed.

 (8) An authenticating digest of the object is computed using the
 Authentication Key in conjunction with the keyed-hash
 algorithm. When the HMAC-MD5 algorithm is used, the hash
 calculation is described in [4]. Note: When the computation
 is complete, the SESSION object is ignored and is not part of
 the POLICY_DATA object.

 (9) The digest is written into the Cryptographic Digest field of
 the INTEGRITY option.

 When the policy object is received on a secured receiving interface,
 and is not of the type "Integrity Challenge", it is processed in the
 following manner:

 (1) The Cryptographic Digest field of the INTEGRITY option is
 saved and the field is subsequently set to zero.

 (2) A copy of the RSVP SESSION object is temporarily appended to
 the end of the POLICY_DATA object (for computational purposes
 only, without changing the length of the POLICY_DATA object).
 The flags field of the SESSION object is set to 0. This
 concatenation is considered as the message for which a digest
 is to be computed.

 (3) The Key Identifier field and the sending system address are
 used to uniquely determine the Authentication Key and the hash
 algorithm to be used. Processing of this packet might be
 delayed when the Key Management System (Appendix 1) is queried
 for this information.

 (4) A new keyed-digest is calculated using the indicated algorithm
 and the Authentication Key. Note: When the computation is
 complete, the SESSION object is ignored and is not part of the
 POLICY_DATA object.

 (5) If the calculated digest does not match the received digest,
 the policy object is discarded without further processing.

 (6) If the policy object is of type "Integrity Response", verify

 that the CHALLENGE option identically matches the originated
 challenge. If it matches, save the sequence number in the

Expires December 2001 [Page 9]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 INTEGRITY option as the largest sequence number received to
 date.

 Otherwise, for all other policy objects, the sequence number
 is validated to prevent replay attacks, and messages with
 invalid sequence numbers are ignored by the receiver.

 When a policy object is accepted, the sequence number of that
 object could update a stored value corresponding to the
 largest sequence number received to date. Each subsequent
 object must then have a larger (modulo 2^64) sequence number
 to be accepted. This simple processing rule prevents message
 replay attacks, but it must be modified to tolerate limited
 out-of-order message delivery. For example, if several
 messages were sent in a burst (in a periodic refresh generated
 by a router, or as a result of a tear down function), they
 might get reordered and then the sequence numbers would not be
 received in an increasing order.

 An implementation SHOULD allow administrative configuration
 that sets the receiver's tolerance to out-of-order message
 delivery. A simple approach would allow administrators to
 specify a message window corresponding to the worst case
 reordering behavior. For example, one might specify that
 packets reordered within a 32 message window would be
 accepted. If no reordering can occur, the window is set to
 one.

 The receiver must store a list of all sequence numbers seen
 within the reordering window. A received sequence number is
 valid if (a) it is greater than the maximum sequence number
 received or (b) it is a past sequence number lying within the
 reordering window and not recorded in the list. Acceptance of
 a sequence number implies adding it to the list and removing a
 number from the lower end of the list. Policy objects
 received with sequence numbers lying below the lower end of
 the list or marked seen in the list are discarded.

 When an "Integrity Challenge" policy object is received on a secured
 sending interface it is processed in the following manner:

 (1) An "Integrity Response" policy object is formed using the
 Challenge option received in the challenge policy object.

 (2) The response object is sent back to the receiver, based on the
 source IP address of the challenge policy object, using the
 "INTEGRITY Generation" steps outlined above. The selection of
 the Authentication Key and the hash algorithm to be used is

 determined by the key identifier supplied in the challenge
 policy object.

Expires December 2001 [Page 10]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

4.3. Integrity Handshake at Restart or Initialization of the Receiver

 To obtain the starting sequence number for a live Authentication Key,
 the receiver MAY initiate an integrity handshake with the sender.
 This handshake consists of a receiver's Challenge and the sender's
 Response, and may be either initiated during restart or postponed
 until a message signed with that key arrives.

 Once the receiver has decided to initiate an integrity handshake for
 a particular Authentication Key, it identifies the sender using the
 sending system's address configured in the corresponding security
 association. The receiver then sends an Integrity Challenge, that
 is, a POLICY_DATA object with a CHALLENGE Option to the sender. This
 option contains the Key Identifier to identify the sender's key and
 MUST have a unique challenge cookie that is based on a local secret
 to prevent guessing (see Section 2.5.3 of [11]). It is suggested
 that the cookie be an MD5 hash of a local secret and a timestamp to
 provide uniqueness (see Section 9).

 A CHALLENGE Option format is defined to be identical to RSVP's
 CHALLENGE object as defined in [8], Section 4.3. For clarity, the
 format is reproduced below.

 o CHALLENGE option: Class = 64, C-Type = 1

 +-------------+-------------+-------------+-------------+
 | Length | 64 | 1 |
 +-------------+-------------+-------------+-------------+
 | 0 (Reserved) | |
 +-------------+-------------+ +
 | Key Identifier |
 +-------------+-------------+-------------+-------------+
 | |
 // Challenge Cookie //
 | |
 +-------------+-------------+-------------+-------------+

 Length: 16 bits

 The total length of the CHALLENGE Option in octets. Must
 always be a multiple of 4.

 Reserved: 16 bits

 Unused at this time. This field MUST be set to 0.

 Key Identifier: 48 bits

 Challenge Cookie: Variable length

 The cookie MUST be a multiple of 4 octets long.

Expires December 2001 [Page 11]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 The sender accepts the "Integrity Challenge" without doing an
 integrity check. It returns an "Integrity Response," that is, a
 POLICY_DATA object that contains the original CHALLENGE option. It
 also includes an INTEGRITY option, signed with the key specified by
 the Key Identifier included in the "Integrity Challenge".

 The "Integrity Response" message is accepted by the receiver
 (challenger) only if the returned CHALLENGE option matches the one
 sent in the "Integrity Challenge" message. This prevents replay of
 old "Integrity Response" messages. If the match is successful, the
 receiver saves the Sequence Number from the INTEGRITY option as the
 latest sequence number received with the key identifier included in
 the CHALLENGE.

 If a response is not received within a given period of time, the
 challenge is repeated. When the integrity handshake successfully
 completes, the receiver begins accepting normal POLICY_DATA objects
 from that sender and ignores any other "Integrity Response" messages.

 The Handshake Flag (HF) is used to allow implementations the
 flexibility of not including the integrity handshake mechanism. By
 setting this flag to 1, message senders that implement the integrity
 handshake distinguish themselves from those that do not. Receivers
 SHOULD NOT attempt to handshake with senders whose INTEGRITY option
 has HF = 0.

 An integrity handshake may not be necessary in all environments. A
 common use of POLICY_DATA integrity will be between peering PEPs,
 which are likely to be processing a steady stream of policy objects
 due to aggregation effects. When a PEP restarts after a crash, valid
 policy objects from peering senders will probably arrive within a
 short time. Assuming that replay objects are injected into the
 stream of valid policy objects, there may be only a small window of
 opportunity for a replay attack before a valid object is processed.
 This valid object will set the largest sequence number seen to a
 value greater than any number that had been stored prior to the
 crash, preventing any further replays.

 On the other hand, not using an integrity handshake could allow
 exposure to replay attacks if there is a long period of silence from
 a given sender following a restart of a receiver. Hence, it SHOULD
 be an administrative decision whether or not the receiver performs an
 integrity handshake with senders that are willing to respond to
 "Integrity Challenge" messages, and whether it accepts any messages
 from senders that refuse to do so. These decisions will be based on
 assumptions related to a particular network environment.

5. Key Management

 It is likely that the IETF will define a standard key management
 protocol. It is strongly desirable to use that key management
 protocol to distribute POLICY_DATA Authentication Keys among

Expires December 2001 [Page 12]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 communicating policy aware RSVP implementations. Such a protocol
 would provide scalability and significantly reduce the human
 administrative burden. The Key Identifier can be used as a hook
 between PEPs and such a future protocol. Key management protocols
 have a long history of subtle flaws that are often discovered long
 after the protocol was first described in public. To avoid having to
 change all PEP implementations should such a flaw be discovered,
 integrated key management protocol techniques were deliberately
 omitted from this specification.

5.1. Key Management Procedures

 Each key has a lifetime associated with it that is recorded in all
 systems (sender and receivers) configured with that key. The concept
 of a "key lifetime" merely requires that the earliest (KeyStartValid)
 and latest (KeyEndValid) times that the key is valid be programmable
 in a way the system understands. Certain key generation mechanisms,
 such as Kerberos or some public key schemes, may directly produce
 ephemeral keys. In this case, the lifetime of the key is implicitly
 defined as part of the key.

 In general, no key is ever used outside its lifetime (but see Section
5.3). Possible mechanisms for managing key lifetime include the

 Network Time Protocol and hardware time-of-day clocks.

 To maintain security, it is advisable to change the POLICY_DATA
 Authentication Key on a regular basis. It should be possible to
 switch the POLICY_DATA Authentication Key without loss of RSVP state
 or denial of reservation service, and without requiring people to
 change all the keys at once. This requires a PEP implementation to
 support the storage and use of more than one active POLICY_DATA
 Authentication Key at the same time. Hence both the sender and
 receivers might have multiple active keys for a given security
 association.

 Since keys are shared between a sender and (possibly) multiple
 receivers, there is a region of uncertainty around the time of key
 switch-over during which some systems may still be using the old key
 and others might have switched to the new key. The size of this
 uncertainty region is related to clock synchrony of the systems.
 Administrators should configure the overlap between the expiration
 time of the old key (KeyEndValid) and the validity of the new key
 (KeyStartValid) to be at least twice the size of this uncertainty
 interval. This will allow the sender to make the key switch-over at
 the midpoint of this interval and be confident that all receivers are
 now accepting the new key. For the duration of the overlap in key
 lifetimes, a receiver must be prepared to authenticate messages using
 either key.

 During a key switch-over, it will be necessary for each receiver to
 handshake with the sender using the new key. As stated before, a
 receiver has the choice of initiating a handshake during the

Expires December 2001 [Page 13]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 switchover or postponing the handshake until the receipt of a message
 using that key.

5.2. Key Management Requirements

 Requirements on an implementation are as follows:

 o It is strongly desirable that a hypothetical security breach
 in one Internet protocol not automatically compromise other
 Internet protocols. The Authentication Key of this
 specification SHOULD NOT be stored using protocols or
 algorithms that have known flaws.

 o An implementation MUST support the storage and use of more
 than one key at the same time, for both sending and receiving
 systems.

 o An implementation MUST associate a specific lifetime (i.e.,
 KeyStartValid and KeyEndValid) with each key and the
 corresponding Key Identifier.

 o An implementation MUST support manual key distribution (e.g.,
 the privileged user manually typing in the key, key lifetime,
 and key identifier on the console). The lifetime may be
 infinite.

 o If more than one algorithm is supported, then the
 implementation MUST require that the algorithm be specified
 for each key at the time the other key information is entered.

 o Keys that are out of date MAY be automatically deleted by the
 implementation.

 o Manual deletion of active keys MUST also be supported.

 o Key storage SHOULD persist across a system restart, warm or
 cold, to ease operational usage.

5.3. Pathological Case

 It is possible that the last key for a given security association has
 expired. When this happens, it is unacceptable to revert to an
 unauthenticated condition, and not advisable to disrupt current
 reservations. Therefore, the system should send a "last
 authentication key expiration" notification to the network manager
 and treat the key as having an infinite lifetime until the lifetime
 is extended, the key is deleted by network management, or a new key
 is configured.

Expires December 2001 [Page 14]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

6. Conformance Requirements

 To conform to this specification, an implementation MUST support all
 of its aspects. The HMAC-MD5 authentication algorithm defined in [4]
 MUST be implemented by all conforming implementations. A conforming
 implementation MAY also support other authentication algorithms such
 as NIST's Secure Hash Algorithm (SHA). Manual key distribution as
 described above MUST be supported by all conforming implementations.
 All implementations MUST support the smooth key roll over described
 under "Key Management Procedures."

 Implementations SHOULD support a standard key management protocol for
 secure distribution of POLICY_DATA Authentication Keys once such a
 key management protocol is standardized by the IETF.

7. Kerberos Generation of POLICY_DATA Authentication Keys

 Kerberos [12] MAY be used to generate the POLICY_DATA Authentication
 key used in generating a signature in the Integrity Option sent from
 a PEP sender to a receiver. Kerberos key generation avoids the use
 of shared keys between PEP senders and receivers such as hosts and
 routers. Kerberos allows for the use of trusted third party keying
 relationships between security principals (PEP sender and receivers)
 where the Kerberos key distribution center (KDC) establishes an
 ephemeral session key that is subsequently shared between PEP sender
 and receivers. In the multicast case all receivers of a multicast
 POLICY_DATA object MUST share a single key with the KDC (e.g. the
 receivers are in effect the same security principal with respect to
 Kerberos).

 The Key information determined by the sender MAY specify the use of
 Kerberos in place of configured shared keys as the mechanism for
 establishing a key between the sender and receiver. The Kerberos
 identity of the receiver is established as part of the sender's
 interface configuration or it can be established through other
 mechanisms. When generating the first Integrity Option for a
 specific key identifier the sender requests a Kerberos service ticket
 and gets back an ephemeral session key and a Kerberos ticket from the
 KDC. The sender encapsulates the ticket and the identity of the
 sender in an Identity Option of the POLICY_DATA object [10]. The
 session key is then used by the sender as the POLICY_DATA
 Authentication key in section 4.1 step (2) and is stored as Key
 information associated with the key identifier.

 Upon policy object reception, the receiver retrieves the Kerberos
 Ticket from the Identity Option, decrypts the ticket and retrieves
 the session key from the ticket. The session key is the same key as
 used by the sender and is used as the key in section 4.2 step (3).

 The receiver stores the key for use in processing subsequent policy
 objects.

 Kerberos tickets have lifetimes and the sender MUST NOT use tickets

Expires December 2001 [Page 15]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 that have expired. A new ticket MUST be requested and used by the
 sender for the receiver prior to the ticket expiring.

7.1. Optimization when using Kerberos Based Authentication

 Kerberos tickets are relatively long (> 500 bytes) and it is not
 necessary to send a ticket in every POLICY_DATA object. The ephemeral
 session key can be cached by the sender and receiver and can be used
 for the lifetime of the Kerberos ticket. In this case, the sender
 only needs to include the Kerberos ticket in the first POLICY_DATA
 object generated. Subsequent messages use the key identifier to
 retrieve the cached key (and optionally other identity information)
 instead of passing tickets from sender to receiver in each
 POLICY_DATA object.

 A receiver may not have cached key state with an associated Key
 Identifier due to reboot or route changes. If the receiver's policy
 indicates the use of Kerberos keys for integrity checking, the
 receiver can send an integrity Challenge message back to the sender.
 Upon receiving an integrity Challenge message a sender MUST send an
 Identity option that includes the Kerberos ticket in the integrity
 Response message, thereby allowing the receiver to retrieve and store
 the session key from the Kerberos ticket for subsequent Integrity
 checking.

8. Acknowledgements

 This document is derived directly from similar work done for RSVP by
 Fred Baker, Bob Lindell and Mohit Talwar in [8].

9. References

 [1] Braden, R., Zhang, L., Berson, S., Herzog, S. and S. Jamin,
 "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
 Specification", RFC 2205, September 1997.

 [2] Hess, R., Ed., Herzog, S., "RSVP Extensions for Policy Control",
 work in progress, draft-ietf-rap-new-rsvp-ext-00.txt, June 2001.

 [3] Baker, F., Lindell, B. and Talwar, M., "RSVP Cryptographic
 Authentication", RFC 2747, January 2000.

 [4] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, March 1996.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Atkinson, R. and S. Kent, "Security Architecture for the

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-ietf-rap-new-rsvp-ext-00.txt
https://datatracker.ietf.org/doc/html/rfc2747
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

 Internet Protocol", RFC 2401, November 1998.

Expires December 2001 [Page 16]

https://datatracker.ietf.org/doc/html/rfc2401

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 [7] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
 November 1998.

 [8] Baker, F., Lindell, B. and Talwar, M., "RSVP Cryptographic
 Authentication", RFC 2747, January 2000.

 [9] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [10] Yadav, S., et al., "Identity Representation for RSVP", RFC 2752,
 January 2000.

 [11] Maughan, D., Schertler, M., Schneider, M. and J. Turner,
 "Internet Security Association and Key Management Protocol
 (ISAKMP)", RFC 2408, November 1998.

 [12] Kohl, J. and C. Neuman, "The Kerberos Network Authentication
 Service (V5)", RFC 1510, September 1993.

 [13] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

10. Security Considerations

 This entire memo describes and specifies an authentication mechanism
 for RSVP POLICY_DATA objects that is believed to be secure against
 active and passive attacks.

 The quality of the security provided by this mechanism depends on the
 strength of the implemented authentication algorithms, the strength
 of the key being used, and the correct implementation of the security
 mechanism in all communicating policy aware RSVP implementations.
 This mechanism also depends on the POLICY_DATA Authentication Keys
 being kept confidential by all parties. If any of these assumptions
 are incorrect or procedures are insufficiently secure, then no real
 security will be provided to the users of this mechanism.

 While the handshake "Integrity Response" message is integrity-
 checked, the handshake "Integrity Challenge" message is not. This
 was done intentionally to avoid the case when both peering routers do
 not have a starting sequence number for each other's key.
 Consequently, they will each keep sending handshake "Integrity
 Challenge" messages that will be dropped by the other end. Moreover,
 requiring only the response to be integrity-checked eliminates a
 dependency on an security association in the opposite direction.

 This, however, lets an intruder generate fake handshaking challenges
 with a certain challenge cookie. It could then save the response and
 attempt to play it against a receiver that is in recovery. If it was

https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2747
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2752
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2406

 lucky enough to have guessed the challenge cookie used by the
 receiver at recovery time it could use the saved response. This
 response would be accepted, since it is properly signed, and would

Expires December 2001 [Page 17]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

 have a smaller sequence number for the sender because it was an old
 message. This opens the receiver up to replays. Still, it seems
 very difficult to exploit. It requires not only guessing the
 challenge cookie (which is based on a locally known secret) in
 advance, but also being able to masquerade as the receiver to
 generate a handshake "Integrity Challenge" with the proper IP address
 and not being caught.

 Confidentiality is not provided by this mechanism. If
 confidentiality is required, IPsec ESP [13] may be the best approach,
 although it is subject to the same criticisms as IPsec
 Authentication, and therefore would be applicable only in specific
 environments. Protection against traffic analysis is also not
 provided. Mechanisms such as bulk link encryption might be used when
 protection against traffic analysis is required.

11. Author's Address

 Rodney Hess
 Intel Corp, BD1
 28 Crosby Dr
 Bedford, MA 01730

 EMail: rodney.hess@intel.com

Expires December 2001 Page 18]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

Appendix A: Key Management Interface

 This appendix describes a generic interface to Key Management. This
 description is at an abstract level realizing that implementations
 may need to introduce small variations to the actual interface.

 At the start of execution, a policy aware RSVP system would use this
 interface to obtain the current set of relevant keys for sending and
 receiving POLICY_DATA objects. During execution, it can query for
 specific keys given a Key Identifier and Source Address, discover
 newly created keys, and be informed of those keys that have been
 deleted. The interface provides both a polling and asynchronous
 upcall style for wider applicability.

A.1. Data Structures

 Information about keys is returned using the following KeyInfo data
 structure:

 KeyInfo {
 Key Type (Send or Receive)
 KeyIdentifier
 Key
 Authentication Algorithm Type and Mode
 KeyStartValid
 KeyEndValid
 Status (Active or Deleted)
 Outgoing Interface (for Send only)
 Other Outgoing Security Association Selection Criteria
 (for Send only, optional)
 Sending System Address (for Receive Only)
 }

A.2. Default Key Table

 This function returns a list of KeyInfo data structures corresponding
 to all of the keys that are configured for sending and receiving
 POLICY_DATA objects and have an Active Status. This function is
 usually called at the start of execution but there is no limit on the
 number of times that it may be called.

 KM_DefaultKeyTable() -> KeyInfoList

A.3. Querying for Unknown Receive Keys

 When a message arrives with an unknown Key Identifier and Sending
 System Address pair, PEP can use this function to query the Key
 Management System for the appropriate key. The status of the element
 returned, if any, must be Active.

 KM_GetRecvKey(INTEGRITY Object, SrcAddress) -> KeyInfo

Expires December 2001 [Page 19]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

A.4. Polling for Updates

 This function returns a list of KeyInfo data structures corresponding
 to any incremental changes that have been made to the default key
 table or requested keys since the last call to either
 KM_KeyTablePoll, KM_DefaultKeyTable, or KM_GetRecvKey. The status of
 some elements in the returned list may be set to Deleted.

 KM_KeyTablePoll() -> KeyInfoList

A.5. Asynchronous Upcall Interface

 Rather than repeatedly calling the KM_KeyTablePoll(), an
 implementation may choose to use an asynchronous event model. This
 function registers interest to key changes for a given Key Identifier
 or for all keys if no Key Identifier is specified. The upcall
 function is called each time a change is made to a key.

 KM_KeyUpdate (Function [, KeyIdentifier])

 where the upcall function is parameterized as follows:

 Function (KeyInfo)

Expires December 2001 [Page 20]

I-D Cryptographic Authentication for RSVP POLICY_DATA Objects June 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Expires December 2001 [Page 21]

