
 Internet Draft Jim Boyle
 Expiration: July 1998 MCI
 File: draft-ietf-rap-cops-00.txt Ron Cohen
 Class Data Systems
 David Durham
 Intel
 Shai Herzog
 IPHighway
 Raju Rajan
 IBM
 Arun Sastry
 Cisco

 The COPS (Common Open Policy Service) Protocol

 Last Updated: January 20, 1998

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a
 "working draft" or "work in progress".

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 A revised version of this draft document will be submitted to the
 RFC editor as a Proposed Standard for the Internet Community.
 Discussion and suggestions for improvement are requested. This
 document will expire before June 1998. Distribution of this draft is
 unlimited.

https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-00.txt

Boyle et al. [Page 1]

Internet Draft COPS January 1998

Abstract

 This document describes a simple client/server model for supporting
 policy control over QoS Signaling Protocols with similar properties
 as ReSerVation Protocol (RSVP). It is designed to be extensible so
 that other kinds of policy clients may be supported in the future.
 The model does not make any assumptions about the decision methods
 of the policy server, but is based on the server returning responses
 to policy requests.

1. Introduction

 This document describes a simple query and response protocol that
 can be used to exchange policy information between a policy server
 (Policy Decision Point or PDP) and its clients (Policy Enforcement
 Points or PEPs). One policy client is expected to be RSVP routers
 that must exercise policy-based admission control over RSVP usage
 [RSVP]. We assume that at least one policy server exists in each
 controlled administrative domain. The basic model of interaction
 between a policy server and its clients is compatible with
 the framework document for policy based admission control [WRK].

 A chief objective of our proposal is to begin with a simple but
 extensible design. The main characteristics of the proposed protocol
 include:

 1. The protocol employs a client/server model where the PEP
 sends requests, updates, and retractions to the remote PDP and
 the PDP returns decisions back to the PEP.

 2. The protocol uses TCP as its transport protocol for reliable
 exchange of messages between policy clients and a server.
 Therefore, no additional mechanisms are necessary for reliable
 communication between a server and its clients.

 3. The protocol is extensible in that it is designed to leverage
 off self-identifying objects and can support diverse client
 specific information. Thus, even though the protocol was created
 for the administration and enforcement of policies in
 conjunction with RSVP, the protocol may be extended for
 administration of other (signaling) protocols such as multicast
 access and network security.

 4. The protocol relies on existing protocols for security.

 Namely IPSEC [IPSEC] can be used to authenticate and secure the
 channel between the PEP and the server.

Boyle et al. Expires July 1998 [Page 2]

Internet Draft COPS January 1998

 5. The protocol is stateful in two main aspects:
 (1) Request/Response state is shared between client and server
 and (2) State from various events (Request/Response pairs) may
 be inter-associated. By (1) we mean that requests from the
 client PEP are installed or remembered by the remote PDP until
 they are explicitly deleted by the PEP. At the same time,
 Responses from the remote PDP can be generated asynchronously at
 any time for a currently installed request state. By (2) we mean
 that the server may respond to new queries differently because
 of previously installed, related Request/Response state (e.g.,
 for RSVP, the server may associate state from incoming Path and
 Resv requests).

1.1. Basic Model

 +----------------+
 | |
 | Network Node | Policy Server
 | |
 | +-----+ | COPS +-----+
 | | PEP |<-----|-------------->| PDP |
 | |+----+ | +-----+
 | ^ |
 | | |
 | \-->+-----+ |
 | | LDP | |
 | +-----+ |
 | |
 +----------------+

 Figure 1: A COPS illustration.

 Figure 1 Illustrates the layout of various policy components in a
 typical COPS example (taken from [WRK]). Here, COPS is used to
 communicate policy information between a Policy Enforcement Point
 (PEP) and a remote Policy Decision Point (PDP).

 It is assumed that each participating policy client is functionally
 consistent with a PEP [WRK]. The PEP may communicate with a policy
 server (herein referred to as a remote PDP [WRK]) to obtain policy
 decisions or directives.

 The COPS protocol uses a single persistent TCP connection between
 the PEP and a remote PDP. The remote PDP listens on a well-known
 port number (COPS=3288), and the PEP is responsible for initiating
 the connection. The location of the remote PDP can either be
 configured, or obtained via a service location mechanism [SRVLOC].

 Service discovery is outside the scope of this protocol, however.

Boyle et al. Expires July 1998 [Page 3]

Internet Draft COPS January 1998

 The PEP uses the TCP connection to send requests to and receive
 responses from the remote PDP. Communication between the PEP and
 remote PDP is mainly in the form of a stateful request/response
 exchange, though the remote PDP may occasionally send an unsolicited
 response to the PEP to force a change in a previously approved
 request state. The PEP also has the capacity to report to the remote
 PDP that it has committed to an accepted request state for purposes
 of accounting and monitoring. Finally, the PEP is responsible for
 the deletion (retraction) of a request state that is no longer
 applicable.

 The policy protocol is designed to communicate self-identifying
 objects which contain the data necessary for identifying request
 states, establishing the context for a request, identifying the type
 of request, referencing previously installed requests, relaying
 policy decisions, reporting errors, and transferring client specific
 information.

 To distinguish between different kinds of clients, the type of
 client is identified in each message. Different types of clients may
 have different client specific data and may require different kinds
 of policy decisions. It is expected that each new client type will
 have a corresponding extensions draft specifying the specifics of
 its interaction with this policy protocol.

 The context of each request corresponds to the policy event that
 triggered it. COPS identifies three types of controlled events: (1)
 the arrival of an incoming message (2) allocation of local
 resources, and (3) the forwarding of an outgoing message.
 Each of these events may require different decisions to be made.
 Context sub types are also defined according to the type of message
 that triggered the policy event. In RSVP, this subtype is used to
 define the RSVP signaling message type (e.g., Path, Resv, etc.). The
 content of a COPS request/response message depends on the context.

 The PEP may also have the capability to make a local policy decision
 via its Local Decision Point (LDP) [WRK], however, the PDP remains
 the authoritative decision point at all times. This means that
 any local decision information must always be relayed to the PDP.
 That is, the PDP must be granted access to all relevant information
 to make a final policy decision. To facilitate this functionality,
 the PEP must send its local decision information to the remote PDP
 via a LDP decision object. The PEP must then abide by the PDP's
 decision as it is absolute.

 Finally, fault tolerance is a required capability for this protocol,
 particularly due to the fact it is associated with the security and

 service management of distributed network devices. Fault tolerance
 is achieved by having both the PEP and remote PDP constantly verify
 their connection to each other via keep-alive messages. When a
 failure is detected, the PEP must try to reconnect to the remote PDP
 or attempt to connect to an new/alternative PDP. Once a connection

Boyle et al. Expires July 1998 [Page 4]

Internet Draft COPS January 1998

 is reestablished, the remote PDP may request that all the PEP's
 internal state be resynchronized (all previously installed requests
 are to be reissued). After failure and before the new connection is
 fully functional, disruption of service can be minimized if the PEP
 caches previously communicated decisions and continues to use them
 for some limited amount of time. (Discussions of specific provisions
 for such a mechanism are outside of the scope of this draft, and are
 left to client specific implementations).

Boyle et al. Expires July 1998 [Page 5]

Internet Draft COPS January 1998

2. The Protocol

 This section describes the message formats and objects exchanged
 between the PEP and remote PDP.

2.1 Common Header

 Each COPS message consists of the COPS header followed by a number
 of typed objects.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 |Version|XXXXXX| Op Code | Client Type |
 +--------------+--------------+--------------+--------------+
 | Message Length |
 +--------------+--------------+--------------+--------------+

 The fields in the header are:
 Version: 4 bits
 COPS version number. Current version is 1.

 Op Code: 8 bits
 The COPS operations:
 1 = Request (REQ)
 2 = Response (RES)
 3 = Unsolicited Response (USR)
 4 = Report State (RPT)
 5 = Delete Request State (DRQ)
 6 = Synchronize State Req (SSQ)
 7 = Client-Open (OPN)
 8 = Client-Accept (CAT)
 9 = Keep Alive (KA)

 Client Type: 16 bits

 The Client Type identifies the policy client. Interpretation of
 all encapsulated objects is relative to the client type.
 (See Appendix A for the RSVPv1 client type ID).

 Message Length: 32 bits
 Size of message in octets, which includes the standard COPS
 header and all encapsulated objects. Messages must be aligned on
 4 octet intervals.

Boyle et al. Expires July 1998 [Page 6]

Internet Draft COPS January 1998

2.2 COPS Specific Object Formats

 All the objects follow the same object format; each object consists
 of one or more 32-bit words with a four octet header, using the
 following format:

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | Length (octets) | C-Num | C-Type |
 +-------------+-------------+-------------+-------------+
 | |
 // (Object contents) //
 | |
 +-------------+-------------+-------------+-------------+

 Typically, C-Num identifies the class of information contained in
 the object, and the C-Type identifies the subtype or version of the
 information contained in the object.

 C-num: 8 bits

 1 = Handle
 2 = Handle Reference.
 3 = Context
 4 = In Interface
 5 = Out Interface
 6 = Reason code
 7 = Decision
 8 = LDP Decision
 9 = Protocol Error
 10 = Client Specific Info
 11 = Timer
 12 = PEP Identification
 13 = Report Type

 C-type: 8 bits
 Values defined per C-num.

2.2.1 Handle Object (Handle)

 Unique value that identifies an installed request state. This
 identification is used by most COPS operations. The request state
 corresponding to this handle must be explicitly deleted by the
 client when no longer applicable.

 The handle value is set by the PEP and is opaque to the PDP. The PDP
 performs a byte-wise comparison on the value in this object with

 respect to the handle object values for other currently installed
 requests.

 C-Num = 1, C-Type = 1

Boyle et al. Expires July 1998 [Page 7]

Internet Draft COPS January 1998

 Variable-length field, no implied format.

2.2.2 Handle Reference Object (HandleRef)

 Same C-Type formats as the handle object. This object may appear in
 requests and is used to associate the current request to previously
 installed request states. The presence of a reference handle in a
 request message tells the PDP that it should also consider
 information in the referenced installed state when making a policy
 decision for the current request. Handle References are only used
 for the specific client types that mandate them.

 C-num = 2, C-Type = (same as handle object)

2.2.3 Context Object (Context)

 Specifies the type of event(s) that triggered the query. Required
 for request messages.

 C-num = 3, C-Type = 1
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | R-Type | M-Type |
 +--------------+--------------+--------------+--------------+

 R-Type (Request Type Flag)

 0x01 = Incoming-Message/Admission Control request
 0x02 = Resource-Allocation request
 0x04 = Outgoing-Message request
 0x08 = Configuration request

 M-Type (Message Type)

 Client Specific 16 bit values of protocol message types

2.2.4 In-Interface Object (IN-Int)

 The In-Interface Object is used to identify the incoming interface
 on which a particular request/response applies. For flows or
 messages generated from the PEP's local host, the loop back address
 is used.

 Note: In-Interface is typically relative to the flow of the

 underlying protocol messages. That is, the In-Interface is the
 interface on which the protocol message was received.

 C-Num = 4

Boyle et al. Expires July 1998 [Page 8]

Internet Draft COPS January 1998

 C-Type = 1, IPv4 Address
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | IPv4 Address format |
 +--------------+--------------+--------------+--------------+

 C-Type = 2, IPv6 Address
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | |
 + +
 | |
 + IPv6 Address format +
 | |
 + +
 | |
 +--------------+--------------+--------------+--------------+

 C-Type = 3, Ifindex value
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | ifindex |
 +--------------+--------------+--------------+--------------+

 Ifindex may be used to differ between sub-interfaces and unnumbered
 interfaces (see RSVP's LIH for an example). When appropriate, this
 ifindex integer should correspond to the same integer value for the
 interface in the SNMP MIB-II interface index table.

2.2.5 Out-Interface Object (OUT-Int)

 The Out-Interface is used to identify the outgoing interface to
 which a specific request/response applies. It has the same format as
 the In-Interface Object.

 C-Num = 5, C-Type = (same C-Type as for In-Interface)

 Note: In-Interface is typically relative to the flow of the
 underlying protocol messages. That is, the Out-Interface is the one
 on which a protocol message is about to be forwarded.

2.2.6 Reason Object (Reason)

 This object specifies the reason why the request state was deleted.
 It should appear in the delete request (DRQ) message.

 C-Num = 6, C-Type = 1

Boyle et al. Expires July 1998 [Page 9]

Internet Draft COPS January 1998

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Reason-Code | Reason Sub-code |
 +--------------+--------------+--------------+--------------+

 Reason Code:
 1 = Unknown
 2 = Management
 3 = Preempted
 4 = Tear
 5 = Timeout
 6 = Route Change
 7 = Insufficient Resources
 8 = PDP's Directive
 9 = Client Specific (details in sub-code)

2.2.7 Decision Object (Decision)

 Decision made by the PDP. Must appear in replies. The specific
 decision objects required in a response to a particular request
 depend on the type of client.

 C-Num = 7

 CType = 1, Decision Flags (mandatory!)

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Flags |
 +--------------+--------------+--------------+--------------+

 Flags:
 0x01 = Reject Incoming (Reject if set)
 0x02 = Do Not Allocate Resources (Reject if set)
 0x04 = Drop Outgoing (do not forward message if set)
 0x08 = Trigger Error (Trigger error message if set)

 Ctype = 2, Resource Allocation Data (optional)

 It is expected that PEPs would be able to configure simple
 stateless policy information to be processed locally in their
 LDP. As this set is well known and implemented ubiquitously,
 PDPs are aware of it as well (either universally, through
 configuration, or using the Client-Open message). The PDP may
 also include this information in its response, and the PEP
 should apply it to the resource allocation event that generated
 the request.

 Examples of resource allocation information that can be found in
 other documents are:

Boyle et al. Expires July 1998 [Page 10]

Internet Draft COPS January 1998

 Preemption Priority

 Priority is used by PEP to decide which of the flows should be
 preempted, when not enough resources are available on the
 interface. For RSVP, when preemption is supported, a higher
 priority reservation can preempt an installed reservation with
 lower priority.

 CType = 3, Replacement Data (Optional)

 Format includes a list of client specific data that is to be
 used in place of information specified in the request. Use of
 this decision type is optional. For RSVP, this decision is used
 to change objects carried in RSVP messages. For example,
 replacing the policy data objects when forwarding a Resv message
 upstream is possible due to this decision type. If this decision
 doesn't appear in a response, all objects are passed as if the
 PDP was not there. To remove an object the decision should carry
 an empty object of length 4 (header only). Appendix A specifies
 the list of RSVP objects that can be replaced.

 CType = 4, Client Specific Decision Data (Optional)

 Proprietary decision types can be introduced using the Client
 Data Decision Object. Like the Replacement Data object, client
 specific information is encapsulated within the Client Data
 Object.

2.2.8 LDP Decision Object (LDPDecision)

 Decision made by the PEP's local decision point (LDP). May appear in
 requests. These objects correspond to and are formatted the same as
 the client specific decision objects defined above.

 C-Num = 8

 CType = (same C-Type as for Decision object)

2.2.9 Error Object (Error)

 This object is used to identify a particular COPS protocol error.

 C-Num 9, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Error-Code | Error Sub-code |

 +--------------+--------------+--------------+--------------+

 Error-Code:

Boyle et al. Expires July 1998 [Page 11]

Internet Draft COPS January 1998

 1 = Bad handle
 2 = Invalid handle reference
 3 = Bad message format
 4 = Unable to process (server gives up on query)
 5 = Mandatory client-specific info missing
 6 = Unsupported client type
 7 = Mandatory COPS object missing

2.2.10 Client Specific Information Object (ClientSI)

 All objects specific to a client's signaling protocol must be
 encapsulated within one or more Client Information Objects.

 Class-Num = 10, C-Type = 1

 Variable-length field. The format of the data encapsulated in the
 ClientSI object is determined by the client type.

2.2.11 Timer Object (Timer)

 Times are encoded as 32-bit integer values and are in units of
 seconds. The time value is treated as a delta.

 Class-Num = 11, C-Type = 1 (keep-alive timer value)

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Timer Value |
 +--------------+--------------+--------------+--------------+

2.2.12 PEP Identification Object (PEPID)

 The PEP Identification Object is used to identify the PEP client to
 the remote PDP. It is required for Client-Open messages.

 C-Num = 12, C-Type = 1

 Variable-length field (zero padded ASCII symbolic name) configured
 by local administrators for the PEP. For example, it can be the
 PEP's main IP address (not to be confused with the actual IP address
 used in the persistent TCP connection). It may also be the PEP's DNS
 name, or any other symbol that uniquely identifies each PEP within
 the policy domain. The choice of configuration bears no significance
 to the COPS protocol. By default, at least the primary IP address of
 the PEP represented as a string is expected in the PEPID.

2.2.13 Report-Type Object (Report-Type)

 The Type of Report on the request state associated with a handle:

Boyle et al. Expires July 1998 [Page 12]

Internet Draft COPS January 1998

 C-Num = 13, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Report-Type | XXXXXXXXXXXXX |
 +--------------+--------------+--------------+--------------+

 Report-Type:
 1 = Commit : State was installed on client (PEP)
 2 = Accounting: Accounting update for an installed state

Boyle et al. Expires July 1998 [Page 13]

Internet Draft COPS January 1998

3. Message Content

 This section describes the basic messages exchanged between a PEP
 and a remote PDP as well as their contents.

3.1 Request (REQ) PEP -> PDP

 The PEP establishes a request state handle for which the remote PDP
 may maintain a state. The remote PDP then uses this handle to refer
 to the exchanged information and decisions.

 Once a stateful handle is established for a new request, any
 subsequent modifications of the request can be made using the REQ
 message specifying the previously installed handle.

 The format of the Request message is as follows:

 <Request> ::= <Common Header>
 <Handle>
 <Context>
 [<IN-Int>]
 [<OUT-Int>]
 <ClientSI>
 [<list of HandleRefs>]
 [<LDPDecision>]

 The context object is used to determine the context within which all
 the other objects are to be interpreted. It also is used to
 determine the kind of response to be returned from the policy
 server. This response might be related to admission control,
 resource allocation, or object forwarding and substitution.

 The interface objects are used to determine the corresponding
 interface on which a signaling protocol message was received or is
 about to be sent. They are only used if the client is participating
 along the path of a signaling protocol.

 ClientSI, the client specific information object holds the client
 type specific data for which a policy decision needs to be made.

 The handle reference objects are used to refer to state information
 currently installed on the PDP that is associated with the current
 request.

 Finally, LDPDecision object holds information regarding the local
 decision made by the LDP.

Boyle et al. Expires July 1998 [Page 14]

Internet Draft COPS January 1998

3.2 Response (RES) PDP -> PEP

 The PDP responds to the REQ with a RES message that includes the
 associated handle and the decision. If there was a protocol error an
 error object is returned instead.

 In order to avoid the issue of keeping track of which Request a
 particular response belongs to, it is important that, for a given
 handle, there be at most one outstanding response per query. This
 essentially means that the PEP should not issue more than one
 REQ(for a given handle) before it receives a corresponding RES. To
 avoid deadlock, the client can always timeout after issuing a
 request. It can then delete the timed-out handle, and try again
 using a different (new) one.

 The format of the Response message is as follows:

 <Response> ::= <Common Header>
 <Handle>
 <Decision(s)> || <Error>

 The response may include either an Error object or decision
 object(s). COPS protocol problems are reported in the Error object
 (e.g. an error with the format of the original request). Decision
 object(s) depend on the context of the associated request and the
 type of client.

3.3 Unsolicited Response (USR) PDP -> PEP

 The remote PDP can also send an unsolicited response to a PEP to
 report a different response than the one previously communicated.
 For example, the PDP may admit a new flow and change its mind to
 reject it sometime later. The change of mind is communicated using
 the USR message.

 The format for an USR is the same as that for a RES and similarly,
 it dependents on the context of the original request.

3.4 Report State (RPT) PEP -> PDP

 This message is used by the PEP to communicate the change in status
 of a previously installed request state to the server. A commit
 report indicates to the PDP that a particular policy directive has
 been acted upon. (In RSVP this would mean that the reservation
 successfully passed capacity admission control).

 The Report State may also be used to provide periodic updates of

 client specific information for accounting and state monitoring
 purposes depending on the type of the client. In such cases the
 accounting report type should be specified utilizing the client
 specific information object.

Boyle et al. Expires July 1998 [Page 15]

Internet Draft COPS January 1998

 <Report State> ::== <Common Header>
 <Handle>
 <Report-Type>
 [<Client Specific Information>]

3.5 Delete Request State (DRQ) PEP -> PDP

 This message indicates to the remote PDP that the request state must
 be deleted. This will be used by the remote PDP to initiate the
 appropriate housekeeping actions. The reason code object is
 interpreted with respect to the client type.

 The format of the Delete Request State message is as follows:

 <Delete Request> ::= <Common Header>
 <Handle>
 <Reason>

3.6 Synchronize State Request (SSQ) PDP -> PEP

 The format of the Synchronize State Query message is as follows:

 <Synchronize State> ::= <Common Header>
 [<Handle>]

 This message indicates that the remote PDP wishes the client (which
 appears in the common header) to re-send its state. If the optional
 Handle is present, only the state associated with this handle is
 synchronized. Otherwise, all the client state should be synchronized
 with the PDP.

 The client performs state synchronization by re-issuing request
 queries of the specified client type for the existing state in the
 PEP.

3.7 Client-Open (OPN) PEP -> PDP

 The Client-Open message can be used to provide the characteristics
 of the connection, suggested time intervals for the keep-alive
 messages, and information on the locally known policy elements.

 <Client-Open> ::= <Common Header>
 <PEPID>
 [<Timer>]

 The PEPID is a symbolic, variable length name that identifies the
 specific client to the PDP. Values for the PEPID are configurable by
 administrators of administrative domains and are of direct
 significance to the COPS protocol. By default, the PEPID specifies

Boyle et al. Expires July 1998 [Page 16]

Internet Draft COPS January 1998

 the primary IP address in the form of a string for the PEP in
 question.

 If included, the timer corresponds to PEP's preference for the
 maximum intermediate time between the generation of messages for
 connection verification.

3.8 Client-Accept (CAT) PDP -> PEP

 The Client-Accept message is used to respond to the Client-Open
 message. This message will return to the PEP either a timer object
 indicating the expected time interval between keep-alive messages,
 or an error object indicating that an error occurred (e.g. requested
 client type is not supported by the remote PDP).

 <Client-Accept> ::= <Common Header>
 <Timer> || <Error>

 If the PDP refuses the client, it will return an Error object to
 describe the reason.

 The timer corresponds to maximum acceptable intermediate time
 between the generation of messages by the PDP and PEP. The timer
 value is determined by the PDP taking into account the client's
 preference established with the OPN message. A timer value of
 0xFFFFFFFF implies no secondary connection verification is
 necessary.

3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP

 The keep-alive message only needs to be transmitted when there has
 been no activity between the client and server for a period
 approaching half that of the minimum timer value negotiated with the
 OPN & CAT messages. It is a validation for each side that the other
 is still functioning.

 <Keep-Alive> ::= <Common Header>

 Both client and server may assume the connection is insufficient for
 the client type with the minimum time value (specified in the CAT
 message) if no communication activity is detected for a period
 exceeding the timer period. For the PEP, such detection implies the
 remote PDP or connection is down and the PEP should now attempt to
 use an alternative/backup PDP.

Boyle et al. Expires July 1998 [Page 17]

Internet Draft COPS January 1998

4. Common Operation

 This section describes the typical exchanges between remote PDP
 servers and PEP clients.

 After a connection is established between the PEP and a remote PDP,
 the PEP will send one or more Client-Open messages to the remote
 PDP, one for each client type supported by the PEP. The open message
 should contain the common header noting one client type supported by
 the PEP. The remote PDP will then respond with a Client-Accept
 message echoing back each of the client types the PEP supports that
 it can support as well. If a specific client type is not supported
 by the PDP, the corresponding Client-Accept message sent back to the
 PEP will include an error object specifying the client type is not
 supported. The PDP will include the timer interval between keep-
 alive messages in its Client-Accept.

 When the PEP receives an event that requires a new policy decision
 it sends a request message to the remote PDP. The remote PDP then
 makes a decision and sends a response back to the PEP. Since the
 request is stateful, the request will be remembered, or installed,
 on the remote PDP. The unique handle, specified in both the request
 and its corresponding response identifies this request state. The
 PEP is responsible for deleting this request state once the request
 is no longer applicable.

 The PEP may update a previously installed request state by reissuing
 a request for the previously installed handle. The remote PDP is
 then expected to make new decisions and send a response back to the
 PEP. Likewise, the server may change a previously issued decision on
 any currently installed request state at any time by issuing an
 asynchronous response. At all times the PEP module is expected to
 abide by the PDP's decisions.

 The PEP may also notify the remote PDP of the local status of an
 installed request using the report message where appropriate. The
 report message is to be used to signify when billing should
 effectively begin, or to produce periodic updates for monitoring and
 accounting purposes depending on the client. This message can carry
 client specific information when needed.

 Finally, to validate the connection between the client and server is
 still functioning, the keep-alive message is used. If no COPS
 message is generated within one half the minimum timer value
 interval, a keep-alive message needs to be generated. Both the PEP
 and remote PDP are expected to follow this procedure.

Boyle et al. Expires July 1998 [Page 18]

Internet Draft COPS January 1998

5. Security

 The security of RSVP messages is provided by inter-router MD5
 authentication [MD5]. This assumes a chain-of-trust model for inter
 PEP authentication. Security between the client (PEP) and server
 (PDP) is provided by IPSEC [IPSEC].

 To ensure the client (PEP) is communicating with the correct policy
 server (PDP) involves two issues: authentication of the policy
 client and server using a shared secret, and consistent proof that
 the connection remains valid. The shared secret requires manual
 configuration of keys, which is a maintenance issue. IPSEC AH may be
 used for the validation of the connection; IPSEC ESP may be used to
 provide both validation and secrecy.

Boyle et al. Expires July 1998 [Page 19]

Internet Draft COPS January 1998

6. Open issues

 6.1 Bi-directional Connection Establishment:

 Currently, only the PEP is supposed to connect with the PDP. It
 might be useful to have the PDP proactive in establishing
 connections with its PEPs. Such would potentially simplify PEP
 configuration and allow a primary PDP that has failed to notify its
 clients that it is functional again.

 6.2 Client Type Close/Redirect:

 Is there a need for a Close message per client type so the PEP and
 PDP can notify each other in case of a capability change? If there
 is a close, should the PDP be able to tell the PEP which PDP server
 it should now use (redirect)?

 6.3 Division of Labor Negotiation:

 How can (and is there a need for) the PEP to notify the remote PDP
 of its LDP's capabilities (e.g. the LDP can directly authenticate
 user information)?

 6.4 Group ID:

 Is there a need for a Group ID for identifying the group a client
 belongs akin to how the PEPID identifies an individual client?

 6.5 RSVP Object Replacement:

 Should the PDP be capable of directing the RSVP PEP to replace other
 objects than the Policy Data object (e.g. FlowSpec)? If so, for
 which request types?

 6.6 RSVP Priority Element Definition (other work).

Boyle et al. Expires July 1998 [Page 20]

Internet Draft COPS January 1998

7. References

 [RSVP] Braden, R. ed. et al., "Resource ReSerVation Protocol (RSVP)
 Version 1 - Functional Specification", RFC 2205, September
 1997.

 [WRK] Yavatkar, R. et al., "A Framework for Policy-Based Admission
 Control", Internet-Draft, draft-ietf-rap-framework-00.txt,
 November 1997.

 [SRVLOC]Guttman, E. et al., "Service Location Protocol", Internet-
 Draft, draft-ietf-svrloc-protocol-v2-01.txt, October 1997.

 [INSCH] Shenker, S., Wroclawski, J., "General Characterization
 Parameters for Integrated Service Network Elements", RFC

2215, September 1997.

 [IPSEC] Atkinson, R., "Security Architecture for the Internet
 Protocol", RFC1825, August 1995.

 [MD5] Baker, F., "RSVP Cryptographic Authentication", Internet-
 Draft, draft-ietf-rsvp-md5-05.txt, August 1997.

 [RSVPPR]Braden, R., Zhang, L., "Resource ReSerVation Protocol (RSVP)
 - Version 1 Message Processing Rules", RFC 2209, September
 1997.

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-ietf-rap-framework-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-protocol-v2-01.txt
https://datatracker.ietf.org/doc/html/rfc2215
https://datatracker.ietf.org/doc/html/rfc2215
https://datatracker.ietf.org/doc/html/rfc1825
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-md5-05.txt
https://datatracker.ietf.org/doc/html/rfc2209

Boyle et al. Expires July 1998 [Page 21]

Internet Draft COPS January 1998

8. Author Information and Acknowledgments

 Special thanks to Timothy O'Malley our WG Chair, Raj Yavatkar,
 Russell Fenger, Laura Cunningham, Roch Guerin, Ping Pan, and
 Dimitrios Pendarakis for their valuable contributions.

 Jim Boyle Ron Cohen
 MCI Class Data Systems
 2100 Reston Parkway 13 Hasadna St.
 Reston, VA 20191 Ra'anana 43650 Israel
 703.715.7006 972.9.7462020
 jboyle@mci.net ronc@classdata.com

 David Durham Raju Rajan
 Intel IBM T.J. Watson Research Cntr
 2111 NE 25th Avenue P.O. Box 704
 Hillsboro, OR 97124 Yorktown Heights, NY 10598
 503.264.6232 914.784.7260
 David_Durham@mail.intel.com raju@watson.ibm.com

 Shai Herzog Arun Sastry
 IPHighway Cisco Systems
 2055 Gateway Pl., Suite 400 506210 W Tasman Drive
 San Jose, CA 95110 San Jose, CA 95134
 408.390.3045 408.526.7685
 herzog@iphighway.com asastry@cisco.com

Boyle et al. Expires July 1998 [Page 22]

Internet Draft COPS January 1998

Appendix A. COPS Extensions for Use with RSVP

A.1 Overview of COPS extensions for RSVP

 Building on the foundations described in the previous sections this
 section describes the specific functionality required for this
 protocol to support policy control over RSVP.

 Setting the client type in the COPS common header to 1 indicates an
 RSVP client capable of performing admission control and policy data
 substitution using RSVP V1 objects.

A.2 COPS objects for use with RSVP

 The COPS objects defined in section 2.2 are applicable to RSVP
 policy control, and their use is described in the text that follows.

 The message type information found in the RSVP message header is
 represented by the M-Type in the COPS Context Object.

 All objects contained within RSVP messaging are expected to be
 encapsulated in the Client Specific Information Object without
 alteration. Multiple RSVP objects may be contained within a single
 Client Specific Information Object exchanged between the PEP and
 remote PDP.

 Finally, for the COPS outgoing message responses, RSVP objects may
 be returned to the PEP from the remote PDP via the Replacement Data
 Decision Object. This object may contain multiple RSVP objects, but
 is primarily concerned with returning the Policy Data object.
 Objects included in the Replace Data Decision Object are to replace
 their corresponding object in the RSVP message (typically for
 outgoing RSVP messages).

Boyle et al. Expires July 1998 [Page 23]

Internet Draft COPS January 1998

A.3. Operation of COPS for Policy Control Over RSVP

A.3.1 RSVP values for the Context Object (Context)

 The semantics of the Context object for RSVP is as follows:

 R-Type (Request Type Flag)

 0x01 = Incoming-Message request
 The arrival of an incoming RSVP message

 Allows processing of incoming policy information as well as
 the decision whether to accept an incoming message. If It is
 rejected, the message is treated as if it never Arrived.

 0x02 = Resource-Allocation request
 Applies only for Resv messages.

 The decision whether to admit a reservation and commit local
 resources to it is performed for the merge of all
 reservations that arrived on a particular interface
 (potentially from several Previous Hops).

 0x04 = Outgoing-Message request
 The forwarding of an outgoing RSVP message.

 The Decision whether to allow the forwarding of an outgoing
 RSVP message as well as providing the relevant outgoing
 policy information.

 M-Type (Message Type)

 The M-Type field in the Context Object may have one of the
 Following values that correspond to supported RSVP messages
 In COPS:

 1 = Path
 2 = Resv
 3 = PathErr
 4 = PathErr

 Note: At this point, PathTear, ResvTear, and the Resv Confirm
 message types are not supported.

A.3.2 RSVP flows

 Policy Control is performed per RSVP flow. An RSVP flow corresponds
 to an atomic unit of reservation as identified by RSVP (TC

 reservation). It should be noted that RSVP allows multiple flows to
 be packed (which is different from merged) into a single FF Resv
 message. To support such messages a separate COPS request must be

Boyle et al. Expires July 1998 [Page 24]

Internet Draft COPS January 1998

 issued for each of the packed flows as if they were individual RSVP
 messages.

A.3.4 Expected Associations for RSVP Requests

 RSVP signaling requires the participation of both senders and
 receivers. RSVP processing rules define what is the subset of the
 Path state that matches each Resv state. In the common unicast case,
 the RSVP session includes one Path state and one Resv state. In
 multicast cases the correspondence might be many to many. Since the
 decision to admit a reservation for a session may depend on
 information carried both in Path and Resv messages, we term the Path
 States that match with a single Resv state as its associated states.
 It is assumed that the PDP is capable of determining these
 associations based on the RSVP message processing rules given the
 RSVP objects expressed in the COPS Client Specific Information
 Object.

A.3.5 RSVP's Capacity Admission Control: Commit and Delete

 In RSVP, the admission of a new reservation requires both an
 administrative approval (policy control) and capacity admission
 control. Once local admission control accepts the reservation, the
 PEP notifies the remote PDP by sending a report message specifying
 the Commit type. The Commit type report message is to be used to
 signify when billing should effectively begin, and performing
 heavier operations (e.g., debiting a credit card) is permissible.

 If instead a reservation approved by the PDP fails admission due to
 lack of resources, the PEP must notify the PDP by issuing a delete
 message.

A.3.6 Policy Control Over Path and Resv Tear

 Path and Resv Tear messages are not controlled by this policy
 architecture. This relies on two assumptions: First, that MD-5
 authentication verifies that the Tear is received from the same node
 that sent the initial reservation, and second, that it is
 functionally equivalent to that node holding-off refreshes for this
 reservation. When a Resv or Path Tear is received at the PEP, all
 affected states installed on the PDP should either be deleted or
 updated by the PEP.

A.3.7 PEP Caching COPS Decisions

 Because COPS is a stateful protocol, refreshes for RSVP Path and
 Resv messages need not be constantly sent to the remote PDP. Once a
 decision has been returned for a request, the PEP can cache that
 decision and apply it to future refreshes. The PEP is only

 responsible for updating a request state if there is a change
 detected in the corresponding Resv or Path message.

Boyle et al. Expires July 1998 [Page 25]

Internet Draft COPS January 1998

A.3.8 Data Expected in Request Messages for RSVP Support

 The information required in a RSVP request for each applicable
 message type and request type combination is outlined below:

 In, Path -
 <handle><context: in, Path><in-interface>
 <client info: all objects in Path message>
 Out, Path -
 <handle><context: out, Path><out-interface>
 <client info: all objects in outgoing Path message>
 In & Out (unicast combined request), Path -
 <handle><context: in & out, Path><in-interface>
 <out-interface>
 <client info: all objects in Path message>

 In, Resv -
 <handle><context: in, Resv><in-interface>
 <client info: all objects in Resv message>
 Merge, Resv -
 <handle><context: merge, Resv><in-interface>
 <client info: all objects in merged Resv message including
 the merged FLOWSPEC object>
 Out, Resv -
 <handle><context: out, Resv><out-interface>
 <client info: all objects in outgoing Resv message>
 In & Merge (combined request, PEP can merge), Resv -
 <handle><context: in & merge, Resv><in-interface>
 <client info: all objects in Resv message>
 In & Merge & Out (unicast combined request), Resv -
 <handle><context: in & merge & out, Resv><in-interface>
 <out-interface>
 <client info: all objects in Resv message>

 In, PathErr -
 <handle><context: in, PathErr><in-interface>
 <client info: all objects in PathErr message>
 Out, PathErr -
 <handle><context: out, PathErr><out-interface>
 <client info: all objects in outgoing PathErr message>
 In & Out (unicast combined request), PathErr -
 <handle><context: in & out, PathErr><in-interface>
 <out-interface>
 <client info: all objects in PathErr message>

 In, ResvErr -
 <handle><context: in, ResvErr><in-interface>

 <client info: all objects in ResvErr message>
 Out, ResvErr -
 <handle><context: out, ResvErr><out-interface>
 <client info: all objects in outgoing ResvErr message>
 In & Out (unicast combined request), ResvErr

Boyle et al. Expires July 1998 [Page 26]

Internet Draft COPS January 1998

 <handle><context: in & out, ResvErr><in-interface>
 <out-interface>
 <client info: all objects in ResvErr message>

A.3.9 Expected Decisions for RSVP Requests

 The expected decision information relative to a request for each
 applicable message type and request type combination is outlined
 below:

 In, Path -
 <handle><Decision Flags>
 Out, Path -
 <handle><Decision Flags><Decision Replacement: policy data>
 In & Out (combined request), Path -
 <handle><Decision Flags><Decision Replacement: policy data>

 In, Resv -
 <handle><Decision Flags>
 Merge, Resv -
 <handle><Decision Flags><Decision Priority>
 Out, Resv -
 <handle><Decision Flags><Decision Replacement: policy data>
 In & Merge (combined request, PEP can merge), Resv -
 <handle><Decision Flags><Decision Priority>
 In & Merge & Out (unicast combined request), Resv -
 <handle><Decision Flags><Decision Priority>
 <Decision Replacement: policy data>

 In, PathErr -
 <handle><Decision Flags>
 Out, PathErr -
 <handle><Decision Flags><Decision Replacement: policy data>
 In & Out (combined request), PathErr -
 <handle><Decision Flags><Decision Replacement: policy data>

 In, ResvErr -
 <handle><Decision Flags>
 Out, ResvErr -
 <handle><Decision Flags><Decision Replacement: policy data>
 In & Out (combined request), ResvErr -
 <handle><Decision Flags><Decision Replacement: policy data>

Boyle et al. Expires July 1998 [Page 27]

Internet Draft COPS January 1998

A.4 Illustrative Examples, Using COPS for RSVP

A.4.1 Unicast Flow Example

 This section details the steps in using COPS for controlling a
 Unicast RSVP flow. It details the contents of the COPS messages
 with respect to the following figure.

 PEP (router)
 +-----------------+
 | |
 R1 ------------+if1 if3+------------ S1
 | if2 |
 +--------+--------+
 |
 |
 PDP (server)

 figure 1: Unicast Example: a single router view

 The PEP router has three interfaces (1,2,3). Sender S1 sends to
 receiver R1.

 A Path message arrives from S1:

 PEP --> PDP REQ := <Handle A><Context in&out, Path>
 <In-Interface if3> <Out-Interface if1>
 <ClientSI: all objects in Path message>

 PDP --> PEP RES := <Handle A><Decision accept>

 A Resv message arrives from R1:

 PEP --> PDP REQ := <Handle B><Context in&merge&out, Resv>
 <In-Interface if1> <Out-Interface if3>
 <ClientSI: all objects in Resv message>

 PDP --> PEP RES := <Handle B>
 <Decisions: accept, Priority=7,
 Replace: POLICY.DATA1>

 PEP --> PDP RPT := <Handle B>
 <Report type: commit>

 Time Passes, the PDP changes its decision:

 PDP --> PEP USR := <Handle B>

 <Decisions: accept, Priority=3,
 Replace: POLICY.DATA2>

 Because the priority is too low, the PEP preempts the flow:

Boyle et al. Expires July 1998 [Page 28]

Internet Draft COPS January 1998

 PEP --> PDP DRQ := <Handle B>
 <Reason Code: Preempted>

 Time Passes, the sender S1 ceases to send Path messages:

 PEP --> PDP DRQ := <Handle A>
 <Reason: Timeout>

A.4.2 Shared Multicast Flows

 This section details the steps in using COPS for controlling a
 multicast RSVP flow. It details the contents of the COPS messages
 with respect to the following figure.

 r1 | |
 H1-------------|i1 | r4
 | o1 |---------------- S1
 r2 | Router |
 H2 ------------|i2 |
 | | o2 |---------------- S2
 | r3 | |
 | -----------------
 H3

 figure 1: 2 senders and 3 receivers

 Figure 1 shows an RSVP router which has two senders and three
 receivers for the same multicast session. Interface i2 is connected
 to a shared media.

 First detailed is the request message content for a Path sent by
 sender S1, assuming that both receivers have already joined the
 multicast session, but haven't sent a Resv message as yet. Assume
 sender S2 has not yet sent a path message. The Path message arrives
 on interface o1:

 PEP -----> PDP REQ := <handle A><context in, Path>
 <in-interface o1><client info: all
 objects in Path message>
 PDP -----> PEP RES := <handle A><Decision accept>

 Here the PDP decides to allow the Path message. Next, the Router
 consults its forwarding table, and finds two outgoing interfaces,
 i1 and i2, for the path. The exchange below is for interface i1,
 another exchange would likewise be completed for i2 using the new
 handle B2.

 PEP -----> PDP REQ := <handle B1><context out, Path>
 <out-interface i1><client info: all
 objects in outgoing Path message>

Boyle et al. Expires July 1998 [Page 29]

Internet Draft COPS January 1998

 PDP -----> PEP RES := <handle B1><Decision forward>
 <Decision replacement object:
 policy object>

 Here, the PDP decided to allow the forwarding of the Path message
 via interface i1, and determined the appropriate policy objects for
 the message going out on this interface.

 Next, the receiver r2 sends a Resv message of WF style. The Resv
 arrives on interface i2. Here the PEP queries the PDP which decides
 to accept this reservation with priority 5 as shown below.

 PEP -----> PDP REQ := <handle C><context in, Resv>
 <in-interface i2><client info: all
 objects in Resv message>
 PDP -----> PEP RES := <handle C><Decision accept>

 This assumes the PEP is not itself capable of merging priority
 information, and, thus, must make another query for the incoming
 interface merge.

 PEP -----> PDP REQ := <handle D><context merge, Resv>
 <in-interface i2><client info: all
 objects in merged Resv message>
 PDP -----> PEP RES := <handle D><Decision Priority: 5>

 After PEP successfully admitted the reservation it sends a report
 message that signals to the PDP that it can start an accounting log
 for this reservation.

 PEP -----> PDP RPT := <handle D>
 <commit>

 The reservation r2 needs to be sent upstream towards sender S1 out
 interface o1. An outgoing Resv request is made which carries the
 associated handle of the Path message for which this Resv is being
 forwarded.

 PEP -----> PDP REQ := <handle E><context out,Resv>
 <out-interface o1><client info: all
 objects in outgoing Resv message>
 PDP -----> PEP RES := <handle E><Decision forward><Decision
 replacement object: policy object>

 Next, receiver H3 sends the Resv message r3. The PEP sends an
 incoming request for handle F and the PDP decides to accept the Resv
 (as before). The new reservation also requires the PEP to update the
 merged request (handle D) due to the modified flowspec. The PDP now
 gives this request priority 7. If accepted by local admission

 control, a report is again sent.

 PEP -----> PDP REQ := <handle D><context merge, Resv>
 <in-interface i2><client info: all

Boyle et al. Expires July 1998 [Page 30]

Internet Draft COPS January 1998

 objects in merged Resv message w/
 new merged FLOWSPEC>
 PDP -----> PEP RES := <handle D><Decision priority 7>
 PEP -----> PDP RPT := <handle D>
 <commit>

 Now the outgoing request for handle E is reissued for the merged (R2
 & R3) outgoing Resv to be sent towards sender S1 due to a modified
 flowspec.

 PEP -----> PDP REQ := <handle E><context out,Resv>
 <out-interface o1><client info: all
 objects in outgoing Resv message w/
 new merged FLOWSPEC>
 PDP -----> PEP RES := <handle E><Decision forward><Decision
 replacement object: policy object>

 When S2 joins the session by sending a Path message, incoming and
 outgoing Path requests are issued for the new Path. The two incoming
 Resv requests may then be reissued for handle C and handle E if
 there is a change in their shared sender filter list (for SE
 filters) specifying the new sender. A new outgoing Resv request
 would then be issued for the Resv to be sent to s2 out interface o2.

Boyle et al. Expires July 1998 [Page 31]

