
 Internet Draft Jim Boyle
 Expiration: August 1999 Level 3
 File: draft-ietf-rap-cops-06.txt Ron Cohen
 Cisco
 David Durham
 Intel
 Shai Herzog
 IPHighway
 Raju Rajan
 IBM
 Arun Sastry
 Cisco

 The COPS (Common Open Policy Service) Protocol

 Last Updated: February 24, 1999

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Boyle et al. [Page 1]

Internet Draft COPS February 1999

 Status of this Memo..1
 Conventions used in this document..................................1
 Abstract...3

1. Introduction..3
1.1 Basic Model..4
2. The Protocol..7
2.1 Common Header..7
2.2 COPS Specific Object Formats...................................8
2.2.1 Handle Object (Handle).......................................9
2.2.2 Context Object (Context).....................................9
2.2.3 In-Interface Object (IN-Int)................................10
2.2.4 Out-Interface Object (OUT-Int)..............................11
2.2.5 Reason Object (Reason)......................................12
2.2.6 Decision Object (Decision)..................................12
2.2.7 LDP Decision Object (LDPDecision)...........................14
2.2.8 Error Object (Error)..14
2.2.9 Client Specific Information Object (ClientSI)...............14
2.2.10 Keep-Alive Timer Object (KATimer)..........................15
2.2.11 PEP Identification Object (PEPID)..........................15
2.2.12 Report-Type Object (Report-Type)...........................16
2.2.13 PDP Redirect Address (PDPRedirAddr)........................16
2.2.14 Last PDP Address (LastPDPAddr).............................17
2.2.15 Accounting Timer Object (AcctTimer)........................17
2.3 Communication...17
2.4 Client Handle Usage...19
2.5 Synchronization Behavior......................................19
3. Message Content..20
3.1 Request (REQ) PEP -> PDP.....................................20
3.2 Decision (DEC) PDP -> PEP....................................21
3.3 Report State (RPT) PEP -> PDP................................22
3.4 Delete Request State (DRQ) PEP -> PDP........................22
3.5 Synchronize State Request (SSQ) PDP -> PEP...................23
3.6 Client-Open (OPN) PEP -> PDP.................................23
3.7 Client-Accept (CAT) PDP -> PEP...............................24
3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP.....................24
3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP.......................25
3.10 Synchronize State Complete (SSC) PEP -> PDP..................25
4. Common Operation...26
4.1 PEP Initialization..26
4.2 Outsourcing Operations..26
4.3 Configuration Operations......................................27
4.4 Keep-Alive Operations...27
4.5 PEP/PDP Close...27
5. Security Considerations..28
6. IANA Considerations..29
7. References...30
8. Author Information and Acknowledgments.........................31

Boyle et al. Expires August 1999 [Page 2]

Internet Draft COPS February 1999

Abstract

 This document describes a simple client/server model for supporting
 policy control over QoS Signaling Protocols and provisioned QoS
 resource management. It is designed to be extensible so that other
 kinds of policy clients may be supported in the future. The model
 does not make any assumptions about the methods of the policy
 server, but is based on the server returning decisions to policy
 requests.

1. Introduction

 This document describes a simple query and response protocol that
 can be used to exchange policy information between a policy server
 (Policy Decision Point or PDP) and its clients (Policy Enforcement
 Points or PEPs). One example of a policy client is RSVP routers
 that must exercise policy-based admission control over RSVP usage
 [RSVP]. We assume that at least one policy server exists in each
 controlled administrative domain. The basic model of interaction
 between a policy server and its clients is compatible with
 the framework document for policy based admission control [WRK].

 A chief objective of policy control protocol is to begin with a
 simple but extensible design. The main characteristics of the COPS
 protocol include:

 1. The protocol employs a client/server model where the PEP
 sends requests, updates, and deletes to the remote PDP and the
 PDP returns decisions back to the PEP.

 2. The protocol uses TCP as its transport protocol for reliable
 exchange of messages between policy clients and a server.
 Therefore, no additional mechanisms are necessary for reliable
 communication between a server and its clients.

 3. The protocol is extensible in that it is designed to leverage
 off self-identifying objects and can support diverse client
 specific information without requiring modifications to the COPS
 protocol itself. The protocol was created for the general
 administration, configuration, and enforcement of policies
 whether signaled or provisioned. The protocol may be extended
 for the administration of a variety of signaling protocols as
 well as policy configuration on a device.

 4. The protocol relies on existing protocols for security.
 Namely IPSEC [IPSEC] can be used to authenticate and secure the
 channel between the PEP and the server.

Boyle et al. Expires August 1999 [Page 3]

Internet Draft COPS February 1999

 5. The protocol is stateful in two main aspects:
 (1) Request/Decision state is shared between client and server
 and (2) State from various events (Request/Decision pairs) may
 be inter-associated. By (1) we mean that requests from the
 client PEP are installed or remembered by the remote PDP until
 they are explicitly deleted by the PEP. At the same time,
 Decisions from the remote PDP can be generated asynchronously at
 any time for a currently installed request state. By (2) we mean
 that the server may respond to new queries differently because
 of previously installed Request/Decision state(s) that are
 related.

 6. Additionally, the protocol is stateful in that it allows the
 server to push configuration information to the client, and then
 allows the server to remove such state from the client when it
 is no longer applicable.

1.1 Basic Model

 +----------------+
 | |
 | Network Node | Policy Server
 | |
 | +-----+ | COPS +-----+
 | | PEP |<-----|-------------->| PDP |
 | +-----+ | +-----+
 | ^ |
 | | |
 | \-->+-----+ |
 | | LDP | |
 | +-----+ |
 | |
 +----------------+

 Figure 1: A COPS illustration.

 Figure 1 Illustrates the layout of various policy components in a
 typical COPS example (taken from [WRK]). Here, COPS is used to
 communicate policy information between a Policy Enforcement Point
 (PEP) and a remote Policy Decision Point (PDP) within the context of
 a particular type of client. The optional Local Decision Point (LDP)
 can be used by the device to make local policy decisions in the
 absence of a PDP.

 It is assumed that each participating policy client is functionally
 consistent with a PEP [WRK]. The PEP may communicate with a policy
 server (herein referred to as a remote PDP [WRK]) to obtain policy

 decisions or directives.

 The PEP is responsible for initiating a persistent TCP connection to
 a PDP. The PEP uses this TCP connection to send requests to and
 receive decisions from the remote PDP. Communication between the PEP

Boyle et al. Expires August 1999 [Page 4]

Internet Draft COPS February 1999

 and remote PDP is mainly in the form of a stateful request/decision
 exchange, though the remote PDP may occasionally send unsolicited
 decisions to the PEP to force changes in previously approved request
 states. The PEP also has the capacity to report to the remote PDP
 that it has committed to an accepted request state for purposes of
 accounting and monitoring. The PEP is responsible for notifying the
 PDP when a request state has changed on the PEP. Finally, the PEP is
 responsible for the deletion of any state that is no longer
 applicable due to events at the client or decisions issued by the
 server.

 When the PEP sends a configuration request, it expects the PDP to
 continuously send named units of configuration data to the PEP via
 decision messages as applicable for the configuration request. When
 a unit of named configuration data is successfully installed on the
 PEP, the PEP should send a report message to the PDP confirming the
 installation. The server may then update or remove the named
 configuration information via a new decision message. When the PDP
 sends a decision to remove named configuration data from the PEP,
 the PEP will delete the specified configuration and send a report
 message to the PDP as confirmation.

 The policy protocol is designed to communicate self-identifying
 objects which contain the data necessary for identifying request
 states, establishing the context for a request, identifying the type
 of request, referencing previously installed requests, relaying
 policy decisions, reporting errors, and transferring client
 specific/name space information.

 To distinguish between different kinds of clients, the type of
 client is identified in each message. Different types of clients may
 have different client specific data and may require different kinds
 of policy decisions. It is expected that each new client-type will
 have a corresponding usage draft specifying the specifics of its
 interaction with this policy protocol.

 The context of each request corresponds to the type of event that
 triggered it. COPS identifies three types of outsourcing events: (1)
 the arrival of an incoming message (2) allocation of local
 resources, and (3) the forwarding of an outgoing message. Each of
 these events may require different decisions to be made. Context sub
 types are also available to describe the type of message that
 triggered the policy event. The content of a COPS request/decision
 message depends on the context. A fourth type of request is useful
 for types of clients that wish to receive configuration information
 from the PDP. This allows a PEP to issue a configuration request for
 a specific named device or module that requires configuration
 information to be installed.

 The PEP may also have the capability to make a local policy decision
 via its Local Decision Point (LDP) [WRK], however, the PDP remains
 the authoritative decision point at all times. This means that the
 relevant local decision information must be relayed to the PDP. That

Boyle et al. Expires August 1999 [Page 5]

Internet Draft COPS February 1999

 is, the PDP must be granted access to all relevant information to
 make a final policy decision. To facilitate this functionality, the
 PEP must send its local decision information to the remote PDP via a
 LDP decision object. The PEP must then abide by the PDP's decision
 as it is absolute.

 Finally, fault tolerance is a required capability for this protocol,
 particularly due to the fact it is associated with the security and
 service management of distributed network devices. Fault tolerance
 can be achieved by having both the PEP and remote PDP constantly
 verify their connection to each other via keep-alive messages. When
 a failure is detected, the PEP must try to reconnect to the remote
 PDP or attempt to connect to a backup/alternative PDP. While
 disconnected, the PEP should revert to making local decisions. Once
 a connection is reestablished, the PEP is expected to notify the PDP
 of any deleted state or new events that passed local admission
 control after the connection was lost. Additionally, the remote PDP
 may request that all the PEP's internal state be resynchronized (all
 previously installed requests are to be reissued). After failure and
 before the new connection is fully functional, disruption of service
 can be minimized if the PEP caches previously communicated decisions
 and continues to use them for some limited amount of time. Sections
 2.3 and 2.5 detail COPS mechanisms for achieving reliability.

Boyle et al. Expires August 1999 [Page 6]

Internet Draft COPS February 1999

2. The Protocol

 This section describes the message formats and objects exchanged
 between the PEP and remote PDP.

2.1 Common Header

 Each COPS message consists of the COPS header followed by a number
 of typed objects.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 |Version| Flags| Op Code | Client-type |
 +--------------+--------------+--------------+--------------+
 | Message Length |
 +--------------+--------------+--------------+--------------+

 Global note: //// implies field is reserved, set to 0.

 The fields in the header are:
 Version: 4 bits
 COPS version number. Current version is 1.

 Flags: 4 bits
 Defined flag values (all other flags must be set to 0):
 0x1 Solicited Message Flag Bit
 This flag is set when the message is solicited by
 another COPS message. This flag is NOT to be set
 (value=0) unless otherwise specified in section 3.

 Op Code: 8 bits
 The COPS operations:
 1 = Request (REQ)
 2 = Decision (DEC)
 3 = Report State (RPT)
 4 = Delete Request State (DRQ)
 5 = Synchronize State Req (SSQ)
 6 = Client-Open (OPN)
 7 = Client-Accept (CAT)
 8 = Client-Close (CC)
 9 = Keep-Alive (KA)
 10= Synchronize Complete (SSC)

 Client-type: 16 bits

 The Client-type identifies the policy client. Interpretation of
 all encapsulated objects is relative to the client-type. Client-
 types that set the most significant bit in the client-type field

 are enterprise specific (these are client-types 0x8000 -
 0xFFFF). (See the specific client usage documents for particular
 client-type IDs). For KA Messages, the client-type in the header

Boyle et al. Expires August 1999 [Page 7]

Internet Draft COPS February 1999

 should always be set to 0 as the KA is used for connection
 verification (not per client session verification).

 Message Length: 32 bits
 Size of message in octets, which includes the standard COPS
 header and all encapsulated objects. Messages must be aligned on
 4 octet intervals.

2.2 COPS Specific Object Formats

 All the objects follow the same object format; each object consists
 of one or more 32-bit words with a four-octet header, using the
 following format:

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | Length (octets) | C-Num | C-Type |
 +-------------+-------------+-------------+-------------+
 | |
 // (Object contents) //
 | |
 +-------------+-------------+-------------+-------------+

 The length is a two-octet value that describes the number of octets
 (including the header) that compose the object. If the length in
 octets does not fall on a 32-bit word boundary, padding must be
 added to the end of the object so that it is aligned to the next 32-
 bit boundary before the object can be sent on the wire. On the
 receiving side, a subsequent object boundary can be found by simply
 rounding up the previous stated object length to the next 32-bit
 boundary.

 Typically, C-Num identifies the class of information contained in
 the object, and the C-Type identifies the subtype or version of the
 information contained in the object.

 C-num: 8 bits

 1 = Handle
 2 = Context
 3 = In Interface
 4 = Out Interface
 5 = Reason code
 6 = Decision
 7 = LDP Decision
 8 = Error
 9 = Client Specific Info
 10 = Keep-Alive Timer
 11 = PEP Identification

 12 = Report Type
 13 = PDP Redirect Address
 14 = Last PDP Address
 15 = Accounting Timer

Boyle et al. Expires August 1999 [Page 8]

Internet Draft COPS February 1999

 C-type: 8 bits
 Values defined per C-num.

2.2.1 Handle Object (Handle)

 The Handle Object encapsulates a unique value that identifies an
 installed state. This identification is used by most COPS
 operations. A state corresponding to a handle must be explicitly
 deleted when it is no longer applicable. See Section 2.4 for
 details.

 C-Num = 1

 C-Type = 1, Client Handle.

 Variable-length field, no implied format other than it is unique
 from other client handles from the same PEP (a.k.a. COPS TCP
 connection) for a particular client-type. It is always initially
 chosen by the PEP and then deleted by the PEP when no longer
 applicable. The client handle is used to refer to a request state
 initiated by a particular PEP and installed at the PDP for a client-
 type. A PEP will specify a client handle in its Request messages,
 Report messages and Delete messages sent to the PDP. In all cases,
 the client handle is used to uniquely identify a particular PEP's
 request for a client-type.

 The client handle value is set by the PEP and is opaque to the PDP.
 The PDP simply performs a byte-wise comparison on the value in this
 object with respect to the handle object values of other currently
 installed requests.

2.2.2 Context Object (Context)

 Specifies the type of event(s) that triggered the query. Required
 for request messages. Admission control, resource allocation, and
 forwarding requests are all amenable to client-types that outsource
 their decision making facility to the PDP. For applicable client-
 types a PEP can also make a request to receive named configuration
 information from the PDP. This named configuration data may be in a
 form useful for setting system attributes on a PEP, or it may be in
 the form of policy rules that are to be directly verified by the
 PEP.

 Multiple flags can be set for the same request. This is only
 allowed, however, if the set of client specific information in the
 combined request is identical to the client specific information

 that would be specified if individual requests were made for each
 specified flag.

Boyle et al. Expires August 1999 [Page 9]

Internet Draft COPS February 1999

 C-num = 2, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | R-Type | M-Type |
 +--------------+--------------+--------------+--------------+

 R-Type (Request Type Flag)

 0x01 = Incoming-Message/Admission Control request
 0x02 = Resource-Allocation request
 0x04 = Outgoing-Message request
 0x08 = Configuration request

 M-Type (Message Type)

 Client Specific 16 bit values of protocol message types

2.2.3 In-Interface Object (IN-Int)

 The In-Interface Object is used to identify the incoming interface
 on which a particular request applies and the address where the
 received message originated. For flows or messages generated from
 the PEP's local host, the loop back address and ifindex are used.

 This Interface object is also used to identify the incoming
 (receiving) interface via its ifindex. The ifindex may be used to
 differentiate between sub-interfaces and unnumbered interfaces (see
 RSVP's LIH for an example). When SNMP is supported by the PEP, this
 ifindex integer must correspond to the same integer value for the
 interface in the SNMP MIB-II interface index table.

 Note: The ifindex specified in the In-Interface is typically
 relative to the flow of the underlying protocol messages. The
 ifindex is the interface on which the protocol message was received.

 C-Num = 3

 C-Type = 1, IPv4 Address + Interface
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | IPv4 Address format |
 +--------------+--------------+--------------+--------------+
 | ifindex |
 +--------------+--------------+--------------+--------------+

 For this type of the interface object, the IPv4 address should

 specify the IP address that the incoming message came from.

Boyle et al. Expires August 1999 [Page 10]

Internet Draft COPS February 1999

 C-Type = 2, IPv6 Address + Interface

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | |
 + +
 | |
 + IPv6 Address format +
 | |
 + +
 | |
 +--------------+--------------+--------------+--------------+
 | ifindex |
 +--------------+--------------+--------------+--------------+

 For this type of the interface object, the IPv6 address should
 specify the IP address that the incoming message came from. The
 ifindex is used to refer to the MIB-II defined local incoming
 interface on the PEP as described above.

2.2.4 Out-Interface Object (OUT-Int)

 The Out-Interface is used to identify the outgoing interface to
 which a specific request applies and the address for where the
 forwarded message is to be sent. For flows or messages destined to
 the PEP's local host, the loop back address and ifindex are used.
 The Out-Interface has the same formats as the In-Interface Object.

 This Interface object is also used to identify the outgoing
 (forwarding) interface via its ifindex. The ifindex may be used to
 differentiate between sub-interfaces and unnumbered interfaces (see
 RSVP's LIH for an example). When SNMP is supported by the PEP, this
 ifindex integer must correspond to the same integer value for the
 interface in the SNMP MIB-II interface index table.

 Note: The ifindex specified in the Out-Interface is typically
 relative to the flow of the underlying protocol messages. The
 ifindex is the one on which a protocol message is about to be
 forwarded.

 C-Num = 4

 C-Type = 1, IPv4 Address + Interface

 Same C-Type format as the In-Interface object. The IPv4 address
 should specify the IP address to which the outgoing message is
 going. The ifindex is used to refer to the MIB-II defined local
 outgoing interface on the PEP.

 C-Type = 2, IPv6 Address + Interface

 Same C-Type format as the In-Interface object. For this type of the
 interface object, the IPv6 address should specify the IP address to

Boyle et al. Expires August 1999 [Page 11]

Internet Draft COPS February 1999

 which the outgoing message is going. The ifindex is used to refer to
 the MIB-II defined local outgoing interface on the PEP.

2.2.5 Reason Object (Reason)

 This object specifies the reason why the request state was deleted.
 It should appear in the delete request (DRQ) message. The Reason
 Sub-code field is reserved for more detailed client-specific reason
 codes defined in the corresponding documents.

 C-Num = 5, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Reason-Code | Reason Sub-code |
 +--------------+--------------+--------------+--------------+

 Reason Code:
 1 = Unspecified
 2 = Management
 3 = Preempted (Another request state takes precedence)
 4 = Tear (Used to communicate a signaled state removal)
 5 = Timeout (Local state has timed-out)
 6 = Route Change (Change invalidates request state)
 7 = Insufficient Resources (No local resource available)
 8 = PDP's Directive (PDP decision caused the delete)
 9 = Unsupported decision (PDP decision not supported)
 10= Synchronize Handle Unknown
 11= Transient Handle (stateless event)
 12= Malformed Decision (could not recover)
 13= Unknown COPS Object from PDP:
 Sub-code (octet 2) should contain unknown object's
 C-Num and (octet 3) should contain unknown object's
 C-Type.

2.2.6 Decision Object (Decision)

 Decision made by the PDP. Must appear in replies. The specific non-
 mandatory decision objects required in a decision to a particular
 request depend on the type of client.

 C-Num = 6
 C-Type = 1, Decision Flags (Mandatory)

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Command-Code | Flags |
 +--------------+--------------+--------------+--------------+

 Commands:
 0 = NULL Decision (No configuration data available)
 1 = Install (Admit request/Install configuration)
 2 = Remove (Remove request/Remove configuration)

Boyle et al. Expires August 1999 [Page 12]

Internet Draft COPS February 1999

 Flags:
 0x01 = Trigger Error (Trigger error message if set)
 Note: Trigger Error is applicable to client-types that
 are capable of sending error notifications for signaled
 messages.

 Flag values not applicable to a given context's R-Type or
 client-type MUST be ignored by the PEP.

 C-Type = 2, Stateless Data

 This type of decision object carries additional stateless
 information that can be applied by the PEP locally. It is a
 variable length object and its internal format should be
 specified in the relevant COPS extension document for the given
 client-type. This object is optional in Decision messages and is
 interpreted relative to a given context.

 It is expected that even outsourcing PEPs will be able to make
 some simple stateless policy decisions locally in their LDP. As
 this set is well known and implemented ubiquitously, PDPs are
 aware of it as well (either universally, through configuration,
 or using the Client-Open message). The PDP may also include this
 information in its decision, and the PEP should apply it to the
 resource allocation event that generated the request.

 C-Type = 3, Replacement Data

 This type of decision object carries replacement data that is to
 replace existing data in a signaled message. It is a variable
 length object and its internal format should be specified in the
 relevant COPS extension document for the given client-type. It
 is optional in Decision messages and is interpreted relative to
 a given context.

 C-Type = 4, Client Specific Decision Data

 Additional decision types can be introduced using the Client
 Specific Decision Data Object. It is a variable length object
 and its internal format should be specified in the relevant COPS
 extension document for the given client-type. It is optional in
 Decision messages and is interpreted relative to a given
 context.

 C-Type = 5, Named Decision Data

 Named configuration information should be encapsulated in this
 version of the decision object in response to configuration

 requests. It is a variable length object and its internal format
 should be specified in the relevant COPS extension document for
 the given client-type. It is optional in Decision messages and

Boyle et al. Expires August 1999 [Page 13]

Internet Draft COPS February 1999

 is interpreted relative to both a given context and decision
 flags.

2.2.7 LDP Decision Object (LDPDecision)

 Decision made by the PEP's local decision point (LDP). May appear in
 requests. These objects correspond to and are formatted the same as
 the client specific decision objects defined above.

 C-Num = 7

 C-Type = (same C-Type as for Decision objects)

2.2.8 Error Object (Error)

 This object is used to identify a particular COPS protocol error.
 The error sub-code field contains additional detailed client
 specific error codes. The appropriate Error Sub-codes for a
 particular client-type should be specified in the relevant COPS
 extensions document.

 C-Num = 8, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Error-Code | Error Sub-code |
 +--------------+--------------+--------------+--------------+

 Error-Code:

 1 = Bad handle
 2 = Invalid handle reference
 3 = Bad message format (Malformed Message)
 4 = Unable to process (server gives up on query)
 5 = Mandatory client-specific info missing
 6 = Unsupported client-type
 7 = Mandatory COPS object missing
 8 = Client Failure
 9 = Communication Failure
 10= Unspecified
 11= Shutting down
 12= Redirect to Preferred Server
 13= Unknown COPS Object:
 Sub-code (octet 2) should contain unknown object's
 C-Num and (octet 3) should contain unknown object's
 C-Type.

2.2.9 Client Specific Information Object (ClientSI)

 The various types of this object are required for requests, and used
 in reports and opens when required. It contains client-type specific
 information.

Boyle et al. Expires August 1999 [Page 14]

Internet Draft COPS February 1999

 C-Num = 9,

 C-Type = 1, Signaled ClientSI.

 Variable-length field. All objects/attributes specific to a client's
 signaling protocol or internal state must be encapsulated within one
 or more signaled Client Specific Information Objects. The format of
 the data encapsulated in the ClientSI object is determined by the
 client-type.

 C-Type = 2, Named ClientSI.

 Variable-length field. Contains named configuration information
 useful for relaying specific information about the PEP, a request,
 or configured state to the PDP server.

2.2.10 Keep-Alive Timer Object (KATimer)

 Times are encoded as 2 octet integer values and are in units of
 seconds. The timer value is treated as a delta.

 C-Num = 10,

 C-Type = 1, Keep-alive timer value

 Timer object used to specify the maximum time interval over which a
 COPS message must be sent or received. The range of finite timeouts
 is 1 to 65535 seconds represented as an unsigned two-octet integer.
 The value of zero implies infinity.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | ////////////// | KA Timer Value |
 +--------------+--------------+--------------+--------------+

2.2.11 PEP Identification Object (PEPID)

 The PEP Identification Object is used to identify the PEP client to
 the remote PDP. It is required for Client-Open messages.

 C-Num = 11, C-Type = 1

 Variable-length field. It is a NULL terminated ASCII string that is
 also zero padded to a 32-bit word boundary (so the object length is
 a multiple of 4 octets). The PEPID must contain an ASCII string that
 uniquely identifies the PEP within the policy domain in a manner
 that is persistent across PEP reboots. For example, it may be the

 PEP's statically assigned IP address or DNS name. This identifier
 may safely be used by a PDP as a handle for identifying the PEP in
 its policy rules.

Boyle et al. Expires August 1999 [Page 15]

Internet Draft COPS February 1999

2.2.12 Report-Type Object (Report-Type)

 The Type of Report on the request state associated with a handle:

 C-Num = 12, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Report-Type | ///////////// |
 +--------------+--------------+--------------+--------------+

 Report-Type:
 1 = Commit : PEP's local resources now allocated
 2 = No Commit : PEP's resource allocation failure
 3 = Accounting: Accounting update for an installed state
 4 = Installed : Admitted request/Installed configuration
 5 = Removed : Removed request/Removed configuration
 6 = NotInstall: Request/Configuration was not installed
 7 = NotRemoved: Request/Configuration was not removed

2.2.13 PDP Redirect Address (PDPRedirAddr)

 A PDP when closing a PEP session for a particular client-type may
 optionally use this object to redirect the PEP to the specified PDP
 server address and TCP port number:

 C-Num = 13,

 C-Type = 1, IPv4 Address + TCP Port
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | IPv4 Address format |
 +--------------+--------------+--------------+--------------+
 | ///////////////////////// | TCP Port Number |
 +-----------------------------+-----------------------------+

 C-Type = 2, IPv6 Address + TCP Port
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | |
 + +
 | |
 + IPv6 Address format +
 | |
 + +
 | |
 +--------------+--------------+--------------+--------------+

 | ///////////////////////// | TCP Port Number |
 +-----------------------------+-----------------------------+

Boyle et al. Expires August 1999 [Page 16]

Internet Draft COPS February 1999

2.2.14 Last PDP Address (LastPDPAddr)

 When a PEP sends a Client-Open message for a particular client-type
 the PEP should specify the last PDP it has successfully opened
 (meaning it received a Client-Accept) since the PEP last rebooted.
 If no PDP was used since the last reboot, the PEP will simply not
 include this object in the Client-Open message.

 C-Num = 14,

 C-Type = 1, IPv4 Address (Same format as PDPRedirAddr)

 C-Type = 2, IPv6 Address (Same format as PDPRedirAddr)

2.2.15 Accounting Timer Object (AcctTimer)

 Times are encoded as 2 octet integer values and are in units of
 seconds. The timer value is treated as a delta.

 C-Num = 15,

 C-Type = 1, Accounting timer value

 Optional timer value used to determine the minimum interval between
 periodic accounting type reports. It is used by the PDP to describe
 to the PEP an acceptable interval between unsolicited accounting
 updates via Report messages where applicable. It provides a method
 for the PDP to control the amount of accounting traffic seen by the
 network. The range of finite time values is 1 to 65535 seconds
 represented as an unsigned two-octet integer. A value of zero means
 there should be no unsolicited accounting updates.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | ////////////// | ACCT Timer Value |
 +--------------+--------------+--------------+--------------+

2.3 Communication

 The COPS protocol uses a single persistent TCP connection between
 the PEP and a remote PDP. One PDP implementation per server must
 listen on a well-known TCP port number (COPS=3288 [IANA]). The PEP
 is responsible for initiating the TCP connection to a PDP. The
 location of the remote PDP can either be configured, or obtained via
 a service location mechanism [SRVLOC]. Service discovery is outside
 the scope of this protocol, however.

 If a single PEP can support multiple client-types, it may send
 multiple Client-Open messages, each specifying a particular client-
 type to a PDP over one or more TCP connections. Likewise, a PDP
 residing at a given address and port number may support one or more

Boyle et al. Expires August 1999 [Page 17]

Internet Draft COPS February 1999

 client-types. Given the client-types it supports, a PDP has the
 ability to either accept or reject each client-type independently.
 If a client-type is rejected, the PDP can redirect the PEP to an
 alternative PDP address and TCP port for a given client-type via
 COPS. Different TCP port numbers can be used to redirect the PEP to
 another PDP implementation running on the same server. Additional
 provisions for supporting multiple client-types (perhaps from
 independent PDP vendors) on a single remote PDP server are not
 provided by the COPS protocol, but, rather, are left to the software
 architecture of the given server platform.

 It is possible a single PEP may have open connections to multiple
 PDPs. This is the case when there are physically different PDPs
 supporting different client-types as shown in figure 2.

 +----------------+
 | |
 | Network Node | Policy Servers
 | |
 | +-----+ | COPS Client Type 1 +-----+
 | | |<-----|-------------------->| PDP1|
 | + PEP + | COPS Client Type 2 +-----+
 | | |<-----|---------\ +-----+
 | +-----+ | \----------| PDP2|
 | ^ | +-----+
 | | |
 | \-->+-----+ |
 | | LDP | |
 | +-----+ |
 | |
 +----------------+

 Figure 2: Multiple PDPs illustration.

 When a TCP connection is torn down or is lost, the PDP is expected
 to eventually clean up any outstanding request state related to
 request/decision exchanges with the PEP. When the PEP detects a lost
 connection due to a timeout condition it should explicitly send a
 Client-Close message for each opened client-type containing an
 <Error> object indicating the "Communication Failure" Error-Code.
 Additionally, the PEP should continuously attempt to contact the
 primary PDP or, if unsuccessful, any known backup PDPs. Specifically
 the PEP should keep trying all relevant PDPs with which it has been
 configured until it can establish a connection. If a PEP is in
 communication with a backup PDP and the primary PDP becomes
 available, the backup PDP is responsible for redirecting the PEP
 back to the primary PDP (via a <Client-Close> message containing a
 <PDPRedirAddr> object identifying the primary PDP to use for each

 affected client-type). Section 2.5 details synchronization behavior
 between PEPs and PDPs.

Boyle et al. Expires August 1999 [Page 18]

Internet Draft COPS February 1999

2.4 Client Handle Usage

 The client handle is used to identify a unique request state for a
 single PEP per client-type. Client handles are chosen by the PEP and
 are opaque to the PDP. The PDP simply uses the request handle to
 uniquely identify the request state for a particular Client-Type
 over a particular TCP connection and generically tie its decisions
 to a corresponding request. Client handles are initiated in request
 messages and are then used by subsequent request, decision, and
 report messages to reference the same request state. When the PEP is
 ready to remove a local request state, it will issue a delete
 message to the PDP for the corresponding client handle. A handle
 MUST be explicitly deleted by the PEP before it can be used by the
 PEP to identify a new request state. Handles referring to different
 request states must be unique within the context of a particular TCP
 connection and client-type.

2.5 Synchronization Behavior

 When disconnected from a PDP, the PEP should revert to making local
 decisions. Once a connection is reestablished, the PEP is expected
 to notify the PDP of any events that have passed local admission
 control. Additionally, the remote PDP may request that all the PEP's
 internal state be resynchronized (all previously installed requests
 are to be reissued) by sending a Synchronize State message.

 After a failure and before a new connection is fully functional,
 disruption of service can be minimized if the PEP caches previously
 communicated decisions and continues to use them for some
 appropriate length of time. Specific rules for such behavior are to
 be defined in the appropriate COPS client-type extension
 specifications.

 A PEP that caches state from a previous exchange with a disconnected
 PDP must communicate this fact to any PDP with which it is able to
 later reconnect. This is accomplished by including the address and
 TCP port of the last PDP for which the PEP is still caching state in
 the Client-Open message. The <LastPDPAddr> object will only be
 included for the last PDP with which the PEP was completely in sync.
 If the service interruption was temporary and the PDP still contains
 the complete state for the PEP, the PDP may choose not to
 synchronize all states. It is still the responsibility of the PEP to
 update the PDP of all state changes that occurred during the
 disruption of service including any states communicated to the
 previous PDP that had been deleted after the connection was lost.
 These must be explicitly deleted after a connection is
 reestablished. If the PDP issues a synchronize request the PEP must
 pass all current states to the PDP followed by a Synchronize State

 Complete message (thus completing the synchronization process). If
 the PEP crashes and loses all cached state for a client-type, it
 will simply not include a <LastPDPAddr> in its Client-Open message.

Boyle et al. Expires August 1999 [Page 19]

Internet Draft COPS February 1999

3. Message Content

 This section describes the basic messages exchanged between a PEP
 and a remote PDP as well as their contents. As a convention, object
 ordering is expected as shown in the BNF for each COPS message
 unless otherwise noted. Malformed messages are to be silently
 dropped unless otherwise specified.

3.1 Request (REQ) PEP -> PDP

 The PEP establishes a request state client handle for which the
 remote PDP may maintain state. The remote PDP then uses this handle
 to refer to the exchanged information and decisions communicated
 over the TCP connection to a particular PEP for a given client-type.

 Once a stateful handle is established for a new request, any
 subsequent modifications of the request can be made using the REQ
 message specifying the previously installed handle. The PEP is
 responsible for notifying the PDP whenever its local state changes
 so the PDP's state will be able to accurately mirror the PEP's
 state.

 The format of the Request message is as follows:

 <Request Message> ::= <Common Header>
 <Client Handle>
 <Context>
 [<IN-Int>]
 [<OUT-Int>]
 [<ClientSI(s)>]
 [<LDPDecision(s)>]

 <ClientSI(s)> ::= <ClientSI> | <ClientSI(s)> <ClientSI>

 <LDPDecision(s)> ::= <LDPDecision> |
 <LDPDecision(s)> <LDPDecision>

 The context object is used to determine the context within which all
 the other objects are to be interpreted. It also is used to
 determine the kind of decision to be returned from the policy
 server. This decision might be related to admission control,
 resource allocation, object forwarding and substitution, or
 configuration.

 The interface objects are used to determine the corresponding
 interface on which a signaling protocol message was received or is
 about to be sent. They are typically used if the client is

 participating along the path of a signaling protocol or if the
 client is requesting configuration data for a particular interface.

Boyle et al. Expires August 1999 [Page 20]

Internet Draft COPS February 1999

 ClientSI, the client specific information object, holds the client-
 type specific data for which a policy decision needs to be made. In
 the case of configuration, the Named ClientSI may include named
 information about the module, interface, or functionality to be
 configured. The ordering of multiple ClientSIs is not important.

 Finally, LDPDecision object holds information regarding the local
 decision made by the LDP.

3.2 Decision (DEC) PDP -> PEP

 The PDP responds to the REQ with a DEC message that includes the
 associated client handle and one or more decision objects grouped
 relative to a Context object and Decision Flags object type pair. If
 there was a protocol error an error object is returned instead.

 It is required that the first decision message for a new/updated
 request will have the solicited message flag set (value = 1) in the
 COPS header. This avoids the issue of keeping track of which updated
 request (that is, a request reissued for the same handle) a
 particular decision corresponds. It is important that, for a given
 handle, there be at most one outstanding solicited decision per
 request. This essentially means that the PEP should not issue more
 than one REQ (for a given handle) before it receives a corresponding
 DEC with the solicited message flag set. The PDP must always issue
 decisions for requests on a particular handle in the order they
 arrive and all requests must have a corresponding decision.

 To avoid deadlock, the PEP can always timeout after issuing a
 request that does not receive a decision. It must then delete the
 timed-out handle, and may try again using a new handle.

 The format of the Decision message is as follows:

 <Decision Message> ::= <Common Header>
 <Client Handle>
 <Decision(s)> | <Error>

 <Decision(s)> ::= <Decision> | <Decision(s)> <Decision>

 <Decision> ::= <Context>
 <Decision: Flags>
 [<Decision: Stateless Data>]
 [<Decision: Replacement Data>]
 [<Decision: ClientSI Data>]
 [<Decision: Named Data>]

 The Decision message may include either an Error object or one or

 more context plus associated decision objects. COPS protocol
 problems are reported in the Error object (e.g. an error with the
 format of the original request including malformed request messages,
 unknown COPS objects in the Request, etc.). The applicable Decision

Boyle et al. Expires August 1999 [Page 21]

Internet Draft COPS February 1999

 object(s) depend on the context and the type of client. The only
 ordering requirement for decision objects is that the required
 Decision Flags object type must precede the other Decision object
 types per context binding.

3.3 Report State (RPT) PEP -> PDP

 The RPT message is used by the PEP to communicate to the PDP its
 success or failure in carrying out the PDP's decision, or to report
 a change in state. The Report-Type specifies the kind of report and
 the optional ClientSI can carry additional information per Client-
 Type.

 The Report State may also be used to provide periodic updates of
 client specific information for accounting and state monitoring
 purposes depending on the type of the client. In such cases the
 accounting report type should be specified utilizing the appropriate
 client specific information object.

 <Report State> ::== <Common Header>
 <Client Handle>
 <Report-Type>
 [<ClientSI>]

3.4 Delete Request State (DRQ) PEP -> PDP

 When sent from the PEP this message indicates to the remote PDP that
 the state identified by the client handle is no longer
 available/relevant. This information will then be used by the remote
 PDP to initiate the appropriate housekeeping actions. The reason
 code object is interpreted with respect to the client-type and
 signifies the reason for the removal.

 The format of the Delete Request State message is as follows:

 <Delete Request> ::= <Common Header>
 <Client Handle>
 <Reason>

 Given the stateful nature of COPS, it is important that when a
 request state is finally removed from the PEP, a DRQ message for
 this request state is sent to the PDP so the corresponding state may
 likewise be removed on the PDP. Request states not explicitly
 deleted by the PEP will be maintained by the PDP until either the
 client session is closed or the connection is terminated.

 Malformed Decision messages should trigger a DRQ specifying the
 appropriate erroneous reason code (Bad Message Format) and any

 associated state on the PEP should either be removed or re-
 requested. If a Decision contained an unknown COPS Decision Object,
 the PEP must delete its request specifying the Unknown COPS Object
 reason code because the PEP will be unable to comply with the

Boyle et al. Expires August 1999 [Page 22]

Internet Draft COPS February 1999

 information contained in the unknown object. In any case, after
 issuing a DRQ, the PEP may retry the corresponding Request again.

3.5 Synchronize State Request (SSQ) PDP -> PEP

 The format of the Synchronize State Query message is as follows:

 <Synchronize State> ::= <Common Header>
 [<Client Handle>]

 This message indicates that the remote PDP wishes the client (which
 appears in the common header) to re-send its state. If the optional
 Client Handle is present, only the state associated with this handle
 is synchronized. If the PEP does not recognize the requested handle,
 it should immediately send a DRQ message to the PDP for the handle
 that was specified in the SSQ message. If no handle is specified in
 the SSQ message, all the active client state should be synchronized
 with the PDP.

 The client performs state synchronization by re-issuing request
 queries of the specified client-type for the existing state in the
 PEP. When synchronization is complete, the PEP must issue a
 synchronize state complete message to the PDP.

3.6 Client-Open (OPN) PEP -> PDP

 The Client-Open message can be used by the PEP to specify to the PDP
 the client-types the PEP can support, the last PDP to which the PEP
 connected for the given client-type, and/or client specific feature
 negotiation. A Client-Open message can be sent to the PDP at any
 time and multiple Client-Open messages for the same client-type are
 allowed (in case of global state changes).

 <Client-Open> ::= <Common Header>
 <PEPID>
 [<ClientSI>]
 [<LastPDPAddr>]

 The PEPID is a symbolic, variable length name that uniquely
 identifies the specific client to the PDP (see Section 2.2.11).

 A named ClientSI object can be included for relaying additional
 global information about the PEP to the PDP when required (as
 specified in the appropriate extensions document for the client-
 type).

 Finally, the PEP may provide a Last PDP Address object in its
 Client-Open message specifying the last PDP (for the given client-
 type) for which it is still caching decisions since its last reboot.

Boyle et al. Expires August 1999 [Page 23]

Internet Draft COPS February 1999

 A PDP can use this information to determine the appropriate
 synchronization behavior (See section 2.5).

 If the PEP specifies an unknown COPS object to the PDP via the
 Client-Open, the PDP must send back a Client-Close message
 specifying the Unknown COPS Object error code.

3.7 Client-Accept (CAT) PDP -> PEP

 The Client-Accept message is used to positively respond to the
 Client-Open message. This message will return to the PEP a timer
 object indicating the maximum time interval between keep-alive
 messages. Optionally, a timer specifying the minimum allowed
 interval between accounting report messages may be included when
 applicable.

 <Client-Accept> ::= <Common Header>
 <KA Timer>
 [<ACCT Timer>]

 If the PDP refuses the client, it will instead issue a Client-Close
 message.

 The KA Timer corresponds to maximum acceptable intermediate time
 between the generation of messages by the PDP and PEP. The timer
 value is determined by the PDP and is specified in seconds. A timer
 value of 0 implies no secondary connection verification is
 necessary.

 The optional ACCT Timer allows the PDP to indicate to the PEP that
 periodic accounting reports should not exceed the specified timer
 interval per client handle. This allows the PDP to control the rate
 at which accounting reports are sent by the PEP (when applicable).
 In general, accounting type Report messages are sent to the PDP when
 determined appropriate by the PEP. The accounting timer merely is
 used by the PDP to keep the rate of such updates in check (i.e.
 Preventing the PEP from blasting the PDP with accounting reports).
 Not including this object implies there are no PDP restrictions on
 the rate at which accounting updates are generated.

 If the PDP specifies an unknown COPS object to the PEP via the
 Client-Accept, the PEP must send back a Client-Close message
 specifying the Unknown COPS Object error code. The PEP should then
 retry its Client-Open for the client-type again.

3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP

 The Client-Close message can be issued by either the PDP or PEP to
 notify the other that a particular type of client is no longer being
 supported.

Boyle et al. Expires August 1999 [Page 24]

Internet Draft COPS February 1999

 <Client-Close> ::= <Common Header>
 <Error>
 [<PDPRedirAddr>]

 The Error object is included to describe the reason for the close
 (e.g. the requested client-type is not supported by the remote PDP
 or client failure).

 A PDP may optionally include a PDP Redirect Address object in order
 to inform the PEP of the alternate PDP it should use for the client-
 type specified in the common header.

3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP

 The keep-alive message must be transmitted by the PEP within the
 period defined by the minimum of all KA Timer values specified in
 all received CAT messages for the connection. A KA message must be
 generated randomly between 1/4 and 3/4 of this minimum KA timer
 interval. When the PDP receives a keep-alive message from a PEP, it
 must echo a keep-alive back to the PEP. This message provides
 validation for each side that the connection is still functioning
 even when there is no other messaging.

 Note: The client-type in the header should always be set to 0 as the
 KA is used for connection verification (not per client session
 verification).

 <Keep-Alive> ::= <Common Header>

 Both client and server may assume the TCP connection is insufficient
 for the client-type with the minimum time value (specified in the
 CAT message) if no communication activity is detected for a period
 exceeding the timer period. For the PEP, such detection implies the
 remote PDP or connection is down and the PEP should now attempt to
 use an alternative/backup PDP.

3.10 Synchronize State Complete (SSC) PEP -> PDP

 The Synchronize State Complete is sent by the PEP to the PDP after
 the PDP sends a synchronize state request to the PEP and the PEP has
 finished synchronization. It is useful so that the PDP will know
 when all the old client state has been successfully re-requested
 and, thus, the PEP and PDP are completely synchronized.

 <Synchronize State Complete> ::= <Common Header>

Boyle et al. Expires August 1999 [Page 25]

Internet Draft COPS February 1999

4. Common Operation

 This section describes the typical exchanges between remote PDP
 servers and PEP clients.

4.1 PEP Initialization

 Sometime after a connection is established between the PEP and a
 remote PDP, the PEP will send one or more Client-Open messages to
 the remote PDP, one for each client-type supported by the PEP. The
 Client-Open message must contain the address of the last PDP with
 which the PEP is still caching a complete set of decisions. If no
 decisions are being cached from the previous PDP the LastPDPAddr
 object must not be included in the Client-Open message (see Section

2.5). Each Client-Open message should at least contain the common
 header noting one client-type supported by the PEP. The remote PDP
 will then respond with separate Client-Accept messages for each of
 the client-types requested by the PEP that the PDP can also support.

 If a specific client-type is not supported by the PDP, the PDP will
 instead respond with a Client-Close specifying the client-type is
 not supported and will possibly suggest an alternate PDP address and
 port. Otherwise, the PDP will send a Client-Accept specifying the
 timer interval between keep-alive messages and the PEP may begin
 issuing requests to the PDP.

4.2 Outsourcing Operations

 In the outsourcing scenario, when the PEP receives an event that
 requires a new policy decision it sends a request message to the
 remote PDP. What specifically qualifies as an event for a particular
 client-type should be specified in the specific document for that
 client-type. The remote PDP then makes a decision and sends a
 decision message back to the PEP. Since the request is stateful, the
 request will be remembered, or installed, on the remote PDP. The
 unique handle (unique per TCP connection and client-type), specified
 in both the request and its corresponding decision identifies this
 request state. The PEP is responsible for deleting this request
 state once the request is no longer applicable.

 The PEP can update a previously installed request state by reissuing
 a request for the previously installed handle. The remote PDP is
 then expected to make new decisions and send a decision message back
 to the PEP. Likewise, the server may change a previously issued
 decision on any currently installed request state at any time by
 issuing an unsolicited decision message. At all times the PEP module

 is expected to abide by the PDP's decisions and notify the PDP of
 any state changes.

Boyle et al. Expires August 1999 [Page 26]

Internet Draft COPS February 1999

4.3 Configuration Operations

 In the configuration scenario, as in the outsourcing scenario, the
 PEP will make a configuration request to the PDP for a particular
 interface, module, or functionality that may be specified in the
 named client specific information object. The PDP will then send
 potentially several decisions containing named units of
 configuration data to the PEP. The PEP is expected to install and
 use the configuration locally. A particular named configuration can
 be updated by simply sending additional decision messages for the
 same named configuration. When the PDP no longer wishes the PEP to
 use a piece of configuration information, it will send a decision
 message specifying the named configuration and a decision flags
 object with the remove configuration command. The PEP should then
 proceed to remove the corresponding configuration and send a report
 message to the PDP that specifies it has been deleted.

 In all cases, the PEP may notify the remote PDP of the local status
 of an installed state using the report message where appropriate.
 The report message is to be used to signify when billing should
 begin, what actions were taken, or to produce periodic updates for
 monitoring and accounting purposes depending on the client. This
 message can carry client specific information when needed.

4.4 Keep-Alive Operations

 The Keep-Alive message is used to validate the connection between
 the client and server is still functioning even when there is no
 other messaging from the PEP to PDP. The PEP must generate a COPS KA
 message randomly within one-fourth to three-fourths the minimum KA
 Timer interval specified by the PDP in the Client-Accept message. On
 receiving a Keep-Alive message from the PEP, the PDP must then
 respond to this Keep-Alive message by echoing a Keep-Alive message
 back to the PEP. If either side does not receive a Keep-Alive or any
 other COPS message within the minimum KA Timer interval from the
 other, the connection should be considered lost.

4.5 PEP/PDP Close

 Finally, Client-Close messages are used to negate the effects of the
 corresponding Client-Open messages, notifying the other side that
 the specified client-type is no longer supported/active. When the
 PEP detects a lost connection due to a keep-alive timeout condition
 it should explicitly send a Client-Close message for each opened
 client-type specifying a communications failure error code. Then the
 PEP may proceed to terminate the connection to the PDP and attempt
 to reconnect again or try a backup/alternative PDP. When the PDP is
 shutting down, it should also explicitly send a Client-Close to all

 connected PEPs for each client-type, perhaps specifying an
 alternative PDP to use instead.

Boyle et al. Expires August 1999 [Page 27]

Internet Draft COPS February 1999

5. Security Considerations

 The security of RSVP messages is provided by inter-router MD5
 authentication [MD5]. This assumes a chain-of-trust model for inter
 PEP authentication. Security between the client (PEP) and server
 (PDP) is provided by IPSEC [IPSEC].

 To ensure the client (PEP) is communicating with the correct policy
 server (PDP) involves two issues: authentication of the policy
 client and server using a shared secret, and consistent proof that
 the connection remains valid. The shared secret requires manual
 configuration of keys, which is a maintenance issue. IPSEC AH may be
 used for the validation of the connection; IPSEC ESP may be used to
 provide both validation and secrecy.

Boyle et al. Expires August 1999 [Page 28]

Internet Draft COPS February 1999

6. IANA Considerations

 The Client-type identifies the policy client application to which a
 message refers. Client-type values within the range 0x0000-0x3FFF
 are reserved Specification Required status as defined in [IANA-
 CONSIDERATIONS]. These values must be registered with IANA and their
 behavior and applicability must be described in a COPS extension
 document.

 Client-type values in the range 0x4000 - 0x7FFF are reserved for
 Private Use as defined in [IANA-CONSIDERATIONS]. These Client-types
 are not tracked by IANA and are not to be used in standards or
 general-release products, as their uniqueness cannot be assured.

 Client-type values in the range 0x8000 - 0xFFFF are First Come First
 Served as defined in [IANA-CONSIDERATIONS]. These Client-types are
 tracked by IANA but do not require published documents describing
 their use. IANA merely assures their uniqueness.

 Objects in the COPS Protocol are identified by their C-Num and C-
 Type values. IETF Consensus as identified in [IANA-CONSIDERATIONS]
 is required to introduce new values for these numbers and,
 therefore, new objects into the base COPS protocol.

 Additional Context Object R-Types, Reason-Codes, Report-Types,
 Decision Object Command-Codes/Flags, and Error-Codes may be defined
 for use with future Client-types, but such additions require IETF
 Consensus as defined in [IANA-CONSIDERATIONS].

 Context Object M-Types, Reason Sub-Codes, and Error Sub-codes may be
 defined relative to a particular Client-type following the same IANA
 considerations as their respective Client-type.

Boyle et al. Expires August 1999 [Page 29]

Internet Draft COPS February 1999

7. References

 [RSVP] Braden, R. ed. et al., "Resource ReSerVation Protocol (RSVP)
 Version 1 - Functional Specification", RFC 2205, September
 1997.

 [WRK] Yavatkar, R. et al., "A Framework for Policy-Based Admission
 Control", Internet-Draft, draft-ietf-rap-framework-01.txt,
 November 1998.

 [SRVLOC]Guttman, E. et al., "Service Location Protocol , Version 2",
 Internet-Draft, draft-ietf-svrloc-protocol-v2-12.txt,
 February 1999.

 [INSCH] Shenker, S., Wroclawski, J., "General Characterization
 Parameters for Integrated Service Network Elements", RFC

2215, September 1997.

 [IPSEC] Atkinson, R., "Security Architecture for the Internet
 Protocol", RFC1825, August 1995.

 [MD5] Baker, F., "RSVP Cryptographic Authentication", Internet-
 Draft, draft-ietf-rsvp-md5-05.txt, August 1997.

 [RSVPPR]Braden, R., Zhang, L., "Resource ReSerVation Protocol (RSVP)
 - Version 1 Message Processing Rules", RFC 2209, September
 1997.

 [IANA] http://www.isi.edu/in-notes/iana/assignments/port-numbers

 [IANA-CONSIDERATIONS] Alvestrand, H. and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26, RFC

2434, October 1998.

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-ietf-rap-framework-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-svrloc-protocol-v2-12.txt
https://datatracker.ietf.org/doc/html/rfc2215
https://datatracker.ietf.org/doc/html/rfc2215
https://datatracker.ietf.org/doc/html/rfc1825
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-md5-05.txt
https://datatracker.ietf.org/doc/html/rfc2209
http://www.isi.edu/in-notes/iana/assignments/port-numbers
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Boyle et al. Expires August 1999 [Page 30]

Internet Draft COPS February 1999

8. Author Information and Acknowledgments

 Special thanks to Andrew Smith and Timothy O'Malley our WG Chairs,
 Raj Yavatkar, Russell Fenger, Fred Baker, Laura Cunningham, Roch
 Guerin, Ping Pan, and Dimitrios Pendarakis for their valuable
 contributions.

 Jim Boyle Ron Cohen
 Level 3 Communications Cisco Systems
 1450 Infinite Drive13 Hasadna St.
 Louisville, CO 80027 Ra'anana 43650 Israel
 303.926.3100 972.9.7462020
 email: jboyle@l3.net ronc@classdata.com

 David Durham Raju Rajan
 Intel IBM T.J. Watson Research Cntr
 2111 NE 25th Avenue P.O. Box 704
 Hillsboro, OR 97124 Yorktown Heights, NY 10598
 503.264.6232 914.784.7260
 David_Durham@mail.intel.com raju@watson.ibm.com

 Shai Herzog Arun Sastry
 IPHighway Cisco Systems
 2055 Gateway Pl., Suite 400 506210 W Tasman Drive
 San Jose, CA 95110 San Jose, CA 95134
 408.390.3045 408.526.7685
 herzog@iphighway.com asastry@cisco.com

Boyle et al. Expires August 1999 [Page 31]

