
Internet Draft Jim Boyle
Expiration: Apr. 1999 Level3
File: draft-ietf-rap-cops-rsvp-01.txt Ron Cohen
 Cisco
 David Durham
 Intel
 Shai Herzog
 IPHighway
 Raju Rajan
 IBM
 Arun Sastry
 Cisco

 COPS usage for RSVP

 Last Updated: November 18, 1998

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a
 "working draft" or "work in progress".

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ftp.ietf.org, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 A revised version of this draft document will be submitted to the
 RFC editor as a Proposed Standard for the Internet Community.
 Discussion and suggestions for improvement are requested. This
 document will expire at the expiration date listed above.
 Distribution of this draft is unlimited.

Abstract

 This document describes usage directives for supporting COPS policy
 services in RSVP environments.

Internet Draft [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-rsvp-01.txt

Internet Draft COPS usage for RSVP November 18, 1998

Table of Contents

Abstract...1
Table of Contents..2
1.Introduction...3
2.RSVP values for COPS objects.......................................3
2.1.Context Object (Context)...3
2.2.Client Specific Information (ClientSI)...........................4
2.3.Decision Object (Decision).......................................4
3.Operation of COPS for Policy Control Over RSVP.....................5
3.1.RSVP flows...5
3.2.Expected Associations for RSVP Requests..........................5
3.3.RSVP's Capacity Admission Control: Commit and Delete.............6
3.4.Policy Control Over PathTear and ResvTear........................6
3.5.PEP Caching COPS Decisions.......................................6
3.6.Using Multiple Context Flags in a single query...................7
3.7.Trusted zones and secure policy tunneling........................7
4.Illustrative Examples, Using COPS for RSVP.........................8
4.1.Unicast Flow Example...8
4.2.Shared Multicast Flows...9
5.References..13
6.Author Information and Acknowledgments............................13

Boyle et. al. Expires June 1998 [Page 2]

Internet Draft COPS usage for RSVP November 18, 1998
1. Introduction

 The Common Open Policy Service (COPS) protocol is a query response
 protocol used to exchange policy information between a network
 policy server and a set of clients [COPS]. COPS is being developed
 within the RSVP Admission Policy Working Group (RAP WG) of the IETF,
 primarily for use as a mechanism for providing policy-based
 admission control over requests for network resources [RAP].

 This document is based on and assumes prior knowledge of RAP
 framework [RAP] and the basic COPS [COPS] protocol. It provides
 specific usage directives for using COPS in outsourcing policy
 control decisions by RSVP clients (PEPs) to policy servers (PDPs).

 Given the COPS protocol design, client specific functionality is
 mainly limited to interoperability usage guidelines as well as
 client specific examples.

2. RSVP values for COPS objects

 The format and usage of several COPS objects is affected when used
 for client type RSVP. This section describes these objects and the
 usage.

 2.1. Context Object (Context)

 The semantics of the Context object for RSVP is as follows:

 R-Type (Request Type Flag)

 0x01 = Incoming-Message request
 The arrival of an incoming RSVP message

 Allows processing of incoming policy information as well as
 the decision whether to accept an incoming message. If It is
 rejected, the message is treated as if it never Arrived.

 0x02 = Resource-Allocation request
 Applies only for Resv messages.

 The decision whether to admit a reservation and commit local
 resources to it is performed for the merge of all
 reservations that arrived on a particular interface
 (potentially from several RSVP Next-Hops).

 0x04 = Outgoing-Message request
 The forwarding of an outgoing RSVP message.

 The Decision whether to allow the forwarding of an outgoing
 RSVP message as well as providing the relevant outgoing
 policy information.

Boyle et. al. Expires June 1998 [Page 3]

Internet Draft COPS usage for RSVP November 18, 1998

 M-Type (Message Type)

 The M-Type field in the Context Object may have one of the
 Following values that correspond to supported RSVP messages
 In COPS:

 1 = Path
 2 = Resv
 3 = PathErr
 4 = ResvErr

 Note: The PathTear, ResvTear, and the Resv Confirm message types are
 not supported.

 2.2. Client Specific Information (ClientSI)

 All objects that were received within an RSVP message that are
 associated with the RSVP flow are encapsulated inside the Client
 Specific Information Object without alteration. (See Section 3.1. on
 multiple flows packed in a single RSVP message). These RSVP objects
 are simply contained within a single Signaled Client Specific
 Information Object (RSVP ClientSI) exchanged between the PEP and
 remote PDP.

 2.3. Decision Object (Decision)

 COPS allows PDP to control RSVP s response to messages. Beyond
 traditional accept/deny, PDPs may use the Trigger Error flag to
 allow a request yet trigger a warning at the same time. To allow
 resource allocation yet deny forwarding of a message, etc.

 Decision Flags

 The following decision flags apply to RSVP:

 0x01 = Signaled (RSVP) accept (deny if set)

 This flag should be interpreted with the decision context
 flag to figure out what it applies to.

 0x08 = Trigger Error (PathErr for Path query, or ResvErr for Resv)

 Client Specific Policy Information

 This object may include one or more policy elements (as specified
 for the RSVP Policy Data object [RSVP-EXT] which are assumed to be
 well understood by the client s LDP. The PEP should consider these
 as if they arrived in the message Policy Data object.

Boyle et. al. Expires June 1998 [Page 4]

Internet Draft COPS usage for RSVP November 18, 1998

 For example: Given Policy Elements that specify a flow s preemption
 priority, these elements may be included in an incoming Resv message
 or may be also be provided by the PDP responding to a query.

 Replacement Data

 The Replacement object may contain multiple RSVP objects to be
 replaced (from the original RSVP request). Typical replacement is
 performed on the Forward Outgoing request (for instance, replacing
 outgoing Policy Data), but is not limited, and can also be performed
 on other contexts (such as Allocate Resources). Other examples,
 may require replacement of the RSVP FlowSpec object for controlling
 resources across a trusted zone (with PIN nodes).
 Currently, RSVP clients are only required to allow replacement of
 two objects: Policy Data and FlowSpec.

 Replacement is performed in the following manner:
 If Replacement Data decision doesn't appear in a decision message,
 all signaled objects are passed as if the PDP was not there. When an
 object of a certain C-Num appears it replaces ALL the instances of
 C-Num objects in the RSVP message. If it appears empty (with a
 length of 4) it simply removes all instances of C-Num objects
 without adding a thing.

3. Operation of COPS for Policy Control Over RSVP

 3.1. RSVP flows

 Policy Control is performed per RSVP flow. An RSVP flow corresponds
 to an atomic unit of reservation as identified by RSVP (TC
 reservation). It should be noted that RSVP allows multiple flows to
 be packed (which is different from merged) into a single FF Resv
 message. To support such messages a separate COPS request must be
 issued for each of the packed flows as if they were individual RSVP
 messages.

 3.2. Expected Associations for RSVP Requests

 RSVP signaling requires the participation of both senders and
 receivers. RSVP processing rules define what is the subset of the
 Path state that matches each Resv state. In the common unicast case,
 the RSVP session includes one Path state and one Resv state. In
 multicast cases the correspondence might be many to many. Since the
 decision to admit a reservation for a session may depend on
 information carried both in Path and Resv messages, we term the Path
 States that match with a single Resv state as its associated states.
 It is assumed that the PDP is capable of determining these
 associations based on the RSVP message processing rules given the
 RSVP objects expressed in the COPS Client Specific Information

 Object.

Boyle et. al. Expires June 1998 [Page 5]

Internet Draft COPS usage for RSVP November 18, 1998
 For example, the PDP should be able to recognize activation and
 deactivation of RSVP blockade state following discrete events like
 the arrival of a ResvErr message (activate the blockade state) as
 well as the change in the outgoing Resv message.

 3.3. RSVP's Capacity Admission Control: Commit and Delete

 In RSVP, the admission of a new reservation requires both an
 administrative approval (policy control) and capacity admission
 control. Once local admission control accepts the reservation, the
 PEP notifies the remote PDP by sending a report message specifying
 the Commit type. The Commit type report message is to be used to
 signify when billing should effectively begin, and performing
 heavier operations (e.g., debiting a credit card) is permissible.

 If instead a reservation approved by the PDP fails admission due to
 lack of resources, the PEP must issue a no-commit report and fold
 back and send an updated request to its previous state (previously
 installed reservation). If no state was previously installed, the
 PEP should issue a delete.

 3.4. Policy Control Over PathTear and ResvTear

 PathTear and ResvTear messages are not controlled by this policy
 architecture. This relies on two assumptions: First, that MD-5
 authentication verifies that the Tear is received from the same node
 that sent the initial reservation, and second, that it is
 functionally equivalent to that node holding-off refreshes for this
 reservation. When a ResvTear or PathTear is received at the PEP, all
 affected states installed on the PDP should either be deleted or
 updated by the PEP.

 3.5. PEP Caching COPS Decisions

 Because COPS is a stateful protocol, refreshes for RSVP Path and
 Resv messages need not be constantly sent to the remote PDP. Once a
 decision has been returned for a request, the PEP can cache that
 decision and apply it to future refreshes. The PEP is only
 responsible for updating a request state if there is a change
 detected in the corresponding Resv or Path message.

 If the connection is lost between the PEP and the PDP, the cached
 RSVP state may be retained for the RSVP timeout period. If no
 connection can be reestablished with the PDP or a backup PDP after
 the timeout period, the RSVP PEP is expected to default back to
 using its LDP results. Additionally, the LDP is to be used for the
 admission control of any new RSVP messages that may have arrived
 while connectivity was lost.

 Once a connection is reestablished to a new (or the original) PDP

 the PDP may issue a SSQ request. In this case, the PEP must reissue

Boyle et. al. Expires June 1998 [Page 6]

Internet Draft COPS usage for RSVP November 18, 1998
 requests that correspond to the current RSVP state (as if all the
 state has been updated recently). It should also include as LDP the
 current (cached) decision regarding each such state.

 3.6. Using Multiple Context Flags in a single query

 RSVP is a store-and-forward control protocol where messages are
 processed in three distinctive steps (input, resource allocation,
 and output). Each step requires a separate policy decision as
 indicated by context flags (see Section 2.1). In many cases, setting
 multiple context flags for bundling two or three operations together
 in one request may significantly optimize protocol operations.

 The following rules apply for setting multiple Context flags:

 a. Multiple context flags can be set only in two generic cases which
 are guaranteed not to cause ambiguity and represent substantial
 portion of expected COPS transactions.

 Unicast FF:

 [Incoming + Allocation + Outgoing]

 Multicast with only one Resv message received on the interface

 [Incoming + Allocation]

 b. Context events are ordered by time since every message processing
 must first be processed as Incoming, then as Resource allocation
 and only then as Outgoing. When multiple context flags are set,
 all ClientSI objects included in the request are assumed to be
 processed to the latest flag. This rule applies both to request
 (REQ) context as well as to decision (DEC) context.

 For example: when combining Incoming + Allocation for an incoming
 Resv message, the Flowspec included in the ClientSI would be the
 one corresponding to the Resource-Allocation context (TC).

 c. Each decision is bound to a context object, which determines
 which portion of the request context it applies to. When
 different decisions apply to different sub-groups of context the
 PDP should send each group of decision objects encapsulated or
 separated by the context flags object with the context flags
 applicable to these objects set. (See the examples in Section 4).

 3.7. Trusted zones and secure policy tunneling

Boyle et. al. Expires June 1998 [Page 7]

Internet Draft COPS usage for RSVP November 18, 1998
 Security for RSVP messages is provided by inter-router MD5
 authentication [MD5], assuming a chain-of-trust model.
 A possible deployment scenario calls for PEPs to be deployed at the
 network edge (boundary nodes) while PINs are deployed in the core of
 the network (backbone). In this case, MD5 trust (authentication) must
 be established between boundary (non-neighboring) PEPs, which is
 achieved through internal signing of the Policy Data object. [RSVP-
 EXT].

4. Illustrative Examples, Using COPS for RSVP

 This section details both typical unicast and multicast scenarios.

 4.1. Unicast Flow Example

 This section details the steps in using COPS for controlling a
 Unicast RSVP flow. It details the contents of the COPS messages
 with respect to the following figure.

 PEP (router)
 +-----------------+
 | |
 R1 ------------+if1 if2+------------ S1
 | |
 +-----------------+

 Figure 1: Unicast Example: a single PEP view

 The PEP router has two interfaces (if1, if2). Sender S1 sends to
 receiver R1.

 A Path message arrives from S1:

 PEP --> PDP REQ := <Handle A> <Context: in & out, Path>
 <In-Interface if2> <Out-Interface if1>
 <ClientSI: all objects in Path message>

 PDP --> PEP DEC := <Handle A> <Context: in & out, Path>
 <Decision flags: Accept>

 A Resv message arrives from R1:

 PEP --> PDP REQ := <Handle B>
 <Context: in & allocation & out, Resv>
 <In-Interface if1> <Out-Interface if2>
 <ClientSI: all objects in Resv message>

Boyle et. al. Expires June 1998 [Page 8]

Internet Draft COPS usage for RSVP November 18, 1998
 PDP --> PEP DEC := <Handle B>
 <Context: in, Resv>
 <Decision flags: accept>
 <Context: allocation, Resv>
 <Decision flags: accept>
 <Decision: ClientSI, Priority=7>
 <Context: out, Resv>
 <Decision flags: accept>
 <Decision replace: POLICY-DATA1>

 PEP --> PDP RPT := <Handle B>
 <Report type: commit>

 Notice that the Decision was split because of the need to specify
 different decision objects for different context flags.

 Time Passes, the PDP changes its decision:

 PDP --> PEP DEC := <Handle B>
 <Context: allocation, Resv>
 <Decision flags: accept>
 <Decision: ClientSI, Priority=3>

 Because the priority is too low, the PEP preempts the flow:

 PEP --> PDP DRQ := <Handle B>
 <Reason Code: Preempted>

 Time Passes, the sender S1 ceases to send Path messages:

 PEP --> PDP DRQ := <Handle A>
 <Reason: Timeout>

 4.2. Shared Multicast Flows

 This section details the steps in using COPS for controlling a
 multicast RSVP flow. It details the contents of the COPS messages
 with respect to the following figure.

 PEP (router)
 +-----------------+
 | |
 R1-------------+ if1 if3 +--------- S1
 | |
 R2----+ | |
 | | |
 +--------+ if2 if4 +--------- S2
 | | |
 R3----+ +-----------------+

Boyle et. al. Expires June 1998 [Page 9]

Internet Draft COPS usage for RSVP November 18, 1998

 Figure 2: Multicast example: a single PEP view

 Figure 2 shows an RSVP PEP (router) which has two senders (S1, S2)
 and three receivers (R1, R2, R3) for the same multicast session.
 Interface if2 is connected to a shared media.
 In this example, we assume that the multicast membership is already
 in place, no previous RSVP messages were received, and the first to
 arrive is a Path message on interface if3 from sender S1:

 PEP --> PDP REQ := <Handle A> <Context: in, Path>
 <In-interface if3>
 <ClientSI: all objects in incoming Path>

 PDP --> PEP DEC := <Handle A> <Context: in, Path>
 <Decision flags: accept>

 The PEP consults its forwarding table, and finds two outgoing
 interface for the path (if1, if2). The exchange below is for
 interface if1, another exchange would likewise be completed for if2
 using the new handle B2.

 PEP --> PDP REQ := <Handle B1> <Context: out, Path>
 <Out-interface if1>
 <clientSI: all objects in outgoing Path>

 PDP --> PEP DEC := <Handle B1>
 <Context: out, Path>
 <Decision flags: accept>
 <Decision Replacement: POLICY-DATA1>

 Here, the PDP decided to allow the forwarding of the Path message
 and provided the appropriate policy-data object for interface if1.

 Next, a WF Resv message from receiver R2 arrives on interface if2.

 PEP --> PDP REQ := <Handle C> <Context: in & allocation, Resv>
 <In-interface if2>
 <ClientSI: all objects in Resv message
 including RSpec1 >

 PDP --> PEP DEC := <Handle C>
 <Context: in, Resv>
 <Decision flags: accept>
 <Context: allocation, Resv>
 <Decision flags: accept>
 <Decision ClientSI: priority=5>

 PEP --> PDP RPT := <handle C> <Commit>

Boyle et. al. Expires June 1998 [Page 10]

Internet Draft COPS usage for RSVP November 18, 1998
 Here, the PDP approves the reservation and assigned it preemption
 priority of 5. The PEP responded with a commit report.

 The PEP needs to forward the Resv message upstream toward S1:

 PEP --> PDP REQ := <Handle E> <Context: out, Resv>
 <out-interface if3>
 <Client info: all objects in outgoing Resv>

 PDP --> PEP DEC := <Handle E>
 <Context: out, Resv>
 <Decision flags: accept>
 <Decision replacement: POLICY-DATA2>

 Note: The Context object is part of this DEC message even though it
 may look redundant since the REQ specified only one context flag.

 Next, a new WF Resv message from receiver R3 arrives on interface
 if2 with a higher RSpec (Rspec2). Given two reservations arrived on
 if2, it cannot perform a request with multiple context flags, and
 must issue them separately.

 The PEP re-issues an updated handle C REQ with a new context object
 <Context: in , Resv>, and receives a DEC for handle C.

 PEP --> PDP REQ := <Handle F> <Context: in , Resv>
 <In-interface if2>
 <ClientSI: all objects in Resv message
 including RSpec2 >

 PDP --> PEP DEC := <Handle F> <Context: in , Resv>
 <Decision flags: accept>

 PEP --> PDP REQ := <Handle G> <Context: allocation, Resv>
 <In-interface if2>
 <ClientSI: all objects in merged Resv
 including RSpec2 >

 PDP --> PEP DEC := <Handle G>
 <Context: allocation, Resv>
 <Decision flags: accept>
 <Decision ClientSI: priority=5>

 PEP --> PDP RPT := <handle G> <Commit>

 Given the change in incoming reservations, the PEP needs to forward
 a new outgoing Resv message upstream toward S1. This repeats exactly
 the previous interaction of Handle E, except that the ClientSI
 objects now reflect the merging of two reservations.

Boyle et. al. Expires June 1998 [Page 11]

Internet Draft COPS usage for RSVP November 18, 1998
 If an ResvErr arrives from S1, the PEP maps it to R3 only (because
 it has a higher flowspec: Rspec2) the following takes place:

 PEP --> PDP REQ := <Handle H> <Context: in, ResvErr>
 <In-interface if3>
 <ClientSI: all objects in incoming ResvErr>

 PDP --> PEP DEC := <Handle H> <Context: in, ResvErr>
 <Decision flags: accept>

 PEP --> PDP REQ := <Handle I> <Context: out, ResvErr>
 <Out-interface if2>
 <clientSI: all objects in outgoing ResvErr>

 PDP --> PEP DEC := <Handle I>
 <Context: out, ResvErr>
 <Decision flags: accept>
 <Decision Replacement: POLICY-DATA3>

 When S2 joins the session by sending a Path message, incoming and
 outgoing Path requests are issued for the new Path. A new outgoing
 Resv request would be sent to S2.

Boyle et. al. Expires June 1998 [Page 12]

Internet Draft COPS usage for RSVP November 18, 1998

5. References

 [RSVP-EXT] Herzog, S. "RSVP Extensions for Policy Control",
 Internet-Draft, draft-ietf-rap-rsvp-ext-00.txt, Apr. 1998.

 [RAP] Yavatkar, R., et al., "A Framework for Policy Based Admission
 Control",IETF <draft-ietf-rap-framework-00.txt>, November,
 1997.

 [COPS] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja,n R.,
 Sastry, A., "The COPS (Common Open Policy Service) Protocol",
 IETF <draft-ietf-rap-cops-02.txt>, Aug. 1998.

 [RSVP] Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S.,
 "Resource Reservation Protocol (RSVP) Version 1 Functional
 Specification", IETF RFC 2205, Proposed Standard, September
 1997.

6. Author Information and Acknowledgments

 Special thanks to Timothy O'Malley our WG Chair, Raj Yavatkar,
 Russell Fenger, Fred Baker, Laura Cunningham, Roch Guerin, Ping Pan,
 and Dimitrios Pendarakis for their valuable contributions.

 Jim Boyle Ron Cohen
 Level 3 Communications CISCO Systems
 1450 Infinite Drive13 Hasadna St.
 Louisville, CO 80027 Ra'anana 43650 Israel
 303.926.3100 972.9.7462020
 email: jboyle@l3.net ronc@cisco.com

 David Durham Raju Rajan
 Intel IBM T.J. Watson Research Cntr
 2111 NE 25th Avenue P.O. Box 704
 Hillsboro, OR 97124 Yorktown Heights, NY 10598
 503.264.6232 914.784.7260
 David_Durham@mail.intel.com raju@watson.ibm.com

 Shai Herzog Arun Sastry
 IPHighway Cisco Systems
 400 Kelby St., Suite 1500 506210 W Tasman Drive
 Fort-Lee, NJ 07024 San Jose, CA 95134
 201.585.0800 408.526.7685
 herzog@iphighway.com asastry@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-rap-rsvp-ext-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-framework-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-02.txt
https://datatracker.ietf.org/doc/html/rfc2205

Boyle et. al. Expires June 1998 [Page 13]

