
Internet Draft Jim Boyle
Expiration: August 1999 Level3
File: draft-ietf-rap-cops-rsvp-03.txt Ron Cohen
 Cisco
 David Durham
 Intel
 Shai Herzog
 IPHighway
 Raju Rajan
 IBM
 Arun Sastry
 Cisco

 COPS usage for RSVP

 February 13, 1999

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

This document describes usage directives for supporting COPS policy
services in RSVP environments.

https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-rsvp-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft Expires August 1999 [Page 1]

Internet Draft COPS usage for RSVP 13-Feb-99

Table of Contents

Abstract...1
Table of Contents..2
1 Introduction...3
2 RSVP values for COPS objects.......................................3
2.1 Common Header, client-type......................................3
2.2 Context Object (Context)..3
2.3 Client Specific Information (ClientSI)..........................4
2.4 Decision Object (Decision)......................................5
3 Operation of COPS for RSVP PEPs....................................6
3.1 RSVP flows..6
3.2 Expected Associations for RSVP Requests.........................6
3.3 RSVP's Capacity Admission Control: Commit and Delete............7
3.4 Policy Control Over PathTear and ResvTear.......................8
3.5 PEP Caching COPS Decisions......................................8
3.6 Using Multiple Context Flags in a single query..................9
3.7 RSVP Error Reporting...10
3.8 Security Considerations..10
4 Illustrative Examples, Using COPS for RSVP........................10
4.1 Unicast Flow Example...10
4.2 Shared Multicast Flows...12
5 References..16
6 Author Information and Acknowledgments............................16

Shai Herzog Expires August 1999 [Page 2]

Internet Draft COPS usage for RSVP 13-Feb-99

1 Introduction

 The Common Open Policy Service (COPS) protocol is a query response
 protocol used to exchange policy information between a network
 policy server and a set of clients [COPS]. COPS is being developed
 within the RSVP Admission Policy Working Group (RAP WG) of the IETF,
 primarily for use as a mechanism for providing policy-based
 admission control over requests for network resources [RAP].

 This document is based on and assumes prior knowledge of the RAP
 framework [RAP] and the basic COPS [COPS] protocol. It provides
 specific usage directives for using COPS in outsourcing policy
 control decisions by RSVP clients (PEPs) to policy servers (PDPs).

 Given the COPS protocol design, RSVP directives are mainly limited
 to RSVP applicability, interoperability, usage guidelines, as well
 as client specific examples.

2 RSVP values for COPS objects

 The usage of several COPS objects is affected when used for client
 type RSVP. This section describes these objects and their usage.

2.1 Common Header, client-type

 RSVP is COPS client-type 1

2.2 Context Object (Context)

 The semantics of the Context object for RSVP is as follows:

 R-Type (Request Type Flag)

 Incoming-Message request

 This context is requested when the PEP receives an incoming
 RSVP message. The PDP may decide to accept or reject the
 incoming message and may also apply other decision object to
 it. If the incoming message is rejected, RSVP should treat it
 as if it never arrived.

 Resource-Allocation request

 This context is requested when the PEP is about to commit
 local resources to an RSVP flow (admission control). This
 context applies to Resv messages only. The decision whether
 to commit local resources is performed for the merge of all
 reservations associated with an RSVP flow, (which have
 arrived on a particular interface, potentially from several
 RSVP Next-Hops).

 Outgoing-Message request (forwarding an outgoing RSVP message)

 This context is requested when the PEP is about to forward an
 outgoing RSVP message. The PDP may decide to allow or deny

Shai Herzog Expires August 1999 [Page 3]

Internet Draft COPS usage for RSVP 13-Feb-99

 the outgoing message, as well as provide an outgoing policy
 data object.

 M-Type (Message Type)

 The M-Type field in the Context Object may have one of the
 Following values that correspond to supported RSVP messages
 In COPS:

 1 = Path
 2 = Resv
 3 = PathErr
 4 = ResvErr

 Note: The PathTear, ResvTear, and the Resv Confirm message types are
 not supported.

2.3 Client Specific Information (ClientSI)

 All objects that were received within an RSVP message are
 encapsulated inside the Client Specific Information Object (Signaled
 ClientSI) sent from the PEP to the remote PDP. (See Section 3.1. on
 multiple flows packed in a single RSVP message).

 The PEP and PDP share RSVP state and the PDP is assumed to implement
 the same RSVP functional specification as the PEP. In the case where
 a PDP detects the absence of objects required by [RSVP] it should
 return an <Error> in the Decision message indicating "Mandatory
 client-specific info missing". If, on the other hand, the PDP
 detects the absence of optional RSVP objects that are needed to
 approve the Request against current policies, the PDP should return
 a negative <Decision>.

 Unlike the Incoming and Outgoing contexts, Resource Allocation
 isn t always directly associated with a specific RSVP message. In a
 multicast session, it may represent the merging of multiple incoming
 reservations. Therefore, the ClientSI object should specifically
 contain the SESSION and STYLE objects along with the merged
 FLOWSPEC, FILTERSPEC list and SCOPE object (whenever relevant).

Shai Herzog Expires August 1999 [Page 4]

Internet Draft COPS usage for RSVP 13-Feb-99

2.4 Decision Object (Decision)

 COPS provide the PDP with flexible controls over the PEP using
 RSVP s response to messages. While accepting an RSVP message, PDPs
 may provide preemption priority, trigger warnings, replace RSVP
 objects, and much more, using Decision Commands, Flags and Objects.

 DECISION COMMANDS

 Only two commands apply to RSVP

 Install

 Positive Response:
 Accept/Allow/Admit an RSVP message or local resource allocation.

 Remove

 Negative Response:
 Deny/Reject/Remove an RSVP message or local resource allocation.

 DECISION FLAGS

 The only decision flag that applies to RSVP:

 Trigger Error

 If this flag is set, RSVP should schedule a PathErr, in response
 of a Path message, or a ResvErr (in response of a Resv message).

 STATELESS POLICY DATA

 This object may include one or more policy elements (as specified
 for the RSVP Policy Data object [RSVP-EXT]) which are assumed to be
 well understood by the client s LDP. The PEP should consider these
 as an addition to the decision already received from the PDP (it can
 only add, but cannot override it).

 For example: Given Policy Elements that specify a flow s preemption
 priority, these elements may be included in an incoming Resv message
 or may be also be provided by the PDP responding to a query.

 Stateless objects must be well understood, but not necessarily
 supported by all PEPs. For example, assuming a standard policy
 element for preemption priority, it is perfectly legitimate for some
 PEPs not to support such preemption and to ignore it. The PDP must
 be careful when using such objects, especially, it must be prepared
 for these objects would be ignored by PEPs.

 Stateless Policy Data may be returned in decisions and apply
 individually to each of the contexts flagged in REQ messages. When
 applied to Incoming, it is assumed to have been received as a
 POLICY_DATA object in the incoming message. When applied to Resource

Shai Herzog Expires August 1999 [Page 5]

Internet Draft COPS usage for RSVP 13-Feb-99

 Allocation it is assumed to have been received on all merged
 incoming messages. Last, when applied to outgoing message it is
 assumed to have been received in all messages contributing to the
 outgoing message.

 REPLACEMENT DATA

 The Replacement object may contain multiple RSVP objects to be
 replaced (from the original RSVP request). Typical replacement is
 performed on the Forward Outgoing request (for instance, replacing
 outgoing Policy Data), but is not limited, and can also be performed
 on other contexts (such as Resources-Allocation Request). In other
 cases, replacement of the RSVP FlowSpec object may be useful for
 controlling resources across a trusted zone (with PIN nodes).
 Currently, RSVP clients are only required to allow replacement of
 three objects: POLICY_DATA, ERROR_SPEC, and FLOWSPEC, but could
 optionally support replacement of more objects.

 RSVP object replacement is performed in the following manner:

 If Replacement Data decision doesn't appear in a decision message,
 all signaled objects are processed as if the PDP was not there. When
 an object of a certain C-Num appears it replaces ALL the instances
 of C-Num objects in the RSVP message. If it appears empty (with a
 length of 4) it simply removes all instances of C-Num objects
 without adding a thing.

3 Operation of COPS for RSVP PEPs

3.1 RSVP flows

 Policy Control is performed per RSVP flow, which is defined by the
 atomic unit of RSVP reservation (TC reservation). Reservation styles
 may also impact the definition of flows; a set of senders which are
 considered as a single flow for WF reservation are considered as a
 set of individual flows when FF style is used.

 Multiple FF flows may be packed into a single Resv message. A packed
 message must be unpack where a separate request is issued for each
 of the packed flows as if they were individual RSVP messages. Each
 COPS Request should include the associated POLICY_DATA objects,
 which are, by default, all POLICY_DATA objects in the packed
 message. Sophisticated PEPs, capable of looking inside policy
 objects, may examine the POLICY_DATA or SCOPE object to narrow down
 the list of associated flows (as optimization).

 Please note that the rules governing Packed RSVP message apply
 equally to Incoming as well as Outgoing REQ context.

3.2 Expected Associations for RSVP Requests

 When making a policy decision, the PDP may consider both Resv as
 well as its matching Path state (associated state). State
 association is trivial in the common unicast case since the RSVP
 flow includes one Path state and one Resv state. In multicast cases

Shai Herzog Expires August 1999 [Page 6]

Internet Draft COPS usage for RSVP 13-Feb-99

 this correspondence may be more complicated, as the match may be
 many to many. The COPS protocol assumes that the PDP is RSVP
 knowledgeable and capable of determining these associations based on
 the contents of the Client REQ message and especially the ClientSI
 object.

 For example, the PDP should be able to recognize activation and
 deactivation of RSVP blockade state following discrete events like
 the arrival of a ResvErr message (activate the blockade state) as
 well as the change in the outgoing Resv message.

3.3 RSVP's Capacity Admission Control: Commit and Delete

 In RSVP, the admission of a new reservation requires both an
 administrative approval (policy control) and capacity admission
 control. After being approved by both, and after the reservation was
 successfully installed, the PEP notifies the remote PDP by sending a
 report message specifying the Commit type. The Commit type report
 message signals when billing should effectively begin and performing
 heavier delayed operations (e.g., debiting a credit card) is
 permissible by the PDP.

 If instead a PDP approved reservation fails admission due to lack of
 resources, the PEP must issue a no-commit report and fold back and
 send an updated request to its previous state (previously installed
 reservation). If no state was previously installed, the PEP should
 issue a delete (DRQ).

Shai Herzog Expires August 1999 [Page 7]

Internet Draft COPS usage for RSVP 13-Feb-99

3.4 Policy Control Over PathTear and ResvTear

 PathTear and ResvTear messages are not controlled by this policy
 architecture. This relies on two assumptions: First, that MD-5
 authentication verifies that the Tear is received from the same node
 that sent the initial reservation, and second, that it is
 functionally equivalent to that node holding-off refreshes for this
 reservation. When a ResvTear or PathTear is received at the PEP, all
 affected states installed on the PDP should either be deleted or
 updated by the PEP.

3.5 PEP Caching COPS Decisions

 Because COPS is a stateful protocol, refreshes for RSVP Path and
 Resv messages need not be constantly sent to the remote PDP. Once a
 decision has been returned for a request, the PEP can cache that
 decision and apply it to future refreshes. When the PEP detects a
 change in the corresponding Resv or Path message, it should update
 the PDP with the new request-state. PEPs may continue to use the
 cached state until receiving the PDP response. This case is very
 different from initial admission of a flow; given that valid
 credentials and authentication have already been established, the
 relative long RSVP refresh period, and the short PEP-PDP response
 time, the tradeoff between expedient updates and attack prevention
 leans toward expediency. However, this is really a PEP choice, and
 is irrelevant to PDPs.

 If the connection is lost between the PEP and the PDP, the cached
 RSVP state may be retained for the RSVP timeout period to be used
 for previously admitted flows (but cannot be applied to new or
 updated state). If connection can not be reestablished with the PDP
 or a backup PDP after the timeout period, the PEP is expected to
 purge all its cached decisions. Without applicable cached decision,
 the PEP must either reject the flow or resort to its LDP (if
 available) for decisions.

 Once a connection is reestablished to a new (or the original) PDP
 the PDP may issue a SSQ request. In this case, the PEP must reissue
 requests that correspond to the current RSVP state (as if all the
 state has been updated recently). It should also include as LDP the
 current (cached) decision regarding each such state.

Shai Herzog Expires August 1999 [Page 8]

Internet Draft COPS usage for RSVP 13-Feb-99

3.6 Using Multiple Context Flags in a single query

 RSVP is a store-and-forward control protocol where messages are
 processed in three distinctive steps (input, resource allocation,
 and output). Each step requires a separate policy decision as
 indicated by context flags (see Section 2.2). In many cases, setting
 multiple context flags for bundling two or three operations together
 in one request may significantly optimize protocol operations.

 The following rules apply for setting multiple Context flags:

 a. Multiple context flags can be set only in two generic cases which
 are guaranteed not to cause ambiguity and represent substantial
 portion of expected COPS transactions.

 Unicast FF:

 [Incoming + Allocation + Outgoing]

 Multicast with only one Resv message received on the interface

 [Incoming + Allocation]

 b. Context events are ordered by time since every message processing
 must first be processed as Incoming, then as Resource allocation
 and only then as Outgoing. When multiple context flags are set,
 all ClientSI objects included in the request are assumed to be
 processed to the latest flag. This rule applies both to request
 (REQ) context as well as to decision (DEC) context.

 For example: when combining Incoming + Allocation for an incoming
 Resv message, the flowspec included in the ClientSI would be the
 one corresponding to the Resource-Allocation context (TC).

 c. Each decision is bound to a context object, which determines
 which portion of the request context it applies to. When
 different decisions apply to different sub-groups of context the
 PDP should send each group of decision objects encapsulated or
 separated by the context flags object with the context flags
 applicable to these objects set. (See the examples in Section 4).

Shai Herzog Expires August 1999 [Page 9]

Internet Draft COPS usage for RSVP 13-Feb-99

3.7 RSVP Error Reporting

 RSVP uses the ERROR_SPEC object in PathErr and ResvErr messages to
 report policy errors. While the contents of the ERROR_SPEC object is
 defined in [RSVP,RSVP-EXT], the PDP is in the best position to
 provide its contents (sub-codes). This is performed in the following
 manner: First, the PEP (RSVP) queries the PDP before sending a
 PathErr or ResvErr, and then the PDP returns the constructed
 ERROR_SPEC in the Replacement Data Decision Object.

3.8 Security Considerations

 Security for RSVP messages is provided by inter-router MD5
 authentication [MD5], assuming a chain-of-trust model.
 A possible deployment scenario calls for PEPs to be deployed at the
 network edge (boundary nodes) while PINs are deployed in the core of
 the network (backbone). In this case, MD5 trust (authentication)
 must be established between boundary (non-neighboring) PEPs. Such
 PDP-PDP trust can be achieved through internal signing (integrity)
 of the Policy Data object (see [RSVP-EXT]).

4 Illustrative Examples, Using COPS for RSVP

 This section details both typical unicast and multicast scenarios.

4.1 Unicast Flow Example

 This section details the steps in using COPS for controlling a
 Unicast RSVP flow. It details the contents of the COPS messages
 with respect to the following figure.

 PEP (router)
 +-----------------+
 | |
 R1 ------------+if1 if2+------------ S1
 | |
 +-----------------+

 Figure 1: Unicast Example: a single PEP view

 The PEP router has two interfaces (if1, if2). Sender S1 sends to
 receiver R1.

 A Path message arrives from S1:

 PEP --> PDP REQ := <Handle A> <Context: in & out, Path>
 <In-Interface if2> <Out-Interface if1>
 <ClientSI: all objects in Path message>

 PDP --> PEP DEC := <Handle A> <Context: in & out, Path>
 <Decision: Command, Install>

Shai Herzog Expires August 1999 [Page 10]

Internet Draft COPS usage for RSVP 13-Feb-99

 A Resv message arrives from R1:

 PEP --> PDP REQ := <Handle B>
 <Context: in & allocation & out, Resv>
 <In-Interface if1> <Out-Interface if2>
 <ClientSI: all objects in Resv message>

 PDP --> PEP DEC := <Handle B>
 <Context: in, Resv>
 <Decision: command, Install>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, Priority=7>
 <Context: out, Resv>
 <Decision: command, Install>
 <Decision: replacement, POLICY-DATA1>

 PEP --> PDP RPT := <Handle B>
 <Report type: commit>

 Notice that the Decision was split because of the need to specify
 different decision objects for different context flags.

 Time Passes, the PDP changes its decision:

 PDP --> PEP DEC := <Handle B>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, Priority=3>

 Because the priority is too low, the PEP preempts the flow:

 PEP --> PDP DRQ := <Handle B>
 <Reason Code: Preempted>

 Time Passes, the sender S1 ceases to send Path messages:

 PEP --> PDP DRQ := <Handle A>
 <Reason: Timeout>

Shai Herzog Expires August 1999 [Page 11]

Internet Draft COPS usage for RSVP 13-Feb-99

4.2 Shared Multicast Flows

 This section details the steps in using COPS for controlling a
 multicast RSVP flow. It details the contents of the COPS messages
 with respect to the following figure.

 PEP (router)
 +-----------------+
 | |
 R1-------------+ if1 if3 +--------- S1
 | |
 R2----+ | |
 | | |
 +--------+ if2 if4 +--------- S2
 | | |
 R3----+ +-----------------+

 Figure 2: Multicast example: a single PEP view

 Figure 2 shows an RSVP PEP (router) which has two senders (S1, S2)
 and three receivers (R1, R2, R3) for the same multicast session.
 Interface if2 is connected to a shared media.
 In this example, we assume that the multicast membership is already
 in place. No previous RSVP messages were received, and the first to
 arrive is a Path message on interface if3 from sender S1:

 PEP --> PDP REQ := <Handle A> <Context: in, Path>
 <In-interface if3>
 <ClientSI: all objects in incoming Path>

 PDP --> PEP DEC := <Handle A> <Context: in, Path>
 <Decision: command, Install>

 The PEP consults its forwarding table, and finds two outgoing
 interface for the path (if1, if2). The exchange below is for
 interface if1, another exchange would likewise be completed for if2
 using the new handle B2.

Shai Herzog Expires August 1999 [Page 12]

Internet Draft COPS usage for RSVP 13-Feb-99

 PEP --> PDP REQ := <Handle B1> <Context: out, Path>
 <Out-interface if1>
 <clientSI: all objects in outgoing Path>

 PDP --> PEP DEC := <Handle B1>
 <Context: out, Path>
 <Decision: command, Install>
 <Decision: Replacement, POLICY-DATA1>

 Here, the PDP decided to allow the forwarding of the Path message
 and provided the appropriate policy-data object for interface if1.

 Next, a WF Resv message from receiver R2 arrives on interface if2.

 PEP --> PDP REQ := <Handle C> <Context: in & allocation, Resv>
 <In-interface if2>
 <ClientSI: all objects in Resv message
 including RSpec1 >

 PDP --> PEP DEC := <Handle C>
 <Context: in, Resv>
 <Decision: command, Install>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, priority=5>

 PEP --> PDP RPT := <handle C> <Commit>

 Here, the PDP approves the reservation and assigned it preemption
 priority of 5. The PEP responded with a commit report.

 The PEP needs to forward the Resv message upstream toward S1:

 PEP --> PDP REQ := <Handle E> <Context: out, Resv>
 <out-interface if3>
 <Client info: all objects in outgoing Resv>

 PDP --> PEP DEC := <Handle E>
 <Context: out, Resv>
 <Decision: command, Install>
 <Decision: replacement, POLICY-DATA2>

 Note: The Context object is part of this DEC message even though it
 may look redundant since the REQ specified only one context flag.

Shai Herzog Expires August 1999 [Page 13]

Internet Draft COPS usage for RSVP 13-Feb-99

 Next, a new WF Resv message from receiver R3 arrives on interface
 if2 with a higher RSpec (Rspec2). Given two reservations arrived on
 if2, it cannot perform a request with multiple context flags, and
 must issue them separately.

 The PEP re-issues an updated handle C REQ with a new context object
 <Context: in , Resv>, and receives a DEC for handle C.

 PEP --> PDP REQ := <Handle F> <Context: in , Resv>
 <In-interface if2>
 <ClientSI: all objects in Resv message
 including RSpec2 >

 PDP --> PEP DEC := <Handle F> <Context: in , Resv>
 <Decision: command, Install>

 PEP --> PDP REQ := <Handle G> <Context: allocation, Resv>
 <In-interface if2>
 <ClientSI: all objects in merged Resv
 including RSpec2 >

 PDP --> PEP DEC := <Handle G>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, Priority=5>

 PEP --> PDP RPT := <handle G> <Commit>

 Given the change in incoming reservations, the PEP needs to forward
 a new outgoing Resv message upstream toward S1. This repeats exactly
 the previous interaction of Handle E, except that the ClientSI
 objects now reflect the merging of two reservations.

Shai Herzog Expires August 1999 [Page 14]

Internet Draft COPS usage for RSVP 13-Feb-99

 If an ResvErr arrives from S1, the PEP maps it to R3 only (because
 it has a higher flowspec: Rspec2) the following takes place:

 PEP --> PDP REQ := <Handle H> <Context: in, ResvErr>
 <In-interface if3>
 <ClientSI: all objects in incoming ResvErr>

 PDP --> PEP DEC := <Handle H> <Context: in, ResvErr>
 <Decision: command, Install>

 PEP --> PDP REQ := <Handle I> <Context: out, ResvErr>
 <Out-interface if2>
 <ClientSI: all objects in outgoing ResvErr>

 PDP --> PEP DEC := <Handle I>
 <Context: out, ResvErr>
 <Decision: command, Install>
 <Decision: Replacement, POLICY-DATA3>

 When S2 joins the session by sending a Path message, incoming and
 outgoing Path requests are issued for the new Path. A new outgoing
 Resv request would be sent to S2.

Shai Herzog Expires August 1999 [Page 15]

Internet Draft COPS usage for RSVP 13-Feb-99

5 References

 [RSVP-EXT] Herzog, S. "RSVP Extensions for Policy Control",
 Internet-Draft, draft-ietf-rap-rsvp-ext-02.txt, Jan. 1999.

 [RAP] Yavatkar, R., et al., "A Framework for Policy Based
 Admission Control", IETF <draft-ietf-rap-framework-02.txt>,
 Jan., 1999.

 [COPS] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R.,
 Sastry, A., "The COPS (Common Open Policy Service) Protocol",
 IETF <draft-ietf-rap-cops-05.txt>, Jan. 1999.

 [RSVP] Braden, R. ed., "Resource ReSerVation Protocol (RSVP) -
 Functional Specification.", IETF RFC 2205, Proposed Standard,
 Sep. 1997.

6 Author Information and Acknowledgments

 Special thanks to Andrew Smith and Timothy O'Malley our WG Chairs,
 Fred Baker, Laura Cunningham, Russell Fenger, Roch Guerin, Ping Pan,
 and Raj Yavatkar, for their valuable contributions.

 Jim Boyle Ron Cohen
 Level 3 Communications CISCO Systems
 1450 Infinite Drive13 Hasadna St.
 Louisville, CO 80027 Ra'anana 43650 Israel
 303.926.3100 972.9.7462020
 email: jboyle@l3.net ronc@cisco.com

 David Durham Raju Rajan
 Intel IBM T.J. Watson Research Cntr
 2111 NE 25th Avenue P.O. Box 704
 Hillsboro, OR 97124 Yorktown Heights, NY 10598
 503.264.6232 914.784.7260
 David_Durham@mail.intel.com raju@watson.ibm.com

 Shai Herzog Arun Sastry
 IPHighway Cisco Systems
 400 Kelby St., Suite 1500 506210 W Tasman Drive
 Fort-Lee, NJ 07024 San Jose, CA 95134
 201.585.0800 408.526.7685
 herzog@iphighway.com asastry@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-rap-rsvp-ext-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-framework-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-05.txt
https://datatracker.ietf.org/doc/html/rfc2205

Shai Herzog Expires August 1999 [Page 16]

