
Internet Draft Kwok Ho Chan
Expiration: February 2001 Nortel Networks
File: draft-ietf-rap-pr-04.txt David Durham
 Intel
 Silvano Gai
 Cisco
 Shai Herzog
 IPHighway
 Keith McCloghrie
 Cisco
 Francis Reichmeyer
 PFN
 John Seligson
 Nortel Networks
 Andrew Smith
 No Affiliation
 Raj Yavatkar
 Intel

 COPS Usage for Policy Provisioning (COPS-PR)

 August 24, 2000

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited.

Copyright Notice

https://datatracker.ietf.org/doc/html/draft-ietf-rap-pr-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 Copyright (C) The Internet Society (1998). All Rights Reserved.

Internet Draft Expires February 2001 [Page 1]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
Abstract

 This draft describes the use of the COPS protocol [COPS] for
 support of policy provisioning (COPS-PR). This specification is
 independent of the type of policy being provisioned (QoS, Security,
 etc.) but focuses on the mechanisms and conventions used to
 communicate provisioned information between PDPs and PEPs. The
 protocol extensions described in this document do not make any
 assumptions about the policy data model being communicated, but
 describe the message formats and objects that carry the modeled
 policy data.

Conventions used in this document
 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
 in this document are to be interpreted as described in [RFC-2119].

https://datatracker.ietf.org/doc/html/rfc2119

Chan et al. Expires February 2001 [Page 2]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
Table of Contents

Abstract..2
Conventions used in this document...................................2
Table of Contents...3
Glossary..4
1. Introduction...4
1.1. Why COPS for Provisioning?.....................................5
1.2. Interaction between the PEP and PDP............................6
2. Policy Information Base (PIB)....................................7
2.1. Rules for Modifying and Extending PIBs.........................8
2.2. Adding PRCs to, or deprecating from, a PIB.....................8
2.2.1. Adding or Deprecating Attributes of a BER Encoded PRC........8
2.3. COPS Operations Supported for a Provisioned Instance...........9
3. Message Content...10
3.1. Request (REQ) PEP -> PDP.....................................10
3.2. Decision (DEC) PDP -> PEP....................................11
3.3. Report State (RPT) PEP -> PDP................................13
4. COPS-PR Protocol Objects..14
4.1. Complete Provisioning Instance Identifier (PRID)..............14
4.2. PRID Prefix(PPRID)..15
4.3. Encoded Provisioning Instance Data (EPD)......................16
4.4. Global Provisioning Error Object (GPERR)......................21
4.5. PRC Class Provisioning Error Object (CPERR)...................22
4.6. Error PRID Object (ErrorPRID).................................23
5. COPS-PR Client-Specific Data Formats............................23
5.1. Named Decision Data...23
5.2. ClientSI Request Data...24
5.3. Policy Provisioning Report Data...............................24
5.3.1. Success and Failure Report-Type Data Format.................24
5.3.2. Accounting Report-Type Data Format..........................25
6. Common Operation..26
7. Fault Tolerance...28
8. Security Considerations...29
9. IANA Considerations...29
10. Acknowledgements...29
11. References...30
12. Author Information...31
13. Full Copyright Notice..32

Chan et al. Expires February 2001 [Page 3]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

Glossary

 PRC Provisioning Class. A type of policy data.
 PRI Provisioning Instance. An instance of a PRC.
 PIB Policy Information Base. The database of policy
 information.
 PDP Policy Decision Point. See [RAP].
 PEP Policy Enforcement Point. See [RAP].
 PRID Provisioning Instance Identifier. Uniquely identifies an
 instance of a PRC.

1. Introduction

 The IETF Resource Allocation Protocol (RAP) WG has defined the
 COPS (Common Open Policy Service) protocol [COPS] as a scalable
 protocol that allows policy servers (PDPs) to communicate policy
 decisions to network devices (PEPs). COPS was designed to support
 multiple types of policy clients.

 COPS is a query/response protocol that supports two common models
 for policy control: Outsourcing and Configuration.

 The Outsourcing model addresses the kind of events at the PEP that
 require an instantaneous policy decision (authorization). In the
 outsourcing scenario, the PEP delegates responsibility to an
 external policy server (PDP) to make decisions on its behalf. For
 example, in COPS Usage for RSVP [COPRSVP] when a RSVP reservation
 message arrives, the PEP must decide whether to admit or reject
 the request. It can outsource this decision by sending a specific
 query to its PDP, waiting for its decision before admitting the
 outstanding reservation.

 The COPS Configuration model (herein described as the Provisioning
 model), on the other hand, makes no assumptions of such direct 1:1
 correlation between PEP events and PDP decisions. The PDP may
 proactively provision the PEP reacting to external events (such as
 user input), PEP events, and any combination thereof (N:M
 correlation). Provisioning may be performed in bulk (e.g., entire
 router QoS configuration) or in portions (e.g., updating a
 DiffServ marking filter).

 Network resources are often provisioned based on relatively static
 SLAs (Service Level Agreements) at network boundaries. While the
 Outsourcing model is dynamically paced by the PEP in real-time,
 the Provisioning model is paced by the PDP in somewhat flexible
 timing over a wide range of configurable aspects of the PEP.

Chan et al. Expires February 2001 [Page 4]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 Edge Device Policy Server
 +--------------+ +-----------+ +-----------+
 | | | | | External |
 | | COPS | | | Events |
 | +-----+ | REQ() | +-----+ | +---+-------+
 | | |----|----------|->| | | |
 | | PEP | | | | PDP |<-|---------+
 | | |<---|----------|--| | |
 | +-----+ | COPS | +-----+ |
 | | DEC() | |
 +--------------+ +-----------+

 Figure 1: COPS Provisioning Model

 In COPS-PR, policy requests describe the PEP and its configurable
 parameters (rather than an operational event). If a change occurs
 in these basic parameters, an updated request is sent. Hence,
 requests are issued quite infrequently. Decisions are not
 necessarily mapped directly to requests, and are issued mostly
 when the PDP responds to external events or PDP events (policy/SLA
 updates).

 This draft describes the use of the COPS protocol [COPS] for
 support of policy provisioning. This specification is independent
 of the type of policy being provisioned (QoS, Security, etc.).
 Rather, it focuses on the mechanisms and conventions used to
 communicate provisioned information between PDPs and PEPs. The
 data model assumed in this document is based on the concept of
 Policy Information Bases (PIBs) that define the policy data. There
 may be one or more PIBs for given area of policy and different
 areas of policy may have different sets of PIBs.

 In order to support a model that includes multiple PDPs
 controlling non-overlapping areas of policy on a single PEP, the
 client-type specified by the PEP to the PDP is unique for the area
 of policy being managed. A single client-type for a given area of
 policy (eg. QoS) will be used for all PIBs that exist in that
 area. The client should treat all the COPS-PR client-types it
 supports as non-overlapping and independent namespaces where
 instances MUST NOT be shared.

 The examples used in this document are biased toward QoS Policy
 Provisioning in a Differentiated Services (DiffServ) environment.
 However, COPS-PR can be used for other types of provisioning
 policies under the same framework.

 1.1. Why COPS for Provisioning?

 COPS-PR has been designed within a framework that is optimized for
 efficiently provisioning policies across devices, based on the

Chan et al. Expires February 2001 [Page 5]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 requirements defined in [RAP]. First, COPS-PR allows for efficient
 transport of attributes, large atomic transactions of data, and
 efficient and flexible error reporting. Second, as it has a single
 connection between the policy client and server per area of policy
 control identified by a COPS Client-Type, it guarantees only one
 server updates a particular policy configuration at any given
 time. Such a policy configuration is effectively locked, even from
 local console configuration, while the PEP is connected to a PDP
 via COPS. COPS uses reliable TCP transport and, thus, uses a state
 sharing/synchronization mechanism and exchanges differential
 updates only. If either the server or client are rebooted (or
 restarted) the other would know about it quickly. Last, it is
 defined as a real-time interrupt-driven communications mechanism,
 never requiring polling between the PEP and PDP.

 Additionally, the COPS protocol is already used for policy control
 by outsourcing signaling protocols such as RSVP. It is highly
 desirable to use a single policy control protocol for Quality of
 Service (QoS) mechanisms (if possible), rather than invent a new
 one for each type of policy problem.

 At the same time, useful mechanisms from SNMP were adopted. COPS-
 PR uses a named Policy Information Base (PIB), which can be
 described using the SMI [V2SMI] and encoded using BER [BER] data
 encoding. This allows reuse of experience, knowledge, tools, data
 models, and some code from the SNMP community. In particular, this
 document describes the mechanisms used to transport data modeled
 using the SMI over COPS-PR.

 1.2. Interaction between the PEP and PDP

 When a device boots, it opens a COPS connection to its Primary
 PDP. When the connection is established, the PEP sends information
 about itself to the PDP in the form of a configuration request.
 This information includes client specific information (e.g.,
 hardware type, software release, configuration information).
 During this phase the client may also specify the maximum COPS-PR
 message size supported.

 In response, the PDP downloads all provisioned policies that are
 currently relevant to that device. On receiving the provisioned
 policies, the device maps them into its local QoS mechanisms, and
 installs them. If conditions change at the PDP such that the PDP
 detects that changes are required in the provisioned policies
 currently in effect, then the PDP sends the changes (installs,
 updates, and/or deletes) in policy to the PEP, and the PEP updates
 its local configuration appropriately.

 If, subsequently, the configuration of the device changes (board
 removed, board added, new software installed, etc.) in ways not

Chan et al. Expires February 2001 [Page 6]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 covered by policies already known to the PEP, then the PEP
 asynchronously sends this unsolicited new information to the PDP
 in an updated configuration request. On receiving this new
 information, the PDP sends to the PEP any additional provisioned
 policies now needed by the PEP, or removes those policies that are
 no longer required.

2. Policy Information Base (PIB)

 The data carried by COPS-PR is a set of policy data. The protocol
 assumes a named data structure, known as a Policy Information Base
 (PIB), to identify the type and purpose of unsolicited policy
 information that is "pushed" from the PDP to the PEP for
 provisioning policy. The PIB name space is common to both the PEP
 and the PDP and data instances within this space are unique within
 the scope of a given Client-Type and Request-State per TCP
 connection between a PEP and PDP. Note that given a device might
 implement multiple COPS Client-Types, a unique instance space is
 to be provided for each separate Client-Type. There is no sharing
 of instance data across the Client-Types implemented by a PEP,
 even if the types of classes being instantiated are the same.

 The PIB can be described as a conceptual tree namespace where the
 branches of the tree represent structures of data or Provisioning
 Classes (PRCs), while the leaves represent various instantiations
 of Provisioning Instances (PRIs). There may be multiple data
 instances (PRIs) for any given data structure (PRC). For example,
 if one wanted to install multiple access control filters, the PRC
 might represent a generic access control filter type and each PRI
 might represent an individual access control filter to be applied.
 The tree might be represented as follows:

 -------+-------+----------+---PRC--+--PRI
 | | | +--PRI
 | | |
 | | +---PRC-----PRI
 | |
 | +---PRC--+--PRI
 | +--PRI
 | +--PRI
 | +--PRI
 | +--PRI
 |
 +---PRC---PRI

 Figure 2: The PIB Tree

 Instances of the policy classes (PRIs) are each identified by a
 Provisioning Instance Identifier (PRID). A PRID is a name, carried

Chan et al. Expires February 2001 [Page 7]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 in a COPS <Named ClientSI> or <Named Decision Data> object, which
 identifies a particular instance of a class.

 2.1. Rules for Modifying and Extending PIBs

 As experience is gained with policy management, and as new
 requirements arise, it will be necessary to make changes to PIBs.
 Changes to an existing PIB can be made in several ways.

 (1) Additional PRCs can be added to a PIB or an existing one
 deprecated.

 (2) Attributes can be added to, or deprecated from, an existing
 PRC.

 (3) An existing PRC can be extended or augmented with a new PRC
 defined in another (perhaps enterprise specific) PIB.

 The rules for each of these extension mechanisms is described in
 this sub-section. All of these mechanisms for modifying a PIB
 allow for interoperability between PDPs and PEPs even when one
 party is using a new version of the PIB while the other is using
 an old version.

 2.2. Adding PRCs to, or deprecating from, a PIB

 A published PIB can be extended with new PRCs by simply revising
 the document and adding additional PRCs. These additional PRCs
 are easily identified with new PRIDs under the module's PRID
 Prefix.

 In the event that a PEP implementing the new PIB is being
 configured by a PDP implementing the old PIB, the PEP will simply
 not receive any instances of the new PRC. In the event that the
 PEP is implementing the old PIB and the PDP the new one, the PEP
 may receive PRIs for the new PRC. Under such conditions, the PEP
 MUST return an error to the PDP, and rollback to its previous
 (good) state.

 Similarly, existing PRCs can be deprecated from a PIB. In this
 case, the PEP ignores any PRIs sent to it by a PDP implementing
 the old (non-deprecated) version of the PIB. A PDP implementing
 the new version of the PIB simply does not send any instances of
 the deprecated class.

 2.2.1. Adding or Deprecating Attributes of a BER Encoded PRC

 A PIB can be modified to deprecate existing attributes of a PRC or
 add new ones.

Chan et al. Expires February 2001 [Page 8]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

 When deprecating the attributes of a PRC, it must be remembered
 that, with the COPS-PR protocol, the attributes of the PRC are
 identified by their order in the sequence rather than an explicit
 label (or attribute OID). Consequently, an ASN.1 value MUST be
 sent even for deprecated attributes so that a PDP and PEP
 implementing different versions of the PIB are inter-operable.

 For a deprecated attribute, if the PDP is using a BER encoded PIB,
 the PDP MUST send either an ASN.1 value of the correct type, or it
 may send an ASN.1 NULL value. A PEP that receives an ASN.1 NULL
 for an attribute that is not deprecated SHOULD substitute a
 default value. If it has no default value to substitute it MUST
 return an error to the PDP.

 When adding new attributes to a PIB, these new attributes must be
 added in sequence after the existing ones. A PEP that receives a
 PRI with more attributes than it is expecting MUST ignore the
 additional attributes and send a warning back to the PDP.

 A PEP that receives a PRI with fewer attributes than it is
 expecting SHOULD assume default values for the missing attributes.
 It MAY send a warning back to the PDP. If the missing attributes
 are required and there is no suitable default, the PEP MUST send
 an error back to the PDP. In all cases the missing attributes are
 assumed to correspond to the last attributes of the PRC.

 2.3. COPS Operations Supported for a Provisioned Instance

 A Provisioning Instance (PRI) typically contains a value for each
 attribute defined for the PRC of which it is an instance and is
 identified uniquely, within the scope of a given COPS Client-Type
 and Request-State on a PEP, by a Provisioning Instance Identifier
 (PRID). The following COPS operations are supported on a PRI:

 o Install - This operation creates or updates a named instance of
 a PRC. It includes two parameters: a PRID object to name the PRI
 and an Encoded Provisioning Instance Data (EPD) object with the
 new/updated values. The PRID value MUST uniquely identify a
 single PRI (i.e. PRID prefix or PRC values are illegal). Updates
 to an existing PRI are achieved by simply reinstalling the same
 PRID with the updated EPD data.

 o Remove - This operation is used to delete an instance of a PRC.
 It includes one parameter, a PRID object, which names either the
 individual PRI to be deleted or a PRID prefix naming one or more
 complete classes of PRIs. Prefix-based deletion supports
 efficient bulk policy removal. The removal of an unknown/non-
 existent PRID SHOULD result in a warning to the PDP (no error).

Chan et al. Expires February 2001 [Page 9]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

3. Message Content

 The COPS protocol provides for different COPS clients to define
 their own "named", i.e. client-specific, information for various
 messages. This section describes the messages exchanged between a
 COPS server (PDP) and COPS Policy Provisioning clients (PEP) that
 carry client-specific data objects. All the COPS messages used by
 COPS-PR conform to the message specifications defined in the COPS
 base protocol [COPS].

 Note: The use of the '*' character represented throughout this
 document is consistent with the ABNF [RFC2234] and means 0 or more
 of the following entities.

3.1. Request (REQ) PEP -> PDP

 The REQ message is sent by policy provisioning clients to issue a
 'configuration request' to the PDP as specified in the COPS
 Context Object. The Client Handle associated with the REQ message
 originated by a provisioning client MUST be unique for that
 client. The Client Handle is used to identify a specific request
 state. Thus, one client can potentially open several configuration
 request states, each uniquely identified by its handle. Different
 request states are used to isolate similarly named configuration
 information into non-overlapping contexts (or logically isolated
 namespaces). Thus, an instance of named information is unique
 relative to a particular client-type and is unique relative to a
 particular request state for that client-type, even if the
 information was similarly identified in other request states (i.e.
 uses the same PRID). Thus, the Client Handle is also part of the
 instance identification of the communicated configuration
 information.

 The configuration request message serves as a request from the PEP
 to the PDP for provisioning policy data that the PDP may have for
 the PEP, such as access control lists, etc. This includes policy
 the PDP may have at the time the REQ is received as well as any
 future policy data or updates to this data.

 The configuration request message should include provisioning
 client information to provide the PDP with client-specific
 configuration or capability information about the PEP. The
 information provided by the PEP should include client resources
 (e.g. queuing capabilities) and default policy configuration (e.g.
 default role combinations) information as well as incarnation data
 on existing policy. This information typically does not include
 all the information previously installed by a PDP but rather
 should include checksums or shortened references to previously

https://datatracker.ietf.org/doc/html/rfc2234

Chan et al. Expires February 2001 [Page 10]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 installed information for synchronization purposes. This
 information from the client assists the server in deciding what
 types of policy the PEP can install and enforce. The format of the
 information encapsulated in one or more of the COPS Named ClientSI
 objects is described in section 5. Note that the configuration
 request message is generated and sent to the PDP in response to
 the receipt of a Synchronize State Request (SSQ) message from the
 PDP. Likewise, an updated configuration request message (using the
 same Client Handle value as the original request now being
 updated) may also be generated by the PEP and sent to the PDP at
 any time due to local modifications of the PEP's internal state.
 In this way, the PDP will be synchronized with the PEP's relevant
 internal state at all times.

 The policy information supplied by the PDP MUST be consistent with
 the named decision data defined for the policy provisioning
 client. The PDP responds to the configuration request with a DEC
 message containing any available provisioning policy data.

 The REQ message has the following format:

 <Request> ::= <Common Header>
 <Client Handle>
 <Context = config request>
 *(<Named ClientSI>)
 [<Integrity>]

 Note that the COPS objects IN-Int, OUT-Int and LDPDecisions are
 not included in a COPS-PR Request.

3.2. Decision (DEC) PDP -> PEP

 The DEC message is sent from the PDP to a policy provisioning
 client in response to the REQ message received from the PEP. The
 Client Handle MUST be the same Handle that was received in the
 corresponding REQ message.

 The DEC message is sent as an immediate response to a
 configuration request with the solicited message flag set in the
 COPS message header. Subsequent DEC messages may also be sent at
 any time after the original DEC message to supply the PEP with
 additional/updated policy information without the solicited
 message flag set in the COPS message header (as they are
 unsolicited decisions).

 Each DEC message may contain multiple decisions. This means a
 single message can install some policies and delete others. In
 general a single COPS-PR DEC message MUST contain any required
 remove decisions first, followed by any required install

Chan et al. Expires February 2001 [Page 11]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 decisions. This is used to solve a precedence issue, not a timing
 issue: the remove decision deletes what it specifies, except those
 items that are installed in the same message.

 The DEC message can also be used by the PDP to command the PEP to
 open a new Request State or Delete an existing Request-State as
 identified by the Client-Handle. To accomplish this, COPS-PR
 defines a new flag for the COPS Decision Flags object. The flag
 0x02 is to be used by COPS-PR client-types and is hereafter
 referred to as the "Request-State" flag. An Install decision
 (Decision Flags: Command-Code=Install) with the Request-State flag
 set in the COPS Decision Flags object will cause the PEP to issue
 a new Request with a new Client Handle or else specify the
 appropriate error in a COPS Report message. A Remove decision
 (Decision Flags: Command-Code=Remove) with the Request-State flag
 set in the COPS Decision Flags object will cause the PEP to send a
 COPS Delete Request State (DRQ) message for the Request-State
 identified by the Client Handle in the DEC message. Whenever the
 Request-State flag is set in the COPS Decision Flags object in the
 DEC message, no COPS Named Decision Data object can be included in
 the corresponding decision (as it serves no purpose for this
 decision flag).

 A COPS-PR DEC message MUST be treated as a single "transaction",
 i.e. either all the decisions in a DEC message succeed or they all
 fail. This allows the PDP to delete some policies only if other
 policies can be installed in their place. The DEC message has the
 following format:

 <Decision Message> ::= <Common Header>
 <Client Handle>
 *(<Decision>) | <Error>
 [<Integrity>]

 <Decision> ::= <Context>
 <Decision: Flags>
 [<Named Decision Data: Provisioning >]

 Note that the Named Decision Data (Provisioning) object is
 included in a COPS-PR Decision when it is an Install or Remove
 decision with no Decision Flags set. Other types of COPS decision
 data objects (e.g. Stateless, Replacement) are not supported by
 COPS-PR client-types. The Named Decision Data object MUST NOT be
 included in the decision if the Decision Flags object Command-Code
 is NULL (meaning there is no configuration information to install
 at this time) or if the Request-State flag is set in the Decision
 Flags object.

Chan et al. Expires February 2001 [Page 12]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 For each decision in the DEC message, the PEP performs the
 operation specified in the Command-Code and Flags field in the
 Decision Flags object on the Named Decision Data. For the policy
 provisioning clients, the format for this data is defined in the
 context of the Policy Information Base (see section 5). In
 response to a DEC message, the policy provisioning client sends a
 RPT message with the solicited message flag set back to the PDP to
 inform the PDP of the action taken.

 3.3. Report State (RPT) PEP -> PDP

 The RPT message is sent from the policy provisioning clients to
 the PDP to report accounting information associated with the
 provisioned policy, or to notify the PDP of changes in the PEP
 (Report-Type = 'Accounting') related to the provisioning client.

 RPT is also used as a mechanism to inform the PDP about the action
 taken at the PEP in response to a DEC message. For example, in
 response to an 'Install' decision, the PEP informs the PDP if the
 policy data is installed (Report-Type = 'Success') or not (Report-
 Type = 'Failure'). Reports that are in response to a DEC message
 MUST set the solicited message flag in their COPS message header.
 In case of a solicited failure, the PEP is expected to rollback to
 its previous (good) state as if the erroneous DEC transaction did
 not occur.

 Reports can also be unsolicited and all unsolicited Reports MUST
 NOT set the solicited message flag in their COPS message header.
 Examples of unsolicited reports include 'Accounting' Report-Types,
 which were not triggered by a specific DEC messages, or 'Failure'
 Report-Types, which indicate a failure in a previously
 successfully installed configuration (note that, in the case of
 such unsolicited failures, the PEP cannot rollback to a previous
 "good" state as it becomes ambiguous under these asynchronous
 conditions what the correct state might be).

 The RPT message may contain provisioning client information such
 as accounting parameters or errors/warnings related to a decision.
 The data format for this information is defined in the context of
 the policy information base (see section 5). The RPT message has
 the following format:

 <Report State> ::= <Common Header>
 <Client Handle>
 <Report Type>
 [<Named ClientSI>]
 [<Integrity>]

Chan et al. Expires February 2001 [Page 13]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

4. COPS-PR Protocol Objects

 The COPS Policy Provisioning clients encapsulate several new
 objects within the existing COPS Named Client-specific information
 object and Named Decision Data object. This section defines the
 format of these new objects.

 COPS-PR classifies policy data according to "bindings", where a
 binding consists of a Provisioning Instance Identifier and the
 Provisioning Instance data, encoded within the context of the
 provisioning policy information base (see section 5).

 The format for these new objects is as follows:

 0 1 2 3
 +---------------+---------------+---------------+---------------+
 | Length | S-Num | S-Type |
 +---------------+---------------+---------------+---------------+
 | 32 bit unsigned integer |
 +---------------+---------------+---------------+---------------+

 S-Num and S-Type are similar to the C-Num and C-Type used in the
 base COPS objects. The difference is that S-Num and S-Type are
 used only for COPS-PR clients and are encapsulated within the
 existing COPS Named ClientSI or Named Decision Data objects. The
 S-Num identifies the general purpose of the object, and the S-Type
 describes the specific encoding used for the object. All the
 object descriptions and examples in this document use the Basic
 Encoding Rules as the encoding type (S-Type = 1). Additional
 encodings can be defined for the remaining S-Types in the future
 (for example, an additional S-Type can be used to carry XML string
 based encodings [XML] as an EPD of PRI instance data, where URNs
 identify PRCs [URN] and XPointers would be used for PRIDs).

 Length is a two-octet value that describes the number of octets
 (including the header) that compose the object. If the length in
 octets does not fall on a 32-bit word boundary, padding MUST be
 added to the end of the object so that it is aligned to the next
 32-bit boundary before the object can be sent on the wire. On the
 receiving side, a subsequent object boundary can be found by
 simply rounding up the stated object length of the current object
 to the next 32-bit boundary. The values for the padding MUST be
 all zeros.

 4.1. Complete Provisioning Instance Identifier (PRID)

 S-Num = 1, S-Type = 1 (Complete BER PRID), Length = variable.

Chan et al. Expires February 2001 [Page 14]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

 This object is used to carry the identifier, or PRID, of a
 Provisioning Instance. The identifier is encoded following the
 rules that have been defined for encoding SNMP Object Identifier
 (OID) values. Specifically, PRID values are encoded using the
 Type/Length/Value (TLV) format and initial sub-identifier packing
 that is specified by the binary encoding rules [BER] used for
 Object Identifiers in an SNMP PDU.

 0 1 2 3
 +---------------+---------------+---------------+---------------+
 | Length | S-Num = PRID | S-Type = BER |
 +---------------+---------------+---------------+---------------+

 | Instance Identifier |

 +---------------+---------------+---------------+---------------+

 For example, a (fictitious) PRID equal to 1.3.6.1.2.2.8.1 would be
 encoded as follows (values in hex):

 06 07 2B 06 01 02 02 08 01

 The entire PRID object would be encoded as follows:

 00 0D - Length
 01 - S-Num
 01 - S-Type (Complete PRID)
 06 07 2B 06 01 02 02 08 01 - Encoded PRID
 00 00 00 - Padding

 NOTE: When encoding an xxxTable's xxxEntry Object-Type as defined
 by the SMI [V2SMI], the OID will contain all the sub-identifiers
 up to and including the xxxEntry OID but not the columnar
 identifiers for the attributes within the xxxEntry's SEQUENCE. The
 last (suffix) identifier is the INDEX of an instance of an entire
 xxxEntry including its SEQUENCE of attributes encoded in the EPD
 (defined below). This constitutes an instance (PRI) of a class
 (PRC) in terms of the SMI.

 A PRID for a scalar (non-columnar) value's OID is encoded directly
 as the PRC where the instance identifier suffix is always zero as
 there will be only one instance of a scalar value. The EPD will
 then be used to convey the scalar value.

 4.2. PRID Prefix(PPRID)

 Certain operations, such as decision removal, can be optimized by
 specifying a PRID prefix with the intent that the requested

Chan et al. Expires February 2001 [Page 15]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 operation be applied to all PRIs matching the prefix (for example,
 all instances of the same PRC). PRID prefix objects MUST only be
 used in the COPS protocol <Remove Decision> operation where it may
 be more optimal to perform bulk decision removal using class
 prefixes instead of a sequence of individual <Remove Decision>
 operations. Other COPS operations, e.g. <Install Decision>
 operations always require individual PRID specification.

 S-Num = 2, S-Type = 1 (BER PRID Prefix), Length = variable.

 0 1 2 3
 +---------------+---------------+---------------+---------------+
 | Length | S-Num = PPRID | S-Type = BER |
 +---------------+---------------+---------------+---------------+

 | PRID Prefix |

 +---------------+---------------+---------------+---------------+

 Continuing with the previous example, a PRID prefix that is equal to
 1.3.6.1.2.2 would be encoded as follows (values in hex):

 06 05 2B 06 01 02 02

 The entire PRID object would be encoded as follows:

 00 0B - Length
 02 - S-Num = PRID Prefix
 01 - S-Type = BER
 06 05 2B 06 01 02 02 - Encoded PRID Prefix
 00 - Padding

 4.3. Encoded Provisioning Instance Data (EPD)

 S-Num = 3, S-Type = 1, Length = variable.

 This object is used to carry the encoded value of a Provisioning
 Instance. The PRI value, which contains all of the individual values
 of the attributes that comprise the class (which corresponds to the
 SMI xxxEntry Object-Type defining the SEQUENCE of attributes
 comprising a table [V2SMI]), is encoded as a series of TLV sub-
 components. Each sub-component represents the value of a single
 attribute and is encoded following the BER. Note that the ordering
 of non-scalar (multiple) attributes within the EPD is dictated by
 their respective columnar OID suffix when defined in [V2SMI]. Thus,
 the attribute with the smallest columnar OID suffix will appear
 first and the attribute with the highest number columnar OID suffix
 will be last.

Chan et al. Expires February 2001 [Page 16]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 0 1 2 3
 +---------------+---------------+---------------+---------------+
 | Length | S-Num = EPD | S-Type = BER |
 +---------------+---------------+---------------+---------------+

 | BER Encoded PRI Value |

 +---------------+---------------+---------------+---------------+

 As an example, a fictional definition of a packet filter class could
 be described using the SMI as follows:

 filterIpFilter OBJECT IDENTIFIER ::= { someExampleOID 1 }

 -- The IP Filter Table

 filterTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FilterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Filter definitions. A packet has to match all fields in
 a filter. Wildcards may be specified for those fields
 that are not relevant."

 ::= { filterIpFilter 1 }

 filterEntry OBJECT-TYPE
 SYNTAX FilterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An instance of the filter class."

 INDEX { filterIndex }

 ::= { filterTable 1 }

 FilterEntry ::= SEQUENCE {
 filterIndex INTEGER,
 filterDstAddr IpAddress,
 filterDstAddrMask IpAddress,
 filterSrcAddr IpAddress,
 filterSrcAddrMask IpAddress,
 filterDscp Integer32,
 filterProtocol INTEGER,
 filterDstL4PortMin INTEGER,
 filterDstL4PortMax INTEGER,

Chan et al. Expires February 2001 [Page 17]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 filterSrcL4PortMin INTEGER,
 filterSrcL4PortMax INTEGER,
 filterPermit TruthValue
 }

 filterIndex OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "An integer index to uniquely identify this filter among all
 the filters."

 ::= { filterEntry 1 }

 filterDstAddr OBJECT-TYPE

 SYNTAX IpAddress
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The IP address to match against the packet's destination IP
 address."

 ::= { filterEntry 2 }

 filterDstAddrMask OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A mask for the matching of the destination IP address.
 A zero bit in the mask means that the corresponding bit in
 the address always matches."

 ::= { filterEntry 3 }

 filterSrcAddr OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The IP address to match against the packet's source IP
 address."

 ::= { filterEntry 4 }

 filterSrcAddrMask OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-write

Chan et al. Expires February 2001 [Page 18]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 STATUS current
 DESCRIPTION
 "A mask for the matching of the source IP address."

 ::= { filterEntry 5 }

 filterDscp OBJECT-TYPE
 SYNTAX INTEGER (-1 | 0..63)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The value that the DSCP in the packet can have and
 match. A value of -1 indicates that a specific
 DSCP value has not been defined and thus all DSCP values
 are considered a match."

 ::= { filterEntry 6 }

 filterProtocol OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The IP protocol to match against the packet's protocol.
 A value of zero means match all."

 ::= { filterEntry 7 }

 filterDstL4PortMin OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The minimum value that the packet's layer 4 destination
 port number can have and match this filter."

 ::= { filterEntry 8 }

 filterDstL4PortMax OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum value that the packet's layer 4 destination
 port number can have and match this filter."

 ::= { filterEntry 9 }

 filterSrcL4PortMin OBJECT-TYPE
 SYNTAX INTEGER (0..65535)

Chan et al. Expires February 2001 [Page 19]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The minimum value that the packet's layer 4 source port
 number can have and match this filter."

 ::= { filterEntry 10 }

 filterSrcL4PortMax OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum value that the packet's layer 4 source port
 number can have and match this filter."

 ::= { filterEntry 11 }

 filterPermit OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "If false, the evaluation is negated. That is, a
 valid match will be evaluated as not a match and vice
 versa."

 ::= { filterEntry 12 }

 A fictional instance of the filter class defined above might then
 be encoded as follows:

 02 01 08 :filterIndex/INTEGER/Value = 8
 40 04 C0 39 01 05 :filterDstAddr/IpAddress/Value = 192.57.1.5
 40 04 FF FF FF FF :filterDstMask/IpAddress/Value = 255.255.255.255
 40 04 00 00 00 00 :filterSrcAddr/IpAddress/Value = 0.0.0.0
 40 04 00 00 00 00 :filterSrcMask/IpAddress/Value = 0.0.0.0
 02 01 FF :filterDscp/INTEGER/Value = -1 (not used)
 02 01 06 :filterProtocol/INTEGER/Value = 6 (TCP)
 05 00 :filterDstL4PortMin/NULL/not supported
 05 00 :filterDstL4PortMax/NULL/not supported
 05 00 :filterSrcL4PortMin/NULL/not supported
 05 00 :filterSrcL4PortMax/NULL/not supported
 02 01 01 :filterPermit/TruthValue/Value = 1 (true)

 The entire EPD object for this instance would then be encoded as
 follows:

Chan et al. Expires February 2001 [Page 20]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

 00 30 - Length
 03 - S-Num = EPD
 01 - S-Type = BER
 02 01 08 - filterIndex
 40 04 C0 39 01 05 - filterDstAddr
 40 04 FF FF FF FF - filterDstMask
 40 04 00 00 00 00 - filterSrcAddr
 40 04 00 00 00 00 - filterSrcMask
 02 01 FF - filterDscp
 02 01 06 - filterProtocol
 05 00 - filterDstL4PortMin
 05 00 - filterDstL4PortMax
 05 00 - filterSrcL4PortMin
 05 00 - filterSrcL4PortMax
 02 01 01 - filterPermit

 Note that attributes not supported within a class are still returned
 in the EPD for a PRI. By convention, a NULL value is returned for
 attributes that are not supported. In the previous example, source
 and destination port number attributes are not supported.

 4.4. Global Provisioning Error Object (GPERR)

 S-Num = 4, S-Type = 1, Length = 8.

 0 1 2 3
 +---------------+---------------+---------------+---------------+
 | Length | S-Num = GPERR | S-Type = BER |
 +---------------+---------------+---------------+---------------+
 | Error-Code | Error Sub-code |
 +---------------+---------------+---------------+---------------+

 The global provisioning error object has the same format as the
 Error object in COPS [COPS], except with C-Num and C-Type replaced
 by the S-Num and S-Type values shown. The global provision error
 object is used to communicate general errors that do not map to a
 specific PRC.

 The following global error codes are defined:

 availMemLow(1)
 availMemExhausted(2)
 unknownASN.1Tag(3) - The erroneous tag type SHOULD be
 specified in the Error Sub-Code field.
 maxMsgSizeExceeded(4) - COPS message (transaction) was too big.
 unknownError(5)
 maxRequestStatesOpen(6)- No more Request-States can be created
 by the PEP (in response to a DEC

Chan et al. Expires February 2001 [Page 21]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 message attempting to open a new
 Request-State).
 invalidASN.1Length(7) - An ASN.1 object length was incorrect.
 invalidObjectPad(8) - Object was not properly padded.
 unknownPIBData(9) - Some of the data supplied by the PDP is
 unknown/unsupported by the PEP (but
 otherwise formatted correctly). PRC
 specific error codes are to be used to
 provide more information.
 unknownCOPSPRObject(10)- Sub-code (octet 2) contains unknown
 object's S-Num and (octet 3) contains
 unknown object's S-Type.
 malformedDecision(11) - Decision could not be parsed.

 4.5. PRC Class Provisioning Error Object (CPERR)

 S-Num = 5, S-Type = 1, Length = 8.

 0 1 2 3
 +---------------+---------------+---------------+---------------+
 | Length | S-Num = CPERR | S-Type = BER |
 +---------------+---------------+---------------+---------------+
 | Error-Code | Error Sub-code |
 +---------------+---------------+---------------+---------------+

 The class-specific provisioning error object has the same format
 as the Error object in COPS [COPS], except with C-Num and C-Type
 replaced by the S-Num and S-Type values shown. The class-specific
 error object is used to communicate errors relating to specific
 PRCs and MUST have an associated Error PRID Object.

 The following Generic Class-Specific errors are defined:

 priSpaceExhausted(1) - no more instances may currently be
 installed in the given class.
 priInstanceInvalid(2) - the specified class instance is
 currently invalid prohibiting
 installation or removal.
 attrValueInvalid(3) - the specified value for identified
 attribute is illegal.
 attrValueSupLimited(4) - the specified value for the identified
 attribute is legal but not currently
 supported by the device.
 attrEnumSupLimited(5) - the specified enumeration for the
 identified attribute is legal but not
 currently supported by the device.

Chan et al. Expires February 2001 [Page 22]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 attrMaxLengthExceeded(6) - the overall length of the specified
 value for the identified attribute
 exceeds device limitations.
 attrReferenceUnknown(7) - the class instance specified by the
 policy instance identifier does not
 exist.
 priNotifyOnly(8) - the class is currently only supported
 for use by request or report messages
 prohibiting decision installation.
 unknownPrc(9) - attempt to install a PRI of a class not
 supported by PEP.
 tooFewAttrs(10) - recvd PRI has fewer attributes than
 required.
 invalidAttrType(11) - recvd PRI has an attribute of the wrong
 type.
 deletedInRef(12) - deleted PRI is still referenced by
 other (non) deleted PRIs
 priSpecificError(13) - the Error Sub-code field contains the
 PRC specific error code

 Where appropriate (errors 3, 4, 5, 6, 7 above) the error sub-code
 SHOULD identify the OID sub-identifier of the attribute
 associated with the error.

 4.6. Error PRID Object (ErrorPRID)

 S-Num = 6, S-Type = 1 (BER ErrorPRID), Length = variable.

 This object is used to carry the identifier, or PRID, of a
 Provisioning Instance that caused an installation error or could
 not be installed or removed. The identifier is encoded and
 formatted exactly as in the PRID object as described in section

4.1.

5. COPS-PR Client-Specific Data Formats

 This section describes the format of the named client specific
 information for the COPS policy provisioning client. ClientSI
 formats are defined for Decision message's Named Decision Data
 object, the Request message's Named ClientSI object and Report
 message's Named ClientSI object. The actual content of the data is
 defined by the policy information base for a specific provisioning
 client-type (see below).

 5.1. Named Decision Data

 The formats encapsulated by the Named Decision Data object for the
 policy provisioning client-types depends on the type of decision.
 Install and Remove are the two types of decisions that dictate the

Chan et al. Expires February 2001 [Page 23]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 internal format of the COPS Named Decision Data object and require
 its presence. Install and Remove refer to the 'Install' and
 'Remove' Command-Code, respectively, specified in the COPS
 Decision Flags Object when no Decision Flags are set. The data, in
 general, is composed of one or more bindings. Each binding
 associates a PRID object and a EPD object. The PRID object is
 always present in both install and remove decisions, the EPD
 object MUST be present in the case of an install decision and MUST
 NOT be present in the case of a remove decision.

 The format for this data is encapsulated within the COPS Named
 Decision Data object as follows:

 <Named Decision Data> ::= <<Install Decision> |
 <Remove Decision>>

 <Install Decision> ::= *(<PRID> <EPD>)

 <Remove Decision> ::= *(<PRID>|<PPRID>)

 Note that PRID objects in a Remove Decision may specify PRID
 prefix values. Explicit and implicit deletion of installed
 policies is supported by a client. Install Decision data MUST be
 explicit (i.e., PRID prefix values are illegal and MUST be
 rejected by a client).

 5.2. ClientSI Request Data

 The provisioning client request data will use same bindings as
 described above. The format for this data is encapsulated in the
 COPS Named ClientSI object as follows:

 <Named ClientSI: Request> ::= <*(<PRID> <EPD>)>

 5.3. Policy Provisioning Report Data

 The COPS Named ClientSI object is used in the RPT message in
 conjunction with the accompanying COPS Report Type object to
 encapsulate COPS-PR report information from the PEP to the PDP.
 Report types can be 'Success' or 'Failure', indicating to the PDP
 that a particular set of provisioning policies has been either
 successfully or unsuccessfully installed/removed on the PEP, or
 'Accounting'.

 5.3.1. Success and Failure Report-Type Data Format

 Report-types can be 'Success' or 'Failure' indicating to the PDP
 that a particular set of provisioning policies has been either
 successfully or unsuccessfully installed/removed on the PEP. The

Chan et al. Expires February 2001 [Page 24]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 provisioning report data consists of the bindings described above
 and global and specific error/warning information.

 Specific errors are associated with a particular instance. For a
 'Success' Report-Type, a specific error is an indication of a
 warning related to a specific policy that has been installed, but
 that is not fully implemented (e.g., its parameters have been
 approximated) as identified by the ErrorPRID object. For a
 'Failure' Report-Type, this is an error code specific to a
 binding, again, identified by the ErrorPRID object. Specific
 errors may also include regular <PRID><EPD> bindings to carry
 additional information in a generic manner so that the specific
 errors/warnings may be more verbosely described and associated
 with the erroneous ErrorPRID object.

 Global errors are not tied to a specific ErrorPRID. In a 'Success'
 RPT message, a global error is an indication of a general warning
 at the PEP level (e.g., memory low). In a 'Failure' RPT message,
 this is an indication of a general error at the PEP level (e.g.,
 memory exhausted).

 In the case of a 'Failure' Report-Type the PEP MUST report at
 least the first error and SHOULD report as many errors as
 possible. In this case the PEP MUST roll-back its configuration to
 the last good transaction before the erroneous Decision message
 was received.

 The format for this data is encapsulated in the COPS Named
 ClientSI object as follows:

 <Named ClientSI: Report> ::= <[<GPERR>] *(<report>)>

 <report> ::= <ErrorPRID> <CPERR> *(<PRID><EPD>)

 5.3.2. Accounting Report-Type Data Format

 Additionally, reports can be used to carry accounting information
 when specifying the 'Accounting' Report-Type. This accounting report
 message will typically carry statistical or event information
 related to the installed configuration for use at the PDP. This
 information is encoded as one or more <PRID><EPD> bindings that
 generally describe the accounting information being reported from
 the PEP to the PDP.

 The format for this data is encapsulated in the COPS Named ClientSI
 object as follows:

 <Named ClientSI: Report> ::= <*(<PRID><EPD>)>

Chan et al. Expires February 2001 [Page 25]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 NOTE: RFC 2748 defines an optional Accounting-Timer (AcctTimer)
 object for use in the COPS Client-Accept message. Periodic
 accounting reports for COPS-PR clients are also obligated to be
 paced by this timer. Periodic accounting reports SHOULD NOT be
 generated by the PEP more frequently than the period specified by
 the COPS AcctTimer. Thus, the period between new accounting
 reports SHOULD be greater-than or equal-to the period specified
 (if specified) in the AcctTimer. If no AcctTimer object is
 specified by the PDP, then there are no constraints imposed on the
 PEP's accounting interval.

6. Common Operation

 This section describes, in general, typical exchanges between a
 PDP and Policy Provisioning COPS client.

 First, a TCP connection is established between the client and
 server and the PEP sends a Client-Open message specifying a COPS-
 PR client-type (use of the ClientSI object within the Client-Open
 message is currently undefined for COPS-PR clients). If the PDP
 supports the specified provisioning client-type, the PDP responds
 with a Client-Accept (CAT) message. If the client-type is not
 supported, a Client-Close (CC) message is returned by the PDP to
 the PEP, possibly identifying an alternate server that is known to
 support the policy for the provisioning client-type specified.

 After receiving the CAT message, the PEP can send requests to the
 server. The REQ from a policy provisioning client contains a COPS
 'Configuration Request' context object and, optionally, any
 relevant named client specific information from the PEP. The
 information provided by the PEP should include available client
 resources (e.g., supported classes/attributes) and default policy
 configuration information as well as incarnation data on existing
 policy. The configuration request message from a provisioning
 client serves two purposes. First, it is a request to the PDP for
 any provisioning configuration data which the PDP may currently
 have that is suitable for the PEP, such as access control filters,
 etc., given the information the PEP specified in its REQ. Also,
 the configuration request effectively opens a channel that will
 allow the PDP to asynchronously send policy data to the PEP, as
 the PDP decides is necessary, as long as the PEP keeps its request
 state open (ie. As long as the PEP does not send a DRQ with the
 request state's Client Handle). This asynchronous data may be new
 policy data or an update to policy data sent previously. Any
 relevant changes to the PEP's internal state can be communicated
 to the PDP by the PEP sending an updated REQ message. The PEP is
 free to send such updated REQ messages at any time after a CAT
 message to communicate changes in its local state.

https://datatracker.ietf.org/doc/html/rfc2748

Chan et al. Expires February 2001 [Page 26]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 After the PEP sends a REQ, if the PDP has Policy Provisioning
 policy configuration information for the client, that information
 is returned to the client in a DEC message containing the Policy
 Provisioning client policy data within the COPS Named Decision
 Data object and specifying an "Install" Command-Code in the
 Decision Flags object. If no filters are defined, the DEC message
 will simply specify that there are no filters using the "NULL
 Decision" Command-Code in the Decision Flags object. As the PEP
 MUST specify a Client Handle in the request message, the PDP MUST
 process the Client Handle and copy it in the corresponding
 decision message. A DEC message MUST be issued by the PDP with the
 Solicited Message Flag set in the COPS message header, regardless
 of whether or not the PDP has any configuration information for
 the PEP at the time of the request. This is to prevent the PEP
 from timing out the REQ and deleting the Client Handle.

 The PDP can then add new policy data or update/delete existing
 configurations by sending subsequent unsolicited DEC message(s) to
 the PEP, with the same Client Handle. Previous configurations
 installed on the PEP are updated by the PDP by simply re-
 installing the same instance of configuration information again
 (effectively overwriting the old data). The PEP is responsible for
 removing the Client handle when it is no longer needed, for
 example when an interface goes down, and informing the PDP that
 the Client Handle is to be deleted via the COPS DRQ message.

 For Policy Provisioning purposes, access state, and access
 requests to the policy server can be initiated by other sources
 besides the PEP. Examples of other sources include attached users
 requesting network services via a web interface into a central
 management application, or H.323 servers requesting resources on
 behalf of a user for a video conferencing application. When such a
 request is accepted, the edge device affected by the decision (the
 point where the flow is to enter the network) needs to be informed
 of the decision. Since the PEP in the edge device did not initiate
 the request, the specifics of the request, e.g. flowspec, packet
 filter, and PHB to apply, needs to be communicated to the PEP by
 the PDP. This information is sent to the PEP using the Decision
 message containing Policy Provisioning Named Decision Data objects
 in the COPS Decision object as specified. Any updates to the state
 information, for example in the case of a policy change or call
 tear down, is communicated to the PEP by subsequent unsolicited
 DEC messages containing the same Client Handle and the updated
 Policy Provisioning request state. Updates can specify that policy
 data is to be installed, deleted, or updated (re-installed).

 PDPs may also command the PEP to open a new Request State or
 delete an exiting one by issuing a decision with the Decision
 Flags object's Request-State flag set. If the command-code is
 "install", then the PDP is commanding the PEP to create a new

Chan et al. Expires February 2001 [Page 27]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 Request State, and therefore issue a new REQ message specifying a
 new Client Handle or otherwise issue a "Failure" RPT specifying
 the appropriate error condition. Each request state represents an
 independent and logically non-overlapping namespace, identified by
 the Client Handle, on which transactions (a.k.a. configuration
 installations, deletions, updates) may be performed. Other
 existing Request States will be unaffected by the new request
 state as they are independent (thus, no instances of configuration
 data within one Request State can be affected by DECs for another
 Request State as identified by the Client Handle). If the command-
 code is "Remove", then the PDP is commanding the PEP to delete the
 existing Request-State specified by the DEC message's Client
 Handle, thereby causing the PEP to issue a DRQ message for this
 Handle.

 The PEP MUST acknowledge a DEC message and specify what action was
 taken by sending a RPT message with a "Success" or "Failure"
 Report-Type object with the Solicited Message Flag set in the COPS
 message header. This serves as an indication to the PDP that the
 requestor (e.g. H.323 server) can be notified whether the request
 has been accepted by the network or not. If the PEP needs to
 reject the DEC operation for any reason, a RPT message is sent
 with a Report-Type with the value "Failure" and optionally a
 Client Specific Information object specifying the policy data that
 was rejected. Under such solicited report failure conditions, the
 PEP MUST always rollback to its previously installed (good) state
 as if the DEC never occurred. The PDP is then free to modify its
 decision and try again.

 The PEP can report to the PDP the current status of any installed
 request state when appropriate. This information is sent in a
 Report-State (RPT) message with the "Accounting" flag set. The
 request state that is being reported is identified via the
 associated Client Handle in the report message.

 Finally, Client-Close (CC) messages are used to cancel the
 corresponding Client-Open message. The CC message informs the
 other side that the client-type specified is no longer supported.

7. Fault Tolerance

 When communication is lost between PEP and PDP, the PEP attempts
 to re-establish the TCP connection with the PDP it was last
 connected to. If that server cannot be reached, then the PEP
 attempts to connect to a secondary PDP, assumed to be manually
 configured (or otherwise known) at the PEP.

 When a connection is finally re-established with a PDP, the PEP
 sends a OPN message with a <LastPDPAddr> object providing the
 address of the most recent PDP for which it is still caching

Chan et al. Expires February 2001 [Page 28]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
 decisions. If no decisions are being cached on the PEP (due to
 reboot or TTL timeout of state) the PEP MUST NOT include the last
 PDP address information. Based on this object, the PDP may request
 the PEP to re-synch its current state information (by issuing a
 COPS SSQ message). If, after re-connecting, the PDP does not
 request synchronization, the client can assume the server
 recognizes it and the current state at the PEP is correct, so a
 REQ message need not be sent. Still, any state changes which
 occurred at the PEP that the PEP could not communicate to the PDP
 due to communication having been lost, MUST be reported to the PDP
 via the PEP sending an updated REQ message. Whenever re-
 synchronization is requested, the PEP MUST reissue any REQ
 messages for all known Request-States and the PDP MUST issue DEC
 messages to delete either individual PRIDs or prefixes as
 appropriate to ensure a consistent known state at the PEP.

 While the PEP is disconnected from the PDP, the active request-
 state at the PEP is to be used for policy decisions. If the PEP
 cannot re-connect in some pre-specified period of time, all
 installed Request-States are to be deleted and their associated
 Handles removed. The same holds true for the PDP; upon detecting a
 failed TCP connection, the time-out timer is started for all
 Request-States associated with the PEP and these states are
 removed after the administratively specified period without a
 connection.

8. Security Considerations

 The use of COPS for Policy Provisioning introduces no new security
 issues over the base COPS protocol [COPS]. The security mechanisms
 described in that document will also be deployed in a COPS-PR
 environment.

9. IANA Considerations

 COPS for Policy Provisioning follows the same IANA considerations
 for COPS objects as the base COPS protocol [COPS]. COPS-PR does,
 however, introduce a new object number space in its S-Num and S-
 Type. Additional S-Num and S-Types can only be added using the
 IETF Consensus rule as defined in [IANA] (note that the S-Type
 value of 2 is reserved for transport of XML encoded data).
 Likewise, additional Global Provisioning error codes for COPS-PR
 can only be added with IETF Consensus.

10. Acknowledgements

 This document has been developed with active involvement from a
 number of sources. The authors would specifically like to
 acknowledge the valuable input given by Michael Fine, Scott Hahn,
 and Carol Bell.

Chan et al. Expires February 2001 [Page 29]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
11. References

[COPS] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R.,
 Sastry, A., "The COPS (Common Open Policy Service)
 Protocol", IETF RFC 2748, Proposed Standard, January 2000.

[RAP] Yavatkar, R., et al., "A Framework for Policy Based
 Admission Control", IETF RFC 2753, January 2000.

[COPRSVP] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R.,
 Sastry, A., "COPS usage for RSVP", IETF RFC 2749, Proposed
 Standard, January 2000.

[ASN1] Information processing systems - Open Systems
 Interconnection, "Specification of Abstract Syntax Notation
 One (ASN.1)", International Organization for
 Standardization, International Standard 8824, December
 1987.

[BER] Information processing systems - Open Systems
 Interconnection - Specification of Basic Encoding Rules for
 Abstract Syntax Notation One (ASN.1), International
 Organization for Standardization. International Standard
 8825, (December, 1987).

[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 Weiss, W., "An Architecture for Differentiated Service,"

RFC 2475, December 1998.

[V2SMI] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2(SMIv2)", STD 58, RFC 2578, April
 1999.

[RFC2234] Crocker, D., Overell, P., " Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

[IANA] Alvestrand, H. and Narten, T., "Guidelines for writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

[URN] Moats, R., "Uniform Resource Names (URN) Syntax", RFC 2141,
 May 1997.

[XML] World Wide Web Consortium (W3C), "Extensible Markup
 Language (XML)," W3C Recommendation, February, 1998,

http://www.w3.org/TR/1998/REC-xml-19980210.

https://datatracker.ietf.org/doc/html/rfc2748
https://datatracker.ietf.org/doc/html/rfc2753
https://datatracker.ietf.org/doc/html/rfc2749
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2141
http://www.w3.org/TR/1998/REC-xml-19980210

Chan et al. Expires February 2001 [Page 30]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00

12. Author Information

Shai Herzog IPHighway Inc.
Phone: (201) 585-0800 Parker Plaza, 16th Floor
Email: Herzog@iphighway.com 400 Kelby St.
 Fort-Lee, NJ 07024

Francis Reichmeyer PFN, Inc.
(617) 494 9980 University Park at MIT
franr@pfn.com 26 Landsdowne Street
 Cambridge, MA 02139

Kwok Ho Chan Nortel Networks, Inc.
Phone: (978) 288-8175 600 Technology Park Drive
EMail: khchan@nortelnetworks.com Billerica, MA 01821

David Durham Intel
Phone: (503) 264-6232 2111 NE 25th Avenue
Email: david.durham@intel.com Hillsboro, OR 97124

Raj Yavatkar
Phone: (503) 264-9077
Email: raj.yavatkar@intel.com

Silvano Gai Cisco Systems, Inc.
Phone: (408) 527-2690 170 Tasman Dr.
Email: sgai@cisco.com San Jose, CA 95134-1706

Keith McCloghrie
Phone: (408) 526-5260
Email: kzm@cisco.com

Andrew Smith
415 345 1827 fax
ah_smith@pacbell.net

John Seligson Nortel Networks, Inc.
Phone: (408) 495-2992 4401 Great America Parkway
Email:jseligso@nortelnetworks.com Santa Clara, CA 95054

Chan et al. Expires February 2001 [Page 31]

Internet Draft COPS Usage for Policy Provisioning 24-Aug-00
13. Full Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Chan et al. Expires February 2001 [Page 32]

