
Internet Draft Shai Herzog
Expiration: Oct. 1998 IPHighway
File: draft-ietf-rap-rsvp-ext-00.txt Apr. 1998

RSVP Extensions for Policy Control

 03/13/98

Status of Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This memo presents a set of extensions for supporting generic policy
 based admission control in RSVP. [Note 1]

 These extensions include the standard format of POLICY_DATA objects,
 a generic RSVP/Policy-Control interface, and a description of RSVP's
 handling of policy events.

 This document does not advocate particular policy control mechanisms;
 however, a Router/Server Policy Protocol description for these
 extensions can be found in [COPS].

[Note 1] This memo could be conceived as an extension to the RSVP
functional specifications [RSVPSP].

Shai Herzog Expiration: Oct. 1998 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rap-rsvp-ext-00.txt

Internet Draft RSVP Extensions for Policy Control

Table of Contents

1 Introduction 3

2 Policy Data Object Format 3

2.1 Base Format ... 4

2.2 Policy Data Options 4

2.2.1 RSVP Objects as Policy Options 5

2.2.2 Other Options 5

3 RSVP/Policy Control Interface 6

3.1 Synchronous vs. Asynchronous Policy Control 6

3.2 Policy Control Services 7

3.3 PC Success Codes 10

3.4 RSVP's Policy Actions 11

3.4.1 Pending Results and Asynchronous Notification ... 11

3.4.2 Error Signaling 11

3.4.3 Policy Response 12

3.5 Default Handling of Policy Data Objects 12

4 Acknowledgment 13

Shai Herzog Expiration: Oct. 1998 [Page 2]

Internet Draft RSVP Extensions for Policy Control

1. Introduction

 RSVP, by its definition, discriminates between users, by providing
 some users with better service at the expense of others. Therefore,
 it is reasonable to expect that RSVP be accompanied by mechanisms for
 controlling and enforcing access and usage policies. Historically,
 when RSVP Ver. 1 was developed, the knowledge and understanding of
 policy issues was in its infancy. As a result, Ver. 1 of the RSVP
 Functional Specifications[RSVPSP] left a place holder for policy
 support in the form of POLICY_DATA objects. However, it deliberately
 refrained from specifying mechanisms, message formats, or providing
 insight into how policy enforcement should be carried out. This
 document is intended to fill in this void.

 The current RSVP Functional Specification describes the interface to
 admission (traffic) control that is based "only" on resource
 availability. In this document we describe a set of extensions to
 RSVP for supporting policy based admission control as well, in one
 atomic operation. The scope of this document is limited to these
 extensions; a discussion of accounting and access control policies
 for resource reservation protocols can be found in [Fwk] and a
 description of a router-server Policy Protocol for these extensions
 can be found in [COPS].

2. Policy Data Object Format

 The following replaces section A.13 in [RSVPSP].

 POLICY_DATA objects are carried by RSVP messages and contain policy
 information. All policy-capable nodes (at any location in the
 network) can generate, modify, or remove policy objects in compliance
 with local policies. [Note 2]

[Note 2] Core nodes can add policy objects to RSVP messages, even when
none was provided by senders or receivers. Most likely, this would be
based on specific network topology properties (e.g., incoming port ID).

Shai Herzog Expiration: Oct. 1998 [Page 3]

Internet Draft RSVP Extensions for Policy Control

 2.1 Base Format

 POLICY_DATA class=14

 o Type 1 POLICY_DATA object: Class=14, C-Type=1

 +-------------+-------------+-------------+-------------+
 | Length | POLICY_DATA | 1 |
 +---------------------------+-------------+-------------+
 | Data Offset | Flags | 0 (reserved)|
 +---------------------------+-------------+-------------+
 | |
 // Option List //
 | |
 +---+
 | |
 // Policy Element List //
 | |
 +---+

 Data Offset: 16 bits

 The offset in bytes of the data portion (from the first
 byte of the object header).

 Flags: 8 bits

 0x01 PCF_Updt
 A modified object, don't check against previous one
 0x02 PCF_Fragment
 This is a fragment of a PD object

 Reserved: 8 bits

 Always 0.

 Option List

 The list of options and their usage is defined in
Section 2.2.

 Policy Element List

 The contents of policy elements is opaque to RSVP and
 its internal format is only known to the Local Policy
 Module (LPM). (See Section 3).

 Policy Elements have the following format:

Shai Herzog Expiration: Oct. 1998 [Page 4]

Internet Draft RSVP Extensions for Policy Control

 +-------------+-------------+-------------+-------------+
 | Length | P-type |
 +---------------------------+---------------------------+
 | |
 // Policy information (Opaque to RSVP) //
 | |
 +---+

 2.2 Policy Data Options

 This section describes a set of options that may appear as options
 in POLICY_DATA objects. All policy options appear as RSVP objects;
 some use their valid original format while others appear as NULL
 objects.

 2.2.1 RSVP Objects as Policy Options

 The following objects retain the same format specified in
 [RSVPSP] however, they gain different semantics when used
 inside POLICY_DATA objects.

 FILTER_SPEC object (list)

 The set of senders associated with the POLICY_DATA object.
 If none is provided, the policy information is assumed to
 be associated with all the flows of the session.

 RSVP_HOP Object(s)

 The RSVP_HOP object identifies the neighbor/peer policy-
 capable node that constructed the policy object. When
 policy is enforced at border nodes, peer policy nodes may
 be several RSVP hops away from each other.

 If an RSVP_HOP object follows either an INTEGRITY or
 RSVP_HOP objects it identifies the destination policy
 node. [Note 3]

 If a destination RSVP_HOP and the address of the receiving
 node do not match, the entire POLICY_DATA object is

[Note 3] This RSVP_HOP may be used to ensure the POLICY_DATA object is
delivered to the targeted policy node. It may be used to emulate
unicast delivery in multicast Path messages. It also helps prevent
using a policy object in other parts of the network (replay attack).

Shai Herzog Expiration: Oct. 1998 [Page 5]

Internet Draft RSVP Extensions for Policy Control

 ignored.

 INTEGRITY Object

 The INTEGRITY object provides guarantees that the object
 was not compromised. It follows the rules from [MD5],
 and is calculated over the SESSION object, POLICY_DATA
 object, and the message type field [Note 4]
 as if they formed one continuous in-order message,
 without any alignment. This concatenation is designed to
 prevent copy and replay attacks of POLICY_DATA objects
 from other sessions, flows, message types or even other
 network locations.

 The RSVP_HOP and INTEGRITY options are mutually exclusive
 since the INTEGRITY object already contains the sending-
 system address. If neither is present, the policy data is
 implicitly assumed to have been constructed by the
 RSVP_HOP indicated in the RSVP message itself (i.e., the
 neighboring RSVP node is policy-capable).

 2.2.2 Other Options

 All options that do not use a valid RSVP object format, should
 use the NULL RSVP object format with different CType values.
 This document defines only one such option, however, several
 other may be considered in future versions. (e.g.,
 Fragmentation, NoChange, etc.).

 o Policy Refresh Multiplier

 Some policies may have looser timing constraints than
 RSVP, and therefore may allow for lower refresh frequency.
 If the Policy Refresh Multiplier option is present, policy
 is refreshed only once in "Multiplier" RSVP refreshes, for
 "Duplicates" times.

 +-------------+-------------+-------------+-------------+
 | 8 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 | Multiplier | Duplicates | Reserve (0) |
 +-------------+-------------+---------------------------+

[Note 4] As it appears in RSVP's common header.

Shai Herzog Expiration: Oct. 1998 [Page 6]

Internet Draft RSVP Extensions for Policy Control

 For example, for "Multiplier=16" and "Duplicates=3", the
 policy should be refreshed on RSVP's refreshes number
 1,2,3,16,17,18,...

3. RSVP/Policy Control Interface

 Conceptually, this section belong to Section 3.10.3 titled
 "RSVP/Policy Control Interface" of the RSVP functional
 specification[RSVPSP].

 Policy control in RSVP is modeled as a set of functions which are
 provided by a separate component known as Local Policy Module. The
 LPM controls the use of POLICY_DATA objects and provides
 authorization information to RSVP.

 3.1 Synchronous vs. Asynchronous Policy Control

 RSVP must routinely consult the LPM for policy decisions. The
 consultation can follow one of two models: Synchronous or
 Asynchronous. In the Synchronous model, when RSVP calls a
 particular service, it must block until the call is completed.
 (even if it takes substantial time). In the Asynchronous model,
 the call never blocks; delayed results are communicated back to
 RSVP through an upcall. The asynchronous model is harder to
 support, since RSVP must be able to halt incomplete tasks, save
 their context, and complete them later, when results become
 available, however, it has significantly better scaling
 properties.

 Query results may be commonly delayed when policy decisions are
 performed by an external server (See [COPS]). Consider a case
 where an average query takes 10ms; a synchronous RSVP/policy
 implementation would be roughly limited to less than 100 unicast
 flows and even much less for multicast flows.

 Since the two models provide the same functionality, and differ
 only in performance; each RSVP implementation is free to select
 the model best fitting its needs. RSVP may choose the synchronous
 model by specifying a NULL as a cdp parameter when calling a
 service.

 3.2 Policy Control Services

 o Common Parameters

 The following is a list of common parameters (shared by
 several policy control functions.

Shai Herzog Expiration: Oct. 1998 [Page 7]

Internet Draft RSVP Extensions for Policy Control

 session, filter_spec_list and shr_ind

 The set of flows to which the POLICY_DATA object
 applies, and an indication whether they are shared.

 rsvp_hop

 The peer policy node, as well as the local LIH
 connecting to it. The (rsvp_hop includes the local
 lih),

 message_type

 The direction and type of message that carried the
 POLICY_DATA object.

 resv_handle and resv_flowspec

 Information regarding the current/desired level of
 reservation and traffic characteristics.

 cbp and giveup_time

 A pointer (address) of the Control Block. RSVP provides
 this address when making service calls. This value is
 echoed back to RSVP with the completion notification
 upcall. Giveup_time is the maximal period RSVP is
 willing to wait; If results are still unavailable after
 this period, RSVP should receive an upcall with failure
 results (and timer-expired error).

 o Call: PC_InPolicy (message_type, rsvp_hop, session,
 shr_ind, filter_spec_list,
 in_policy_objects,
 resv_handle,
 resv_flowspec,
 refresh_period,
 cbp, giveup_time)
 -> RCode

 RSVP calls PC_InPolicy for all incoming messages; However, it
 is acceptable for implementations to turn off policy
 processing for messages other than Path and Resv, when they
 don't carry any POLICY_DATA objects. [Note 5]

[Note 5] It is highly desirable to authorize Tear and Error messages
even when they don't carry policy objects. However, since the risk from

Shai Herzog Expiration: Oct. 1998 [Page 8]

Internet Draft RSVP Extensions for Policy Control

 The LPM verifies any incoming policy objects (if included)
 and provides an authorization decision. [Note 6]

 If the incoming message is authorized, RSVP continues its
 normal processing. If it is rejected, RSVP drops the message
 entirely (as if it was never received), and sends the
 appropriate error message (with a policy failure error code).
 With RSVP's soft-state management, the consequences of
 dropping the incoming message is that the existing state
 (Path or Resv) begins to age and would eventually time-out.
 [Note 7]

 Reservations may also be authorized with a warning which
 marks them as preemptable. A preemptable reservation may be
 canceled at any time by admission control to make room for
 another more important reservation. (See "TC_Preempt()" and
 the discussion of service preemption in [RSVPSP].)

 Parameter refresh-period has the same value and semantics as
 in RSVP.

 o Call: PC_OutPolicy (message_type, rsvp_hop_list, session,
 shr_ind, filter_spec_list,
 max_pd, avail_pd,
 cbp, giveup_time,
 out_policy_objects)
 -> RCode

 Before RSVP finalizes an any outgoing RSVP message it calls
 PC_OutPolicy() to prepare outgoing objects for the a
 specified flow. RSVP specifies the desired maximal object
 size ("max_pd"), and the available space within the current
 RSVP control message ("avail_pd"). [Note 8]

relaxed authorization is limited to denial of service for a single flow,
the decision is left at the discretion of local administrators.

[Note 6] To prevent code duplication, PC_AuthCheck() may be called
internally.

[Note 7] An incoming messages may fail authorization simply because it
lacks a particular policy object which was lost in transit. This
approach is consistent with RSVP's state management rules.

[Note 8] "avail_pd" must be at least the size of a POLICY_DATA object
without a data portion or the call would fail.

Shai Herzog Expiration: Oct. 1998 [Page 9]

Internet Draft RSVP Extensions for Policy Control

 The filter_spec_list includes the set of filters
 corresponding to the reserved sources.

 When the filter_spec_list includes multiple filters (either
 because of a shared reservation or an aggregated policy over
 multiple FF) individual outgoing hops may be associated with
 different sets of filter_specs. RSVP must build the
 filter_spec_list as a union of all filter_spec lists over all
 outgoing hops. (All reserved sources) The LPM computes
 individual per-hop filter_spec lists as the intersection of
 this list with the set of sources upstream to a specific
 previous hop. (Previous-hop information is obtained from
 incoming Path messages.) A NULL filter_spec_list represents
 "all" sources (i.e., WF).

 The call returns a list of outgoing POLICY_DATA objects for
 each rsvp_hop.

 o Call: PC_AuthCheck (message_type, session,
 shr_ind, filter_spec_list,
 resv_desc list,
 full_list_ind,
 cbp, giveup_time)
 -> RCode

 Parameter resv_desc provides a list of reservation
 descriptions. This description is made of three components:
 lih, resv_handle, and resv_flowspec.

 In the upstream direction (e.g., Resv) authorization may need
 to be checked on multiple LIHs (all reservations for a flow).
 In such cases, status queries can be perform separately for
 each LIH, once for all LIHs, or anything in between.
 full_list_indication must be set at the last of
 PC_AuthCheck() query of the series. [Note 9]

 Authorization can be verified on both the Path and Resv
 directions. When the message_type is an upstream type (Resv,
 Resv Tear, Path Err) the lih is assumed to be an outgoing
 interface and reservation status is checked. However, when

[Note 9] When policies are interdependent across LIHs (as when the cost
is shared among downstream receivers), full_list_ind notifies the server
that the list of reserved LIH is complete and that it can safely compute
the status of these reservations.

Shai Herzog Expiration: Oct. 1998 [Page 10]

Internet Draft RSVP Extensions for Policy Control

 the message_type is an downstream type (Path, Path Tear, Resv
 Err), the lih is assumed to be an incoming interface and
 Path-sending authorization is checked.

 Authorization checks are usually triggered by the arrival of
 a new message; these are handled transparently by the input
 processing call PC_InPolicy(). In a synchronous, when an
 upcall mechanism is not supported, RSVP must verify the
 status of reservations before refreshing them.

 o Call: PC_Init (K, upcall,...)
 -> RCode

 This call initializes the LPM and sets specific RSVP/policy
 configuration parameters. K is the soft-state multiplier for
 refresh-period (see [RSVPSP]) and upcall registers a routine
 that may be called by the LPM to notify RSVP on policy
 changes. (See next item)

 o Call: upcall (event_type, cbp, message_type,
 lih, rsvp_hop list, session,
 shr_ind, filter_spec_list,
 out_policy_objects,
 RCode)

 Event_type determines the original call type (if applicable).
 cbp is an echo of the cbp provided by RSVP when making the
 original call. RSVP may use this pointer to locate the
 original context of the call.

 RCode uses the same values specified in this document, as it
 would for the original calls. Notice that the upcall
 parameters are a superset of the parameters used by all the
 non-blocking PC calls.

 o Call: PC_DelState (message_type, rsvp_hop,
 session, filter_spec_list,
 op_type)
 -> RCode

 This call affects all the state associated with a particular
 multicast (or unicast) branch. It is used for route changes,
 blockade state other instantaneous state change performed by
 RSVP. When applicable parameters are NULL, an aggregate of
 the state is affected (across all values of the NULL-ed
 parameter). For example, PC_DelState(NULL, session, NULL,
 NULL, PC_delete) would purge all the policy state associated
 with "session".

Shai Herzog Expiration: Oct. 1998 [Page 11]

Internet Draft RSVP Extensions for Policy Control

 Parameter "op_type" is the requested type of state change:

 PC_Delete : Purge state.
 PC_Block : Blockade (ignore) state
 PC_Unblock: Unblock state.

 3.3 PC Success Codes

 The return code (RCode) provides policy feedback to RSVP, it is
 made of three separate return variables: [Note 10]

 o Function return value:

 0: Success

 The call was completed successfully. For PC_AuthCheck()
 and PC_InPolicy() it also signals the authorization of
 the RSVP operation (e.g., Reservation, Path, Tear, etc.)
 RSVP need not check the PC_flags or PC_errno.

 1: Pending

 The requested results are delayed. Should these results
 become available or the giveup_time expires, the
 notification upcall would signal RSVP.

 2: Warning

 Same as success except that there is a non-fatal warning
 and RSVP must check the PC_flags for further
 instructions.

 3: Policy failure

 Policy authorization for the RSVP operation has failed.
 RSVP should invoke its standard error reporting
 mechanism (PathErr or ResvErr).

 o "PC_errno":

[Note 10] This is only an initial list, we expect that part to change as
policy control matures.

Shai Herzog Expiration: Oct. 1998 [Page 12]

Internet Draft RSVP Extensions for Policy Control

 An external variable (similar to the "errno" in Unix) which
 provides specific error (reason) code.

 o "PC_flags":

 An external variable with flags that advise RSVP about
 required operations:

 0x01 PC_RC_ModState

 The incoming POLICY_DATA object contains an update.
 RSVP must immediately initiate update forwarding
 procedures.

 0x02 PC_RC_Resp

 RSVP must immediately initiate a message. The type of
 requested message is placed in the PC_errno variable and
 corresponds to message type values in the RSVP common
 header.

 0x04 PC_RC_Preempt

 Only for Resv incoming objects. RSVP should inform the
 local admission control that the reservation is of lower
 priority and can be preempted, if necessary.

 3.4 RSVP's Policy Actions

 The PC success codes, and especially "PC_Flags" advise RSVP about
 appropriate required actions. This section describes these actions
 in greater detail.

 3.4.1 Pending Results and Asynchronous Notification

 For various reasons the LPM may need to consult an external
 entity (e.g., server) for partial policy processing. (For a
 description of a router/server protocol see [COPS]). For
 efficiency reasons, RSVP must not be forced to wait idly while
 external policy processing takes place. Instead, A
 configurable option permits calls to PC_AuthCheck() or
 PC_OutPolicy() to terminate with a "pending" return value
 whenever results are delayed (for any reason).

 The following steps take place when RSVP receives a pending
 return value:

Shai Herzog Expiration: Oct. 1998 [Page 13]

Internet Draft RSVP Extensions for Policy Control

 o RSVP halts the current operation, saves its state (linked
 to the cbp), and moves to the next task.

 o Once results are available or the giveup_time expires
 [Note 11]

 the LPM "wakes up" RSVP by calling the notification
 upcall.

 o The wakeup call provides results, context, and the cbp
 (see Section 3.2).

 o RSVP resumes the previously halted operation and uses the
 provided context parameters as if they were returned by
 the original (previously pending) call.

 3.4.2 Error Signaling

 Policy errors are reported by either ResvErr or PathErr
 messages with a policy failure error code (specified in
 [RSVPSP]). Policy error message must include a POLICY_DATA
 object; the object contains details of the error type and
 reason. If none is provided, the error message should not be
 sent.

 If a multicast reservation fails, RSVP should not attempt to
 discover which reservation caused the failure (as it would do
 for blockade state). Instead, it should attempt to deliver the
 policy ResvErr to ALL downstream hops. The LPM would limit the
 error distribution by providing outgoing objects only to
 "culprit" next-hops; if the LPM performs local repair [Note 12]
 it can prevent the further distribution of ResvErr or PathErr
 messages.

 The LPM should internally implement blockade state style
 mechanism for similar reasons as RSVP (preventing an
 unauthorized reservation from forcing other valid reservations
 to fail). This document does not define this mechanism and
 assumes it would be policy-implementation specific.

[Note 11] If results are still unavailable at giveup_time, the answer is
assumed to be failure (for AuthCheck) or no output (for OutPolicy).

[Note 12] Local repair can be performed by substituting the failed
POLICY_DATA object with a different one.

Shai Herzog Expiration: Oct. 1998 [Page 14]

Internet Draft RSVP Extensions for Policy Control

 3.4.3 Policy Response

 The LPM can initiate an immediate outgoing RSVP message (Path,
 Resv, etc.) by setting the flag PC_RC_Response and providing
 the number of the requested RSVP message in the PC_errno
 variable. [Note 13]

 This mechanism is useful when the appropriate RSVP message is
 either scheduled for a significantly later time, or not at all.
 When the PC_RC_Response flag is set, RSVP, should schedule the
 requested outgoing message as if its refresh timer has expired;
 for non-refreshed messages like ResvErr, RSVP should act as if
 they were just received.

 This mechanism allows policies that require an immediate
 confirmation by scheduling a reverse-direction message with a
 confirmation POLICY_DATA object.

 3.5 Default Handling of Policy Data Objects

 It is generally assumed that policy enforcement (at least in its
 initial stages) is likely to concentrate on border nodes between
 autonomous systems. Consequently, policy objects transmitted at
 one edge of an autonomous cloud may traverse intermediate non-
 policy-capable RSVP nodes. The minimal requirement from a non-
 policy-capable RSVP node is to forward POLICY_DATA objects
 embedded in the appropriate outgoing messages, as-is (without
 modifications) according to the following rules:

 o POLICY_DATA objects are to be forwarded as is, in the same
 type of RSVP messages in which they arrived.

 o Multicast merging (splitting) nodes:

 In the upstream direction:

 Applicable incoming POLICY_DATA objects are
 concatenated, and the list is forwarded with the
 upstream message.

 On the downstream direction:

 A copy of all applicable incoming objects is forwarded

[Note 13] The value of the PC_errno corresponds to message type values
in the RSVP common header.

Shai Herzog Expiration: Oct. 1998 [Page 15]

Internet Draft RSVP Extensions for Policy Control

 with each downstream message.

 The same rules apply to unrecognized policies (sub-objects) within
 the POLICY_DATA object. However, since that can only occur in a
 policy-capable node, it is the responsibility of the LPM and not
 RSVP.

4. Acknowledgment

 This document incorporates inputs from Lou Berger, Bob Braden,
 Deborah Estrin, Roch Guerin, Dimitrios Pendarakis, Raju Rajan, and
 Scott Shenker. It also reflects feedback from many other RSVP
 collaborators.

References

[MD5] F. Baker. RSVP Cryptographic Authentication "Internet-Draft",
draft-ietf-rsvp-md5-05.txt, Aug. 1997.

[RSVPSP] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
 Resource ReSerVation Protocol (RSVP) Version 1 Functional
 Specification. RFC 2205, Sep. 1997.

[COPS] J. Boyle, R Cohen, D. Durham, S. Herzog, R. Rajan, A. Sastry.
 The COPS (Common Open Policy Service) Protocol
 "Internet-Draft", draft-ietf-rap-cops-01.txt, Mar. 1998.

[Fwk] R. Yavatkar, D. Pendarakis, R. Guerin.
 A Framework for Policy-based Admission Control
 "Internet-Draft", draft-ietf-rap-framework-00.txt, Nov. 1997.

Author's Address

Shai Herzog
IPHighway
2055 Gateway Place, Suite 400
San Jose, CA 95110

Phone: (408) 390-3045
Email: herzog@iphighway.com

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-md5-05.txt
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-ietf-rap-cops-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rap-framework-00.txt

Shai Herzog Expiration: Oct. 1998 [Page 16]

