
Workgroup: RATS Working Group

Internet-Draft: draft-ietf-rats-ar4si-06

Published: 1 March 2024

Intended Status: Standards Track

Expires: 2 September 2024

Authors: E. Voit

Cisco

H. Birkholz

Fraunhofer SIT

T. Hardjono

MIT

T. Fossati

Linaro

V. Scarlata

Intel

Attestation Results for Secure Interactions

Abstract

This document defines reusable Attestation Result information

elements. When these elements are offered to Relying Parties as

Evidence, different aspects of Attester trustworthiness can be

evaluated. Additionally, where the Relying Party is interfacing with

a heterogeneous mix of Attesting Environment and Verifier types,

consistent policies can be applied to subsequent information

exchange between each Attester and the Relying Party.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-rats-wg/draft-ietf-rats-ar4si.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/ietf-rats-wg/draft-ietf-rats-ar4si
https://github.com/ietf-rats-wg/draft-ietf-rats-ar4si
https://datatracker.ietf.org/drafts/current/


This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

1.1.  Requirements Notation

1.2.  Terminology

2.  Attestation Results for Secure Interactions

2.1.  Information driving a Relying Party Action

2.2.  Non-repudiable Identity

2.2.1.  Attester and Attesting Environment

2.2.2.  Verifier

2.2.3.  Communicating Identity

2.3.  Trustworthiness Claims

2.3.1.  Design Principles

2.3.2.  Enumeration Encoding

2.3.3.  Assigning a Trustworthiness Claim value

2.3.4.  Specific Claims

2.3.5.  Trustworthiness Vector

2.3.6.  Trustworthiness Vector for a type of Attesting

Environment

2.4.  Freshness

3.  Secure Interactions Models

3.1.  Background-Check

3.1.1.  Verifier Retrieval

3.1.2.  Co-resident Verifier

3.2.  Below Zero Trust

3.3.  Mutual Attestation

3.4.  Transport Protocol Integration

4.  Privacy Considerations

5.  Security Considerations

6.  IANA Considerations

7.  References

7.1.  Normative References

7.2.  Informative References

Appendix A.  Implementation Guidance

A.1.  Supplementing Trustworthiness Claims

Appendix B.  Supportable Trustworthiness Claims

B.1.  Supportable Trustworthiness Claims for HSM-based CC

B.2.  Supportable Trustworthiness Claims for process-based CC

B.3.  Supportable Trustworthiness Claims for VM-based CC

¶

https://trustee.ietf.org/license-info


Appendix C.  Some issues being worked

Appendix D.  Contributors

Authors' Addresses

1. Introduction

The first paragraph of the May 2021 US Presidential Executive Order

on Improving the Nation's Cybersecurity [US-Executive-Order] ends

with the statement "the trust we place in our digital infrastructure

should be proportional to how trustworthy and transparent that

infrastructure is." Later this order explores aspects of

trustworthiness such as an auditable trust relationship, which it

defines as an "agreed-upon relationship between two or more system

elements that is governed by criteria for secure interaction,

behavior, and outcomes."

The Remote ATtestation procedureS (RATS) architecture [RFC9334]

provides a useful context for programmatically establishing and

maintaining such auditable trust relationships. Specifically, the

architecture defines conceptual messages conveyed between

architectural subsystems to support trustworthiness appraisal. The

RATS conceptual message used to convey evidence of trustworthiness

is the Attestation Results. The Attestation Results includes

Verifier generated appraisals of an Attester including such

information as the identity of the Attester, the security mechanisms

employed on this Attester, and the Attester's current state of

trustworthiness.

Generated Attestation Results are ultimately conveyed to one or more

Relying Parties. Reception of an Attestation Result enables a

Relying Party to determine what action to take with regards to an

Attester. Frequently, this action will be to choose whether to allow

the Attester to securely interact with the Relying Party over some

connection between the two.

When determining whether to allow secure interactions with an

Attester, a Relying Party is challenged with a number of difficult

problems which it must be able to handle successfully. These

problems include:

What Attestation Results (AR) might a Relying Party be willing to

trust from a specific Verifier?

What information does a Relying Party need before allowing

interactions or choosing policies to apply to a connection?

What are the operating/environmental realities of the Attesting

Environment where a Relying Party should only be able to

associate a certain confidence regarding Attestation Results out

¶

¶

¶

¶

*

¶

*

¶

*



AR-augmented Evidence:

of the Verifier? (In other words, different types of Trusted

Execution Environments (TEE) need not be treated as equivalent.)

How to make direct comparisons where there is a heterogeneous mix

of Attesting Environments and Verifier types.

To address these problems, it is important that specific Attestation

Result information elements are framed independently of Attesting

Environment specific constraints. If they are not, a Relying Party

would be forced to adapt to the syntax and semantics of many vendor

specific environments. This is not a reasonable ask as there can be

many types of Attesters interacting with or connecting to a Relying

Party.

The business need therefore is for common Attestation Result

information element definitions. With these definitions, consistent

interaction or connectivity decisions can be made by a Relying Party

where there is a heterogenous mix of Attesting Environment types and

Verifier types.

This document defines information elements for Attestation Results

in a way which normalizes the trustworthiness assertions that can be

made from a diverse set of Attesters.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Terminology

The following terms are imported from [RFC9334]: Appraisal Policy

for Attestation Results, Attester, Attesting Environment, Claims,

Evidence, Relying Party, Target Environment and Verifier.

[RFC9334] also describes topological patterns that illustrate the

need for interoperable conceptual messages. The two patterns called

"background-check model" and "passport model" are imported from the

RATS architecture and used in this document as a reference to the

architectural concepts: Background-Check Model and Passport Model.

Newly defined terms for this document:

¶

*

¶

¶

¶

¶

¶

¶

¶

¶



Identity Evidence:

Trustworthiness Claim:

Trustworthiness Tier:

Trustworthiness Vector:

a bundle of Evidence which includes at least the following:

Verifier signed Attestation Results. These Attestation

Results must include Identity Evidence for the Attester,

a Trustworthiness Vector describing a Verifier's most

recent appraisal of an Attester, and some Verifier Proof-

of-Freshness (PoF).

A Relying Party PoF which is bound to the Attestation

Results of (1) by the Attester's Attesting Environment

signature.

Sufficient information to determine the elapsed interval

between the Verifier PoF and Relying Party PoF.

Evidence which unambiguously identifies an

identity. Identity Evidence could take different forms, such as a

certificate, or a signature which can be appraised to have only

been generated by a specific private/public key pair.

a specific quanta of trustworthiness which

can be assigned by a Verifier based on its appraisal policy.

a categorization of the levels of

trustworthiness which may be assigned by a Verifier to a specific

Trustworthiness Claim. These enumerated categories are:

Affirming, Warning, Contraindicated, and None.

a set of zero to many Trustworthiness

Claims assigned during a single appraisal procedure by a Verifier

using Evidence generated by an Attester. The vector is included

within Attestation Results.

2. Attestation Results for Secure Interactions

A Verifier generates the Attestation Results used by a Relying

Party. When a Relying Party needs to determine whether to permit

communications with an Attester, these Attestation Results must

contain a specific set of information elements. This section defines

those information elements, and in some cases encodings for

information elements.

2.1. Information driving a Relying Party Action

When the action is a communication establishment attempt with an

Attester, there is only a limited set of actions which a Relying

Party might take. These actions include:

Allow or deny information exchange with the Attester. When there

is a deny, reasons should be returned to the Attester.

¶

1. 

¶

2. 

¶

3. 

¶

¶

¶

¶

¶

¶

¶

*

¶



Establish a transport connection between an Attester and a

specific context within a Relying Party (e.g., a TEE, or Virtual

Routing Function (VRF).)

Apply policies on this connection (e.g., rate limits).

There are three categories of information which must be conveyed to

the Relying Party (which also is integrated with a Verifier) before

it determines which of these actions to take.

Non-repudiable Identity Evidence – Evidence which undoubtably

identifies one or more entities involved with a communication.

Trustworthiness Claims – Specifics a Verifier asserts with

regards to its trustworthiness findings about an Attester.

Claim Freshness – Establishes the time of last update (or

refresh) of Trustworthiness Claims.

The following sections detail requirements for these three

categories.

2.2. Non-repudiable Identity

Identity Evidence must be conveyed during the establishment of any

trust-based relationship. Specific use cases will define the minimum

types of identities required by a particular Relying Party as it

evaluates Attestation Results, and perhaps additional associated

Evidence. At a bare minimum, a Relying Party MUST start with the

ability to verify the identity of a Verifier it chooses to trust.

Attester identities may then be acquired through signed or encrypted

communications with the Verifier identity and/or the pre-

provisioning Attester public keys in the Attester.

During the Remote Attestation process, the Verifier's identity must

be established with a Relying Party, often via a Verifier signature

across recent Attestation Results. This Verifier identity could only

have come from a key pair maintained by a trusted developer or

operator of the Verifier.

Additionally, each set of Attestation Results must be provably and

non-reputably bound to the identity of the original Attesting

Environment which was evaluated by the Verifier. This is

accomplished via satisfying two requirements. First the Verifier

signed Attestation Results MUST include sufficient Identity Evidence

to ensure that this Attesting Environment signature refers to the

same Attesting Environment appraised by the Verifier. Second, where

the passport model is used as a subsystem, an Attesting Environment

signature which spans the Verifier signature MUST also be included.

As the Verifier signature already spans the Attester Identity as

*

¶

* ¶

¶

1. 

¶

2. 

¶

3. 

¶

¶

¶

¶



well as the Attestation Results, this restricts the viability of

spoofing attacks.

In a subset of use cases, these two pieces of Identity Evidence may

be sufficient for a Relying Party to successfully meet the criteria

for its Appraisal Policy for Attestation Results. If the use case is

a connection request, a Relying Party may simply then establish a

transport session with an Attester after a successful appraisal.

However an Appraisal Policy for Attestation Results will often be

more nuanced, and the Relying Party may need additional information.

Some Identity Evidence related policy questions which the Relying

Party may consider include:

Does the Relying Party only trust this Verifier to make

Trustworthiness Claims on behalf a specific type of Attesting

Environment? Might a mix of Verifiers be necessary to cover all

mandatory Trustworthiness Claims?

Does the Relying Party only accept connections from a verified-

authentic software build from a specific software developer?

Does the Relying Party only accept connections from specific

preconfigured list of Attesters?

For any of these more nuanced appraisals, additional Identity

Evidence or other policy related information must be conveyed or

pre-provisioned during the formation of a trust context between the

Relying Party, the Attester, the Attester's Attesting Environment,

and the Verifier.

2.2.1. Attester and Attesting Environment

Per [RFC9334] Figure 2, an Attester and a corresponding Attesting

Environment might not share common code or even hardware boundaries.

Consequently, an Attester implementation needs to ensure that any

Evidence which originates from outside the Attesting Environment

MUST have been collected and delivered securely before any Attesting

Environment signing may occur. After the Verifier performs its

appraisal, it will include sufficient information in the Attestation

Results to enable a Relying Party to have confidence that the

Attester's trustworthiness is represented via Trustworthiness Claims

signed by the appropriate Attesting Environment.

This document recognizes three general categories of Attesters.

HSM-based: A Hardware Security Module (HSM) based

cryptoprocessor which hashes one or more streams of security

measurements from an Attester within the Attesting Environment.

Maintenance of this hash enables detection of an Attester which

is not reporting the exact set of security measurements (such

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

1. 



as log entries) taken within the Attesting Environment. An

example of a HSM is a TPM2.0 [TPM2.0].

Process-based: An individual process which has its runtime

memory encrypted by an Attesting Environment in a way that no

other processes can read and decrypt that memory (e.g., [SGX]

or [I-D.tschofenig-rats-psa-token].)

VM-based: An entire Guest VM (or a set of containers within a

host) have been encrypted as a walled-garden unit by an

Attesting Environment. The result is that the host operating

system cannot read and decrypt what is executing within that VM

(e.g., [SEV-SNP] or [TDX].)

Each of these categories of Attesters above will be capable of

generating Evidence which is protected using private keys /

certificates which are not accessible outside of the corresponding

Attesting Environment. The owner of these secrets is the owner of

the identity which is bound within the Attesting Environment.

Effectively this means that for any Attester identity, there will

exist a chain of trust ultimately bound to a hardware-based root of

trust in the Attesting Environment. It is upon this root of trust

that unique, non-repudiable Attester identities may be founded.

There are several types of Attester identities defined in this

document. This list is extensible:

chip-vendor: the vendor of the hardware chip used for the

Attesting Environment (e.g., a primary Endorsement Key from a

TPM)

chip-hardware: specific hardware with specific firmware from an

'chip-vendor'

target-environment: a unique instance of a software build running

in an Attester (e.g., MRENCLAVE [SGX], an Instance ID 

[I-D.tschofenig-rats-psa-token], an Identity Block [SEV-SNP], or

a hash which represents a set of software loaded since boot

(e.g., TPM based integrity verification.))

target-developer: the organizational unit responsible for a

particular 'target-environment' (e.g., MRSIGNER [SGX])

instance: a unique instantiated instance of an Attesting

Environment running on 'chip-hardware' (e.g., an LDevID 

[IEEE802.1AR])

Based on the category of the Attesting Environment, different types

of identities might be exposed by an Attester.

¶

2. 

¶

3. 

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶



Attester Identity type Process-based VM-based HSM-based

chip-vendor Mandatory Mandatory Mandatory

chip-hardware Mandatory Mandatory Mandatory

target-environment Mandatory Mandatory Optional

target-developer Mandatory Optional Optional

instance Optional Optional Optional

Table 1

It is expected that drafts subsequent to this specification will

provide the definitions and value domains for specific identities,

each of which falling within the Attester identity types listed

above. In some cases the actual unique identities might encoded as

complex structures. An example complex structure might be a 'target-

environment' encoded as a Software Bill of Materials (SBOM).

With the identity definitions and value domains, a Relying Party

will have sufficient information to ensure that the Attester

identities and Trustworthiness Claims asserted are actually capable

of being supported by the underlying type of Attesting Environment.

Consequently, the Relying Party SHOULD require Identity Evidence

which indicates of the type of Attesting Environment when it

considers its Appraisal Policy for Attestation Results.

2.2.2. Verifier

For the Verifier identity, it is critical for a Relying Party to

review the certificate and chain of trust for that Verifier.

Additionally, the Relying Party must have confidence that the

Trustworthiness Claims being relied upon from the Verifier

considered the chain of trust for the Attesting Environment.

There are two categorizations of Verifier identities defined in this

document:

verifier build: a unique instance of a software build running as

a Verifier.

verifier developer: the organizational unit responsible for a

particular 'verifier build'.

Within each category, communicating the identity can be accomplished

via a variety of objects and encodings.

2.2.3. Communicating Identity

Any of the above identities used by the Appraisal Policy for

Attestation Results needed to be pre-established by the Relying

Party before, or provided during, the exchange of Attestation

¶

¶

¶

¶

*

¶

*

¶

¶



Results. When provided during this exchange, the identity may be

communicated either implicitly or explicitly.

An example of explicit communication would be to include the

following Identity Evidence directly within the Attestation Results:

a unique identifier for an Attesting Environment, the name of a key

which can be provably associated with that unique identifier, and

the set of Attestation Results which are signed using that key. As

these Attestation Results are signed by the Verifier, it is the

Verifier which is explicitly asserting the credentials it believes

are trustworthy.

An example of implicit communication would be to include Identity

Evidence in the form of a signature which has been placed over the

Attestation Results asserted by a Verifier. It would be then up to

the Relying Party's Appraisal Policy for Attestation Results to

extract this signature and confirm that it only could have been

generated by an Attesting Environment having access to a specific

private key. This implicit identity communication is only viable if

the Attesting Environment's public key is already known by the

Relying Party.

One final step in communicating identity is proving the freshness of

the Attestation Results to the degree needed by the Relying Party. A

typical way to accomplish this is to include an element of freshness

be embedded within a signed portion of the Attestation Results. This

element of freshness reduces the identity spoofing risks from a

replay attack. For more on this, see Section 2.4.

2.3. Trustworthiness Claims

2.3.1. Design Principles

Trust is not absolute. Trust is a belief in some aspect about an

entity (in this case an Attester), and that this aspect is something

which can be depended upon (in this case by a Relying Party.) Within

the context of Remote Attestation, believability of this aspect is

facilitated by a Verifier. This facilitation depends on the

Verifier's ability to parse detailed Evidence from an Attester and

then to assert conclusions about this aspect in a way interpretable

by a Relying Party.

Specific aspects for which a Verifier will assert trustworthiness

are defined in this section. These are known as Trustworthiness

Claims. These claims have been designed to enable a common

understanding between a broad array of Attesters, Verifiers, and

Relying Parties. The following set of design principles have been

applied in the Trustworthiness Claim definitions:

Expose a small number of Trustworthiness Claims.

¶

¶

¶

¶

¶

¶

1. ¶



Reason: a plethora of similar Trustworthiness Claims will

result in divergent choices made on which to support between

different Verifiers. This would place a lot of complexity in

the Relying Party as it would be up to the Relying Party (and

its policy language) to enable normalization across rich but

incompatible Verifier object definitions.

Each Trustworthiness Claim enumerates only the specific states

that could viably result in a different outcome after the

Policy for Attestation Results has been applied.

Reason: by explicitly disallowing the standardization of

enumerated states which cannot easily be connected to a use

case, we avoid forcing implementers from making incompatible

guesses on what these states might mean.

Verifier and RP developers need explicit definitions of each

state in order to accomplish the goals of (1) and (2).

Reason: without such guidance, the Verifier will append plenty

of raw supporting info. This relieves the Verifier of making

the hard decisions. Of course, this raw info will be mostly

non-interpretable and therefore non-actionable by the Relying

Party.

Support standards and non-standard extensibility for (1) and

(2).

Reason: standard types of Verifier generated Trustworthiness

Claims should be vetted by the full RATS working group, rather

than being maintained in a repository which doesn't follow the

RFC process. This will keep a tight lid on extensions which

must be considered by the Relying Party's policy language.

Because this process takes time, non-standard extensions will

be needed for implementation speed and flexibility.

These design principles are important to keep the number of Verifier

generated claims low, and to retain the complexity in the Verifier

rather than the Relying Party.

2.3.2. Enumeration Encoding

Per design principle (2), each Trustworthiness Claim will only

expose specific encoded values. To simplify the processing of these

enumerations by the Relying Party, the enumeration will be encoded

as a single signed 8 bit integer. These value assignments for this

integer will be in four Trustworthiness Tiers which follow these

guidelines:

¶

2. 

¶

¶

3. 

¶

¶

4. 

¶

¶

¶

¶



None: The Verifier makes no assertions regarding this aspect of

trustworthiness.

Value 0: The Evidence received is insufficient to make a

conclusion. Note: this should always be always treated

equivalently by the Relying Party as no claim being made. I.e.,

the RP's Appraisal Policy for Attestation Results SHOULD NOT make

any distinction between a Trustworthiness Claim with enumeration

'0', and no Trustworthiness Claim being provided.

Value 1: The Evidence received contains unknown elements which

the Verifier is unable to evaluate. An example might be that the

wrong type of Evidence has been delivered. Another case is that

of Evidence coming from a composite Attester: a Verifier may

understand only part of it and leave as "unknown" the

Trustworthiness claims related to features it can't appraise.

Value -1: A verifier malfunction occurred during the Verifier's

appraisal processing.

Affirming: The Verifier affirms the Attester support for this aspect

of trustworthiness.

Values 2 to 31: A standards enumerated reason for affirming.

Values -2 to -32: A non-standard reason for affirming.

Warning: The Verifier warns about this aspect of trustworthiness.

Values 32 to 95: A standards enumerated reason for the warning.

Values -33 to -96: A non-standard reason for the warning.

Contraindicated: The Verifier asserts the Attester is explicitly

untrustworthy in regard to this aspect.

Values 96 to 127: A standards enumerated reason for the

contraindication.

Values -97 to -128: A non-standard reason for the

contraindication.

This enumerated encoding listed above will simplify the Appraisal

Policy for Attestation Results. Such a policies may be as simple as

saying that a specific Verifier has recently asserted

Trustworthiness Claims, all of which are Affirming.

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

*

¶

*

¶

¶



configuration:

2.3.3. Assigning a Trustworthiness Claim value

In order to simplify design, only a single encoded value is asserted

by a Verifier for any Trustworthiness Claim within a using the

following process.

If applicable, a Verifier MUST assign a standardized value from

the Contraindicated tier.

Else if applicable, a Verifier MUST assign a non-standardized

value from the Contraindicated tier.

Else if applicable, a Verifier MUST assign a standardized value

from the Warning tier.

Else if applicable, a Verifier MUST assign a non-standardized

value from the Warning tier.

Else if applicable, a Verifier MUST assign a standardized value

from the Affirming tier.

Else if applicable, a Verifier MUST assign a non-standardized

value from the Affirming tier.

Else a Verifier MAY assign a 0 or -1.

2.3.4. Specific Claims

Following are the Trustworthiness Claims and their supported

enumerations which may be asserted by a Verifier:

A Verifier has appraised an Attester's

configuration, and is able to make conclusions regarding the

exposure of known vulnerabilities

¶

1. 

¶

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. 

¶

7. ¶

¶

¶



0:

1:

-1:

2:

3:

32:

36:

96:

99:

executables:

0:

1:

-1:

2:

3:

32:

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

The configuration is a known and approved config.

The configuration includes or exposes no known

vulnerabilities.

The configuration includes or exposes known vulnerabilities.

Elements of the configuration relevant to security are

unavailable to the Verifier.

The configuration is unsupportable as it exposes

unacceptable security vulnerabilities.

Cryptographic validation of the Evidence has failed.

A Verifier has appraised and evaluated relevant

runtime files, scripts, and/or other objects which have been

loaded into the Target environment's memory.

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

Only a recognized genuine set of approved executables,

scripts, files, and/or objects have been loaded during and

after the boot process.

Only a recognized genuine set of approved executables have

been loaded during the boot process.

Only a recognized genuine set of executables, scripts,

files, and/or objects have been loaded. However the Verifier

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



33:

96:

99:

file-system:

0:

1:

-1:

2:

32:

96:

99:

hardware:

0:

1:

-1:

2:

cannot vouch for a subset of these due to known bugs or other

known vulnerabilities.

Runtime memory includes executables, scripts, files, and/or

objects which are not recognized.

Runtime memory includes executables, scripts, files, and/or

object which are contraindicated.

Cryptographic validation of the Evidence has failed.

A Verifier has evaluated a specific set of directories

within the Attester's file system. (Note: the Verifier may or may

not indicate what these directory and expected files are via an

unspecified management interface.)

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

Only a recognized set of approved files are found.

The file system includes unrecognized executables, scripts,

or files.

The file system includes contraindicated executables,

scripts, or files.

Cryptographic validation of the Evidence has failed.

A Verifier has appraised any Attester hardware and

firmware which are able to expose fingerprints of their identity

and running code.

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

An Attester has passed its hardware and/or firmware

verifications needed to demonstrate that these are genuine/

supported.

32: An Attester contains only genuine/supported hardware and/or

firmware, but there are known security vulnerabilities.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



96:

97:

99:

instance-identity:

0:

1:

-1:

2:

96:

97:

99:

runtime-opaque:

0:

1:

-1:

2:

Attester hardware and/or firmware is recognized, but its

trustworthiness is contraindicated.

A Verifier does not recognize an Attester's hardware or

firmware, but it should be recognized.

Cryptographic validation of the Evidence has failed.

A Verifier has appraised an Attesting

Environment's unique identity based upon private key signed

Evidence which can be correlated to a unique instantiated

instance of the Attester. (Note: this Trustworthiness Claim

should only be generated if the Verifier actually expects to

recognize the unique identity of the Attester.)

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

The Attesting Environment is recognized, and the associated

instance of the Attester is not known to be compromised.

The Attesting Environment is recognized, and but its unique

private key indicates a device which is not trustworthy.

The Attesting Environment is not recognized; however the

Verifier believes it should be.

Cryptographic validation of the Evidence has failed.

A Verifier has appraised the visibility of Attester

objects in memory from perspectives outside the Attester.

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

the Attester's executing Target Environment and Attesting

Environments are encrypted and within Trusted Execution

Environment(s) opaque to the operating system, virtual machine

manager, and peer applications. (Note: This value corresponds

to the protections asserted by O.RUNTIME_CONFIDENTIALITY from 

[GP-TEE-PP])

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



32:

96:

99:

sourced-data:

0:

1:

-1:

2:

32:

96:

99:

storage-opaque:

0:

1:

-1:

the Attester's executing Target Environment and Attesting

Environments inaccessible from any other parallel application

or Guest VM running on the Attester's physical device. (Note

that unlike "1" these environments are not encrypted in a way

which restricts the Attester's root operator visibility. See

O.TA_ISOLATION from [GP-TEE-PP].)

The Verifier has concluded that in memory objects are

unacceptably visible within the physical host that supports

the Attester.

Cryptographic validation of the Evidence has failed.

A Verifier has evaluated of the integrity of data

objects from external systems used by the Attester.

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

All essential Attester source data objects have been provided

by other Attester(s) whose most recent appraisal(s) had both

no Trustworthiness Claims of "0" where the current

Trustworthiness Claim is "Affirming", as well as no "Warning"

or "Contraindicated" Trustworthiness Claims.

Attester source data objects come from unattested sources,

or attested sources with "Warning" type Trustworthiness

Claims.

Attester source data objects come from contraindicated

sources.

Cryptographic validation of the Evidence has failed.

A Verifier has appraised that an Attester is

capable of encrypting persistent storage. (Note: Protections must

meet the capabilities of [OMTP-ATE] Section 5, but need not be

hardware tamper resistant.)

No assertion

Evidence contains unknown elements which inhibit Verifer

evaluation.

Verifier malfunction

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



2:

32:

96:

99:

the Attester encrypts all secrets in persistent storage via

using keys which are never visible outside an HSM or the

Trusted Execution Environment hardware.

the Attester encrypts all persistently stored secrets, but

without using hardware backed keys

There are persistent secrets which are stored unencrypted in

an Attester.

Cryptographic validation of the Evidence has failed.

It is possible for additonal Trustworthiness Claims and enumerated

values to be defined in subsequent documents. At the same time, the

standardized Trustworthiness Claim values listed above have been

designed so there is no overlap within a Trustworthiness Tier. As a

result, it is possible to imagine a future where overlapping

Trustworthiness Claims within a single Trustworthiness Tier may be

defined. Wherever possible, the Verifier SHOULD assign the best

fitting standardized value.

Where a Relying Party doesn't know how to handle a particular

Trustworthiness Claim, it MAY choose an appropriate action based on

the Trustworthiness Tier under which the enumerated value fits.

It is up to the Verifier to publish the types of evaluations it

performs when determining how Trustworthiness Claims are derived for

a type of any particular type of Attester. It is out of the scope of

this document for the Verifier to provide proof or specific logic on

how a particular Trustworthiness Claim which it is asserting was

derived.

2.3.5. Trustworthiness Vector

Multiple Trustworthiness Claims may be asserted about an Attesting

Environment at single point in time. The set of Trustworthiness

Claims inserted into an instance of Attestation Results by a

Verifier is known as a Trustworthiness Vector. The order of Claims

in the vector is NOT meaningful. A Trustworthiness Vector with no

Trustworthiness Claims (i.e., a null Trustworthiness Vector) is a

valid construct. In this case, the Verifier is making no

Trustworthiness Claims but is confirming that an appraisal has been

made.

2.3.6. Trustworthiness Vector for a type of Attesting Environment

Some Trustworthiness Claims are implicit based on the underlying

type of Attesting Environment. For example, a validated MRSIGNER

identity can be present where the underlying [SGX] hardware is 'hw-

¶

¶

¶

¶

¶

¶

¶

¶



authentic'. Where such implicit Trustworthiness Claims exist, they

do not have to be explicitly included in the Trustworthiness Vector.

However, these implicit Trustworthiness Claims SHOULD be considered

as being present by the Relying Party. Another way of saying this is

if a Trustworthiness Claim is automatically supported as a result of

coming from a specific type of TEE, that claim need not be

redundantly articulated. Such implicit Trustworthiness Claims can be

seen in the tables within Appendix B.2 and Appendix B.3.

Additionally, there are some Trustworthiness Claims which cannot be

adequately supported by an Attesting Environment. For example, it

would be difficult for an Attester that includes only a TPM (and no

other TEE) from ever having a Verifier appraise support for

'runtime-opaque'. As such, a Relying Party would be acting properly

if it rejects any non-supportable Trustworthiness Claims asserted

from a Verifier.

As a result, the need for the ability to carry a specific

Trustworthiness Claim will vary by the type of Attesting

Environment. Example mappings can be seen in Appendix B.

2.4. Freshness

A Relying Party will care about the recentness of the Attestation

Results, and the specific Trustworthiness Claims which are embedded.

All freshness mechanisms of [RFC9334], Section 10 are supportable by

this specification.

Additionally, a Relying Party may track when a Verifier expires its

confidence for the Trustworthiness Claims or the Trustworthiness

Vector as a whole. Mechanisms for such expiry are not defined within

this document.

There is a subset of secure interactions where the freshness of

Trustworthiness Claims may need to be revisited asynchronously. This

subset is when trustworthiness depends on the continuous

availability of a transport session between the Attester and Relying

Party. With such connectivity dependent Attestation Results, if

there is a reboot which resets transport connectivity, all

established Trustworthiness Claims should be cleared. Subsequent

connection re-establishment will allow fresh new Trustworthiness

Claims to be delivered.

3. Secure Interactions Models

There are multiple ways of providing a Trustworthiness Vector to a

Relying Party. This section describes two alternatives.

¶

¶

¶

¶

¶

¶

¶



3.1. Background-Check

3.1.1. Verifier Retrieval

It is possible to for a Relying Party to follow the Background-Check

Model defined in Section 5.2 of [RFC9334]. In this case, a Relying

Party will receive Attestation Results containing the

Trustworthiness Vector directly from a Verifier. These Attestation

Results can then be used by the Relying Party in determining the

appropriate treatment for interactions with the Attester.

While applicable in some cases, the utilization of the Background-

Check Model without modification has potential drawbacks in other

cases. These include:

Verifier scale: if the Attester has many Relying Parties, a

Verifier appraising that Attester could be frequently be queried

based on the same Evidence.

Information leak: Evidence which the Attester might consider

private can be visible to the Relying Party. Hiding that Evidence

could devalue any resulting appraisal.

Latency: a Relying Party will need to wait for the Verifier to

return Attestation Results before proceeding with secure

interactions with the Attester.

An implementer should examine these potential drawbacks before

selecting this alternative.

3.1.2. Co-resident Verifier

A simplified Background-Check Model may exist in a very specific

case. This is where the Relying Party and Verifier functions are co-

resident. This model is appropriate when:

Some hardware-based private key is used by an Attester while

proving its identity as part of a mutually authenticated secure

channel establishment with the Relying Party, and

this Attester identity is accepted as sufficient proof of

Attester integrity.

Effectively this means that detailed forensic capabilities of a

robust Verifier are unnecessary because it is accepted that the code

and operational behavior of the Attester cannot be manipulated after

TEE initialization.

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶



An example of such a scenario may be when an SGX's MRENCLAVE and

MRSIGNER values have been associated with a known QUOTE value. And

the code running within the TEE is not modifiable after launch.

3.2. Below Zero Trust

Zero Trust Architectures are referenced in [US-Executive-Order]

eleven times. However despite this high profile, there is an

architectural gap with Zero Trust. The credentials used for

authentication and admission control can be manipulated on the

endpoint. Attestation can fill this gap through the generation of a

compound credential called AR-augmented Evidence. This compound

credential is rooted in the hardware based Attesting Environment of

an endpoint, plus the trustworthiness of a Verifier. The overall

solution is known as "Below Zero Trust" as the compound credential

cannot be manipulated or spoofed by an administrator of an endpoint

with root access. This solution is not adversely impacted by the

potential drawbacks with pure background-check described above.

To kick-off the "Below Zero Trust" compound credential creation

sequence, a Verifier evaluates an Attester and returns signed

Attestation Results back to this original Attester no less

frequently than a well-known interval. This interval may also be

asynchronous, based on the changing of certain Evidence as described

in [I-D.ietf-rats-network-device-subscription].

When a Relying Party is to receive information about the Attester's

trustworthiness, the Attesting Environment assembles the minimal set

of Evidence which can be used to confirm or refute whether the

Attester remains in the state of trustworthiness represented by the

AR. To this Evidence, the Attesting Environment appends the

signature from the most recent AR as well as a Relying Party Proof-

of-Freshness. The Attesting Environment then signs the combination.

The Attester then assembles AR Augmented Evidence by taking the

signed combination and appending the full AR. The assembly now

consists of two independent but semantically bound sets of signed

Evidence.

The AR Augmented Evidence is then sent to the Relying Party. The

Relying Party then can appraise these semantically bound sets of

signed Evidence by applying an Appraisal Policy for Attestation

Results as described below. This policy will consider both the AR as

well as additional information about the Attester within the AR

Augmented Evidence the when determining what action to take.

This alternative combines the [RFC9334] Sections 5.1 Passport Model

and Section 5.2 Background-Check Model. Figure 1 describes this flow

of information. The flows within this combined model are mapped to 

¶

¶

¶

¶

¶

¶



[RFC9334] in the following way. "Verifier A" below corresponds to

the "Verifier" Figure 5 within [RFC9334]. And "Relying Party/

Verifier B" below corresponds to the union of the "Relying Party"

and "Verifier" boxes within Figure 6 of [RFC9334]. This union is

possible because Verifier B can be implemented as a simple, self-

contained process. The resulting combined process can appraise the

AR-augmented Evidence to determine whether an Attester qualifies for

secure interactions with the Relying Party. The specific steps of

this process are defined later in this section.

Figure 1: Below Zero Trust

The interaction model depicted above includes specific time related

events from Appendix A of [RFC9334]. With the identification of

these time related events, time duration/interval tracking becomes

possible. Such duration/interval tracking can become important if

the Relying Party cares if too much time has elapsed between the

Verifier PoF and Relying Party PoF. If too much time has elapsed,

perhaps the Attestation Results themselves are no longer

trustworthy.

Note that while time intervals will often be relevant, there is a

simplified case that does not require a Relying Party's PoF in step

(3). In this simplified case, the Relying Party trusts that the

¶

  .----------------.

  | Attester       |

  | .-------------.|

  | | Attesting   ||             .----------.    .---------------.

  | | Environment ||             | Verifier |    | Relying Party |

  | '-------------'|             |     A    |    |  / Verifier B |

  '----------------'             '----------'    '---------------'

        time(VG)                       |                 |

          |<------Verifier PoF-------time(NS)            |

          |                            |                 |

 time(EG)(1)------Evidence------------>|                 |

          |                          time(RG)            |

          |<------Attestation Results-(2)                |

          ~                            ~                 ~

        time(VG')?                     |                 |

          ~                            ~                 ~

          |<------Relying Party PoF-----------------(3)time(NS')

          |                            |                 |

time(EG')(4)------AR-augmented Evidence----------------->|

          |                            |   time(RG',RA')(5)

                                                        (6)

                                                         ~

                                                      time(RX')

¶



Attester cannot be meaningfully changed from the outside during any

reportable interval. Based on that assumption, and when this is the

case then the step of the Relying Party PoF can be safely omitted.

In all cases, appraisal policies define the conditions and

prerequisites for when an Attester does qualify for secure

interactions. To qualify, an Attester has to be able to provide all

of the mandatory affirming Trustworthiness Claims and identities

needed by a Relying Party's Appraisal Policy for Attestation

Results, and none of the disqualifying detracting Trustworthiness

Claims.

More details on each interaction step of Below Zero Trust are as

follows. The numbers used in this sequence match to the numbered

steps in Figure 1:

An Attester sends Evidence which is provably fresh to Verifier

A at time(EG). Freshness from the perspective of Verifier A MAY

be established with Verifier PoF such as a nonce.

Verifier A appraises (1), then sends the following items back

to that Attester within Attestation Results:

the verified identity of the Attesting Environment,

the Verifier A appraised Trustworthiness Vector of an

Attester,

a freshness proof associated with the Attestation Results,

a Verifier signature across (2.1) though (2.3).

At time(EG') a Relying Party PoF (such as a nonce) known to the

Relying Party is sent to the Attester.

The Attester generates and sends AR-augmented Evidence to the

Relying Party/Verifier B. This AR-augmented Evidence includes:

The Attestation Results from (2)

Any (optionally) new incremental Evidence from the

Attesting Environment

Attestation Environment signature which spans a hash of

the Attestation Results (such as the signature of (2.4)),

the proof-of-freshness from (3), and (4.2). Note: this

construct allows the delta of time between (2.3) and (3)

to be definitively calculated by the Relying Party.

¶

¶

¶

1. 

¶

2. 

¶

1. ¶

2. 

¶

3. ¶

4. ¶

3. 

¶

4. 

¶

1. ¶

2. 

¶

3. 

¶



On receipt of (4), the Relying Party applies its Appraisal

Policy for Attestation Results. At minimum, this appraisal

policy process must include the following:

Verify that (4.3) includes the nonce from (3).

Use a local certificate to validate the signature (4.1).

Verify that the hash from (4.3) matches (4.1)

Use the identity of (2.1) to validate the signature of

(4.3).

Failure of any steps (5.1) through (5.4) means the link

does not meet minimum validation criteria, therefore

appraise the link as having a null Verifier B

Trustworthiness Vector. Jump to step (6.1).

When there is large or uncertain time gap between time(EG)

and time(EG'), the link should be assigned a null Verifier

B Trustworthiness Vector. Jump to step (6.1).

Assemble the Verifier B Trustworthiness Vector

Copy Verifier A Trustworthiness Vector to Verifier B

Trustworthiness Vector

Add implicit Trustworthiness Claims inherent to the

type of TEE.

Prune any Trustworthiness Claims unsupportable by the

Attesting Environment.

Prune any Trustworthiness Claims the Relying Party

doesn't accept from this Verifier.

The Relying Party takes action based on Verifier B's appraised

Trustworthiness Vector, and applies the Appraisal Policy for

Attestation Results. Following is a reasonable process for such

evaluation:

Prune any Trustworthiness Claims from the Trustworthiness

Vector not used in the Appraisal Policy for Attestation

Results.

Allow the information exchange from the Attester into a

Relying Party context in the Appraisal Policy for

Attestation Results where the Verifier B appraised

Trustworthiness Vector includes all the mandatory

Trustworthiness Claims are in the "Affirming" value range,

5. 

¶

1. ¶

2. ¶

3. ¶

4. 

¶

5. 

¶

6. 

¶

7. ¶

1. 

¶

2. 

¶

3. 

¶

4. 

¶

6. 

¶

1. 

¶

2. 



and none of the disqualifying Trustworthiness Claims are

in the "Contraindicated" value range.

Disallow any information exchange into a Relying Party

context for which that Verifier B appraised

Trustworthiness Vector is not qualified.

As link layer protocols re-authenticate, steps (1) to (2) and steps

(3) to (6) will independently refresh. This allows the

Trustworthiness of Attester to be continuously re-appraised. There

are only specific event triggers which will drive the refresh of

Evidence generation (1), Attestation Result generation (2), or AR-

augmented Evidence generation (4):

life-cycle events, e.g. a change to an Authentication Secret of

the Attester or an update of a software component.

uptime-cycle events, e.g. a hard reset or a re-initialization of

an Attester.

authentication-cycle events, e.g. a link-layer interface reset

could result in a new (4).

3.3. Mutual Attestation

In the interaction models described above, each device on either

side of a secure interaction may require remote attestation of its

peer. This process is known as mutual-attestation. To support

mutual-attestation, the interaction models listed above may be run

independently on either side of the connection.

3.4. Transport Protocol Integration

Either unidirectional attestation or mutual attestation may be

supported within the protocol interactions needed for the

establishment of a single transport session. While this document

does not mandate specific transport protocols, messages containing

the Attestation Results and AR Augmented Evidence can be passed

within an authentication framework such the EAP protocol [RFC5247]

over TLS [RFC8446].

4. Privacy Considerations

Privacy Considerations Text

5. Security Considerations

Security Considerations Text

¶

3. 

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶



[GP-TEE-PP]

[OMTP-ATE]

[RFC2119]

[RFC8174]

[RFC9334]

[I-D.ietf-rats-network-device-subscription]

[I-D.tschofenig-rats-psa-token]

[IEEE802.1AR]

6. IANA Considerations

See Body.

7. References

7.1. Normative References

"Global Platform TEE Protection Profile v1.3", September

2020, <https://globalplatform.org/specs-library/tee-

protection-profile-v1-3/>. 

"Open Mobile Terminal Platform - Advanced Trusted

Environment", May 2009, <https://www.gsma.com/newsroom/

wp-content/uploads/2012/03/

omtpadvancedtrustedenvironmentomtptr1v11.pdf>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. 

Birkholz, H., Thaler, D., Richardson, M., Smith, N., and 

W. Pan, "Remote ATtestation procedureS (RATS)

Architecture", RFC 9334, DOI 10.17487/RFC9334, January

2023, <https://www.rfc-editor.org/rfc/rfc9334>. 

7.2. Informative References

Birkholz, H., Voit, E.,

and W. Pan, "Attestation Event Stream Subscription", Work

in Progress, Internet-Draft, draft-ietf-rats-network-

device-subscription-04, 10 September 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-network-

device-subscription-04>. 

Tschofenig, H., Frost, S., Brossard,

M., Shaw, A. L., and T. Fossati, "Arm's Platform Security

Architecture (PSA) Attestation Token", Work in Progress, 

Internet-Draft, draft-tschofenig-rats-psa-token-22, 21

February 2024, <https://datatracker.ietf.org/doc/html/

draft-tschofenig-rats-psa-token-22>. 

"802.1AR: Secure Device Identity", 2 August 2018, 

<https://ieeexplore.ieee.org/document/8423794>. 

¶

https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9334
https://datatracker.ietf.org/doc/html/draft-ietf-rats-network-device-subscription-04
https://datatracker.ietf.org/doc/html/draft-ietf-rats-network-device-subscription-04
https://datatracker.ietf.org/doc/html/draft-ietf-rats-network-device-subscription-04
https://datatracker.ietf.org/doc/html/draft-tschofenig-rats-psa-token-22
https://datatracker.ietf.org/doc/html/draft-tschofenig-rats-psa-token-22
https://ieeexplore.ieee.org/document/8423794


[RFC5247]

[RFC8446]

[SEV-SNP]

[SGX]

[TDX]

[TPM-ID]

[TPM2.0]

[US-Executive-Order]

Aboba, B., Simon, D., and P. Eronen, "Extensible

Authentication Protocol (EAP) Key Management Framework", 

RFC 5247, DOI 10.17487/RFC5247, August 2008, <https://

www.rfc-editor.org/rfc/rfc5247>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>. 

"AMD SEV-SNP: Stregthening VM Isolation with Integrity

Protection and More", 2020, <https://www.amd.com/system/

files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-

integrity-protection-and-more.pdf>. 

"Supporting Third Party Attestation for Intel SGX with

Intel Data Center Attestation Primitives", 2017, 

<https://software.intel.com/content/dam/develop/external/

us/en/documents/intel-sgx-support-for-third-party-

attestation-801017.pdf>. 

"Intel Trust Domain Extensions", 2020, <https://

software.intel.com/content/dam/develop/external/us/en/

documents/tdx-whitepaper-final9-17.pdf>. 

"TPM Keys for Platform Identity for TPM 1.2", August

2015, <https://www.trustedcomputinggroup.org/wp-content/

uploads/

TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf>. 

"Trusted Platform Module Library - Part 1: Architecture",

n.d., <https://trustedcomputinggroup.org/wp-content/

uploads/TPM-Rev-2.0-Part-1-

Architecture-01.07-2014-03-13.pdf>. 

"Executive Order on Improving the Nation's

Cybersecurity", 12 May 2021, <https://www.whitehouse.gov/

briefing-room/presidential-actions/2021/05/12/executive-

order-on-improving-the-nations-cybersecurity/>. 

Appendix A. Implementation Guidance

A.1. Supplementing Trustworthiness Claims

What has been encoded into each Trustworthiness Claim is the domain

of integer values which is likely to drive a different programmatic

decision in the Relying Party's Appraisal Policy for Attestation

Results. This will not be the only thing a Relying Party's

Operations team might care to track for measurement or debugging

purposes.¶

https://www.rfc-editor.org/rfc/rfc5247
https://www.rfc-editor.org/rfc/rfc5247
https://www.rfc-editor.org/rfc/rfc8446
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/


There is also the opportunity for the Verifier to include

supplementary Evidence beyond a set of asserted Trustworthiness

Claims. It is recommended that if supplementary Evidence is provided

by the Verifier within the Attestation Results, that this

supplementary Evidence includes a reference to a specific

Trustworthiness Claim. This will allow a deeper understanding of

some of the reasoning behind the integer value assigned.

Appendix B. Supportable Trustworthiness Claims

The following is a table which shows what Claims are supportable by

different Attesting Environment types. Note that claims MAY BE

implicit to an Attesting Environment type, and therefore do not have

to be included in the Trustworthiness Vector to be considered as set

by the Relying Party.

B.1. Supportable Trustworthiness Claims for HSM-based CC

Following are Trustworthiness Claims which MAY be set for a HSM-

based Confidential Computing Attester. (Such as a TPM [TPM-ID].)

Trustworthiness

Claim
Required? Appraisal Method

configuration Optional

Verifier evaluation of Attester reveals

no configuration lines which expose the

Attester to known security

vulnerabilities. This may be done with

or without the involvement of a TPM PCR.

executables Yes

Checks the TPM PCRs for the static

operating system, and for any tracked

files subsequently loaded

file-system No
Can be supported, but TPM tracking is

unlikely

hardware Yes
If TPM PCR check ok from BIOS checks,

through Master Boot Record configuration

instance-

identity
Optional Check IDevID

runtime-opaque n/a

TPMs are not recommended to provide a

sufficient technology base for this

Trustworthiness Claim.

sourced-data n/a

TPMs are not recommended to provide a

sufficient technology base for this

Trustworthiness Claim.

storage-opaque Minimal

With a TPM, secure storage space exists

and is writeable by external

applications. But the space is so

limited that it often is used just be

used to store keys.

Table 2

¶

¶

¶



Setting the Trustworthiness Claims may follow the following logic at

the Verifier A within (2) of Figure 1:

B.2. Supportable Trustworthiness Claims for process-based CC

Following are Trustworthiness Claims which MAY be set for a process-

based Confidential Computing based Attester. (Such as a SGX Enclaves

and TrustZone.)

Trustworthiness

Claim
Required? Appraisal Method

instance-

identity
Optional

Internally available in TEE. But keys

might not be known/exposed to the

Relying Party by the Attesting

Environment.

configuration Optional

If done, this is at the Application

Layer. Plus each process needs it own

protection mechanism as the protection

is limited to the process itself.

executables Optional
Internally available in TEE. But keys

might not be known/exposed to the

¶

Start: Evidence received starts the generation of a new

Trustworthiness Vector.  (e.g.,  TPM Quote Received, log received,

or appraisal timer expired)

Step 0: set Trustworthiness Vector = Null

Step 1: Is there sufficient fresh signed evidence to appraise?

  (yes) - No Action

  (no) -  Goto Step 6

Step 2: Appraise Hardware Integrity PCRs

   if (hardware NOT "0") - push onto vector

   if (hardware NOT affirming or warning), go to Step 6

Step 3: Appraise Attesting Environment identity

   if (instance-identity <> "0") - push onto vector

Step 4: Appraise executable loaded and filesystem integrity

   if (executables NOT "0") - push onto vector

   if (executables NOT affirming or warning), go to Step 6

Step 5: Appraise all remaining Trustworthiness Claims

        Independently and set as appropriate.

Step 6: Assemble Attestation Results, and push to Attester

End

¶

¶



Trustworthiness

Claim
Required? Appraisal Method

Relying Party by the Attesting

Environment.

file-system Optional

Can be supported by application, but

process-based CC is not a sufficient

technology base for this

Trustworthiness Claim.

hardware
Implicit in

signature

At least the TEE is protected here.

Other elements of the system outside

of the TEE might need additional

protections is used by the application

process.

runtime-opaque
Implicit in

signature
From the TEE

storage-opaque
Implicit in

signature

Although the application must assert

that this function is used by the code

itself.

sourced-data Optional
Will need to be supported by

application code

Table 3

B.3. Supportable Trustworthiness Claims for VM-based CC

Following are Trustworthiness Claims which MAY be set for a VM-based

Confidential Computing based Attester. (Such as SEV, TDX, ACCA, SEV-

SNP.)

Trustworthiness

Claim
Required? Appraisal Method

instance-

identity
Optional

Internally available in TEE. But keys

might not be known/exposed to the

Relying Party by the Attesting

Environment.

configuration Optional

Requires application integration.

Easier than with process-based

solution, as the whole protected

machine can be evaluated.

executables Optional

Internally available in TEE. But keys

might not be known/exposed to the

Relying Party by the Attesting

Environment.

file-system Optional Can be supported by application

hardware
Chip

dependent

At least the TEE is protected here.

Other elements of the system outside

of the TEE might need additional

protections is used by the application

process.

¶



Trustworthiness

Claim
Required? Appraisal Method

runtime-opaque
Implicit in

signature
From the TEE

storage-opaque
Chip

dependent

Although the application must assert

that this function is used by the code

itself.

sourced-data Optional
Will need to be supported by

application code

Table 4

Appendix C. Some issues being worked

It is possible for a cluster/hierarchy of Verifiers to have

aggregate AR which are perhaps signed/endorsed by a lead Verifier.

What should be the Proof-of-Freshness or Verifier associated with

any of the aggregate set of Trustworthiness Claims?

There will need to be a subsequent document which documents how

these objects which will be translated into a protocol on a wire

(e.g. EAP on TLS). Some breakpoint between what is in this draft,

and what is in specific drafts for wire encoding will need to be

determined. Questions like architecting the cluster/hierarchy of

Verifiers fall into this breakdown.

For some Trustworthiness Claims, there could be value in identifying

a specific Appraisal Policy for Attestation Results applied within

the Attester. One way this could be done would be a URI which

identifies the policy used at Verifier A, and this URI would

reference a specific Trustworthiness Claim. As the URI also could

encode the version of the software, it might also act as a mechanism

to signal the Relying Party to refresh/re-evaluate its view of

Verifier A. Do we need this type of structure to be included here?

Should it be in subsequent documents?

Expand the variant of Figure 1 which requires no Relying Party PoF

into its own picture.

In what document (if any) do we attempt normalization of the

identity claims between different types of TEE. E.g., does MRSIGNER

plus extra loaded software = the sum of TrustZone Signer IDs for

loaded components?

Appendix D. Contributors

Guy Fedorkow

Email: gfedorkow@juniper.net

¶

¶

¶

¶

¶

¶

¶



Dave Thaler

Email: dthaler@microsoft.com

Ned Smith

Email: ned.smith@intel.com

Lawrence Lundblade

Email: lgl@island-resort.com

Authors' Addresses

Eric Voit

Cisco Systems

Email: evoit@cisco.com

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

Thomas Hardjono

MIT

Email: hardjono@mit.edu

Thomas Fossati

Linaro

Email: Thomas.Fossati@linaro.org

Vincent Scarlata

Intel

Email: vincent.r.scarlata@intel.com

¶

¶

¶

¶

¶

¶

mailto:evoit@cisco.com
mailto:henk.birkholz@sit.fraunhofer.de
mailto:hardjono@mit.edu
mailto:Thomas.Fossati@linaro.org
mailto:vincent.r.scarlata@intel.com

	Attestation Results for Secure Interactions
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation
	1.2. Terminology

	2. Attestation Results for Secure Interactions
	2.1. Information driving a Relying Party Action
	2.2. Non-repudiable Identity
	2.2.1. Attester and Attesting Environment
	2.2.2. Verifier
	2.2.3. Communicating Identity

	2.3. Trustworthiness Claims
	2.3.1. Design Principles
	2.3.2. Enumeration Encoding
	2.3.3. Assigning a Trustworthiness Claim value
	2.3.4. Specific Claims
	2.3.5. Trustworthiness Vector
	2.3.6. Trustworthiness Vector for a type of Attesting Environment

	2.4. Freshness

	3. Secure Interactions Models
	3.1. Background-Check
	3.1.1. Verifier Retrieval
	3.1.2. Co-resident Verifier

	3.2. Below Zero Trust
	3.3. Mutual Attestation
	3.4. Transport Protocol Integration

	4. Privacy Considerations
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Implementation Guidance
	A.1. Supplementing Trustworthiness Claims

	Appendix B. Supportable Trustworthiness Claims
	B.1. Supportable Trustworthiness Claims for HSM-based CC
	B.2. Supportable Trustworthiness Claims for process-based CC
	B.3. Supportable Trustworthiness Claims for VM-based CC

	Appendix C. Some issues being worked
	Appendix D. Contributors
	Authors' Addresses


