
RATS Working Group G. Mandyam
Internet-Draft Qualcomm Technologies Inc.
Intended status: Standards Track L. Lundblade
Expires: March 4, 2021 Security Theory LLC
 M. Ballesteros
 J. O'Donoghue
 Qualcomm Technologies Inc.
 August 31, 2020

The Entity Attestation Token (EAT)
draft-ietf-rats-eat-04

Abstract

 An Entity Attestation Token (EAT) provides a signed (attested) set of
 claims that describe state and characteristics of an entity,
 typically a device like a phone or an IoT device. These claims are
 used by a relying party to determine how much it wishes to trust the
 entity.

 An EAT is either a CWT or JWT with some attestation-oriented claims.
 To a large degree, all this document does is extend CWT and JWT.

Contributing

 TBD

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 4, 2021.

Mandyam, et al. Expires March 4, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft EAT August 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. CDDL, CWT and JWT . 4
1.2. Entity Overview . 5
1.3. EAT Operating Models 5
1.4. What is Not Standardized 6
1.4.1. Transmission Protocol 6
1.4.2. Signing Scheme 7

2. Terminology . 7
3. The Claims . 8
3.1. Token ID Claim (cti and jti) 8
3.2. Timestamp claim (iat) 9
3.3. Nonce Claim (nonce) 9
3.3.1. nonce CDDL . 9

3.4. Universal Entity ID Claim (ueid) 9
3.4.1. ueid CDDL . 12

3.5. Origination Claim (origination) 12
3.5.1. origination CDDL 12

3.6. OEM Identification by IEEE (oemid) 12
3.6.1. oemid CDDL . 13

3.7. The Security Level Claim (security-level) 13
3.7.1. security-level CDDL 14

 3.8. Secure Boot and Debug Enable State Claims (boot-state) . 14
3.8.1. Secure Boot Enabled 14
3.8.2. Debug Disabled 15
3.8.3. Debug Disabled Since Boot 15
3.8.4. Debug Permanent Disable 15
3.8.5. Debug Full Permanent Disable 15
3.8.6. boot-state CDDL 15

3.9. The Location Claim (location) 15
3.9.1. location CDDL . 16

3.10. The Age Claim (age) 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Mandyam, et al. Expires March 4, 2021 [Page 2]

Internet-Draft EAT August 2020

3.10.1. age CDDL . 16
3.11. The Uptime Claim (uptime) 16
3.11.1. uptime CDDL . 16

3.12. The Submods Part of a Token (submods) 17
3.12.1. Two Types of Submodules 17
3.12.1.1. Non-token Submodules 17
3.12.1.2. Nested EATs 17

3.12.2. No Inheritance 18
3.12.3. Security Levels 18
3.12.4. Submodule Names 18
3.12.5. submods CDDL . 18

4. Encoding . 18
4.1. Common CDDL Types . 19
4.2. CDDL for CWT-defined Claims 19
4.3. JSON . 19
4.3.1. JSON Labels . 19
4.3.2. JSON Interoperability 20

4.4. CBOR . 20
4.4.1. CBOR Labels . 20
4.4.2. CBOR Interoperability 21

4.5. Collected CDDL . 22
5. IANA Considerations . 23
5.1. Reuse of CBOR Web Token (CWT) Claims Registry 23
5.1.1. Claims Registered by This Document 23

6. Privacy Considerations 24
6.1. UEID Privacy Considerations 24

7. Security Considerations 25
7.1. Key Provisioning . 25
7.1.1. Transmission of Key Material 25

7.2. Transport Security 25
7.3. Multiple EAT Consumers 26

8. References . 26
8.1. Normative References 26
8.2. Informative References 28

Appendix A. Examples . 30
A.1. Very Simple EAT . 30
A.2. Example with Submodules, Nesting and Security Levels . . 30

Appendix B. UEID Design Rationale 30
B.1. Collision Probability 30
B.2. No Use of UUID . 33

Appendix C. Changes from Previous Drafts 34
C.1. From draft-rats-eat-01 34
C.2. From draft-mandyam-rats-eat-00 34
C.3. From draft-ietf-rats-eat-01 34
C.4. From draft-ietf-rats-eat-02 34

 Authors' Addresses . 35

https://datatracker.ietf.org/doc/html/draft-rats-eat-01
https://datatracker.ietf.org/doc/html/draft-mandyam-rats-eat-00
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-01
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-02

Mandyam, et al. Expires March 4, 2021 [Page 3]

Internet-Draft EAT August 2020

1. Introduction

 Remote device attestation is a fundamental service that allows a
 remote device such as a mobile phone, an Internet-of-Things (IoT)
 device, or other endpoint to prove itself to a relying party, a
 server or a service. This allows the relying party to know some
 characteristics about the device and decide whether it trusts the
 device.

 Remote attestation is a fundamental service that can underlie other
 protocols and services that need to know about the trustworthiness of
 the device before proceeding. One good example is biometric
 authentication where the biometric matching is done on the device.
 The relying party needs to know that the device is one that is known
 to do biometric matching correctly. Another example is content
 protection where the relying party wants to know the device will
 protect the data. This generalizes on to corporate enterprises that
 might want to know that a device is trustworthy before allowing
 corporate data to be accessed by it.

 The notion of attestation here is large and may include, but is not
 limited to the following:

 o Proof of the make and model of the device hardware (HW)

 o Proof of the make and model of the device processor, particularly
 for security-oriented chips

 o Measurement of the software (SW) running on the device

 o Configuration and state of the device

 o Environmental characteristics of the device such as its GPS
 location

1.1. CDDL, CWT and JWT

 An EAT token is either a CWT as defined in [RFC8392] or a JWT as
 defined in [RFC7519]. This specification defines additional claims
 for entity attestation.

 This specification uses CDDL, [RFC8610], as the primary formalism to
 define each claim. The implementor then interprets the CDDL to come
 to either the CBOR [RFC7049] or JSON [ECMAScript] representation. In
 the case of JSON, Appendix E of [RFC8610] is followed. Additional
 rules are given in Section 4.3.2 of this document where Appendix E is
 insufficient. (Note that this is not to define a general means to
 translate between CBOR and JSON, but only to define enough such that

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8610#appendix-E

Mandyam, et al. Expires March 4, 2021 [Page 4]

Internet-Draft EAT August 2020

 the claims defined in this document can be rendered unambiguously in
 JSON).

1.2. Entity Overview

 An "entity" can be any device or device subassembly ("submodule")
 that can generate its own attestation in the form of an EAT. The
 attestation should be cryptographically verifiable by the EAT
 consumer. An EAT at the device-level can be composed of several
 submodule EAT's. It is assumed that any entity that can create an
 EAT does so by means of a dedicated root-of-trust (RoT).

 Modern devices such as a mobile phone have many different execution
 environments operating with different security levels. For example,
 it is common for a mobile phone to have an "apps" environment that
 runs an operating system (OS) that hosts a plethora of downloadable
 apps. It may also have a TEE (Trusted Execution Environment) that is
 distinct, isolated, and hosts security-oriented functionality like
 biometric authentication. Additionally, it may have an eSE (embedded
 Secure Element) - a high security chip with defenses against HW
 attacks that can serve as a RoT. This device attestation format
 allows the attested data to be tagged at a security level from which
 it originates. In general, any discrete execution environment that
 has an identifiable security level can be considered an entity.

1.3. EAT Operating Models

 At least the following three participants exist in all EAT operating
 models. Some operating models have additional participants.

 The Entity. This is the phone, the IoT device, the sensor, the sub-
 assembly or such that the attestation provides information about.

 The Manufacturer. The company that made the entity. This may be a
 chip vendor, a circuit board module vendor or a vendor of finished
 consumer products.

 The Relying Party. The server, service or company that makes use of
 the information in the EAT about the entity.

 In all operating models, the manufacturer provisions some secret
 attestation key material (AKM) into the entity during manufacturing.
 This might be during the manufacturer of a chip at a fabrication
 facility (fab) or during final assembly of a consumer product or any
 time in between. This attestation key material is used for signing
 EATs.

Mandyam, et al. Expires March 4, 2021 [Page 5]

Internet-Draft EAT August 2020

 In all operating models, hardware and/or software on the entity
 create an EAT of the format described in this document. The EAT is
 always signed by the attestation key material provisioned by the
 manufacturer.

 In all operating models, the relying party must end up knowing that
 the signature on the EAT is valid and consistent with data from
 claims in the EAT. This can happen in many different ways. Here are
 some examples.

 o The EAT is transmitted to the relying party. The relying party
 gets corresponding key material (e.g. a root certificate) from the
 manufacturer. The relying party performs the verification.

 o The EAT is transmitted to the relying party. The relying party
 transmits the EAT to a verification service offered by the
 manufacturer. The server returns the validated claims.

 o The EAT is transmitted directly to a verification service, perhaps
 operated by the manufacturer or perhaps by another party. It
 verifies the EAT and makes the validated claims available to the
 relying party. It may even modify the claims in some way and re-
 sign the EAT (with a different signing key).

 All these operating models are supported and there is no preference
 of one over the other. It is important to support this variety of
 operating models to generally facilitate deployment and to allow for
 some special scenarios. One special scenario has a validation
 service that is monetized, most likely by the manufacturer. In
 another, a privacy proxy service processes the EAT before it is
 transmitted to the relying party. In yet another, symmetric key
 material is used for signing. In this case the manufacturer should
 perform the verification, because any release of the key material
 would enable a participant other than the entity to create valid
 signed EATs.

1.4. What is Not Standardized

 The following is not standardized for EAT, just the same they are not
 standardized for CWT or JWT.

1.4.1. Transmission Protocol

 EATs may be transmitted by any protocol the same as CWTs and JWTs.
 For example, they might be added in extension fields of other
 protocols, bundled into an HTTP header, or just transmitted as files.
 This flexibility is intentional to allow broader adoption. This
 flexibility is possible because EAT's are self-secured with signing

Mandyam, et al. Expires March 4, 2021 [Page 6]

Internet-Draft EAT August 2020

 (and possibly additionally with encryption and anti-replay). The
 transmission protocol is not required to fulfill any additional
 security requirements.

 For certain devices, a direct connection may not exist between the
 EAT-producing device and the Relying Party. In such cases, the EAT
 should be protected against malicious access. The use of COSE and
 JOSE allows for signing and encryption of the EAT. Therefore, even
 if the EAT is conveyed through intermediaries between the device and
 Relying Party, such intermediaries cannot easily modify the EAT
 payload or alter the signature.

1.4.2. Signing Scheme

 The term "signing scheme" is used to refer to the system that
 includes end-end process of establishing signing attestation key
 material in the entity, signing the EAT, and verifying it. This
 might involve key IDs and X.509 certificate chains or something
 similar but different. The term "signing algorithm" refers just to
 the algorithm ID in the COSE signing structure. No particular
 signing algorithm or signing scheme is required by this standard.

 There are three main implementation issues driving this. First,
 secure non-volatile storage space in the entity for the attestation
 key material may be highly limited, perhaps to only a few hundred
 bits, on some small IoT chips. Second, the factory cost of
 provisioning key material in each chip or device may be high, with
 even millisecond delays adding to the cost of a chip. Third,
 privacy-preserving signing schemes like ECDAA (Elliptic Curve Direct
 Anonymous Attestation) are complex and not suitable for all use
 cases.

 Over time to faciliate interoperability, some signing schemes may be
 defined in EAT profiles or other documents either in the IETF or
 outside.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document reuses terminology from JWT [RFC7519], COSE [RFC8152],
 and CWT [RFC8392].

 Claim Name. The human-readable name used to identify a claim.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8392

Mandyam, et al. Expires March 4, 2021 [Page 7]

Internet-Draft EAT August 2020

 Claim Key. The CBOR map key or JSON name used to identify a claim.

 Claim Value. The CBOR map or JSON object value representing the
 value of the claim.

 CWT Claims Set. The CBOR map or JSON object that contains the claims
 conveyed by the CWT or JWT.

 Attestation Key Material (AKM). The key material used to sign the
 EAT token. If it is done symmetrically with HMAC, then this is a
 simple symmetric key. If it is done with ECC, such as an IEEE
 DevID [IDevID], then this is the private part of the EC key pair.
 If ECDAA is used, (e.g., as used by Enhanced Privacy ID, i.e.
 EPID) then it is the key material needed for ECDAA.

3. The Claims

 This section describes new claims defined for attestation. It also
 mentions several claims defined by CWT and JWT that are particularly
 important for EAT.

 Note also: * Any claim defined for CWT or JWT may be used in an EAT
 including those in the CWT [IANA.CWT.Claims] and JWT IANA
 [IANA.JWT.Claims] claims registries.

 o All claims are optional

 o No claims are mandatory

 o All claims that are not understood by implementations MUST be
 ignored

 CDDL along with text descriptions is used to define each claim
 indepdent of encoding. Each claim is defined as a CDDL group (the
 group is a general aggregation and type definition feature of CDDL).
 In the encoding section Section 4, the CDDL groups turn into CBOR map
 entries and JSON name/value pairs.

3.1. Token ID Claim (cti and jti)

 CWT defines the "cti" claim. JWT defines the "jti" claim. These are
 equivalent to each other in EAT and carry a unique token identifier
 as they do in JWT and CWT. They may be used to defend against re use
 of the token but are distinct from the nonce that is used by the
 relying party to guarantee freshness and defend against replay.

Mandyam, et al. Expires March 4, 2021 [Page 8]

Internet-Draft EAT August 2020

3.2. Timestamp claim (iat)

 The "iat" claim defined in CWT and JWT is used to indicate the date-
 of-creation of the token.

3.3. Nonce Claim (nonce)

 All EATs should have a nonce to prevent replay attacks. The nonce is
 generated by the relying party, the end consumer of the token. It is
 conveyed to the entity over whatever transport is in use before the
 token is generated and then included in the token as the nonce claim.

 This documents the nonce claim for registration in the IANA CWT
 claims registry. This is equivalent to the JWT nonce claim that is
 already registered.

 The nonce must be at least 8 bytes (64 bits) as fewer are unlikely to
 be secure. A maximum of 64 bytes is set to limit the memory a
 constrained implementation uses. This size range is not set for the
 already-registered JWT nonce, but it should follow this size
 recommendation when used in an EAT.

 Multiple nonces are allowed to accommodate multistage verification
 and consumption.

3.3.1. nonce CDDL

 nonce-type = [+ bstr .size (8..64)]

 nonce-claim = (
 nonce => nonce-type
)

3.4. Universal Entity ID Claim (ueid)

 UEID's identify individual manufactured entities / devices such as a
 mobile phone, a water meter, a Bluetooth speaker or a networked
 security camera. It may identify the entire device or a submodule or
 subsystem. It does not identify types, models or classes of devices.
 It is akin to a serial number, though it does not have to be
 sequential.

 UEID's must be universally and globally unique across manufacturers
 and countries. UEIDs must also be unique across protocols and
 systems, as tokens are intended to be embedded in many different
 protocols and systems. No two products anywhere, even in completely
 different industries made by two different manufacturers in two
 different countries should have the same UEID (if they are not global

Mandyam, et al. Expires March 4, 2021 [Page 9]

Internet-Draft EAT August 2020

 and universal in this way, then relying parties receiving them will
 have to track other characteristics of the device to keep devices
 distinct between manufacturers).

 There are privacy considerations for UEID's. See Section 6.1.

 The UEID should be permanent. It should never change for a given
 device / entity. In addition, it should not be reprogrammable.
 UEID's are variable length. All implementations MUST be able to
 receive UEID's that are 33 bytes long (1 type byte and 256 bits).
 The recommended maximum sent is also 33 bytes.

 When the entity constructs the UEID, the first byte is a type and the
 following bytes the ID for that type. Several types are allowed to
 accommodate different industries and different manufacturing
 processes and to give options to avoid paying fees for certain types
 of manufacturer registrations.

 Creation of new types requires a Standards Action [RFC8126].

https://datatracker.ietf.org/doc/html/rfc8126

Mandyam, et al. Expires March 4, 2021 [Page 10]

Internet-Draft EAT August 2020

 +------+------+---+
 | Type | Type | Specification |
 | Byte | Name | |
 +------+------+---+
0x01	RAND	This is a 128, 192 or 256 bit random number
		generated once and stored in the device. This may
		be constructed by concatenating enough identifiers
		to make up an equivalent number of random bits and
		then feeding the concatenation through a
		cryptographic hash function. It may also be a
		cryptographic quality random number generated once
		at the beginning of the life of the device and
		stored. It may not be smaller than 128 bits.
0x02	IEEE	This makes use of the IEEE company identification
	EUI	registry. An EUI is either an EUI-48, EUI-60 or
		EUI-64 and made up of an OUI, OUI-36 or a CID,
		different registered company identifiers, and some
		unique per-device identifier. EUIs are often the
		same as or similar to MAC addresses. This type
		includes MAC-48, an obsolete name for EUI-48. (Note
		that while devices with multiple network interfaces
		may have multiple MAC addresses, there is only one
		UEID for a device) [IEEE.802-2001], [OUI.Guide]
0x03	IMEI	This is a 14-digit identifier consisting of an
		8-digit Type Allocation Code and a 6-digit serial
		number allocated by the manufacturer, which SHALL
		be encoded as a binary integer over 48 bits. The
		IMEI value encoded SHALL NOT include Luhn checksum
		or SVN information. [ThreeGPP.IMEI]
 +------+------+---+

 Table 1: UEID Composition Types

 UEID's are not designed for direct use by humans (e.g., printing on
 the case of a device), so no textual representation is defined.

 The consumer (the relying party) of a UEID MUST treat a UEID as a
 completely opaque string of bytes and not make any use of its
 internal structure. For example, they should not use the OUI part of
 a type 0x02 UEID to identify the manufacturer of the device. Instead
 they should use the oemid claim that is defined elsewhere. The
 reasons for this are:

 o UEIDs types may vary freely from one manufacturer to the next.

 o New types of UEIDs may be created. For example, a type 0x07 UEID
 may be created based on some other manufacturer registration
 scheme.

Mandyam, et al. Expires March 4, 2021 [Page 11]

Internet-Draft EAT August 2020

 o Device manufacturers are allowed to change from one type of UEID
 to another anytime they want. For example, they may find they can
 optimize their manufacturing by switching from type 0x01 to type
 0x02 or vice versa. The main requirement on the manufacturer is
 that UEIDs be universally unique.

3.4.1. ueid CDDL

 ueid-claim = (
 ueid => bstr .size (7..33)
)

3.5. Origination Claim (origination)

 This claim describes the parts of the device or entity that are
 creating the EAT. Often it will be tied back to the device or chip
 manufacturer. The following table gives some examples:

 +-------------------+---+
 | Name | Description |
 +-------------------+---+
Acme-TEE	The EATs are generated in the TEE authored
	and configured by "Acme"
Acme-TPM	The EATs are generated in a TPM manufactured
	by "Acme"
Acme-Linux-Kernel	The EATs are generated in a Linux kernel
	configured and shipped by "Acme"
Acme-TA	The EATs are generated in a Trusted
	Application (TA) authored by "Acme"
 +-------------------+---+

 TODO: consider a more structure approach where the name and the URI
 and other are in separate fields.

 TODO: This needs refinement. It is somewhat parallel to issuer claim
 in CWT in that it describes the authority that created the token.

3.5.1. origination CDDL

 origination-claim = (
 origination => string-or-uri
)

3.6. OEM Identification by IEEE (oemid)

 The IEEE operates a global registry for MAC addresses and company
 IDs. This claim uses that database to identify OEMs. The contents
 of the claim may be either an IEEE MA-L, MA-M, MA-S or an IEEE CID

Mandyam, et al. Expires March 4, 2021 [Page 12]

Internet-Draft EAT August 2020

 [IEEE.RA]. An MA-L, formerly known as an OUI, is a 24-bit value used
 as the first half of a MAC address. MA-M similarly is a 28-bit value
 uses as the first part of a MAC address, and MA-S, formerly known as
 OUI-36, a 36-bit value. Many companies already have purchased one of
 these. A CID is also a 24-bit value from the same space as an MA-L,
 but not for use as a MAC address. IEEE has published Guidelines for
 Use of EUI, OUI, and CID [OUI.Guide] and provides a lookup services
 [OUI.Lookup]

 Companies that have more than one of these IDs or MAC address blocks
 should pick one and prefer that for all their devices.

 Commonly, these are expressed in Hexadecimal Representation
 [IEEE.802-2001] also called the Canonical format. When this claim is
 encoded the order of bytes in the bstr are the same as the order in
 the Hexadecimal Representation. For example, an MA-L like "AC-DE-48"
 would be encoded in 3 bytes with values 0xAC, 0xDE, 0x48. For JSON
 encoded tokens, this is further base64url encoded.

3.6.1. oemid CDDL

 oemid-claim = (
 oemid => bstr
)

3.7. The Security Level Claim (security-level)

 EATs have a claim that roughly characterizes the device / entities
 ability to defend against attacks aimed at capturing the signing key,
 forging claims and at forging EATs. This is done by roughly defining
 four security levels as described below. This is similar to the
 security levels defined in the Metadata Service defined by the Fast
 Identity Online (FIDO) Alliance (TODO: reference).

 These claims describe security environment and countermeasures
 available on the end-entity / client device where the attestation key
 reside and the claims originate.

 1 - Unrestricted There is some expectation that implementor will
 protect the attestation signing keys at this level. Otherwise the
 EAT provides no meaningful security assurances.

 2- Restricted Entities at this level should not be general-purpose
 operating environments that host features such as app download
 systems, web browsers and complex productivity applications. It
 is akin to the Secure Restricted level (see below) without the
 security orientation. Examples include a Wi-Fi subsystem, an IoT
 camera, or sensor device.

Mandyam, et al. Expires March 4, 2021 [Page 13]

Internet-Draft EAT August 2020

 3 - Secure Restricted Entities at this level must meet the criteria
 defined by FIDO Allowed Restricted Operating Environments (TODO:
 reference). Examples include TEE's and schemes using
 virtualization-based security. Like the FIDO security goal,
 security at this level is aimed at defending well against large-
 scale network / remote attacks against the device.

 4 - Hardware Entities at this level must include substantial defense
 against physical or electrical attacks against the device itself.
 It is assumed any potential attacker has captured the device and
 can disassemble it. Example include TPMs and Secure Elements.

 This claim is not intended as a replacement for a proper end-device
 security certification schemes such as those based on FIPS (TODO:
 reference) or those based on Common Criteria (TODO: reference). The
 claim made here is solely a self-claim made by the Entity Originator.

3.7.1. security-level CDDL

 security-level-type = &(
 unrestricted: 1,
 restricted: 2,
 secure-restricted: 3,
 hardware: 4
)

 security-level-claim = (
 security-level => security-level-type
)

3.8. Secure Boot and Debug Enable State Claims (boot-state)

 This claim is an array of five Boolean values indicating the boot and
 debug state of the entity.

3.8.1. Secure Boot Enabled

 This indicates whether secure boot is enabled either for an entire
 device or an individual submodule. If it appears at the device
 level, then this means that secure boot is enabled for all
 submodules. Secure boot enablement allows a secure boot loader to
 authenticate software running either in a device or a submodule prior
 allowing execution.

Mandyam, et al. Expires March 4, 2021 [Page 14]

Internet-Draft EAT August 2020

3.8.2. Debug Disabled

 This indicates whether debug capabilities are disabled for an entity
 (i.e. value of 'true'). Debug disablement is considered a
 prerequisite before an entity is considered operational.

3.8.3. Debug Disabled Since Boot

 This claim indicates whether debug capabilities for the entity were
 not disabled in any way since boot (i.e. value of 'true').

3.8.4. Debug Permanent Disable

 This claim indicates whether debug capabilities for the entity are
 permanently disabled (i.e. value of 'true'). This value can be set
 to 'true' also if only the manufacturer is allowed to enabled debug,
 but the end user is not.

3.8.5. Debug Full Permanent Disable

 This claim indicates whether debug capabilities for the entity are
 permanently disabled (i.e. value of 'true'). This value can only be
 set to 'true' if no party can enable debug capabilities for the
 entity. Often this is implemented by blowing a fuse on a chip as
 fuses cannot be restored once blown.

3.8.6. boot-state CDDL

 boot-state-type = [
 secure-boot-enabled => bool,
 debug-disabled => bool,
 debug-disabled-since-boot => bool,
 debug-permanent-disable => bool,
 debug-full-permanent-disable => bool
]

 boot-state-claim = (
 boot-state => boot-state-type
)

3.9. The Location Claim (location)

 The location claim is a CBOR-formatted object that describes the
 location of the device entity from which the attestation originates.
 It is comprised of a map of additional sub claims that represent the
 actual location coordinates (latitude, longitude and altitude). The
 location coordinate claims are consistent with the WGS84 coordinate

Mandyam, et al. Expires March 4, 2021 [Page 15]

Internet-Draft EAT August 2020

 system [WGS84]. In addition, a sub claim providing the estimated
 accuracy of the location measurement is defined.

3.9.1. location CDDL

 location-type = {
 latitude => number,
 longitude => number,
 ? altitude => number,
 ? accuracy => number,
 ? altitude-accuracy => number,
 ? heading => number,
 ? speed => number
 }

 location-claim = (
 location => location-type
)

3.10. The Age Claim (age)

 The "age" claim contains a value that represents the number of
 seconds that have elapsed since the token was created, measurement
 was made, or location was obtained. Typical attestable values are
 sent as soon as they are obtained. However, in the case that such a
 value is buffered and sent at a later time and a sufficiently
 accurate time reference is unavailable for creation of a timestamp,
 then the age claim is provided.

3.10.1. age CDDL

 age-claim = (
 age => uint
)

3.11. The Uptime Claim (uptime)

 The "uptime" claim contains a value that represents the number of
 seconds that have elapsed since the entity or submod was last booted.

3.11.1. uptime CDDL

 uptime-claim = (
 uptime => uint
)

Mandyam, et al. Expires March 4, 2021 [Page 16]

Internet-Draft EAT August 2020

3.12. The Submods Part of a Token (submods)

 Some devices are complex, having many subsystems or submodules. A
 mobile phone is a good example. It may have several connectivity
 submodules for communications (e.g., Wi-Fi and cellular). It may
 have subsystems for low-power audio and video playback. It may have
 one or more security-oriented subsystems like a TEE or a Secure
 Element.

 The claims for each these can be grouped together in a submodule.

 The submods part of a token a single map/object with many entries,
 one per submodule. There is only one submods map in a token. It is
 identified by its specific label. It is a peer to other claims, but
 it is not called a claim because it is a container for a claim set
 rather than an individual claim. This submods part of a token allows
 what might be called recursion. It allows claim sets inside of claim
 sets inside of claims sets...

3.12.1. Two Types of Submodules

 Each entry in the submod map one of two types:

 o A non-token submodule that is a map or object directly containing
 claims for the submodule.

 o A nested EAT that is a fully-formed, independently signed EAT
 token

3.12.1.1. Non-token Submodules

 Essentially this type of submodule, is just a sub-map or sub-object
 containing claims. It is recognized from the other type by being a
 data item of type map in CBOR or by being an object in JSON.

 The contents are claims about the submodule of types defined in this
 document or anywhere else claims types are defined.

3.12.1.2. Nested EATs

 This type of submodule is a fully formed EAT as described here. In
 this case the submodule has key material distinct from the containing
 EAT token that allows it to sign on its own.

 When an EAT is nested in another EAT as a submodule the nested EAT
 MUST use the CBOR CWT tag. This clearly distinguishes it from the
 non-token submodules.

Mandyam, et al. Expires March 4, 2021 [Page 17]

Internet-Draft EAT August 2020

3.12.2. No Inheritance

 The subordinate modules do not inherit anything from the containing
 token. The subordinate modules must explicitly include all of their
 claims. This is the case even for claims like the nonce and age.

 This rule is in place for simplicity. It avoids complex inheritance
 rules that might vary from one type of claim to another. (TODO: fix
 the boot claim which does have inheritance as currently described).

3.12.3. Security Levels

 The security level of the non-token subordinate modules should always
 be less than or equal to that of the containing modules in the case
 of non-token submodules. It makes no sense for a module of lesser
 security to be signing claims of a module of higher security. An
 example of this is a TEE signing claims made by the non-TEE parts
 (e.g. the high-level OS) of the device.

 The opposite may be true for the nested tokens. They usually have
 their own more secure key material. An example of this is an
 embedded secure element.

3.12.4. Submodule Names

 The label or name for each submodule in the submods map is a text
 string naming the submodule. No submodules may have the same name.

3.12.5. submods CDDL

 submods-type = { + submodule }

 submodule = (
 submod_name => eat-claims / eat-token
)

 submod_name = tstr / int

 submods-part = (
 submods => submod-type
)

4. Encoding

 This makes use of the types defined in CDDL Appendix D, Standard
 Prelude.

Mandyam, et al. Expires March 4, 2021 [Page 18]

Internet-Draft EAT August 2020

4.1. Common CDDL Types

string-or-uri = uri / tstr; See JSON section below for JSON encoding of string-
or-uri

4.2. CDDL for CWT-defined Claims

 This section provides CDDL for the claims defined in CWT. It is non-
 normative as [RFC8392] is the authoritative definition of these
 claims.

rfc8392-claim //= (issuer => text)
rfc8392-claim //= (subject => text)
rfc8392-claim //= (audience => text)
rfc8392-claim //= (expiration => time)
rfc8392-claim //= (not-before => time)
rfc8392-claim //= (issued-at => time)
rfc8392-claim //= (cwt-id => bytes)

 issuer = 1
 subject = 2
 audience = 3
 expiration = 4
 not-before = 5
 issued-at = 6
 cwt-id = 7

 cwt-claim = rfc8392-claim

4.3. JSON

4.3.1. JSON Labels

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc8392

Mandyam, et al. Expires March 4, 2021 [Page 19]

Internet-Draft EAT August 2020

 ueid = "ueid"
 origination = "origination"
 oemid = "oemid"
 security-level = "security-level"
 boot-state = "boot-state"
 location = "location"
 age = "age"
 uptime = "uptime"
 nested-eat = "nested-eat"
 submods = "submods"

 latitude = "lat"
 longitude = "long""
 altitude = "alt"
 accuracy = "accry"
 altitude-accuracy = "alt-accry"
 heading = "heading"
 speed = "speed"

4.3.2. JSON Interoperability

 JSON should be encoded per RFC 8610 Appendix E. In addition, the
 following CDDL types are encoded in JSON as follows:

 o bstr - must be base64url encoded

 o time - must be encoded as NumericDate as described section 2 of
 [RFC7519].

 o string-or-uri - must be encoded as StringOrURI as described
section 2 of [RFC7519].

4.4. CBOR

4.4.1. CBOR Labels

https://datatracker.ietf.org/doc/html/rfc8610#appendix-E
https://datatracker.ietf.org/doc/html/rfc7519#section-2
https://datatracker.ietf.org/doc/html/rfc7519#section-2
https://datatracker.ietf.org/doc/html/rfc7519#section-2

Mandyam, et al. Expires March 4, 2021 [Page 20]

Internet-Draft EAT August 2020

 ueid = To_be_assigned
 origination = To_be_assigned
 oemid = To_be_assigned
 security-level = To_be_assigned
 boot-state = To_be_assigned
 location = To_be_assigned
 age = To_be_assigned
 uptime = To_be_assigned
 submods = To_be_assigned
 nonce = To_be_assigned

 latitude = 1
 longitude = 2
 altitude = 3
 accuracy = 4
 altitude-accuracy = 5
 heading = 6
 speed = 7

4.4.2. CBOR Interoperability

 Variations in the CBOR serializations supported in CBOR encoding and
 decoding are allowed and suggests that CBOR-based protocols specify
 how this variation is handled. This section specifies what formats
 MUST be supported in order to achieve interoperability.

 The assumption is that the entity is likely to be a constrained
 device and relying party is likely to be a very capable server. The
 approach taken is that the entity generating the token can use
 whatever encoding it wants, specifically encodings that are easier to
 implement such as indefinite lengths. The relying party receiving
 the token must support decoding all encodings.

 These rules cover all types used in the claims in this document.
 They also are recommendations for additional claims.

 Canonical CBOR encoding, Preferred Serialization and
 Deterministically Encoded CBOR are explicitly NOT required as they
 would place an unnecessary burden on the entity implementation,
 particularly if the entity implementation is implemented in hardware.

 o Integer Encoding (major type 0, 1) - The entity may use any
 integer encoding allowed by CBOR. The server MUST accept all
 integer encodings allowed by CBOR.

 o String Encoding (major type 2 and 3) - The entity can use any
 string encoding allowed by CBOR including indefinite lengths. It

Mandyam, et al. Expires March 4, 2021 [Page 21]

Internet-Draft EAT August 2020

 may also encode the lengths of strings in any way allowed by CBOR.
 The server must accept all string encodings.

 o Major type 2, bstr, SHOULD be have tag 21 to indicate conversion
 to base64url in case that conversion is performed.

 o Map and Array Encoding (major type 4 and 5) - The entity can use
 any array or map encoding allowed by CBOR including indefinite
 lengths. Sorting of map keys is not required. Duplicate map keys
 are not allowed. The server must accept all array and map
 encodings. The server may reject maps with duplicate map keys.

 o Date and Time - The entity should send dates as tag 1 encoded as
 64-bit or 32-bit integers. The entity may not send floating-point
 dates. The server must support tag 1 epoch-based dates encoded as
 64-bit or 32-bit integers. The entity may send tag 0 dates,
 however tag 1 is preferred. The server must support tag 0 UTC
 dates.

 o URIs - URIs should be encoded as text strings and marked with tag
 32.

 o Floating Point - The entity may use any floating-point encoding.
 The relying party must support decoding of all types of floating-
 point.

 o Other types - Use of Other types like bignums, regular expressions
 and such, SHOULD NOT be used. The server MAY support them but is
 not required to so interoperability is not guaranteed.

4.5. Collected CDDL

 A generic-claim is any CBOR map entry or JSON name/value pair.

Mandyam, et al. Expires March 4, 2021 [Page 22]

Internet-Draft EAT August 2020

eat-claims = { ; the top-level payload that is signed using COSE or JOSE
 * claim
}

claim = (
 ueid-claim //
 origination-claim //
 oemid-claim //
 security-level-claim //
 boot-state-claim //
 location-claim //
 age-claim //
 uptime-claim //
 submods-part //
 cwt-claim //
 generic-claim-type //
)

eat-token ; This is a set of eat-claims signed using COSE

 TODO: copy the rest of the CDDL here (wait until the CDDL is more
 settled so as to avoid copying multiple times)

5. IANA Considerations

5.1. Reuse of CBOR Web Token (CWT) Claims Registry

 Claims defined for EAT are compatible with those of CWT so the CWT
 Claims Registry is re used. No new IANA registry is created. All
 EAT claims should be registered in the CWT and JWT Claims Registries.

5.1.1. Claims Registered by This Document

 o Claim Name: UEID

 o Claim Description: The Universal Entity ID

 o JWT Claim Name: N/A

 o Claim Key: 8

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 TODO: add the rest of the claims in here

Mandyam, et al. Expires March 4, 2021 [Page 23]

Internet-Draft EAT August 2020

6. Privacy Considerations

 Certain EAT claims can be used to track the owner of an entity and
 therefore, implementations should consider providing privacy-
 preserving options dependent on the intended usage of the EAT.
 Examples would include suppression of location claims for EAT's
 provided to unauthenticated consumers.

6.1. UEID Privacy Considerations

 A UEID is usually not privacy-preserving. Any set of relying parties
 that receives tokens that happen to be from a single device will be
 able to know the tokens are all from the same device and be able to
 track the device. Thus, in many usage situations ueid violates
 governmental privacy regulation. In other usage situations UEID will
 not be allowed for certain products like browsers that give privacy
 for the end user. It will often be the case that tokens will not
 have a UEID for these reasons.

 There are several strategies that can be used to still be able to put
 UEID's in tokens:

 o The device obtains explicit permission from the user of the device
 to use the UEID. This may be through a prompt. It may also be
 through a license agreement. For example, agreements for some
 online banking and brokerage services might already cover use of a
 UEID.

 o The UEID is used only in a particular context or particular use
 case. It is used only by one relying party.

 o The device authenticates the relying party and generates a derived
 UEID just for that particular relying party. For example, the
 relying party could prove their identity cryptographically to the
 device, then the device generates a UEID just for that relying
 party by hashing a proofed relying party ID with the main device
 UEID.

 Note that some of these privacy preservation strategies result in
 multiple UEIDs per device. Each UEID is used in a different context,
 use case or system on the device. However, from the view of the
 relying party, there is just one UEID and it is still globally
 universal across manufacturers.

Mandyam, et al. Expires March 4, 2021 [Page 24]

Internet-Draft EAT August 2020

7. Security Considerations

 The security considerations provided in Section 8 of [RFC8392] and
Section 11 of [RFC7519] apply to EAT in its CWT and JWT form,

 respectively. In addition, implementors should consider the
 following.

7.1. Key Provisioning

 Private key material can be used to sign and/or encrypt the EAT, or
 can be used to derive the keys used for signing and/or encryption.
 In some instances, the manufacturer of the entity may create the key
 material separately and provision the key material in the entity
 itself. The manfuacturer of any entity that is capable of producing
 an EAT should take care to ensure that any private key material be
 suitably protected prior to provisioning the key material in the
 entity itself. This can require creation of key material in an
 enclave (see [RFC4949] for definition of "enclave"), secure
 transmission of the key material from the enclave to the entity using
 an appropriate protocol, and persistence of the private key material
 in some form of secure storage to which (preferably) only the entity
 has access.

7.1.1. Transmission of Key Material

 Regarding transmission of key material from the enclave to the
 entity, the key material may pass through one or more intermediaries.
 Therefore some form of protection ("key wrapping") may be necessary.
 The transmission itself may be performed electronically, but can also
 be done by human courier. In the latter case, there should be
 minimal to no exposure of the key material to the human (e.g.
 encrypted portable memory). Moreover, the human should transport the
 key material directly from the secure enclave where it was created to
 a destination secure enclave where it can be provisioned.

7.2. Transport Security

 As stated in Section 8 of [RFC8392], "The security of the CWT relies
 upon on the protections offered by COSE". Similar considerations
 apply to EAT when sent as a CWT. However, EAT introduces the concept
 of a nonce to protect against replay. Since an EAT may be created by
 an entity that may not support the same type of transport security as
 the consumer of the EAT, intermediaries may be required to bridge
 communications between the entity and consumer. As a result, it is
 RECOMMENDED that both the consumer create a nonce, and the entity
 leverage the nonce along with COSE mechanisms for encryption and/or
 signing to create the EAT.

https://datatracker.ietf.org/doc/html/rfc8392#section-8
https://datatracker.ietf.org/doc/html/rfc7519#section-11
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc8392#section-8

Mandyam, et al. Expires March 4, 2021 [Page 25]

Internet-Draft EAT August 2020

 Similar considerations apply to the use of EAT as a JWT. Although
 the security of a JWT leverages the JSON Web Encryption (JWE) and
 JSON Web Signature (JWS) specifications, it is still recommended to
 make use of the EAT nonce.

7.3. Multiple EAT Consumers

 In many cases, more than one EAT consumer may be required to fully
 verify the entity attestation. Examples include individual consumers
 for nested EATs, or consumers for individual claims with an EAT.
 When multiple consumers are required for verification of an EAT, it
 is important to minimize information exposure to each consumer. In
 addition, the communication between multiple consumers should be
 secure.

 For instance, consider the example of an encrypted and signed EAT
 with multiple claims. A consumer may receive the EAT (denoted as the
 "receiving consumer"), decrypt its payload, verify its signature, but
 then pass specific subsets of claims to other consumers for
 evaluation ("downstream consumers"). Since any COSE encryption will
 be removed by the receiving consumer, the communication of claim
 subsets to any downstream consumer should leverage a secure protocol
 (e.g.one that uses transport-layer security, i.e. TLS),

 However, assume the EAT of the previous example is hierarchical and
 each claim subset for a downstream consumer is created in the form of
 a nested EAT. Then transport security between the receiving and
 downstream consumers is not strictly required. Nevertheless,
 downstream consumers of a nested EAT should provide a nonce unique to
 the EAT they are consuming.

8. References

8.1. Normative References

 [IANA.CWT.Claims]
 IANA, "CBOR Web Token (CWT) Claims",
 <http://www.iana.org/assignments/cwt>.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token (JWT) Claims",
 <https://www.iana.org/assignments/jwt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

http://www.iana.org/assignments/cwt
https://www.iana.org/assignments/jwt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Mandyam, et al. Expires March 4, 2021 [Page 26]

Internet-Draft EAT August 2020

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [ThreeGPP.IMEI]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Core Network and Terminals; Numbering,
 addressing and identification", 2019,
 <https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=729>.

 [TIME_T] The Open Group Base Specifications, "Vol. 1: Base
 Definitions, Issue 7", Section 4.15 'Seconds Since the
 Epoch', IEEE Std 1003.1, 2013 Edition, 2013,
 <http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/

V1_chap04.html#tag_04_15>.

 [WGS84] National Imagery and Mapping Agency, "National Imagery and
 Mapping Agency Technical Report 8350.2, Third Edition",
 2000, <http://earth-

info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf>.

https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=729
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=729
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

Mandyam, et al. Expires March 4, 2021 [Page 27]

Internet-Draft EAT August 2020

8.2. Informative References

 [ASN.1] International Telecommunication Union, "Information
 Technology -- ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, 1994.

 [BirthdayAttack]
 "Birthday attack",
 <https://en.wikipedia.org/wiki/Birthday_attack.>.

 [ECMAScript]
 "Ecma International, "ECMAScript Language Specification,
 5.1 Edition", ECMA Standard 262", June 2011,
 <http://www.ecma-international.org/ecma-262/5.1/ECMA-

262.pdf>.

 [IDevID] "IEEE Standard, "IEEE 802.1AR Secure Device Identifier"",
 December 2009, <http://standards.ieee.org/findstds/

standard/802.1AR-2009.html>.

 [IEEE.802-2001]
 "IEEE Standard For Local And Metropolitan Area Networks
 Overview And Architecture", 2007,
 <https://webstore.ansi.org/standards/ieee/

ieee8022001r2007>.

 [IEEE.RA] "IEEE Registration Authority",
 <https://standards.ieee.org/products-services/regauth/

index.html>.

 [OUI.Guide]
 "Guidelines for Use of Extended Unique Identifier (EUI),
 Organizationally Unique Identifier (OUI), and Company ID
 (CID)", August 2017,
 <https://standards.ieee.org/content/dam/ieee-

standards/standards/web/documents/tutorials/eui.pdf>.

 [OUI.Lookup]
 "IEEE Registration Authority Assignments",
 <https://regauth.standards.ieee.org/standards-ra-web/pub/

view.html#registries>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

https://en.wikipedia.org/wiki/Birthday_attack
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
https://webstore.ansi.org/standards/ieee/ieee8022001r2007
https://webstore.ansi.org/standards/ieee/ieee8022001r2007
https://standards.ieee.org/products-services/regauth/index.html
https://standards.ieee.org/products-services/regauth/index.html
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122

Mandyam, et al. Expires March 4, 2021 [Page 28]

Internet-Draft EAT August 2020

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [Webauthn]
 Worldwide Web Consortium, "Web Authentication: A Web API
 for accessing scoped credentials", 2016.

Mandyam, et al. Expires March 4, 2021 [Page 29]

https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949

Internet-Draft EAT August 2020

Appendix A. Examples

A.1. Very Simple EAT

 This is shown in CBOR diagnostic form. Only the payload signed by
 COSE is shown.

{
 / nonce / 9:h'948f8860d13a463e8e',
 / UEID / 10:h'0198f50a4ff6c05861c8860d13a638ea4fe2f',
 / boot-state / 12:{true, true, true, true, false}
 / time stamp (iat) / 6:1526542894,
}

A.2. Example with Submodules, Nesting and Security Levels

{
 / nonce / 9:h'948f8860d13a463e8e',
 / UEID / 10:h'0198f50a4ff6c05861c8860d13a638ea4fe2f',
 / boot-state / 12:{true, true, true, true, false}
 / time stamp (iat) / 6:1526542894,
 / seclevel / 11:3, / secure restricted OS /

 / submods / 17:
 {
 / first submod, an Android Application / "Android App Foo" : {
 / seclevel / 11:1, / unrestricted /
 / app data / -70000:'text string'
 },
 / 2nd submod, A nested EAT from a secure element / "Secure Element
Eat" :
 / eat / 61(18(
 / an embedded EAT, bytes of which are not
shown /
))
 / 3rd submod, information about Linux Android / "Linux Android": {
 / seclevel / 11:1, / unrestricted /
 / custom - release / -80000:'8.0.0',
 / custom - version / -80001:'4.9.51+'
 }
 }
}

Appendix B. UEID Design Rationale

B.1. Collision Probability

 This calculation is to determine the probability of a collision of
 UEIDs given the total possible entity population and the number of

 entities in a particular entity management database.

Mandyam, et al. Expires March 4, 2021 [Page 30]

Internet-Draft EAT August 2020

 Three different sized databases are considered. The number of
 devices per person roughly models non-personal devices such as
 traffic lights, devices in stores they shop in, facilities they work
 in and so on, even considering individual light bulbs. A device may
 have individually attested subsystems, for example parts of a car or
 a mobile phone. It is assumed that the largest database will have at
 most 10% of the world's population of devices. Note that databases
 that handle more than a trillion records exist today.

 The trillion-record database size models an easy-to-imagine reality
 over the next decades. The quadrillion-record database is roughly at
 the limit of what is imaginable and should probably be accommodated.
 The 100 quadrillion datadbase is highly speculative perhaps involving
 nanorobots for every person, livestock animal and domesticated bird.
 It is included to round out the analysis.

 Note that the items counted here certainly do not have IP address and
 are not individually connected to the network. They may be connected
 to internal buses, via serial links, Bluetooth and so on. This is
 not the same problem as sizing IP addresses.

 +---------+------------+--------------+------------+----------------+
 | People | Devices / | Subsystems / | Database | Database Size |
 | | Person | Device | Portion | |
 +---------+------------+--------------+------------+----------------+
10	100	10	10%	trillion
billion				(10^12)
10	100,000	10	10%	quadrillion
billion				(10^15)
100	1,000,000	10	10%	100
billion				quadrillion
				(10^17)
 +---------+------------+--------------+------------+----------------+

 This is conceptually similar to the Birthday Problem where m is the
 number of possible birthdays, always 365, and k is the number of
 people. It is also conceptually similar to the Birthday Attack where
 collisions of the output of hash functions are considered.

 The proper formula for the collision calculation is

 p = 1 - e^{-k^2/(2n)}

 p Collision Probability
 n Total possible population
 k Actual population

Mandyam, et al. Expires March 4, 2021 [Page 31]

Internet-Draft EAT August 2020

 However, for the very large values involved here, this formula
 requires floating point precision higher than commonly available in
 calculators and SW so this simple approximation is used. See
 [BirthdayAttack].

 p = k^2 / 2n

 For this calculation:

 p Collision Probability
 n Total population based on number of bits in UEID
 k Population in a database

 +----------------------+--------------+--------------+--------------+
 | Database Size | 128-bit UEID | 192-bit UEID | 256-bit UEID |
 +----------------------+--------------+--------------+--------------+
trillion (10^12)	2 * 10^-15	8 * 10^-35	5 * 10^-55
quadrillion (10^15)	2 * 10^-09	8 * 10^-29	5 * 10^-49
100 quadrillion	2 * 10^-05	8 * 10^-25	5 * 10^-45
(10^17)			
 +----------------------+--------------+--------------+--------------+

 Next, to calculate the probability of a collision occurring in one
 year's operation of a database, it is assumed that the database size
 is in a steady state and that 10% of the database changes per year.
 For example, a trillion record database would have 100 billion states
 per year. Each of those states has the above calculated probability
 of a collision.

 This assumption is a worst-case since it assumes that each state of
 the database is completely independent from the previous state. In
 reality this is unlikely as state changes will be the addition or
 deletion of a few records.

 The following tables gives the time interval until there is a
 probability of a collision based on there being one tenth the number
 of states per year as the number of records in the database.

 t = 1 / ((k / 10) * p)

 t Time until a collision
 p Collision probability for UEID size
 k Database size

Mandyam, et al. Expires March 4, 2021 [Page 32]

Internet-Draft EAT August 2020

 +---------------------+---------------+--------------+--------------+
 | Database Size | 128-bit UEID | 192-bit UEID | 256-bit UEID |
 +---------------------+---------------+--------------+--------------+
trillion (10^12)	60,000 years	10^24 years	10^44 years
quadrillion (10^15)	8 seconds	10^14 years	10^34 years
100 quadrillion	8	10^11 years	10^31 years
(10^17)	microseconds		
 +---------------------+---------------+--------------+--------------+

 Clearly, 128 bits is enough for the near future thus the requirement
 that UEIDs be a minimum of 128 bits.

 There is no requirement for 256 bits today as quadrillion-record
 databases are not expected in the near future and because this time-
 to-collision calculation is a very worst case. A future update of
 the standard may increase the requirement to 256 bits, so there is a
 requirement that implementations be able to receive 256-bit UEIDs.

B.2. No Use of UUID

 A UEID is not a UUID [RFC4122] by conscious choice for the following
 reasons.

 UUIDs are limited to 128 bits which may not be enough for some future
 use cases.

 Today, cryptographic-quality random numbers are available from common
 CPUs and hardware. This hardware was introduced between 2010 and
 2015. Operating systems and cryptographic libraries give access to
 this hardware. Consequently, there is little need for
 implementations to construct such random values from multiple sources
 on their own.

 Version 4 UUIDs do allow for use of such cryptographic-quality random
 numbers, but do so by mapping into the overall UUID structure of time
 and clock values. This structure is of no value here yet adds
 complexity. It also slightly reduces the number of actual bits with
 entropy.

 UUIDs seem to have been designed for scenarios where the implementor
 does not have full control over the environment and uniqueness has to
 be constructed from identifiers at hand. UEID takes the view that
 hardware, software and/or manufacturing process directly implement
 UEID in a simple and direct way. It takes the view that
 cryptographic quality random number generators are readily available
 as they are implemented in commonly used CPU hardware.

https://datatracker.ietf.org/doc/html/rfc4122

Mandyam, et al. Expires March 4, 2021 [Page 33]

Internet-Draft EAT August 2020

Appendix C. Changes from Previous Drafts

 The following is a list of known changes from the previous drafts.
 This list is non-authoritative. It is meant to help reviewers see
 the significant differences.

C.1. From draft-rats-eat-01

 o Added UEID design rationale appendix

C.2. From draft-mandyam-rats-eat-00

 This is a fairly large change in the orientation of the document, but
 not new claims have been added.

 o Separate information and data model using CDDL.

 o Say an EAT is a CWT or JWT

 o Use a map to structure the boot_state and location claims

C.3. From draft-ietf-rats-eat-01

 o Clarifications and corrections for OEMID claim

 o Minor spelling and other fixes

 o Add the nonce claim, clarify jti claim

C.4. From draft-ietf-rats-eat-02

 o Roll all EUIs back into one UEID type

 o UEIDs can be one of three lengths, 128, 192 and 256.

 o Added appendix justifying UEID design and size.

 o Submods part now includes nested eat tokens so they can be named
 and there can be more tha one of them

 o Lots of fixes to the CDDL

 o Added security considerations

https://datatracker.ietf.org/doc/html/draft-rats-eat-01
https://datatracker.ietf.org/doc/html/draft-mandyam-rats-eat-00
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-01
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-02

Mandyam, et al. Expires March 4, 2021 [Page 34]

Internet-Draft EAT August 2020

Authors' Addresses

 Giridhar Mandyam
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, California
 USA

 Phone: +1 858 651 7200
 EMail: mandyam@qti.qualcomm.com

 Laurence Lundblade
 Security Theory LLC

 EMail: lgl@island-resort.com

 Miguel Ballesteros
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, California
 USA

 Phone: +1 858 651 4299
 EMail: mballest@qti.qualcomm.com

 Jeremy O'Donoghue
 Qualcomm Technologies Inc.
 279 Farnborough Road
 Farnborough GU14 7LS
 United Kingdom

 Phone: +44 1252 363189
 EMail: jodonogh@qti.qualcomm.com

Mandyam, et al. Expires March 4, 2021 [Page 35]

