
Workgroup: RATS Working Group

Internet-Draft:

draft-ietf-rats-reference-interaction-

models-09

Published: 4 March 2024

Intended Status: Informational

Expires: 5 September 2024

Authors: H. Birkholz

Fraunhofer SIT

M. Eckel

Fraunhofer SIT

W. Pan

Huawei Technologies

E. Voit

Cisco

Reference Interaction Models for Remote Attestation Procedures

Abstract

This document describes interaction models for remote attestation

procedures (RATS). Three conveying mechanisms -- Challenge/Response,

Uni-Directional, and Streaming Remote Attestation -- are illustrated

and defined. Analogously, a general overview about the information

elements typically used by corresponding conveyance protocols are

highlighted.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Disambiguation

3. Scope and Intent

4. Essential Requirements

4.1. Endorsement of Attesting Environments

5. Normative Prerequisites

6. Generic Information Elements

7. Interaction Models

7.1. Challenge/Response Remote Attestation

7.1.1. Models and Example Sequences of Challenge/Response

Remote Attestation

7.2. Uni-Directional Remote Attestation

7.3. Streaming Remote Attestation

7.3.1. Streaming Remote Attestation without a Broker

7.3.2. Streaming Remote Attestation with a Broker

8. Additional Application-Specific Requirements

8.1. Confidentiality

8.2. Mutual Authentication

8.3. Hardware-Enforcement/Support

9. Implementation Status

9.1. Implementer

9.2. Implementation Name

9.3. Implementation URL

9.4. Maturity

9.5. Coverage and Version Compatibility

9.6. License

9.7. Implementation Dependencies

9.8. Contact

10. Security and Privacy Considerations

11. Acknowledgments

12. References

12.1. Normative References

12.2. Informative References

Appendix A. CDDL Specification for a simple CoAP Challenge/Response

Interaction

Authors' Addresses

1. Introduction

Remote ATtestation procedureS (RATS, [RFC9334]) are workflows

composed of roles and interactions, in which Verifiers create

¶

Attestation Results about the trustworthiness of an Attester's

system component characteristics. The Verifier's assessment in the

form of Attestation Results is created based on Attestation Policies

and Evidence -- trustable and tamper-evident Claims Sets about an

Attester's system component characteristics -- generated by an

Attester. The roles Attester and Verifier, as well as the Conceptual

Messages Evidence and Attestation Results are concepts defined by

the RATS Architecture [RFC9334]. This document defines interaction

models that can be used in specific RATS-related solution documents.

The primary focus of this document is the conveyance of attestation

Evidence. The reference models defined can also be applied to the

conveyance of other Conceptual Messages in RATS. Specific goals of

this document are to:

prevent inconsistencies in descriptions of interaction models

in other documents (due to text cloning and evolution over

time), and to

enable to highlight an exact delta/divergence between the core

set of characteristics captured here in this document and

variants of these interaction models used in other

specifications or solutions.

In summary, this document enables the specification and design of

trustworthy and privacy preserving conveyance methods for

attestation Evidence from an Attester to a Verifier. While the

conveyance of other Conceptual Messages is out-of-scope the methods

described can also be applied to the conveyance of, for example,

Endorsements or Attestation Results.

2. Terminology

This document uses the following set of terms, roles, and concepts

as defined in [RFC9334]: Attester, Verifier, Relying Party,

Conceptual Message, Evidence, Endorsement, Attestation Result,

Appraisal Policy, Attesting Environment, Target Environment

A PKIX Certificate is an X.509v3 format certificate as specified by

[RFC5280].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.1. Disambiguation

The term "Remote Attestation" is a common expression and often

associated or connoted with certain properties. The term "Remote" in

¶

1.

¶

2.

¶

¶

¶

¶

¶

this context does not necessarily refer to a remote entity in the

scope of network topologies or the Internet. It rather refers to

decoupled systems or entities that exchange the payload of the

Conceptual Message type called Evidence [RFC9334]. This conveyance

can also be "Local", if the Verifier role is part of the same entity

as the Attester role, e.g., separate system components of the same

Composite Device (a single RATS entity). Even if an entity takes on

two or more different roles, the functions they provide typically

reside in isolated environments that are components of the same

entity. Examples of such isolated environments include: a Trusted

Execution Environment (TEE), Baseboard Management Controllers

(BMCs), as well as other physical or logical protected/isolated/

shielded Computing Environments (e.g. embedded Secure Elements (eSE)

or Trusted Platform Modules (TPM)). Readers of this document should

be familiar with the concept of Layered Attestation as described in

Section 3.1 Two Types of Environments of an Attester in [RFC9334]

and the definition of Attestation as described in

[I-D.ietf-rats-tpm-based-network-device-attest].

3. Scope and Intent

This document focuses on generic interaction models between

Attesters and Verifiers in order to convey Evidence. Complementary

procedures, functions, or services that are required for a complete

semantic binding of the concepts defined in [RFC9334] are out-of-

scope of this document. Examples include: identity establishment,

key distribution and enrollment, time synchronization, as well as

certificate revocation.

Furthermore, any processes and duties that go beyond carrying out

remote attestation procedures are out-of-scope.

For instance, using the results of a remote attestation procedure

that are created by the Verifier, e.g., how to triggering

remediation actions or recovery processes, as well as such

remediation actions and recovery processes themselves, are also out-

of-scope.

The interaction models illustrated in this document are intended to

provide a stable basis and reference for other solutions documents

inside or outside the IETF. Solution documents of any kind can

reference the interaction models in order to avoid text clones and

to avoid the danger of subtle discrepancies. Analogously, deviations

from the generic model descriptions in this document can be

illustrated in solutions documents to highlight distinct

contributions.

¶

¶

¶

¶

¶

Integrity:

Authentication:

Authentication Secret:

4. Essential Requirements

In order to ensure appropriate conveyance of Evidence, there exist

essential requirements which MUST be fulfilled:

Information provided by an Attester MUST be integral.

This may be achieved by means of a digital signature over

Attestation Evidence. The signature may be symmetric, such as an

HMAC, or asymmetric, such as ECDSA.

The information provided by the Attester MUST be

authentic. For that purpose, the Attester should authenticate

itself to the Verifier. This may be an implicit authentication by

means of a digital signature over the Attestation Evidence, which

does not require additional protocol steps, or may be achieved by

using a confidential channel by means of encryption.

4.1. Endorsement of Attesting Environments

Via its Attesting Environments, an Attester only generates Evidence

about its Target Environments. After being appraised to be

trustworthy, a Target Environment may become a new Attesting

Environment in charge of generating Evidence for further Target

Environments. [RFC9334] explains this as Layered Attestation.

Layered Attestation has to start with an initial Attesting

Environment. In essence, there cannot be turtles all the way down

[turtles]. At this rock bottom of Layered Attestation, the Attesting

Environments are always called Roots of Trust (RoT). An Attester

cannot generate Evidence about its own RoTs by design. As a

consequence, a Verifier requires trustable statements about this

subset of Attesting Environments from a different source than the

Attester itself. The corresponding trustable statements are called

Endorsements and originate from external, trustable entities that

take on the role of an Endorser (e.g., supply chain entities).

5. Normative Prerequisites

In order to ensure an appropriate conveyance of Evidence via

interaction models in general, the following set of prerequisites

MUST be in place to support the implementation of interaction

models:

An Authentication Secret MUST be available

exclusively to an Attesting Environment of an Attester.

The Attester MUST protect Claims with that Authentication Secret,

thereby proving the authenticity of the Claims included in

Evidence. The Authentication Secret MUST be established before

RATS can take place.

¶

¶

¶

¶

¶

¶

¶

Attester Identity:

Attestation Evidence Authenticity:

Evidence Freshness:

Evidence Protection:

A statement about a distinguishable Attester

made by an Endorser.

The provenance of Evidence with respect to a distinguishable

Attesting Environment MUST be correct and unambiguous.

An Attester Identity MAY be an Authentication Secret which is

available exclusively to one of the Attesting Environments of an

Attester. It MAY be a unique identity, MAY be included in a zero-

knowledge proof (ZKP), MAY be part of a group signature, or it

MAY be a randomized DAA credential [DAA].

Attestation Evidence MUST be

authentic.

In order to provide proofs of authenticity, Attestation Evidence

SHOULD be cryptographically associated with an identity document

(e.g., a PKIX certificate or trusted key material, or a

randomized DAA credential [DAA]), or SHOULD include a correct,

unambiguous and stable reference to an accessible identity

document.

Evidence MUST include an indicator about its

freshness that can be understood by a Verifier. Analogously,

interaction models MUST support the conveyance of proofs of

freshness in a way that is useful to Verifiers and their

appraisal procedures.

Evidence MUST be a set of well-formatted and

well-protected Claims that an Attester can create and convey to a

Verifier in a tamper-evident manner.

6. Generic Information Elements

This section defines the information elements that are vital to all

kinds interaction models. Varying from solution to solution, generic

information elements can be either included in the scope of protocol

messages (instantiating Conceptual Messages) or can be included in

additional protocol parameters or payload. Ultimately, the following

information elements are required by any kind of scalable remote

attestation procedure using one or more of the interaction models

provided.

¶

¶

¶

¶

¶

¶

¶

¶

Authentication Secret IDs ('authSecIDs'):

Handle ('handle'):

Claims ('claims'):

Event Logs ('eventLogs'):

Reference Values ('refValues')

mandatory

A statement representing an identifier list that MUST be

associated with corresponding Authentication Secrets used to

protect Claims included in Evidence.

Each distinguishable Attesting Environment has access to a

protected capability that provides an Authentication Secret

associated with that Attesting Environment. Consequently, an

Authentication Secret ID can also identify an Attesting

Environment.

mandatory

A statement that is intended to uniquely distinguish received

Evidence and/or determine the freshness of Evidence.

A Verifier can also use a Handle as an indicator for authenticity

or attestation provenance, as only Attesters and Verifiers that

are intended to exchange Evidence should have knowledge of the

corresponding Handles. Examples include Nonces or signed

timestamps.

mandatory

Claims are assertions that represent characteristics of an

Attester's Target Environment.

Claims are part of a Conceptual Message and are, for example,

used to appraise the integrity of Attesters via Verifiers. The

other information elements in this section can be expressed as

Claims in any type of Conceptional Messages.

optional

Event Logs accompany Claims by providing event trails of

security-critical events in a system. The primary purpose of

Event Logs is to support Claim reproducibility by providing

information on how Claims originated.

mandatory

Reference Values as defined in [RFC9334]. This specific type of

Claims is used to appraise Claims incorporated in Evidence. For

example, Reference Values MAY be Reference Integrity Measurements

(RIM) or assertions that are implicitly trusted because they are

signed by a trusted authority (see Endorsements in [RFC9334]).

Reference Values typically represent (trusted) Claim sets about

an Attester's intended platform operational state.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Claim Selection ('claimSelection'):

Collected Claims ('collectedClaims'):

Evidence ('evidence'):

Attestation Result ('attestationResult'):

optional

A (sub-)set of Claims which can be created by an Attester.

Claim Selections act as filters to specify the exact set of

Claims to be included in Evidence. In a remote attestation

process, a Verifier sends a Claim Selection, among other

elements, to an Attester. An Attester MAY decide whether or not

to provide all requested Claims from a Claim Selection to the

Verifier.

mandatory

Collected Claims represent a (sub-)set of Claims created by an

Attester.

Collected Claims are gathered based on the Claims selected in the

Claim Selection. If a Verifier does not provide a Claim

Selection, then all available Claims on the Attester are part of

the Collected Claims.

mandatory

A set of Claims that consists of a list of Authentication Secret

IDs that each identifies an Authentication Secret in a single

Attesting Environment, the Attester Identity, Claims, and a

Handle. Attestation Evidence MUST cryptographically bind all of

these information elements. Evidence MUST be protected via an

Authentication Secret. The Authentication Secret MUST be trusted

by the Verifier as authoritative.

mandatory

An Attestation Result is produced by the Verifier as the output

of the appraisal of Evidence. Attestation Results include

condensed assertions about integrity or other characteristics of

the corresponding Attester that are processible by Relying

Parties.

7. Interaction Models

The following subsections introduce and illustrate the interaction

models:

Challenge/Response Remote Attestation

Uni-Directional Remote Attestation

Streaming Remote Attestation

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

Each section starts with a sequence diagram illustrating the

interactions between Attester and Verifier. While the presented

interaction models focus on the conveyance of Evidence, the

intention of this document is in support of future work that applies

the presented models to the conveyance of other Conceptual Messages,

namely Attestation Results, Endorsements, Reference Values, or

Appraisal Policies.

All interaction models have a strong focus on the use of a handle to

incorporate a type of proof of freshness and to prevent replay

attacks. The way these handles are processed is the most prominent

difference between the three interaction models.

7.1. Challenge/Response Remote Attestation

Attester Verifier

[Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claims, eventLogs

requestAttestation(handle, authSecIDs, claimSelection)

collectClaims(claims, claimSelection)
=> collectedClaims

generateEvidence(handle, authSecIDs, collectedClaims)
=> evidence

evidence, eventLogs

[Evidence Appraisal]
|

appraiseEvidence(evidence, eventLogs, refValues)
attestationResult <=

The Attester boots up and thereby produces claims about its boot

state and its operational state. Event Logs accompany the produced

claims by providing an event trail of security-critical events in a

system. Claims are produced by all attesting Environments of an

Attester system.

The Challenge/Response remote attestation procedure is initiated by

the Verifier by sending a remote attestation request to the

Attester. A request includes a Handle, a list of Authentication

Secret IDs, and a Claim Selection.

¶

¶

¶

¶

¶

In the Challenge/Response model, the handle is composed of

qualifying data in the form of a practically infeasible to guess

nonce, such as a cryptographically strong random number. The

Verifier-generated nonce is intended to guarantee Evidence freshness

and to prevent replay attacks.

The list of Authentication Secret IDs selects the attestation keys

with which the Attester is requested to sign the Attestation

Evidence. Each selected key is uniquely associated with an Attesting

Environment of the Attester. As a result, a single Authentication

Secret ID identifies a single Attesting Environment.

Correspondingly, a particular set of Evidence originating from a

particular Attesting Environment in a composite device can be

requested via multiple Authentication Secret IDs. Methods to acquire

Authentication Secret IDs or mappings between Attesting Environments

to Authentication Secret IDs are out-of-scope of this document.

The Attester collects Claims based on the Claim Selection. With the

Claim Selection the Verifier defines the set of Claims it requires.

Correspondingly, collected Claims can be a subset of the produced

Claims. This could be all available Claims, depending on the Claim

Selection. If the Claim Selection is omitted, then by default all

Claims that are known and available on the Attester MUST be used to

create corresponding Evidence. For example, when performing a boot

integrity evaluation, a Verifier may only be requesting a particular

subset of claims about the Attester, such as Evidence about BIOS/

UEFI and firmware that the Attester booted up, and not include

information about all currently running software.

With the Handle, the Authentication Secret IDs, and the collected

Claims, the Attester produces signed Evidence. That is, it digitally

signs the Handle and the collected Claims with a cryptographic

secret identified by the Authentication Secret ID. This is done once

per Attesting Environment which is identified by the particular

Authentication Secret ID. The Attester communicates the signed

Evidence as well as all accompanying Event Logs back to the

Verifier.

While it is crucial that Claims, the Handle, and the Attester

Identity information (i.e., the Authentication Secret) MUST be

cryptographically bound to the signature of Evidence, they MAY be

presented obfuscated, encrypted, or cryptographically blinded. For

further reference see section Section 10.

As soon as the Verifier receives the Evidence and the Event Logs, it

appraises the Evidence. For this purpose, it validates the

signature, the Attester Identity, and the Handle, and then appraises

the Claims. Appraisal procedures are application-specific and can be

conducted via comparison of the Claims with corresponding Reference

¶

¶

¶

¶

¶

Values, such as Reference Integrity Measurements. The final output

of the Verifier are Attestation Results. Attestation Results

constitute new Claim Sets about the properties and characteristics

of an Attester, which enables Relying Parties, for example, to

assess an Attester's trustworthiness.

7.1.1. Models and Example Sequences of Challenge/Response Remote

Attestation

According to the RATS Architecture, two reference models for

Challenge/Response Attestation have been proposed. This section

highlights the information flows between the Attester, Verifier, and

Relying Party undergoing Remote Attestation Procedure, using these

models.

7.1.1.1. Passport Model

The passport model is so named because of its resemblance to how

nations issue passports to their citizens. In this model, the

attestation sequence is a two-step procedure. In the first step, an

Attester conveys Evidence to a Verifier, which compares the Evidence

against its appraisal policy. The Verifier then gives back an

Attestation Result to the Attester, which simply caches it. In the

second step, the Attester presents the Attestation Result (and

possibly additional Claims/Evidence) to a Relying Party, which then

compares this information against its own appraisal policy to

establish the trustworthiness of the Attester.

¶

¶

¶

Attester Verifier Relying Party

[Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claims, eventLogs

requestAttestation(handle,
authSecIDs, claimSelection)

collectClaims(claims, claimSelection)
=> collectedClaims

generateEvidence(handle,
authSecIDs, collectedClaims)
=> evidence

{evidence, eventLogs}

[Evidence Appraisal]
|

appraiseEvidence(evidence,
eventLogs refValues)

attestationResult <=

attestationResult

{evidence, attestationResult}
|

[Attestation Result Generation]
|

appraiseResult(policy,
attestationResult)

|

7.1.1.2. Background-Check Model

The background-check model is so named because of the resemblance of

how employers and volunteer organizations perform background checks.

In this model, the attestation sequence is initiated by a Relying

Party. The Attester conveys Evidence to the Relying Party, which

does not process its payload, but relays the message and optionally

checks its signature against a policed trust anchor store. Upon

receiving the Evidence, the Relying Party initiates a session with

the Verifier. Once the session is established, it forwards the

received Evidence to the Verifier. The Verifier appraises the

received Evidence according to its appraisal policy for Evidence and

returns a corresponding Attestation Result to the Relying Party. The

Relying Party then checks the Attestation Result against its own

appraisal policy to conclude attestation.

¶

¶

Attester Relying Party Verifier

[Evidence Generation and Conveyance]
|

requestAttestation(handle,
authSecIDs, claimSelection)

generateClaims(attestingEnvironment)
=> {claims, eventLogs}

collectClaims(claims,
claimSelection)
=> collectedClaims

generateEvidence(handle,
authSecIDs, collectedClaims)
=> evidence

{evidence, eventLogs}

[Evidence Appraisal]

{handle, evidence,
eventLogs}

appraiseEvidence(evidence
eventLogs, refValues)

attestationResult <=

{evidence,
attestationResult}

[Attestation Result Generation]
|

appraiseResult(policy,
attestationResult)

|

¶

7.2. Uni-Directional Remote Attestation

Attester Handle Distributor Verifier

[Handle Generation]
generateHandle()

=> handle

{handle} {handle}

x

[Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claims, eventLogs

collectClaims(claims, claimSelection)
=> collectedClaims

generateEvidence(handle, authSecIDs, collectedClaims)
=> evidence

{evidence, eventLogs}

[Evidence Appraisal]
|

appraiseEvidence(evidence,
eventLogs
refValues)

attestationResult <= |
~ ~
| |

[loop]
| |

[Delta Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claimsDelta, eventLogsDelta

collectClaims(claimsDelta, claimSelection)
=> collectedClaimsDelta

generateEvidence(handle, authSecIDs, collectedClaimsDelta)
=> evidence

{evidence, eventLogsDelta}

[Delta Evidence Appraisal]
|

appraiseEvidence(evidence,
eventLogsDelta

refValues)
attestationResult <=

| |

¶

Uni-Directional Remote Attestation procedures can be initiated both

by the Attester and by the Verifier. Initiation by the Attester can

result in unsolicited pushes of Evidence to the Verifier. Initiation

by the Verifier always results in solicited pushes to the Verifier.

The Uni-Directional model uses the same information elements as the

Challenge/Response model. In the sequence diagram above, the

Attester initiates the conveyance of Evidence (comparable with a

RESTful POST operation or the emission of a beacon). While a request

of Evidence from the Verifier would result in a sequence diagram

more similar to the Challenge/Response model (comparable with a

RESTful GET operation). The specific manner how Handles are created

and used always remains as the distinguishing quality of this model.

In the Uni-Directional model, handles are composed of

cryptographically signed trusted timestamps as shown in

[I-D.birkholz-rats-tuda], potentially including other qualifying

data. The Handles are created by an external 3rd entity -- the

Handle Distributor -- which includes a trustworthy source of time,

and takes on the role of a Time Stamping Authority (TSA, as

initially defined in [RFC3161]). Timestamps created from local

clocks (absolute clocks using a global timescale, as well as

relative clocks, such as tick-counters) of Attesters and Verifiers

MUST be cryptographically bound to fresh Handles received from the

Handle Distributor. This binding provides a proof of synchronization

that MUST be included in all produced Evidence. Correspondingly,

conveyed Evidence in this model provides a proof that it was fresh

at a certain point in time.

While periodically pushing Evidence to the Verifier, the Attester

only needs to generate and convey evidence generated from Claim

values that have changed and new Event Log entries since the

previous conveyance. These updates reflecting the differences are

called "delta" in the sequence diagram above.

Effectively, the Uni-Directional model allows for a series of

Evidence to be pushed to multiple Verifiers simultaneously. Methods

to detect excessive time drift that would mandate a fresh Handle to

be received by the Handle Distributor as well as timing of Handle

distribution are out-of-scope of this document.

7.3. Streaming Remote Attestation

Streaming Remote Attestation serves as the foundational concept for

both the observer pattern ([ISIS]) and the publish-subscribe pattern

([DesignPatterns]). It entails establishing subscription states to

enable continuous remote attestation. The observer pattern directly

connects observers to subjects without a broker, while the publish-

subscribe pattern involves a central broker for message

¶

¶

¶

¶

¶

distribution. In the following Subsections, streaming remote

attestation without a broker (observer pattern) as well as with a

broker (publish-subscribe pattern) are illustrated.¶

7.3.1. Streaming Remote Attestation without a Broker

Attester Verifier

[Handle Generation]
|

generateHandle()
handle<=

subscribe(handle, authSecIDs, claimSelection)
{handle}

[Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claims, eventLogs

collectClaims(claims, claimSelection)
=> collectedClaims

generateEvidence(handle, authSecIDs, collectedClaims)
=> evidence

[Evidence Appraisal]

{handle, evidence, eventLogs}

appraiseEvidence(evidence,
eventLogs
refValues)

attestationResult <= |
~ ~
| |

[loop]
| |

[Delta Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claimsDelta, eventLogsDelta

collectClaims(claimsDelta, claimSelection)
=> collectedClaimsDelta

generateEvidence(handle, authSecIDs, collectedClaimsDelta)
=> evidence

[Delta Evidence Appraisal]

{evidence, eventLogsDelta}

appraiseEvidence(evidence,
eventLogsDelta

refValues)
attestationResult <=

| |

¶

The observer pattern is employed in scenarios where message delivery

does not involve a central broker. Instead, an observer directly

subscribes to observed resources via a dedicated mechanism.

Consequently, these dedicated mechanisms contain information about

the observer and are responsible for maintaining subscription state.

Setting up subscription state between a Verifier and an Attester is

conducted via a subscribe operation. The subscribe operation is used

to convey Handles required for Evidence generation. Effectively,

this allows for a series of Evidence to be pushed to a Verifier,

similar to the Uni-Directional model. While a Handle Distributor is

not mandatory in this model, the model is also limited to bi-lateral

subscription relationships, in which each Verifier has to create and

provide Handles individually. Handles provided by a specific

subscribing Verifier MUST be used in Evidence generation for that

specific Verifier. The streaming model without a broker uses the

same information elements as the Challenge/Response and the Uni-

Directional model. Methods to detect excessive time drift that would

render Handles stale and mandate a fresh Handles to be conveyed via

another subscribe operation are out-of-scope of this document.

7.3.2. Streaming Remote Attestation with a Broker

The publish-subscribe messaging pattern is widely used for

communication in different areas. Unlike the Streaming Remote

Attestation without a Broker interaction model, Attesters do not

(need to) be aware of corresponding Verifiers. In scenarios with

large numbers of Attesters and Verifiers, the publish-subscribe

pattern may reduce interdependencies and improve scalability.

With publish-subscribe, clients typically connect to (or register

with) a publish-subscribe server (PubSub server or Broker). Clients

may publish data in the form of a message under a certain topic.

Subscribers to that topic get notified whenever a message arrives

under a topic, and the appropriate message is forwarded to them.

Depending on the particular publish-subscribe model and

implementation, clients can be either publishers or subscribers or

both.

In the following sections, the interaction models Challenge/Response

Remote Attestation over Publish-Subscribe and Uni-Directional Remote

Attestation over Publish-Subscribe are described. There are

different phases that both models go through:

Handle Generation

Evidence Generation and Conveyance

Evidence Appraisal

Attestation Result Generation

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

The models only differ in the handle generation phase. From a remote

attestations procedure's point of view Evidence Generation,

Conveyance, and Appraisal, as well as Attestation Result Generation

are identical in both models.

7.3.2.1. Handle Generation for Challenge/Response Remote Attestation

over Publish-Subscribe

Attester PubSub Server Verifier

[Handle Generation]
|

sub(topic=AttReq)
pub(topic=AttReq

handle)
notify(topic=AttReq, handle)

|
~ ~ ~

The Challenge/Response Remote Attestation over Publish-Subscribe

interaction model uses the same information elements as the

Challenge/Response Remote Attestation interaction model. Handles are

provided by a Verifier on a per-request basis. In the sequence

diagram above, an Attester subscribes to the "AttReq" (= Attestation

Request) topic on the PubSub server. The Verifier publishes a Handle

to the "AttReq" topic, which the PubSub server forwards to the

Attester by notifying it.

¶

¶

¶

7.3.2.2. Handle Generation for Uni-Directional Remote Attestation over

Publish-Subscribe

Attester Handle PubSub Server Verifier
Distributor

[Handle Generation]

sub(topic=Handle)

sub(topic=Handle)

generateHandle()
=> handle

pub(topic=Handle,
| handle)
x

notify(topic=Handle, handle)
|

notify(topic=Handle, handle)
|

~ ~ ~

The Uni-Directional Remote Attestation over Publish-Subscribe model

uses the same information elements as the Uni-Directional Remote

Attestation model. Accordingly, Handles are created by a 3rd party,

the Handle Distributor. In the sequence diagram above, both an

Attester and a Verifier subscribe to the topic "Handle" on the

PubSub server. When the Handle Distributor generates and publishes a

Handle to the "Handle" topic on the PubSub server, the PubSub server

notifies the subscribers, Attester and Verifier, and forwards

("notify") the Handle to them during Handle Generation.

¶

¶

7.3.2.3. Evidence Generation and Appraisal

~ ~ ~

Attester PubSub Server Verifier

sub(topic=AttEv)
|

[loop]
| | |

[Evidence Generation and Conveyance]
|

generateClaims(attestingEnvironment)
=> claims, eventLogs

collectClaims(claims, claimSelection)
=> collectedClaims

generateEvidence(handle, authSecIDs,
collectedClaims)

=> evidence

pub(topic=AttEv,
evidence, eventLogs)

notify(topic=AttEv,
evidence,
eventLogs)

[Evidence Appraisal]
|

appraiseEvidence(
evidence,

eventLogs
refValues)

attestationResult <=

[Attestation Result Generation]
|

pub(topic=AttRes
attestationResult)

|

| | |
~ ~ ~

Exactly as in the Challenge/Response and Uni-Directional interaction

models, there is an Evidence Generation-Appraisal loop, in which the

Attester generates Evidence and the Verifier appraises it. In the

Publish-Subscribe model above, the Attester publishes Evidence to

the topic "AttEv" (= Attestation Evidence) on the PubSub server, to

¶

which a Verifier subscribed before. The PubSub server notifies

Verifiers, accordingly, by forwarding the attestation Evidence.

Although the above diagram depicts only full attestation Evidence

and Event Logs, later attestations may use "deltas' for Evidence and

Event Logs. Verifiers appraise the Evidence and publish the

Attestation Result to topic "AttRes" (= Attestation Result) on the

PubSub server.

7.3.2.4. Attestation Result Generation

~ ~ ~ ~

Attester Relying Party PubSub Server Verifier

[Attestation Result Generation]
|

sub(topic=AttRes)
handle)
|

[loop]
|

pub(topic=AttRes
attestationResult)

notify(topic=AttRes
attestationResult)

| | | |
~ ~ ~ ~

Attestation Result Generation is the same for both publish-subscribe

models,Challenge/Response Remote Attestation over Publish-Subscribe

and Uni-Directional Remote Attestation over Publish-Subscribe.

Relying Parties subscribe to topic AttRes (= Attestation Result) on

the PubSub server. The PubSub server forwards Attestation Results to

the Relying Parties as soon as they are published to topic AttRes.

7.3.2.5. Publish/Subscribe Topics

Many publish-subscribe models provide hierarchical organization of

topics. This way, subscribers can subscribe to either all

attestations (topic AttRes), or, for example, to topic AttRes/

DbServers/Germany to receive only attestations from database servers

in Germany. Further, it may be required to distinguish between uni-

directional and challenge-response attestation evidence.

¶

¶

¶

¶

8. Additional Application-Specific Requirements

Depending on the use cases covered, there can be additional

requirements. An exemplary subset is illustrated in this section.

8.1. Confidentiality

Confidentiality of exchanged attestation information may be

desirable. This requirement usually is present when communication

takes place over insecure channels, such as the public Internet. In

such cases, TLS may be used as a suitable communication protocol

which provides confidentiality protection. In private networks, such

as carrier management networks, it must be evaluated whether or not

the transport medium is considered confidential.

8.2. Mutual Authentication

In particular use cases, mutual authentication may be desirable in

such a way that a Verifier also needs to prove its identity to the

Attester, instead of only the Attester proving its identity to the

Verifier.

8.3. Hardware-Enforcement/Support

Depending on given usage scenarios, hardware support for secure

storage of cryptographic keys, crypto accelerators, as well as

protected or isolated execution environments can be mandatory

requirements. Well-known technologies in support of these

requirements are roots of trusts, such as Hardware Security Modules

(HSM), Physically Unclonable Functions (PUFs), Shielded Secrets, or

Trusted Executions Environments (TEEs).

9. Implementation Status

Note to RFC Editor: Please remove this section as well as references

to [BCP205] before AUTH48.

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[BCP205]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

¶

¶

¶

¶

¶

¶

According to [BCP205], "this will allow reviewers and working groups

to assign due consideration to documents that have the benefit of

running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

9.1. Implementer

The open-source implementation was initiated and is maintained by

the Fraunhofer Institute for Secure Information Technology SIT.

9.2. Implementation Name

The open-source implementation is named "CHAllenge-Response based

Remote Attestation" or in short: CHARRA.

9.3. Implementation URL

The open-source implementation project resource can be located via:

https://github.com/fraunhofer-sit/charra

9.4. Maturity

The code's level of maturity is considered to be "prototype".

9.5. Coverage and Version Compatibility

The current version ('6194b3b') implements a challenge/response

interaction model and is aligned with the exemplary specification of

the CoAP FETCH bodies defined in Section Appendix A of this

document.

9.6. License

The CHARRA project and all corresponding code and data maintained on

GitHub are provided under the BSD 3-Clause "New" or "Revised"

license.

9.7. Implementation Dependencies

The implementation requires the use of the official Trusted

Computing Group (TCG) open-source Trusted Software Stack (TSS) for

the Trusted Platform Module (TPM) 2.0. The corresponding project

resources (code and data) for Linux-based operating systems are

maintained on GitHub at https://github.com/tpm2-software/tpm2-tss/.

The implementation uses the Constrained Application Protocol

[RFC7252] (http://coap.technology/) and the Concise Binary Object

Representation [RFC7049] (https://cbor.io/).

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/fraunhofer-sit/charra
https://github.com/tpm2-software/tpm2-tss/

[BCP205]

[RFC2119]

[RFC3161]

[RFC5280]

[RFC7049]

9.8. Contact

Michael Eckel (michael.eckel@sit.fraunhofer.de)

10. Security and Privacy Considerations

In a remote attestation procedure the Verifier or the Attester MAY

want to cryptographically blind several attributes. For instance,

information can be part of the signature after applying a one-way

function (e. g., a hash function).

There is also a possibility to scramble the Nonce or Attester

Identity with other information that is known to both the Verifier

and Attester. A prominent example is the IP address of the Attester

that usually is known by the Attester itself as well as the

Verifier. This extra information can be used to scramble the Nonce

in order to counter certain types of relay attacks.

11. Acknowledgments

Olaf Bergmann, Michael Richardson, and Ned Smith

12. References

12.1. Normative References

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

doi.org/10.17487/RFC7942>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://doi.org/10.17487/RFC2119>.

Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,

"Internet X.509 Public Key Infrastructure Time-Stamp

Protocol (TSP)", RFC 3161, DOI 10.17487/RFC3161, August

2001, <https://doi.org/10.17487/RFC3161>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://doi.org/10.17487/RFC5280>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://doi.org/10.17487/RFC7049>.

¶

¶

¶

¶

https://doi.org/10.17487/RFC7942
https://doi.org/10.17487/RFC7942
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC3161
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC7049

[RFC7252]

[RFC8174]

[RFC8610]

[RFC9334]

[DAA]

[DesignPatterns]

[I-D.birkholz-rats-tuda]

[I-D.ietf-rats-tpm-based-network-device-attest]

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://doi.org/10.17487/RFC7252>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://doi.org/10.17487/RFC8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://doi.org/10.17487/RFC8610>.

Birkholz, H., Thaler, D., Richardson, M., Smith, N., and

W. Pan, "Remote ATtestation procedureS (RATS)

Architecture", RFC 9334, DOI 10.17487/RFC9334, January

2023, <https://doi.org/10.17487/RFC9334>.

12.2. Informative References

Brickell, E., Camenisch, J., and L. Chen, "Direct

Anonymous Attestation", page 132-145, ACM Proceedings of

the 11th ACM conference on Computer and Communications

Security, 2004.

Gamma, E., Helm, R., Johnson, R., and J. Vlissides,

"Design Patterns - Elements of Reusable Object-Oriented

Software", Publisher Addison-Wesley, 1994.

Fuchs, A., Birkholz, H., McDonald, I., and

C. Bormann, "Time-Based Uni-Directional Attestation",

Work in Progress, Internet-Draft, draft-birkholz-rats-

tuda-07, 10 July 2022, <https://datatracker.ietf.org/doc/

html/draft-birkholz-rats-tuda-07>.

Fedorkow, G., Voit,

E., and J. Fitzgerald-McKay, "TPM-based Network Device

Remote Integrity Verification", Work in Progress,

Internet-Draft, draft-ietf-rats-tpm-based-network-device-

attest-14, 22 March 2022, <https://datatracker.ietf.org/

https://doi.org/10.17487/RFC7252
https://doi.org/10.17487/RFC8174
https://doi.org/10.17487/RFC8610
https://doi.org/10.17487/RFC9334
https://datatracker.ietf.org/doc/html/draft-birkholz-rats-tuda-07
https://datatracker.ietf.org/doc/html/draft-birkholz-rats-tuda-07
https://datatracker.ietf.org/doc/html/draft-ietf-rats-tpm-based-network-device-attest-14

[ISIS]

[MQTT]

[TNC]

[turtles]

doc/html/draft-ietf-rats-tpm-based-network-device-

attest-14>.

Birman, K. and T. Joseph, "Exploiting Virtual Synchrony

in Distributed Systems", DOI 10.1145/41457.37515, 1987,

<https://doi.org/10.1145/41457.37515>.

OASIS, "Message Queuing Telemetry Transport (MQTT)

Version 5.0 Committee Specification 02", Specification

Version 5.0, 2018.

TCG, "TCG Trusted Network Communications TNC Architecture

for Interoperability", Specification Version 2.0 Revision

13, 2017.

Rudnicki, R., "Turtles All the Way Down: Foundation,

Edifice, and Ruin in Faulkner and McCarthy", DOI 10.1353/

fau.2010.0002, The Faulkner Journal 25.2, 2010, <https://

doi.org/10.1353/fau.2010.0002>.

Appendix A. CDDL Specification for a simple CoAP Challenge/Response

Interaction

The following CDDL specification is an exemplary proof-of-concept to

illustrate a potential implementation of the Challenge/Response

Interaction Model. The communication protocol used is CoAP. Both the

request message and the response message are exchanged via the FETCH

operation and corresponding FETCH request and FETCH response body.

In this example, Evidence is created via the root-of-trust for

reporting primitive operation "quote" that is provided by a TPM 2.0.

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-rats-tpm-based-network-device-attest-14
https://datatracker.ietf.org/doc/html/draft-ietf-rats-tpm-based-network-device-attest-14
https://doi.org/10.1145/41457.37515
https://doi.org/10.1353/fau.2010.0002
https://doi.org/10.1353/fau.2010.0002

Authors' Addresses

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@ietf.contact

Michael Eckel

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: michael.eckel@sit.fraunhofer.de

Wei Pan

Huawei Technologies

Email: william.panwei@huawei.com

Eric Voit

Cisco Systems

Email: evoit@cisco.com

charra-bodies = charra-attestation-request / charra-attestation-response

charra-attestation-request = [

 hello: bool, ; if true, the TPM 2.0 AK Cert shall be conveyed

 key-id: bytes, ; the key ID to use for signing

 nonce: bytes, ; a (random) nonce, providing freshness and/or recentness

 pcr-selections: [* pcr-selection]

]

pcr-selection = [

 tcg-hash-alg-id: uint .size 2, ; TPM2_ALG_ID

 pcrs: [

 pcr: uint .size 2

]

]

charra-attestation-response = [

 attestation-data: bytes, ; TPMS_ATTEST.quoted

 tpm2-signature: bytes,

 ? ak-cert: bytes, ; TPM2 attestation key certificate (AK Cert)

]

¶

mailto:henk.birkholz@ietf.contact
mailto:michael.eckel@sit.fraunhofer.de
mailto:william.panwei@huawei.com
mailto:evoit@cisco.com

	Reference Interaction Models for Remote Attestation Procedures
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Disambiguation

	3. Scope and Intent
	4. Essential Requirements
	4.1. Endorsement of Attesting Environments

	5. Normative Prerequisites
	6. Generic Information Elements
	7. Interaction Models
	7.1. Challenge/Response Remote Attestation
	7.1.1. Models and Example Sequences of Challenge/Response Remote Attestation
	7.1.1.1. Passport Model
	7.1.1.2. Background-Check Model

	7.2. Uni-Directional Remote Attestation
	7.3. Streaming Remote Attestation
	7.3.1. Streaming Remote Attestation without a Broker
	7.3.2. Streaming Remote Attestation with a Broker
	7.3.2.1. Handle Generation for Challenge/Response Remote Attestation over Publish-Subscribe
	7.3.2.2. Handle Generation for Uni-Directional Remote Attestation over Publish-Subscribe
	7.3.2.3. Evidence Generation and Appraisal
	7.3.2.4. Attestation Result Generation
	7.3.2.5. Publish/Subscribe Topics

	8. Additional Application-Specific Requirements
	8.1. Confidentiality
	8.2. Mutual Authentication
	8.3. Hardware-Enforcement/Support

	9. Implementation Status
	9.1. Implementer
	9.2. Implementation Name
	9.3. Implementation URL
	9.4. Maturity
	9.5. Coverage and Version Compatibility
	9.6. License
	9.7. Implementation Dependencies
	9.8. Contact

	10. Security and Privacy Considerations
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. CDDL Specification for a simple CoAP Challenge/Response Interaction
	Authors' Addresses

