
Internet-Draft Stephen Bailey (Sandburst)
Expires: August 2005 Tom Talpey (NetApp)

 The Architecture of Direct Data Placement (DDP)
 and Remote Direct Memory Access (RDMA)
 on Internet Protocols

draft-ietf-rddp-arch-07

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 or will be disclosed, and any of which I become aware will be
 disclosed, in accordance with RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Abstract

 This document defines an abstract architecture for Direct Data
 Placement (DDP) and Remote Direct Memory Access (RDMA) protocols to
 run on Internet Protocol-suite transports. This architecture does
 not necessarily reflect the proper way to implement such protocols,
 but is, rather, a descriptive tool for defining and understanding
 the protocols. DDP allows the efficient placement of data into
 buffers designated by Upper Layer Protocols (e.g. RDMA). RDMA
 provides the semantics to enable Remote Direct Memory Access
 between peers in a way consistent with application requirements.

Bailey & Talpey Expires August 2005 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rddp-arch-07
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft DDP & RDMA Architecture February 2005

Table Of Contents

1. Introduction . 2
1.1. Terminology . 2
1.2. DDP and RDMA Protocols 3
2. Architecture . 4
2.1. Direct Data Placement (DDP) Protocol Architecture . . . 4
2.1.1. Transport Operations 6
2.1.2. DDP Operations . 7
2.1.3. Transport Characteristics in DDP 10
2.2. Remote Direct Memory Access Protocol Architecture . . . 12
2.2.1. RDMA Operations . 14
2.2.2. Transport Characteristics in RDMA 16
3. Security Considerations 17
3.1. Security Services 18
3.2. Error Considerations 19
4. IANA Considerations 19
5. Acknowledgements . 20

 Informative References 20
 Authors' Addresses 21
 Full Copyright Statement 21

1. Introduction

 This document defines an abstract architecture for Direct Data
 Placement (DDP) and Remote Direct Memory Access (RDMA) protocols to
 run on Internet Protocol-suite transports. This architecture does
 not necessarily reflect the proper way to implement such protocols,
 but is, rather, a descriptive tool for defining and understanding
 the protocols. This document uses C language notation as a
 shorthand to describe the architectural elements of DDP and RDMA
 protocols. The choice of C notation is not intended to describe
 concrete protocols or programming interfaces.

 The first part of the document describes the architecture of DDP
 protocols, including what assumptions are made about the transports
 on which DDP is built. The second part describes the architecture
 of RDMA protocols layered on top of DDP.

1.1. Terminology

 Before introducing the protocols, certain definitions will be
 useful to guide discussion:

 o Placement - writing to a data buffer.

Bailey & Talpey Expires August 2005 [Page 2]

Internet-Draft DDP & RDMA Architecture February 2005

 o Operation - a protocol message, or sequence of messages, which
 provide a architectural semantic, such as reading or writing
 of a data buffer.

 o Delivery - informing any Upper Layer or application that a
 particular message is available for use. Delivery therefore
 may be viewed as the "control" signal associated with a unit
 of data. Note that the order of delivery is defined more
 strictly than it is for placement.

 o Completion - informing any Upper Layer or application that a
 particular operation has finished. A completion, for
 instance, may require the delivery of several messages, or it
 may also reflect that some local processing has finished.

 o Data Sink - the peer on which any placement occurs.

 o Data Source - the peer from which the placed data originates.

 o Steering Tag - a "handle" used to identify the buffer which is
 the target of placement. A "tagged" message is one which
 references such a handle.

 o RDMA Write - an Operation which places data from a local data
 buffer to a remote data buffer specified by a Steering Tag.

 o RDMA Read - an Operation which places data to a local data
 buffer specified by a Steering Tag from a remote data buffer
 specified by another Steering Tag.

 o Send - an Operation which places data from a local data buffer
 to a remote data buffer of the data sink's choice. Sends are
 therefore "untagged".

1.2. DDP and RDMA Protocols

 The goal of the DDP protocol is to allow the efficient placement of
 data into buffers designated by protocols layered above DDP (e.g.
 RDMA). This is described in detail in [ROM]. Efficiency may be
 characterized by the minimization of the number of transfers of the
 data over the receiver's system buses.

 The goal of the RDMA protocol is to provide the semantics to enable
 Remote Direct Memory Access between peers in a way consistent with
 application requirements. The RDMA protocol provides facilities
 immediately useful to existing and future networking, storage, and
 other application protocols. [DAFS, FCVI, IB, MYR, SDP, SRVNET,
 VI]

Bailey & Talpey Expires August 2005 [Page 3]

Internet-Draft DDP & RDMA Architecture February 2005

 The DDP and RDMA protocols work together to achieve their
 respective goals. DDP provides facilities to safely steer payloads
 to specific buffers at the Data Sink. RDMA provides facilities to
 Upper Layers for identifying these buffers, controlling the
 transfer of data between peers' buffers, supporting authorized
 bidirectional transfer between buffers, and signalling completion.
 Upper Layer Protocols that do not require the features of RDMA may
 be layered directly on top of DDP.

 The DDP and RDMA protocols are transport independent. The
 following figure shows the relationship between RDMA, DDP, Upper
 Layer Protocols and Transport.

 +--+
 | Upper Layer Protocol |
 +---------+------------+---------------------------+
 | | | RDMA |
 | | +---------------------------+
 | | DDP |
 | +--+
 | Transport |
 +--+

2. Architecture

 The Architecture section is presented in two parts: Direct Data
 Placement Protocol architecture and Remote Direct Memory Access
 Protocol architecture.

2.1. Direct Data Placement (DDP) Protocol Architecture

 The central idea of general-purpose DDP is that a data sender will
 supplement the data it sends with placement information that allows
 the receiver's network interface to place the data directly at its
 final destination without any copying. DDP can be used to steer
 received data to its final destination, without requiring layer-
 specific behavior for each different layer. Data sent with such
 DDP information is said to be `tagged'.

 The central component of the DDP architecture is the `buffer',
 which is an object with beginning and ending addresses, and a
 method (set()) to set the value of an octet at an address. In many
 cases, a buffer corresponds directly to a portion of host user
 memory. However, DDP does not depend on this---a buffer could be a
 disk file, or anything else that can be viewed as an addressable
 collection of octets. Abstractly, a buffer provides the interface:

Bailey & Talpey Expires August 2005 [Page 4]

Internet-Draft DDP & RDMA Architecture February 2005

 typedef struct {
 const address_t start;
 const address_t end;
 void set(address_t a, data_t v);
 } ddp_buffer_t;

 address_t

 a reference to local memory

 data_t

 an octet data value.

 The protocol layering and in-line data flow of DDP is:

 DDP Client Protocol
 (e.g. RDMA or Upper Layer Protocol)
 | ^
 untagged messages | | untagged message delivery
 tagged messages | | tagged message delivery
 v |
 DDP+---> data placement
 ^
 | transport messages
 v
 Transport
 (e.g. SCTP, DCCP, framed TCP)
 ^
 | IP datagrams
 v
 . . .

 In addition to in-line data flow, the client protocol registers
 buffers with DDP, and DDP performs buffer update (set()) operations
 as a result of receiving tagged messages.

 DDP messages may be split into multiple, smaller DDP messages, each
 in a separate transport message. However, if the transport is
 unreliable or unordered, messages split across transport messages
 may or may not provide useful behavior, in the same way as
 splitting arbitrary Upper Layer messages across unreliable or
 unordered transport messages may or may not provide useful
 behavior. In other words, the same considerations apply to
 building client protocols on different types of transports with or
 without the use of DDP.

Bailey & Talpey Expires August 2005 [Page 5]

Internet-Draft DDP & RDMA Architecture February 2005

 A DDP message split across transport messages looks like:

 DDP message: Transport messages:

 stag=s, offset=o, message 1:
 notify=y, id=i |type=ddp |
 message= |stag=s |
 |aabbccddee|-------. |offset=o |
 ~ ... ~----. \ |notify=n |
 |vvwwxxyyzz|-. \ \ |id=? |
 | \ `--->|aabbccddee|
 | \ ~ ... ~
 | +----->|iijjkkllmm|
 | |
 + | message 2:
 \ | |type=ddp |
 \ | |stag=s |
 \ + |offset=o+n|
 \ \ |notify=y |
 \ \ |id=i |
 \ `-->|nnooppqqrr|
 \ ~ ... ~
 `---->|vvwwxxyyzz|

 Although this picture suggests that DDP information is carried in-
 line with the message payload, components of the DDP information
 may also be in transport-specific fields, or derived from
 transport-specific control information if the transport permits.

2.1.1. Transport Operations

 For the purposes of this architecture, the transport provides:

 void xpt_send(socket_t s, message_t m);
 message_t xpt_recv(socket_t s);
 msize_t xpt_max_msize(socket_t s);

 socket_t

 a transport address, including IP addresses, ports and other
 transport-specific identifiers.

 message_t

 a string of octets.

Bailey & Talpey Expires August 2005 [Page 6]

Internet-Draft DDP & RDMA Architecture February 2005

 msize_t (scalar)

 a message size.

 xpt_send(socket_t s, message_t m)

 send a transport message.

 xpt_recv(socket_t s)

 receive a transport message.

 xpt_max_msize(socket_t s)

 get the current maximum transport message size. Corresponds,
 roughly, to the current path Maximum Transfer Unit (PMTU),
 adjusted by underlying protocol overheads.

 Real implementations of xpt_send() and xpt_recv() typically return
 error indications, but that is not relevant to this architecture.

2.1.2. DDP Operations

 The DDP layer provides:

 void ddp_send(socket_t s, message_t m);
 void ddp_send_ddp(socket_t s, message_t m, ddp_addr_t d,
 ddp_notify_t n);
 void ddp_post_recv(socket_t s, bdesc_t b);
 ddp_ind_t ddp_recv(socket_t s);
 bdesc_t ddp_register(socket_t s, ddp_buffer_t b);
 void ddp_deregister(bhand_t bh);
 msizes_t ddp_max_msizes(socket_t s);

 ddp_addr_t

 the buffer address portion of a tagged message:

 typedef struct {
 stag_t stag;
 address_t offset;
 } ddp_addr_t;

 stag_t (scalar)

Bailey & Talpey Expires August 2005 [Page 7]

Internet-Draft DDP & RDMA Architecture February 2005

 a Steering Tag. A stag_t identifies the destination buffer
 for tagged messages. stag_ts are generated when the buffer is
 registered, communicated to the sender by some client protocol
 convention and inserted in DDP messages. stag_t values in
 this DDP architecture are assumed to be completely opaque to
 the client protocol, and implementation-dependent. However,
 particular implementations, such as DDP on a multicast
 transport (see below), may provide the buffer holder some
 control in selecting stag_ts.

 ddp_notify_t

 the notification portion of a DDP message, used to signal that
 the message represents the final fragment of a multi-segmented
 DDP message:

 typedef struct {
 boolean_t notify;
 ddp_msg_id_t i;
 } ddp_notify_t;

 ddp_msg_id_t (scalar)

 a DDP message identifier. msg_id_ts are chosen by the DDP
 message receiver (buffer holder), communicated to the sender
 by some client protocol convention and inserted in DDP
 messages. Whether a message reception indication is requested
 for a DDP message is a matter of client protocol convention.
 Unlike stag_ts, the structure of msg_id_ts is opaque to DDP,
 and therefore, completely in the hands of the client protocol.

 bdesc_t

 a description of a registered buffer:

 typedef struct {
 bhand_t bh;
 ddp_addr_t a;
 } bdesc_t;

 `a.offset' is the starting offset of the registered buffer,
 which may have no relationship to the `start' or `end'
 addresses of that buffer. However, particular
 implementations, such as DDP on a multicast transport (see
 below), may allow some client protocol control over the
 starting offset.

Bailey & Talpey Expires August 2005 [Page 8]

Internet-Draft DDP & RDMA Architecture February 2005

 bhand_t

 an opaque buffer handle used to deregister a buffer.

 recv_message_t

 a description of a completed untagged receive buffer:

 typedef struct {
 bdesc_t b;
 length_t l;
 } recv_message_t;

 ddp_ind_t

 an untagged message, a tagged message reception indication, or
 a tagged message reception error:

 typedef union {
 recv_message_t m;
 ddp_msg_id_t i;
 ddp_err_t e;
 } ddp_ind_t;

 ddp_err_t

 indicates an error while receiving a tagged message, typically
 `offset' out of bounds, or `stag' is not registered to the
 socket.

 msizes_t

 The maximum untagged and tagged messages that fit in a single
 transport message:

 typedef struct {
 msize_t max_untagged;
 msize_t max_tagged;
 } msizes_t;

 ddp_send(socket_t s, message_t m)

 send an untagged message.

 ddp_send_ddp(socket_t s, message_t m, ddp_addr_t d, ddp_notify_t n)

Bailey & Talpey Expires August 2005 [Page 9]

Internet-Draft DDP & RDMA Architecture February 2005

 send a tagged message to remote buffer address d.

 ddp_post_recv(socket_t s, bdesc_t b)

 post a registered buffer to accept a single received untagged
 message. Each buffer is returned to the caller in a
 ddp_recv() untagged message reception indication, in the order
 in which it was posted. The same buffer may be enabled on
 multiple sockets, receipt of an untagged message into the
 buffer from any of these sockets unposts the buffer from all
 sockets.

 ddp_recv(socket_t s)

 get the next received untagged message, tagged message
 reception indication, or tagged message error.

 ddp_register(socket_t s, ddp_buffer_t b)

 register a buffer for DDP on a socket. The same buffer may be
 registered multiple times on the same or different sockets.
 The same buffer registered on different sockets may result in
 a common registration. Different buffers may also refer to
 portions of the same underlying addressable object (buffer
 aliasing).

 ddp_deregister(bhand_t bh)

 remove a registration from a buffer.

 ddp_max_msizes(socket_t s)

 get the current maximum untagged and tagged message sizes that
 will fit in a single transport message.

2.1.3. Transport Characteristics In DDP

 Certain characteristics of the transport on which DDP is mapped
 determine the nature of the service provided to client protocols.
 Fundamentally, the characteristics of the transport will not be
 changed by the presence of DDP. The choice of transport is
 therefore driven not by DDP, but by the requirements of the Upper
 Layer, and employing the DDP service.

 Specifically, transports are:

 o reliable or unreliable,

Bailey & Talpey Expires August 2005 [Page 10]

Internet-Draft DDP & RDMA Architecture February 2005

 o ordered or unordered,

 o single source or multisource,

 o single destination or multidestination (multicast or anycast).

 Some transports support several combinations of these
 characteristics. For example, SCTP [SCTP] is reliable, single
 source, single destination (point-to-point) and supports both
 ordered and unordered modes.

 DDP messages carried by transport are framed for processing by the
 receiver, and may be further protected for integrity or privacy in
 accordance with the transport capabilities. DDP does not provide
 such functions.

 In general, transport characteristics equally affect transport and
 DDP message delivery. However, there are several issues specific
 to DDP messages.

 A key component of DDP is how the following operations on the
 receiving side are ordered among themselves, and how they relate to
 corresponding operations on the sending side:

 o set()s,

 o untagged message reception indications, and

 o tagged message reception indications.

 These relationships depend upon the characteristics of the
 underlying transport in a way which is defined by the DDP protocol.
 For example, if the transport is unreliable and unordered, the DDP
 protocol might specify that the client protocol is subject to the
 consequences of transport messages being lost or duplicated, rather
 than requiring different characteristics be presented to the client
 protocol.

 Buffer access must be implemented consistently across endpoint IP
 addresses on transports allowing multiple IP addresses per
 endpoint, for example, SCTP. In particular, the Steering Tag must
 be consistently scoped and must address the same buffer across all
 IP address associations belonging to the endpoint. Additionally,
 operation ordering relationships across IP addresses within an
 association (set(), get(), etc.) depend on the underlying
 transport. If the above consistency relationships cannot be
 maintained by a transport endpoint, then the endpoint is unsuitable
 for a DDP connection.

Bailey & Talpey Expires August 2005 [Page 11]

Internet-Draft DDP & RDMA Architecture February 2005

 Multidestination data delivery is a transport characteristic which
 may require specific consideration in a DDP protocol. As mentioned
 above, the basic DDP model assumes that buffer address values
 returned by ddp_register() are opaque to the client protocol, and
 can be implementation dependent. The most natural way to map DDP
 to a multidestination transport is to require all receivers produce
 the same buffer address when registering a multidestination
 destination buffer. Restriction of the DDP model to accommodate
 multiple destinations involves engineering tradeoffs comparable to
 those of providing non-DDP multidestination transport capability.

 A registered buffer is identified within DDP by its stag_t, which
 in turn is associated with a socket. This registration therefore
 grants a capability to the DDP peer, and the socket (using the
 underlying properties of its chosen transport and possible
 security) identifies the peer and authenticates the stag_t.

 The same buffer may be enabled by ddp_post_recv() on multiple
 sockets. In this case any ddp_recv() untagged message reception
 indication may be provided on a different socket from that on which
 the buffer was posted. Such indications are not ordered among
 multiple DDP sockets.

 When multiple sockets reference an untagged message reception
 buffer, local interfaces are responsible for managing the
 mechanisms of allocating posted buffers to received untagged
 messages, the handling of received untagged messages when no buffer
 is available, and of resource management among multiple sockets.
 Where underprovisioning of buffers on multiple sockets is allowed,
 mechanisms should be provided to manage buffer consumption on a
 per-socket or group of related sockets basis.

 Architecturally, therefore, DDP is a flexible and general paradigm
 which may be applied to any variety of transports. Implementations
 of DDP may, however, adapt themselves to these differences in ways
 appropriate to each transport. In all cases the layering of DDP
 must continue to express the transport's underlying
 characteristics.

2.2. Remote Direct Memory Access (RDMA) Protocol Architecture

 Remote Direct Memory Access (RDMA) extends the capabilities of DDP
 with two primary functions.

 First, it adds the ability to read from buffers registered to a
 socket (RDMA Read). This allows a client protocol to perform
 arbitrary, bidirectional data movement without involving the remote
 client. When RDMA is implemented in hardware, arbitrary data

Bailey & Talpey Expires August 2005 [Page 12]

Internet-Draft DDP & RDMA Architecture February 2005

 movement can be performed without involving the remote host CPU at
 all.

 In addition, RDMA specifies a transport-independent untagged
 message service (Send) with characteristics which are both very
 efficient to implement in hardware, and convenient for client
 protocols.

 The RDMA architecture is patterned after the traditional model for
 device programming, where the client requests an operation using
 Send-like actions (programmed I/O), the server performs the
 necessary data transfers for the operation (DMA reads and writes),
 and notifies the client of completion. The programmed I/O+DMA
 model efficiently supports a high degree of concurrency and
 flexibility for both the client and server, even when operations
 have a wide range of intrinsic latencies.

 RDMA is layered as a client protocol on top of DDP:

 Client Protocol
 | ^
 Sends | | Send reception indications
 RDMA Read Requests | | RDMA Read Completion indications
 RDMA Writes | | RDMA Write Completion indications
 v |
 RDMA
 | ^
 untagged messages | | untagged message delivery
 tagged messages | | tagged message delivery
 v |
 DDP+---> data placement
 ^
 | transport messages
 v
 . . .

 In addition to in-line data flow, read (get()) and update (set())
 operations are performed on buffers registered with RDMA as a
 result of RDMA Read Requests and RDMA Writes, respectively.

 An RDMA `buffer' extends a DDP buffer with a get() operation that
 retrieves the value of the octet at address `a':

Bailey & Talpey Expires August 2005 [Page 13]

Internet-Draft DDP & RDMA Architecture February 2005

 typedef struct {
 const address_t start;
 const address_t end;
 void set(address_t a, data_t v);
 data_t get(address_t a);
 } rdma_buffer_t;

2.2.1. RDMA Operations

 The RDMA layer provides:

 void rdma_send(socket_t s, message_t m);
 void rdma_write(socket_t s, message_t m, ddp_addr_t d,
 rdma_notify_t n);
 void rdma_read(socket_t s, ddp_addr_t s, ddp_addr_t d);
 void rdma_post_recv(socket_t s, bdesc_t b);
 rdma_ind_t rdma_recv(socket_t s);
 bdesc_t rdma_register(socket_t s, rdma_buffer_t b,
 bmode_t mode);
 void rdma_deregister(bhand_t bh);
 msizes_t rdma_max_msizes(socket_t s);

 Although, for clarity, these data transfer interfaces are
 synchronous, rdma_read() and possibly rdma_send() (in the presence
 of Send flow control), can require an arbitrary amount of time to
 complete. To express the full concurrency and interleaving of RDMA
 data transfer, these interfaces should also be reentrant. For
 example, a client protocol may perform an rdma_send(), while an
 rdma_read() operation is in progress.

 rdma_notify_t

 RDMA Write notification information, used to signal that the
 message represents the final fragment of a multi-segmented
 RDMA message:

 typedef struct {
 boolean_t notify;
 rdma_write_id_t i;
 } rdma_notify_t;

 identical in function to ddp_notify_t, except that the type
 rdma_write_id_t may not be equivalent to ddp_msg_id_t.

 rdma_write_id_t (scalar)

Bailey & Talpey Expires August 2005 [Page 14]

Internet-Draft DDP & RDMA Architecture February 2005

 an RDMA Write identifier.

 rdma_ind_t

 a Send message, or an RDMA error:

 typedef union {
 recv_message_t m;
 rdma_err_t e;
 } rdma_ind_t;

 rdma_err_t

 an RDMA protocol error indication. RDMA errors include buffer
 addressing errors corresponding to ddp_err_ts, and buffer
 protection violations (e.g. RDMA Writing a buffer only
 registered for reading).

 bmode_t

 buffer registration mode (permissions). Any combination of
 permitting RDMA Read (BMODE_READ) and RDMA Write (BMODE_WRITE)
 operations.

 rdma_send(socket_t s, message_t m)

 send a message, delivering it to the next untagged RDMA buffer
 at the remote peer.

 rdma_write(socket_t s, message_t m, ddp_addr_t d, rdma_notify_t n)

 RDMA Write to remote buffer address d.

 rdma_read(socket_t s, ddp_addr_t s, length_t l, ddp_addr_t d)

 RDMA Read l octets from remote buffer address s to local
 buffer address d.

 rdma_post_recv(socket_t s, bdesc_t b)

 post a registered buffer to accept a single Send message, to
 be filled and returned in-order to a subsequent caller of
 rdma_recv(). As with DDP, buffers may be enabled on multiple
 sockets, in which case ordering guarantees are relaxed. Also
 as with DDP, local interfaces must manage the mechanisms of
 allocation and management of buffers posted to multiple
 sockets.

Bailey & Talpey Expires August 2005 [Page 15]

Internet-Draft DDP & RDMA Architecture February 2005

 rdma_recv(socket_t s);

 get the next received Send message, RDMA Write completion
 identifier, or RDMA error.

 rdma_register(socket_t s, rdma_buffer_t b, bmode_t mode)

 register a buffer for RDMA on a socket (for read access, write
 access or both). As with DDP, the same buffer may be
 registered multiple times on the same or different sockets,
 and different buffers may refer to portions of the same
 underlying addressable object.

 rdma_deregister(bhand_t bh)

 remove a registration from a buffer.

 rdma_max_msizes(socket_t s)

 get the current maximum Send (max_untagged) and RDMA Read or
 Write (max_tagged) operations that will fit in a single
 transport message. The values returned by rdma_max_msizes()
 are closely related to the values returned by
 ddp_max_msizes(), but may not be equal.

2.2.2. Transport Characteristics In RDMA

 As with DDP, RDMA can be used on transports with a variety of
 different characteristics that manifest themselves directly in the
 service provided by RDMA. Also as with DDP, the fundamental
 characteristics of the transport will not be changed by the
 presence of RDMA.

 Like DDP, an RDMA protocol must specify how:

 o set()s,

 o get()s,

 o Send messages, and

 o RDMA Read completions

 are ordered among themselves and how they relate to corresponding
 operations on the remote peer(s). These relationships are likely
 to be a function of the underlying transport characteristics.

 There are some additional characteristics of RDMA which may

Bailey & Talpey Expires August 2005 [Page 16]

Internet-Draft DDP & RDMA Architecture February 2005

 translate poorly to unreliable or multipoint transports due to
 attendant complexities in managing endpoint state:

 o Send flow control

 o RDMA Read

 These difficulties can be overcome by placing restrictions on the
 service provided by RDMA. However, many RDMA clients, especially
 those that separate data transfer and application logic concerns,
 are likely to depend upon capabilities only provided by RDMA on a
 point-to-point, reliable transport. In other words, many potential
 Upper Layers which might avail themselves of RDMA services are
 naturally already biased toward these transport classes.

3. Security Considerations

 Fundamentally, the DDP and RDMA protocols themselves should not
 introduce additional vulnerabilities. They are intermediate
 protocols and so should not perform or require functions such as
 authorization, which are the domain of Upper Layers. However, the
 DDP and RDMA protocols should allow mapping by strict Upper Layers
 which are not permissive of new vulnerabilities -- DDP and RDMAP
 implementations should be prohibited from `cutting corners' that
 create new vulnerabilities. Implementations must ensure that only
 `supplied' resources (i.e. buffers) can be manipulated by DDP or
 RDMAP messages.

 System integrity must be maintained in any RDMA solution.
 Mechanisms must be specified to prevent RDMA or DDP operations from
 impairing system integrity. For example, threats can include
 potential buffer reuse or buffer overflow, and are not merely a
 security issue. Even trusted peers must not be allowed to damage
 local integrity. Any DDP and RDMA protocol must address the issue
 of giving end-systems and applications the capabilities to offer
 protection from such compromises.

 Because a Steering Tag exports access to a buffer, one critical
 aspect of security is the scope of this access. It must be
 possible to individually control specific attributes of the access
 provided by a Steering Tag on the endpoint (socket) on which it was
 registered, including remote read access, remote write access, and
 others that might be identified. DDP and RDMA specifications must
 provide both implementation requirements relevant to this issue,
 and guidelines to assist implementors in making the appropriate
 design decisions.

 For example, it must not be possible for DDP to enable evasion of

Bailey & Talpey Expires August 2005 [Page 17]

Internet-Draft DDP & RDMA Architecture February 2005

 buffer consistency checks at the recipient. The DDP and RDMA
 specifications must allow the recipient to rely on its consistent
 buffer contents by explicitly controlling peer access to buffer
 regions at appropriate times.

 The use of DDP and RDMA on a transport connection may interact with
 any security mechanism, and vice-versa. For example, if the
 security mechanism is implemented above the transport layer, the
 DDP and RDMA headers may not be protected. Such a layering may
 therefore be inappropriate, depending on requirements.

3.1. Security Services

 The following end-to-end security services protect DDP and RDMAP
 operation streams:

 o Authentication of the data source, to protect against peer
 impersonation, stream hijacking, and man-in-the-middle attacks
 exploiting capabilities offered by the RDMA implementation.

 Peer connections which do not pass authentication and
 authorization checks must not be permitted to begin processing
 in RDMA mode with an inappropriate endpoint. Once associated,
 peer accesses to buffer regions must be authenticated and made
 subject to authorization checks in the context of the
 association and endpoint (socket) on which they are to be
 performed, prior to any transfer operation or data being
 accessed. The RDMA protocols must ensure that these region
 protections be under strict application control.

 o Integrity, to protect against modification of the control
 content and buffer content.

 While integrity is of concern to any transport, it is
 important for the DDP and RDMAP protocols that the RDMA
 control information carried in each operation be protected, in
 order to direct the payloads appropriately.

 o Sequencing, to protect against replay attacks (a special case
 of the above modifications).

 o Confidentiality, to protect the stream from eavesdropping.

 IPsec, operating to secure the connection on a packet-by-packet
 basis, is a natural fit to securing RDMA placement, which operates
 in conjunction with transport. Because RDMA enables an
 implementation to avoid buffering, it is preferable to perform all
 applicable security protection prior to processing of each segment

Bailey & Talpey Expires August 2005 [Page 18]

Internet-Draft DDP & RDMA Architecture February 2005

 by the transport and RDMA layers. Such a layering enables the most
 efficient secure RDMA implementation.

 The TLS record protocol, on the other hand, is layered on top of
 reliable transports and cannot provide such security assurance
 until an entire record is available, which may require the
 buffering and/or assembly of several distinct messages prior to TLS
 processing. This defers RDMA processing and introduces overheads
 that RDMA is designed to avoid. In addition, TLS length
 restrictions on records themselves impose additional buffering and
 processing, for long operations which must span multiple records.
 TLS therefore is viewed as potentially a less natural fit for
 protecting the RDMA protocols.

 Any DDP and RDMAP specification must provide the means to satisfy
 the above security service requirements.

 IPsec is sufficient to provide the required security services to
 the DDP and RDMAP protocols, while enabling efficient
 implementations.

3.2. Error Considerations

 Resource issues leading to denial-of-service attacks, overwrites
 and other concurrent operations, the ordering of completions as
 required by the RDMA protocol, and the granularity of transfer are
 all within the required scope of any security analysis of RDMA and
 DDP.

 The RDMA operations require checking of what is essentially user
 information, explicitly including addressing information and
 operation type (read or write), and implicitly including protection
 and attributes. The semantics associated with each class of error
 resulting from possible failure of such checks must be clearly
 defined, and the expected action to be taken by the protocols in
 each case must be specified.

 In some cases, this will result in a catastrophic error on the RDMA
 association, however in others, a local or remote error may be
 signalled. Certain of these errors may require consideration of
 abstract local semantics. The result of the error on the RDMA
 association must be carefully specified so as to provide useful
 behavior, while not constraining the implementation.

4. IANA Considerations

 IANA considerations are not addressed in by this document. Any
 IANA considerations resulting from the use of DDP or RDMA must be

Bailey & Talpey Expires August 2005 [Page 19]

Internet-Draft DDP & RDMA Architecture February 2005

 addressed in the relevant standards.

5. Acknowledgements

 The authors wish to acknowledge the valuable contributions of
 Caitlin Bestler, David Black, Jeff Mogul and Allyn Romanow.

6. Informative References

 [DAFS]
 DAFS Collaborative, "Direct Access File System Specification
 v1.0", September 2001, available from

http://www.dafscollaborative.org

 [FCVI]
 ANSI Technical Committee T11, "Fibre Channel Standard Virtual
 Interface Architecture Mapping", ANSI/NCITS 357-2001, March
 2001, available from http://www.t11.org/t11/stat.nsf/fcproj

 [IB] InfiniBand Trade Association, "InfiniBand Architecture
 Specification Volumes 1 and 2", Release 1.1, November 2002,
 available from http://www.infinibandta.org/specs

 [MYR]
 VMEbus International Trade Association, "Myrinet on VME
 Protocol Specification", ANSI/VITA 26-1998, August 1998,
 available from http://www.myri.com/open-specs

 [ROM]
 A. Romanow, J. Mogul, T. Talpey and S. Bailey, "RDMA over IP
 Problem Statement", draft-ietf-rddp-problem-statement,
 Internet Draft Work in Progress

 [SCTP]
 R. Stewart et al., "Stream Transmission Control Protocol", RFC

2960, Standards Track

 [SDP]
 InfiniBand Trade Association, "Sockets Direct Protocol v1.0",
 Annex A of InfiniBand Architecture Specification Volume 1,
 Release 1.1, November 2002, available from

http://www.infinibandta.org/specs

 [SRVNET]
 R. Horst, "TNet: A reliable system area network", IEEE Micro,
 pp. 37-45, February 1995

http://www.dafscollaborative.org
http://www.t11.org/t11/stat.nsf/fcproj
http://www.infinibandta.org/specs
http://www.myri.com/open-specs
https://datatracker.ietf.org/doc/html/draft-ietf-rddp-problem-statement
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960
http://www.infinibandta.org/specs

Bailey & Talpey Expires August 2005 [Page 20]

Internet-Draft DDP & RDMA Architecture February 2005

 [VI] Compaq Computer Corp., Intel Corporation and Microsoft
 Corporation, "Virtual Interface Architecture Specification
 Version 1.0", December 1997, available from

http://www.vidf.org/info/04standards.html

Authors' Addresses

 Stephen Bailey
 Sandburst Corporation
 600 Federal Street
 Andover, MA 01810 USA
 USA

 Phone: +1 978 689 1614
 Email: steph@sandburst.com

 Tom Talpey
 Network Appliance
 375 Totten Pond Road
 Waltham, MA 02451 USA

 Phone: +1 781 768 5329
 Email: thomas.talpey@netapp.com

Full Copyright Statement

 Copyright (C) The Internet Society (2005). This document is
 subject to the rights, licenses and restrictions contained in BCP

78 and except as set forth therein, the authors retain all their
 rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

Intellectual Property
 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such

http://www.vidf.org/info/04standards.html
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78

Bailey & Talpey Expires August 2005 [Page 21]

Internet-Draft DDP & RDMA Architecture February 2005

 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement
 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Bailey & Talpey Expires August 2005 [Page 22]

