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Abstract

     This document defines an abstract architecture for Direct Data
     Placement (DDP) and Remote Direct Memory Access (RDMA) protocols to
     run on Internet Protocol-suite transports.  This architecture does
     not necessarily reflect the proper way to implement such protocols,
     but is, rather, a descriptive tool for defining and understanding
     the protocols.  DDP allows the efficient placement of data into
     buffers designated by Upper Layer Protocols (e.g. RDMA).  RDMA
     provides the semantics to enable Remote Direct Memory Access
     between peers in a way consistent with application requirements.
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1.  Introduction

     This document defines an abstract architecture for Direct Data
     Placement (DDP) and Remote Direct Memory Access (RDMA) protocols to
     run on Internet Protocol-suite transports.  This architecture does
     not necessarily reflect the proper way to implement such protocols,
     but is, rather, a descriptive tool for defining and understanding
     the protocols.  This document uses C language notation as a
     shorthand to describe the architectural elements of DDP and RDMA
     protocols.  The choice of C notation is not intended to describe
     concrete protocols or programming interfaces.

     The first part of the document describes the architecture of DDP
     protocols, including what assumptions are made about the transports
     on which DDP is built.  The second part describes the architecture
     of RDMA protocols layered on top of DDP.

1.1.  Terminology

     Before introducing the protocols, certain definitions will be
     useful to guide discussion:

     o    Placement - writing to a data buffer.
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     o    Operation - a protocol message, or sequence of messages, which
          provide a architectural semantic, such as reading or writing
          of a data buffer.

     o    Delivery - informing any Upper Layer or application that a
          particular message is available for use.  Delivery therefore
          may be viewed as the "control" signal associated with a unit
          of data.  Note that the order of delivery is defined more
          strictly than it is for placement.

     o    Completion - informing any Upper Layer or application that a
          particular operation has finished.  A completion, for
          instance, may require the delivery of several messages, or it
          may also reflect that some local processing has finished.

     o    Data Sink - the peer on which any placement occurs.

     o    Data Source - the peer from which the placed data originates.

     o    Steering Tag - a "handle" used to identify the buffer which is
          the target of placement.  A "tagged" message is one which
          references such a handle.

     o    RDMA Write - an Operation which places data from a local data
          buffer to a remote data buffer specified by a Steering Tag.

     o    RDMA Read - an Operation which places data to a local data
          buffer specified by a Steering Tag from a remote data buffer
          specified by another Steering Tag.

     o    Send - an Operation which places data from a local data buffer
          to a remote data buffer of the data sink's choice.  Sends are
          therefore "untagged".

1.2.  DDP and RDMA Protocols

     The goal of the DDP protocol is to allow the efficient placement of
     data into buffers designated by protocols layered above DDP (e.g.
     RDMA).  This is described in detail in [ROM].  Efficiency may be
     characterized by the minimization of the number of transfers of the
     data over the receiver's system buses.

     The goal of the RDMA protocol is to provide the semantics to enable
     Remote Direct Memory Access between peers in a way consistent with
     application requirements.  The RDMA protocol provides facilities
     immediately useful to existing and future networking, storage, and
     other application protocols.  [DAFS, FCVI, IB, MYR, SDP, SRVNET,
     VI]
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     The DDP and RDMA protocols work together to achieve their
     respective goals.  DDP provides facilities to safely steer payloads
     to specific buffers at the Data Sink.  RDMA provides facilities to
     Upper Layers for identifying these buffers, controlling the
     transfer of data between peers' buffers, supporting authorized
     bidirectional transfer between buffers, and signalling completion.
     Upper Layer Protocols that do not require the features of RDMA may
     be layered directly on top of DDP.

     The DDP and RDMA protocols are transport independent.  The
     following figure shows the relationship between RDMA, DDP, Upper
     Layer Protocols and Transport.

          +--------------------------------------------------+
          |               Upper Layer Protocol               |
          +---------+------------+---------------------------+
          |         |            |           RDMA            |
          |         |            +---------------------------+
          |         |                   DDP                  |
          |         +----------------------------------------+
          |                    Transport                     |
          +--------------------------------------------------+

2.  Architecture

     The Architecture section is presented in two parts: Direct Data
     Placement Protocol architecture and Remote Direct Memory Access
     Protocol architecture.

2.1.  Direct Data Placement (DDP) Protocol Architecture

     The central idea of general-purpose DDP is that a data sender will
     supplement the data it sends with placement information that allows
     the receiver's network interface to place the data directly at its
     final destination without any copying.  DDP can be used to steer
     received data to its final destination, without requiring layer-
     specific behavior for each different layer.  Data sent with such
     DDP information is said to be `tagged'.

     The central component of the DDP architecture is the `buffer',
     which is an object with beginning and ending addresses, and a
     method (set()) to set the value of an octet at an address.  In many
     cases, a buffer corresponds directly to a portion of host user
     memory.  However, DDP does not depend on this---a buffer could be a
     disk file, or anything else that can be viewed as an addressable
     collection of octets.  Abstractly, a buffer provides the interface:
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          typedef struct {
            const address_t start;
            const address_t end;
            void            set(address_t a, data_t v);
          } ddp_buffer_t;

     address_t

          a reference to local memory

     data_t

          an octet data value.

     The protocol layering and in-line data flow of DDP is:

                      DDP Client Protocol
               (e.g. RDMA or Upper Layer Protocol)
                             |  ^
           untagged messages |  | untagged message delivery
             tagged messages |  | tagged message delivery
                             v  |
                             DDP+---> data placement
                              ^
                              | transport messages
                              v
                          Transport
                 (e.g. SCTP, DCCP, framed TCP)
                              ^
                              | IP datagrams
                              v
                            . . .

     In addition to in-line data flow, the client protocol registers
     buffers with DDP, and DDP performs buffer update (set()) operations
     as a result of receiving tagged messages.

     DDP messages may be split into multiple, smaller DDP messages, each
     in a separate transport message.  However, if the transport is
     unreliable or unordered, messages split across transport messages
     may or may not provide useful behavior, in the same way as
     splitting arbitrary Upper Layer messages across unreliable or
     unordered transport messages may or may not provide useful
     behavior.  In other words, the same considerations apply to
     building client protocols on different types of transports with or
     without the use of DDP.
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     A DDP message split across transport messages looks like:

     DDP message:              Transport messages:

       stag=s, offset=o,          message 1:
       notify=y, id=i               |type=ddp  |
       message=                     |stag=s    |
         |aabbccddee|-------.       |offset=o  |
         ~   ...    ~----.   \      |notify=n  |
         |vvwwxxyyzz|-.   \   \     |id=?      |
                      |    \   `--->|aabbccddee|
                      |     \       ~    ...   ~
                      |      +----->|iijjkkllmm|
                      |      |
                      +      |    message 2:
                       \     |      |type=ddp  |
                        \    |      |stag=s    |
                         \   +      |offset=o+n|
                          \   \     |notify=y  |
                           \   \    |id=i      |
                            \   `-->|nnooppqqrr|
                             \      ~    ...   ~
                              `---->|vvwwxxyyzz|

     Although this picture suggests that DDP information is carried in-
     line with the message payload, components of the DDP information
     may also be in transport-specific fields, or derived from
     transport-specific control information if the transport permits.

2.1.1.  Transport Operations

     For the purposes of this architecture, the transport provides:

          void      xpt_send(socket_t s, message_t m);
          message_t xpt_recv(socket_t s);
          msize_t   xpt_max_msize(socket_t s);

     socket_t

          a transport address, including IP addresses, ports and other
          transport-specific identifiers.

     message_t

          a string of octets.
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     msize_t (scalar)

          a message size.

     xpt_send(socket_t s, message_t m)

          send a transport message.

     xpt_recv(socket_t s)

          receive a transport message.

     xpt_max_msize(socket_t s)

          get the current maximum transport message size.  Corresponds,
          roughly, to the current path Maximum Transfer Unit (PMTU),
          adjusted by underlying protocol overheads.

     Real implementations of xpt_send() and xpt_recv() typically return
     error indications, but that is not relevant to this architecture.

2.1.2.  DDP Operations

     The DDP layer provides:

          void       ddp_send(socket_t s, message_t m);
          void       ddp_send_ddp(socket_t s, message_t m, ddp_addr_t d,
                                  ddp_notify_t n);
          void       ddp_post_recv(socket_t s, bdesc_t b);
          ddp_ind_t  ddp_recv(socket_t s);
          bdesc_t    ddp_register(socket_t s, ddp_buffer_t b);
          void       ddp_deregister(bhand_t bh);
          msizes_t   ddp_max_msizes(socket_t s);

     ddp_addr_t

          the buffer address portion of a tagged message:

               typedef struct {
                 stag_t stag;
                 address_t offset;
               } ddp_addr_t;

     stag_t (scalar)
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          a Steering Tag.  A stag_t identifies the destination buffer
          for tagged messages.  stag_ts are generated when the buffer is
          registered, communicated to the sender by some client protocol
          convention and inserted in DDP messages.  stag_t values in
          this DDP architecture are assumed to be completely opaque to
          the client protocol, and implementation-dependent.  However,
          particular implementations, such as DDP on a multicast
          transport (see below), may provide the buffer holder some
          control in selecting stag_ts.

     ddp_notify_t

          the notification portion of a DDP message, used to signal that
          the message represents the final fragment of a multi-segmented
          DDP message:

               typedef struct {
                 boolean_t notify;
                 ddp_msg_id_t i;
               } ddp_notify_t;

     ddp_msg_id_t (scalar)

          a DDP message identifier.  msg_id_ts are chosen by the DDP
          message receiver (buffer holder), communicated to the sender
          by some client protocol convention and inserted in DDP
          messages.  Whether a message reception indication is requested
          for a DDP message is a matter of client protocol convention.
          Unlike stag_ts, the structure of msg_id_ts is opaque to DDP,
          and therefore, completely in the hands of the client protocol.

     bdesc_t

          a description of a registered buffer:

               typedef struct {
                 bhand_t bh;
                 ddp_addr_t a;
               } bdesc_t;

          `a.offset' is the starting offset of the registered buffer,
          which may have no relationship to the `start' or `end'
          addresses of that buffer.  However, particular
          implementations, such as DDP on a multicast transport (see
          below), may allow some client protocol control over the
          starting offset.



Bailey & Talpey            Expires August 2005                  [Page 8]



Internet-Draft           DDP & RDMA Architecture           February 2005

     bhand_t

          an opaque buffer handle used to deregister a buffer.

     recv_message_t

          a description of a completed untagged receive buffer:

               typedef struct {
                 bdesc_t b;
                 length_t l;
               } recv_message_t;

     ddp_ind_t

          an untagged message, a tagged message reception indication, or
          a tagged message reception error:

               typedef union {
                 recv_message_t m;
                 ddp_msg_id_t i;
                 ddp_err_t e;
               } ddp_ind_t;

     ddp_err_t

          indicates an error while receiving a tagged message, typically
          `offset' out of bounds, or `stag' is not registered to the
          socket.

     msizes_t

          The maximum untagged and tagged messages that fit in a single
          transport message:

               typedef struct {
                 msize_t max_untagged;
                 msize_t max_tagged;
               } msizes_t;

     ddp_send(socket_t s, message_t m)

          send an untagged message.

     ddp_send_ddp(socket_t s, message_t m, ddp_addr_t d, ddp_notify_t n)
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          send a tagged message to remote buffer address d.

     ddp_post_recv(socket_t s, bdesc_t b)

          post a registered buffer to accept a single received untagged
          message.  Each buffer is returned to the caller in a
          ddp_recv() untagged message reception indication, in the order
          in which it was posted.  The same buffer may be enabled on
          multiple sockets, receipt of an untagged message into the
          buffer from any of these sockets unposts the buffer from all
          sockets.

     ddp_recv(socket_t s)

          get the next received untagged message, tagged message
          reception indication, or tagged message error.

     ddp_register(socket_t s, ddp_buffer_t b)

          register a buffer for DDP on a socket.  The same buffer may be
          registered multiple times on the same or different sockets.
          The same buffer registered on different sockets may result in
          a common registration.  Different buffers may also refer to
          portions of the same underlying addressable object (buffer
          aliasing).

     ddp_deregister(bhand_t bh)

          remove a registration from a buffer.

     ddp_max_msizes(socket_t s)

          get the current maximum untagged and tagged message sizes that
          will fit in a single transport message.

2.1.3.  Transport Characteristics In DDP

     Certain characteristics of the transport on which DDP is mapped
     determine the nature of the service provided to client protocols.
     Fundamentally, the characteristics of the transport will not be
     changed by the presence of DDP.  The choice of transport is
     therefore driven not by DDP, but by the requirements of the Upper
     Layer, and employing the DDP service.

     Specifically, transports are:

     o    reliable or unreliable,
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     o    ordered or unordered,

     o    single source or multisource,

     o    single destination or multidestination (multicast or anycast).

     Some transports support several combinations of these
     characteristics.  For example, SCTP [SCTP] is reliable, single
     source, single destination (point-to-point) and supports both
     ordered and unordered modes.

     DDP messages carried by transport are framed for processing by the
     receiver, and may be further protected for integrity or privacy in
     accordance with the transport capabilities.  DDP does not provide
     such functions.

     In general, transport characteristics equally affect transport and
     DDP message delivery.  However, there are several issues specific
     to DDP messages.

     A key component of DDP is how the following operations on the
     receiving side are ordered among themselves, and how they relate to
     corresponding operations on the sending side:

          o    set()s,

          o    untagged message reception indications, and

          o    tagged message reception indications.

     These relationships depend upon the characteristics of the
     underlying transport in a way which is defined by the DDP protocol.
     For example, if the transport is unreliable and unordered, the DDP
     protocol might specify that the client protocol is subject to the
     consequences of transport messages being lost or duplicated, rather
     than requiring different characteristics be presented to the client
     protocol.

     Buffer access must be implemented consistently across endpoint IP
     addresses on transports allowing multiple IP addresses per
     endpoint, for example, SCTP.  In particular, the Steering Tag must
     be consistently scoped and must address the same buffer across all
     IP address associations belonging to the endpoint.  Additionally,
     operation ordering relationships across IP addresses within an
     association (set(), get(), etc.) depend on the underlying
     transport.  If the above consistency relationships cannot be
     maintained by a transport endpoint, then the endpoint is unsuitable
     for a DDP connection.
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     Multidestination data delivery is a transport characteristic which
     may require specific consideration in a DDP protocol.  As mentioned
     above, the basic DDP model assumes that buffer address values
     returned by ddp_register() are opaque to the client protocol, and
     can be implementation dependent.  The most natural way to map DDP
     to a multidestination transport is to require all receivers produce
     the same buffer address when registering a multidestination
     destination buffer.  Restriction of the DDP model to accommodate
     multiple destinations involves engineering tradeoffs comparable to
     those of providing non-DDP multidestination transport capability.

     A registered buffer is identified within DDP by its stag_t, which
     in turn is associated with a socket.  This registration therefore
     grants a capability to the DDP peer, and the socket (using the
     underlying properties of its chosen transport and possible
     security) identifies the peer and authenticates the stag_t.

     The same buffer may be enabled by ddp_post_recv() on multiple
     sockets.  In this case any ddp_recv() untagged message reception
     indication may be provided on a different socket from that on which
     the buffer was posted.  Such indications are not ordered among
     multiple DDP sockets.

     When multiple sockets reference an untagged message reception
     buffer, local interfaces are responsible for managing the
     mechanisms of allocating posted buffers to received untagged
     messages, the handling of received untagged messages when no buffer
     is available, and of resource management among multiple sockets.
     Where underprovisioning of buffers on multiple sockets is allowed,
     mechanisms should be provided to manage buffer consumption on a
     per-socket or group of related sockets basis.

     Architecturally, therefore, DDP is a flexible and general paradigm
     which may be applied to any variety of transports.  Implementations
     of DDP may, however, adapt themselves to these differences in ways
     appropriate to each transport.  In all cases the layering of DDP
     must continue to express the transport's underlying
     characteristics.

2.2.  Remote Direct Memory Access (RDMA) Protocol Architecture

     Remote Direct Memory Access (RDMA) extends the capabilities of DDP
     with two primary functions.

     First, it adds the ability to read from buffers registered to a
     socket (RDMA Read).  This allows a client protocol to perform
     arbitrary, bidirectional data movement without involving the remote
     client.  When RDMA is implemented in hardware, arbitrary data
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     movement can be performed without involving the remote host CPU at
     all.

     In addition, RDMA specifies a transport-independent untagged
     message service (Send) with characteristics which are both very
     efficient to implement in hardware, and convenient for client
     protocols.

     The RDMA architecture is patterned after the traditional model for
     device programming, where the client requests an operation using
     Send-like actions (programmed I/O), the server performs the
     necessary data transfers for the operation (DMA reads and writes),
     and notifies the client of completion.  The programmed I/O+DMA
     model efficiently supports a high degree of concurrency and
     flexibility for both the client and server, even when operations
     have a wide range of intrinsic latencies.

     RDMA is layered as a client protocol on top of DDP:

                        Client Protocol
                             |  ^
                       Sends |  | Send reception indications
          RDMA Read Requests |  | RDMA Read Completion indications
                 RDMA Writes |  | RDMA Write Completion indications
                             v  |
                             RDMA
                             |  ^
           untagged messages |  | untagged message delivery
             tagged messages |  | tagged message delivery
                             v  |
                             DDP+---> data placement
                              ^
                              | transport messages
                              v
                            . . .

     In addition to in-line data flow, read (get()) and update (set())
     operations are performed on buffers registered with RDMA as a
     result of RDMA Read Requests and RDMA Writes, respectively.

     An RDMA `buffer' extends a DDP buffer with a get() operation that
     retrieves the value of the octet at address `a':
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          typedef struct {
            const address_t start;
            const address_t end;
            void            set(address_t a, data_t v);
            data_t          get(address_t a);
          } rdma_buffer_t;

2.2.1.  RDMA Operations

     The RDMA layer provides:

          void        rdma_send(socket_t s, message_t m);
          void        rdma_write(socket_t s, message_t m, ddp_addr_t d,
                                 rdma_notify_t n);
          void        rdma_read(socket_t s, ddp_addr_t s, ddp_addr_t d);
          void        rdma_post_recv(socket_t s, bdesc_t b);
          rdma_ind_t  rdma_recv(socket_t s);
          bdesc_t     rdma_register(socket_t s, rdma_buffer_t b,
                                 bmode_t mode);
          void        rdma_deregister(bhand_t bh);
          msizes_t    rdma_max_msizes(socket_t s);

     Although, for clarity, these data transfer interfaces are
     synchronous, rdma_read() and possibly rdma_send() (in the presence
     of Send flow control), can require an arbitrary amount of time to
     complete.  To express the full concurrency and interleaving of RDMA
     data transfer, these interfaces should also be reentrant.  For
     example, a client protocol may perform an rdma_send(), while an
     rdma_read() operation is in progress.

     rdma_notify_t

          RDMA Write notification information, used to signal that the
          message represents the final fragment of a multi-segmented
          RDMA message:

               typedef struct {
                 boolean_t notify;
                 rdma_write_id_t i;
               } rdma_notify_t;

          identical in function to ddp_notify_t, except that the type
          rdma_write_id_t may not be equivalent to ddp_msg_id_t.

     rdma_write_id_t (scalar)
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          an RDMA Write identifier.

     rdma_ind_t

          a Send message, or an RDMA error:

               typedef union {
                 recv_message_t m;
                 rdma_err_t e;
               } rdma_ind_t;

     rdma_err_t

          an RDMA protocol error indication.  RDMA errors include buffer
          addressing errors corresponding to ddp_err_ts, and buffer
          protection violations (e.g. RDMA Writing a buffer only
          registered for reading).

     bmode_t

          buffer registration mode (permissions).  Any combination of
          permitting RDMA Read (BMODE_READ) and RDMA Write (BMODE_WRITE)
          operations.

     rdma_send(socket_t s, message_t m)

          send a message, delivering it to the next untagged RDMA buffer
          at the remote peer.

     rdma_write(socket_t s, message_t m, ddp_addr_t d, rdma_notify_t n)

          RDMA Write to remote buffer address d.

     rdma_read(socket_t s, ddp_addr_t s, length_t l, ddp_addr_t d)

          RDMA Read l octets from remote buffer address s to local
          buffer address d.

     rdma_post_recv(socket_t s, bdesc_t b)

          post a registered buffer to accept a single Send message, to
          be filled and returned in-order to a subsequent caller of
          rdma_recv().  As with DDP, buffers may be enabled on multiple
          sockets, in which case ordering guarantees are relaxed.  Also
          as with DDP, local interfaces must manage the mechanisms of
          allocation and management of buffers posted to multiple
          sockets.
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     rdma_recv(socket_t s);

          get the next received Send message, RDMA Write completion
          identifier, or RDMA error.

     rdma_register(socket_t s, rdma_buffer_t b, bmode_t mode)

          register a buffer for RDMA on a socket (for read access, write
          access or both).  As with DDP, the same buffer may be
          registered multiple times on the same or different sockets,
          and different buffers may refer to portions of the same
          underlying addressable object.

     rdma_deregister(bhand_t bh)

          remove a registration from a buffer.

     rdma_max_msizes(socket_t s)

          get the current maximum Send (max_untagged) and RDMA Read or
          Write (max_tagged) operations that will fit in a single
          transport message.  The values returned by rdma_max_msizes()
          are closely related to the values returned by
          ddp_max_msizes(), but may not be equal.

2.2.2.  Transport Characteristics In RDMA

     As with DDP, RDMA can be used on transports with a variety of
     different characteristics that manifest themselves directly in the
     service provided by RDMA.  Also as with DDP, the fundamental
     characteristics of the transport will not be changed by the
     presence of RDMA.

     Like DDP, an RDMA protocol must specify how:

          o    set()s,

          o    get()s,

          o    Send messages, and

          o    RDMA Read completions

     are ordered among themselves and how they relate to corresponding
     operations on the remote peer(s).  These relationships are likely
     to be a function of the underlying transport characteristics.

     There are some additional characteristics of RDMA which may
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     translate poorly to unreliable or multipoint transports due to
     attendant complexities in managing endpoint state:

     o    Send flow control

     o    RDMA Read

     These difficulties can be overcome by placing restrictions on the
     service provided by RDMA.  However, many RDMA clients, especially
     those that separate data transfer and application logic concerns,
     are likely to depend upon capabilities only provided by RDMA on a
     point-to-point, reliable transport.  In other words, many potential
     Upper Layers which might avail themselves of RDMA services are
     naturally already biased toward these transport classes.

3.  Security Considerations

     Fundamentally, the DDP and RDMA protocols themselves should not
     introduce additional vulnerabilities.  They are intermediate
     protocols and so should not perform or require functions such as
     authorization, which are the domain of Upper Layers.  However, the
     DDP and RDMA protocols should allow mapping by strict Upper Layers
     which are not permissive of new vulnerabilities -- DDP and RDMAP
     implementations should be prohibited from `cutting corners' that
     create new vulnerabilities.  Implementations must ensure that only
     `supplied' resources (i.e. buffers) can be manipulated by DDP or
     RDMAP messages.

     System integrity must be maintained in any RDMA solution.
     Mechanisms must be specified to prevent RDMA or DDP operations from
     impairing system integrity.  For example, threats can include
     potential buffer reuse or buffer overflow, and are not merely a
     security issue.  Even trusted peers must not be allowed to damage
     local integrity.  Any DDP and RDMA protocol must address the issue
     of giving end-systems and applications the capabilities to offer
     protection from such compromises.

     Because a Steering Tag exports access to a buffer, one critical
     aspect of security is the scope of this access.  It must be
     possible to individually control specific attributes of the access
     provided by a Steering Tag on the endpoint (socket) on which it was
     registered, including remote read access, remote write access, and
     others that might be identified.  DDP and RDMA specifications must
     provide both implementation requirements relevant to this issue,
     and guidelines to assist implementors in making the appropriate
     design decisions.

     For example, it must not be possible for DDP to enable evasion of
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     buffer consistency checks at the recipient.  The DDP and RDMA
     specifications must allow the recipient to rely on its consistent
     buffer contents by explicitly controlling peer access to buffer
     regions at appropriate times.

     The use of DDP and RDMA on a transport connection may interact with
     any security mechanism, and vice-versa.  For example, if the
     security mechanism is implemented above the transport layer, the
     DDP and RDMA headers may not be protected.  Such a layering may
     therefore be inappropriate, depending on requirements.

3.1.  Security Services

     The following end-to-end security services protect DDP and RDMAP
     operation streams:

     o    Authentication of the data source, to protect against peer
          impersonation, stream hijacking, and man-in-the-middle attacks
          exploiting capabilities offered by the RDMA implementation.

          Peer connections which do not pass authentication and
          authorization checks must not be permitted to begin processing
          in RDMA mode with an inappropriate endpoint.  Once associated,
          peer accesses to buffer regions must be authenticated and made
          subject to authorization checks in the context of the
          association and endpoint (socket) on which they are to be
          performed, prior to any transfer operation or data being
          accessed.  The RDMA protocols must ensure that these region
          protections be under strict application control.

     o    Integrity, to protect against modification of the control
          content and buffer content.

          While integrity is of concern to any transport, it is
          important for the DDP and RDMAP protocols that the RDMA
          control information carried in each operation be protected, in
          order to direct the payloads appropriately.

     o    Sequencing, to protect against replay attacks (a special case
          of the above modifications).

     o    Confidentiality, to protect the stream from eavesdropping.

     IPsec, operating to secure the connection on a packet-by-packet
     basis, is a natural fit to securing RDMA placement, which operates
     in conjunction with transport.  Because RDMA enables an
     implementation to avoid buffering, it is preferable to perform all
     applicable security protection prior to processing of each segment
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     by the transport and RDMA layers.  Such a layering enables the most
     efficient secure RDMA implementation.

     The TLS record protocol, on the other hand, is layered on top of
     reliable transports and cannot provide such security assurance
     until an entire record is available, which may require the
     buffering and/or assembly of several distinct messages prior to TLS
     processing.  This defers RDMA processing and introduces overheads
     that RDMA is designed to avoid.  In addition, TLS length
     restrictions on records themselves impose additional buffering and
     processing, for long operations which must span multiple records.
     TLS therefore is viewed as potentially a less natural fit for
     protecting the RDMA protocols.

     Any DDP and RDMAP specification must provide the means to satisfy
     the above security service requirements.

     IPsec is sufficient to provide the required security services to
     the DDP and RDMAP protocols, while enabling efficient
     implementations.

3.2.  Error Considerations

     Resource issues leading to denial-of-service attacks, overwrites
     and other concurrent operations, the ordering of completions as
     required by the RDMA protocol, and the granularity of transfer are
     all within the required scope of any security analysis of RDMA and
     DDP.

     The RDMA operations require checking of what is essentially user
     information, explicitly including addressing information and
     operation type (read or write), and implicitly including protection
     and attributes.  The semantics associated with each class of error
     resulting from possible failure of such checks must be clearly
     defined, and the expected action to be taken by the protocols in
     each case must be specified.

     In some cases, this will result in a catastrophic error on the RDMA
     association, however in others, a local or remote error may be
     signalled.  Certain of these errors may require consideration of
     abstract local semantics.  The result of the error on the RDMA
     association must be carefully specified so as to provide useful
     behavior, while not constraining the implementation.

4.  IANA Considerations

     IANA considerations are not addressed in by this document.  Any
     IANA considerations resulting from the use of DDP or RDMA must be
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     addressed in the relevant standards.
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