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1. Introduction

Clos [CLOS] topologies (called commonly a fat tree/network in modern

IP fabric considerations [VAHDAT08] as homonym to the original

definition of the term [FATTREE]) have gained prominence in today's

networking, primarily as result of the paradigm shift towards a

centralized data-center based architecture that is poised to deliver

a majority of computation and storage services in the future. Many

builders of such IP fabrics desire a protocol that auto-configures

itself and deals with failures and mis-configurations with a minimum

of human intervention. Such a solution would allow local IP fabric

bandwidth to be consumed in a 'standard component' fashion, i.e.

provision it much faster and operate it at much lower costs than

today, much like compute or storage is consumed already.

In looking at the problem through the lens of such IP fabric

requirements, RIFT addresses those challenges not through an

incremental modification of either a link-state (distributed

computation) or distance-vector (diffused computation) techniques

but rather a mixture of both, colloquially best described as "link-

state towards the spines" and "distance vector towards the leaves".

In other words, "bottom" levels are flooding their link-state

information in the "northern" direction while each node generates

under normal conditions a "default route" and floods it in the

"southern" direction. This type of protocol allows naturally for

highly desirable aggregation. Alas, such aggregation could drop

traffic in cases of misconfiguration or while failures are being

resolved or even cause partial network partitioning and this has to

be addressed by some adequate mechanism. The approach RIFT takes is

described in Section 4.2.5 and is basically based on automatic,

sufficient disaggregation of prefixes in case of link and node

failures.

The protocol does further provide:

optional fully automated construction of fat tree topologies

based on detection of links without any configuration (Section
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4.2.7) while allowing for conventional configuration methods and

arbitrary mix of both types of nodes as well,

minimum amount of routing state held at each level,

automatic pruning and load balancing of topology flooding

exchanges over a sufficient subset of links (Section 4.2.3.9).

This resolves scaling and convergence challenges caused by

increased levels of flooding when typical link-state protocols

are used in densely meshed graphs.

automatic aggregation (Section 4.2.3.8) and consequently

automatic disaggregation (Section 4.2.5) of prefixes on link and

node failures to prevent traffic loss and suboptimal routing,

loop-free non-ECMP forwarding due to its inherent valley-free

nature,

fast mobility (Section 4.3.4),

re-balancing of traffic towards the spines based on bandwidth

available (Section 4.3.7.1), and finally

mechanisms to synchronize a limited key-value data-store (Section

4.3.5.1) that can be used after protocol convergence to e.g.

bootstrap higher levels of functionality on nodes.

Figure 1 presents as first example of operation a simplified,

conceptual view of the resulting information and routes on a RIFT

fabric. The top of the fabric is holding in its link-state database

the information about the nodes below it and the routes to them

whereas the notation A/32 is used to indicate a loopback route to

node A and 0/0 is the usual notation for a default route. First row

of information represents the nodes for which full topology

information is available. The second row of the database table

indicates that partial information of other nodes in the same level

is available as well. Such information will be necessary to perform

certain algorithms necessary for correct protocol operation. When

"bottom" of the fabric is considered, or in other words the leaves,

the topology is basically empty and, under normal conditions, the

leaves hold a load balanced default route to the next level.

The balance of this document fills in the protocol specification

details.
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Figure 1: RIFT Information Distribution

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. A Reader's Digest

This section should serve as an initial guided tour through the

document in order to convey the necessary information for any

reader, depending on their level of interest. The glossary section

(Section 3.1) should be used as a supporting reference as the

document is read.

The indications of direction (i.e. "top", "bottom", etc.) referenced

in the Section 1 are of paramount importance. RIFT (Routing in Fat

Trees) requires a topology with a sense of top and bottom in order

to properly achieve a sorted topology. Clos, Fat Tree, and other
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similarly structured networks are conducive to such requirements.

RIFT does allow for further relaxation of these constraints, they

will be mentioned later in this section.

Operators and implementors alike must understand if multi-plane IP

fabrics are of interest or not. Section 3.2 illustrates an example

of both single-plane in Figure 2 and multi-plane fabric in Figure 3.

Multi-plane fabrics require understanding of additional RIFT

concepts (e.g. negative disaggregation in Section 4.2.5.2) that are

otherwise unnecessary in context of strictly single-plane fabrics.

The Overview (Section 4.1) and Section 4.1.2 aim to provide enough

context to determine if multi-plane fabrics are of interest to the

reader. The Fallen Leaf part (Section 4.1.3), and additionally 

Section 4.1.4 and Section 4.1.5 describe further considerations that

are specific to multi-plane fabrics.

The fundamental protocol concepts are described starting in the 

specification part (Section 4.2), but some sub-sections are not

quite as relevant unless dealing with implementation of the

protocol. The protocol transport (Section 4.2.1) is of particular

importance for two reasons. First, it introduces RIFT's packet

formats in the form of a normative Thrift model given in Appendix B.

3. Second, the Thrift model component is a prelude to understanding

the RIFT's inherent security features as defined in both security

models part (Section 4.4) and the security segment (Section 7). The

normative schema defining the Thrift model can be found in both 

Appendix B.2 and Appendix B.3. Furthermore, while a detailed

understanding of Thrift [thrift] and the models is not required

unless implementing RIFT, they may provide additional useful

information for other readers.

If implementing RIFT to support multi-plane topologies Section 4.2

should be reviewed in its entirety in conjunction with the

previously mentioned Thrift schemas. Sections not relevant to

single-plane implementations will be noted later in the section.

Special attention should be paid to the Link Information Element

(LIE) definitions part (Section 4.2.2) as it not only outlines basic

neighbor discovery and adjacency formation, but also provides

necessary context for RIFT's Zero Touch Provisioning (ZTP) (Section

4.2.7) and mis-cabling detection capabilities that allow it to

automatically detect and build the underlay topology with negligible

configuration. These specific capabilities are detailed in Section

4.2.7.

For other readers, the following sections provide a more detailed

understanding of the fundamental properties and highlight some

additional benefits of RIFT such as link state packet formats,

efficient flooding, synchronization, loop-free path computation and

link-state database maintenance - Section 4.2.3, Section 4.2.3.2, 
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Crossbar:

Clos/Fat Tree:

Section 4.2.3.3, Section 4.2.3.4, Section 4.2.3.6, Section 4.2.3.7, 

Section 4.2.3.8, Section 4.2.4, Section 4.2.4.1, Section 4.2.4.2, 

Section 4.2.4.3, Section 4.2.4.4. RIFT's ability to perform weighted

unequal-cost load balancing of traffic across all available links is

outlined in Section 4.3.7 with an accompanying example.

Section 4.2.5 is the place where the single-plane vs. multi-plane

requirement is explained in more detail. For those interested in

single-plane fabrics, only Section 4.2.5.1 is required. For the

multi-plane interested reader Section 4.2.5.2, Section 4.2.5.2.1, 

Section 4.2.5.2.2, and Section 4.2.5.2.3 are also mandatory. Section

4.2.6 is especially important for any multi-plane interested reader

as it outlines how the RIB and FIB are built via the disaggregation

mechanisms, but also illustrates how they prevent defective routing

decisions that cause traffic loss in both single or multi-plane

topologies.

Section 5 contains a set of comprehensive examples that show how

RIFT contains the impact of failures to only the required set of

nodes. It should also help cement some of RIFT's core concepts in

the reader's mind.

Last, but not least, RIFT has other optional capabilities. One

example is the key-value data-store, which enables RIFT to advertise

data post-convergence in order to bootstrap higher levels of

functionality (e.g. operational telemetry). Those are covered in 

Section 4.3 and Section 6.

More information related to RIFT can be found in the "RIFT

Applicability" [APPLICABILITY] document, which discusses alternate

topologies upon which RIFT may be deployed, use cases where it is

applicable, and presents operational considerations that complement

this document.

3. Reference Frame

3.1. Terminology

This section presents the terminology used in this document.

Physical arrangement of ports in a switching matrix without

implying any further scheduling or buffering disciplines.

This document uses the terms Clos and Fat Tree interchangeably

whereas it always refers to a folded spine-and-leaf topology with

possibly multiple Points of Delivery (PoDs) and one or multiple

Top of Fabric (ToF) planes. Several modifications such as leaf-2-
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Directed Acyclic Graph (DAG):

Folded Spine-and-Leaf:

Level:

Superspine, Aggregation/Spine and Edge/Leaf Switches:"

Zero Touch Provisioning (ZTP):

Point of Delivery (PoD):

leaf shortcuts and multiple level shortcuts are possible and

described further in the document.

A finite directed graph with no directed cycles (loops). If links

in a Clos are considered as either being all directed towards the

top or vice versa, each of such two graphs is a DAG.

In case the Clos fabric input and output stages are analogous,

the fabric can be "folded" to build a "superspine" or top which

is called Top of Fabric (ToF) in this document.

Clos and Fat Tree networks are topologically partially ordered

graphs and 'level' denotes the set of nodes at the same height in

such a network, where the bottom level (leaf) is the level with

lowest value. A node has links to nodes one level down and/or one

level up. Under some circumstances, a node may have links to

nodes at the same level and a leaf may have links to nodes

multiple levels higher. RIFT counts levels from top-of-fabric

(ToF) numerically down. Level 0 always implies a leaf in RIFT but

a leaf does not have to be level 0. Level in RIFT can be

configured or automatically derived via Section 4.2.7. As a final

footnote: Clos terminology uses often the concept of "stage" but

due to the folded nature of the Fat Tree it is not used from this

point on to prevent misunderstandings.

Traditional level names in 5-stages folded Clos for Level 2, 1

and 0 respectively (counting up from the bottom). We normalize

this language to talk about top-of-fabric (ToF), top-of-pod (ToP)

and leaves.

Optional RIFT mechanism which allows to derive node levels

automatically based on minimum configuration. Such a mininum

configuration consists solely of ToFs being configured as such.

A self-contained vertical slice or subset of a Clos or Fat Tree

network containing normally only level 0 and level 1 nodes. A

node in a PoD communicates with nodes in other PoDs via the Top-

of-Fabric. PoDs are numbered to distinguish them and PoD value 0
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Top of PoD (ToP):

Top of Fabric (ToF):

Spine:

Leaf:

Top-of-fabric Plane or Partition:

Radix:

North Radix:

South Radix:

South/Southbound and North/Northbound (Direction):

(defined later in the encoding schema as `common.default_pod`) is

used to denote "undefined" or "any" PoD.

The set of nodes that provide intra-PoD communication and have

northbound adjacencies outside of the PoD, i.e. are at the "top"

of the PoD.

The set of nodes that provide inter-PoD communication and have no

northbound adjacencies, i.e. are at the "very top" of the fabric.

ToF nodes do not belong to any PoD and are assigned

`common.default_pod` PoD value to indicate the equivalent of

"any" PoD.

Any nodes north of leaves and south of top-of-fabric nodes.

Multiple layers of spines in a PoD are possible.

A node without southbound adjacencies. As mentioned before, Level

0 implies a leaf in RIFT but a leaf does not have to be level 0.

In large fabrics top-of-fabric switches may not have enough ports

to aggregate all switches south of them and with that, the ToF is

'split' into multiple independent planes. Section 4.1.2 explains

the concept in more detail. A plane is a subset of ToF nodes that

are aware of each other through south reflection or E-W links.

A radix of a switch is number of switching ports it provides.

It's sometimes called fanout as well.

Ports cabled northbound to higher level nodes.

Ports cabled southbound to lower level nodes.

When describing protocol elements and procedures, in different

situations the directionality of the compass is used. I.e.,

'lower', 'south' or 'southbound' mean moving towards the bottom

of the Clos or Fat Tree network and 'higher', 'north' and
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Northbound Link:

Southbound Link:

East-West (E-W) Link:

Leaf shortcuts (L2L):

Routing on the host (RotH):

Northbound representation:

Southbound representation:

South Reflection:

TIE:

Node TIE:

'northbound' mean moving towards the top of the Clos or Fat Tree

network.

A link to a node one level up or in other words, one level

further north.

A link to a node one level down or in other words, one level

further south.

A link between two nodes at the same level. East-West links are

normally not part of Clos or "fat tree" topologies.

East-West links at leaf level will need to be differentiated from

East-West links at other levels.

Modern data center architecture variant where servers/leaves are

multi-homed and consecutively participate in routing.

Subset of topology information flooded towards higher levels of

the fabric.

Subset of topology information sent towards a lower level.

Often abbreviated just as "reflection", it defines a mechanism

where South Node TIEs are "reflected" from the level south back

up north to allow nodes in the same level without E-W links to be

aware of each other's node Topology Information Elements (TIEs).

This is an acronym for a "Topology Information Element". TIEs are

exchanged between RIFT nodes to describe parts of a network such

as links and address prefixes. A TIE has always a direction and a

type. North TIEs (sometimes abbreviated as N-TIEs) are used when

dealing with TIEs in the northbound representation and South-TIEs

(sometimes abbreviated as S-TIEs) for the southbound equivalent.

TIEs have different types such as node and prefix TIEs.

This stands as acronym for a "Node Topology Information Element",

which contains all adjacencies the node discovered and

information about the node itself. Node TIE should not be

confused with a North TIE since "node" defines the type of TIE
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Prefix TIE:

Key Value (KV) TIE:

TIDE:

TIRE:

Disaggregation:

LIE:

Valid LIE:

Flood Repeater (FR):

rather than its direction. Consequently North Node TIEs and South

Node TIEs exist.

This is an acronym for a "Prefix Topology Information Element"

and it contains all prefixes directly attached to this node in

case of a North TIE and in case of South TIE the necessary

default routes the node advertises southbound.

A TIE that is carrying a set of key value pairs [DYNAMO]. It can

be used to distribute non topology related information within the

protocol.

Topology Information Description Element carrying descriptors of

the TIEs stored in the node.

Topology Information Request Element carrying set of TIDE

descriptors. It can both confirm received and request missing

TIEs.

Process in which a node decides to advertise more specific

prefixes Southwards, either positively to attract the

corresponding traffic, or negatively to repel it. Disaggregation

is performed to prevent traffic loss and suboptimal routing to

the more specific prefixes.

This is an acronym for a "Link Information Element" exchanged on

all the system's links running RIFT to form ThreeWay adjacencies

and carry information used to perform Zero Touch Provisioning

(ZTP) of levels.

LIEs undergo different checks to determine their validity. The

term "valid LIE" is used to describe a LIE that can be used to

form or maintain an adjacency. The amount of checks itself

depends on the FSM involved and its state. A "minimally valid

LIE" is a LIE that passes checks necessary on any FSM in in any

state. A "ThreeWay valid LIE" is a LIE that successfully

underwent further checks with a LIE FSM in ThreeWay state.

Minimally valid LIE is a subcategory of ThreeWay valid LIE.

A node can designate one or more northbound neighbor nodes to be

flood repeaters. The flood repeaters are responsible for flooding
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Bandwidth Adjusted Distance (BAD):

Overloaded:

Interface:

ThreeWay Adjacency:

Bi-directional Adjacency:

Neighbor:

Cost:

Distance:

Shortest-Path First (SPF):

northbound TIEs further north. The document sometimes calls them

flood leaders as well.

Each RIFT node can calculate the amount of northbound bandwidth

available towards a node compared to other nodes at the same

level and can modify the route distance accordingly to allow for

the lower level to adjust their load balancing towards spines.

Applies to a node advertising the `overload` attribute as set.

Overload attribute is carried in the `NodeFlags` object of the

encoding schema.

A layer 3 entity over which RIFT control packets are exchanged.

RIFT tries to form a unique adjacency over an interface and

exchange local configuration and necessary ZTP information. An

adjacency is only advertised in node TIEs and used for

computations after it achieved ThreeWay state, i.e. both routers

reflected each other in LIEs including relevant security

information. Nevertheless, LIEs before ThreeWay state is reached

may carry ZTP related information already.

Bidirectional adjacency is an adjacency where nodes of both sides

of the adjacency advertised it in the node TIEs with the correct

levels and system IDs. Bi-directionality is used to check in

different algorithms whether the link should be included.

Once a ThreeWay adjacency has been formed a neighborship

relationship contains the neighbor's properties. Multiple

adjacencies can be formed to a remote node via parallel

interfaces but such adjacencies are *not* sharing a neighbor

structure. Saying "neighbor" is thus equivalent to saying "a

ThreeWay adjacency".

The term signifies the weighted distance between two neighbors.

Sum of costs (bound by infinite distance) between two nodes.

A well-known graph algorithm attributed to Dijkstra [DIJKSTRA]

that establishes a tree of shortest paths from a source to

destinations on the graph. SPF acronym is used due to its
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North SPF (N-SPF):

South SPF (S-SPF):

Security Envelope:

System ID:

familiarity as general term for the node reachability

calculations RIFT can employ to ultimately calculate routes of

which Dijkstra algorithm is a possible one.

A reachability calculation that is progressing northbound, as

example SPF that is using South Node TIEs only. Normally it

progresses a single hop only and installs default routes.

A reachability calculation that is progressing southbound, as

example SPF that is using North Node TIEs only.

RIFT packets are flooded within an authenticated security

envelope that allows to protect the integrity of information a

node accepts.

RIFT nodes identify themselves with a unique network-wide number

when trying to build adjacencies or describe their topology. RIFT

System IDs can be auto-derived or configured.

Additionally, when the specification refers to elements of packet

encoding or constants provided in the Appendix B grave accents are

used, e.g. `invalid_distance`. Same convention is used when

referring to finite state machine states or events outside the

context of the machine itself, e.g. `OneWay`.

3.2. Topology

Figure 2: A Three Level Spine-and-Leaf Topology
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Figure 3: Topology with Multiple Planes

Topology in Figure 2 is refered to in all further considerations.

This figure depicts a generic "single plane fat tree" and the

concepts explained using three levels apply by induction to further

levels and higher degrees of connectivity. Further, this document

will deal also with designs that provide only sparser connectivity

and "partitioned spines" as shown in Figure 3 and explained further

in Section 4.1.2.

4. RIFT: Routing in Fat Trees

The remainder of this document presents the detailed specification

of a protocol optimized for Routing in Fat Trees (RIFT) that in most

abstract terms has many properties of a modified link-state protocol

when distributing information northbound and a distance vector

protocol when distributing information southbound. While this is an

unusual combination, it does quite naturally exhibit the desirable

properties desired.

4.1. Overview

4.1.1. Properties

The most singular property of RIFT is that it floods link-state

information northbound only so that each level obtains the full

topology of levels south of it. Link-State information is, with some

exceptions, never flooded East-West or back South again. Exceptions

like south reflection is explained in detail in Section 4.2.5.1 and

east-west flooding at ToF level in multi-plane fabrics is outlined

in Section 4.1.2. In the southbound direction, the necessary routing

information, normally just the default route, propagates one hop

south and is 're-advertised' by nodes at next lower level. However,

RIFT uses flooding in the southern direction as well to avoid the

overhead of building an update per adjacency. For the moment

describing the East-West direction is left out.

Those information flow constraints create not only an anisotropic

protocol (i.e. the information is not distributed "evenly" or

"clumped" but summarized along the N-S gradient) but also a "smooth"
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information propagation where nodes do not receive the same

information from multiple directions at the same time. Normally,

accepting the same reachability on any link, without understanding

its topological significance, forces tie-breaking on some kind of

distance metric. And such tie-breaking leads ultimately in hop-by-

hop forwarding to shortest paths only. In contrast to that, RIFT,

under normal conditions, does not need to tie-break the same

reachability information from multiple directions. Its computation

principles (south forwarding direction is always preferred) leads to

valley-free [VFR] forwarding behavior. And since valley free routing

is loop-free, it can use all feasible paths which is another highly

desirable property if available bandwidth should be utilized to the

maximum extent possible.

To account for the "northern" and the "southern" information split

the link state database is partitioned accordingly into "north

representation" and "south representation" TIEs. In simplest terms

the North TIEs contain a link state topology description of lower

levels and and South TIEs carry simply node description of the level

above and default routes pointing north. This oversimplified view

will be refined gradually in the following sections while

introducing protocol procedures and state machines at the same time.

4.1.2. Generalized Topology View

This section and resulting Section 4.2.5.2 are dedicated to multi-

plane fabrics, in contrast with the single plane designs where all

top-of-fabric nodes are topologically equal and initially connected

to all the switches at the level below them.

It is quite difficult to visualize multi plane design, which are

effectively multi-dimensional switching matrices. To cope with that,

this document introduces a methodology allowing to depict the

connectivity in two-dimensional pictures. Further, the fact can be

leveraged that what is under consideration here are basically

stacked crossbar fabrics where ports align "on top of each other" in

a regular fashion.

A word of caution to the reader; at this point it should be observed

that the language used to describe Clos variations, especially in

multi-plane designs, varies widely between sources. This description

follows the terminology introduced in Section 3.1. It is unavoidable

to have it present to be able to follow the rest of this section

correctly.

4.1.2.1. Terminology and Glossary

This section describes the terminology and acronyms used in the rest

of the text. Though the glossary may not be comprehensible on a
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P:

S:

K:

ToF Plane:

N:

R:

Fallen Leaf:

first read, the following sections will gradually introduce the

terms in their proper context.

Denotes the number of PoDs in a topology.

Denotes the number of ToF nodes in a topology.

To simplify the visual aids, notations and further

considerations, implicit assumption is made that the switches are

symmetrical, i.e. equal number ports point northbound and

southbound. With that simplification, K denotes half of the radix

of a symmetrical switch, meaning that the switch has K ports

pointing north and K ports pointing south. K_LEAF (K of a leaf)

thus represents both the number of access ports in a leaf Node

and the maximum number of planes in the fabric, whereas K_TOP (K

of a ToP) represents the number of leaves in the PoD and the

number of ports pointing north in a ToP Node towards a higher

spine level, thus the number of ToF nodes in a plane.

Set of ToFs that are aware of each other by means of south

reflection. Planes are numbered by capital letters, e.g. plane A.

Denotes the number of independent ToF planes in a topology.

Denotes a redundancy factor, i.e. number of connections a spine

has towards a ToF plane. In single plane design K_TOP is equal to

R.

A fallen leaf in a plane Z is a switch that lost all connectivity

northbound to Z.

4.1.2.2. Clos as Crossed, Stacked Crossbars

The typical topology for which RIFT is defined is built of P number

of PoDs and connected together by S number of ToF nodes. A PoD node

has K number of ports. From here on half of them (K=Radix/2) are

assumed to connect host devices from the south, and the other half

to connect to interleaved PoD Top-Level switches to the north. The K

ratio can be chosen differently without loss of generality when port

speeds differ or the fabric is oversubscribed but K=Radix/2 allows

for more readable representation whereby there are as many ports

facing north as south on any intermediate node. A node is hence

represented in a schematic fashion with ports "sticking out" to its
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north and south rather than by the usual real-world front faceplate

designs of the day.

Figure 4 provides a view of a leaf node as seen from the north, i.e.

showing ports that connect northbound. For lack of a better symbol,

the document chooses to use the "o" as ASCII visualisation of a

single port. In this example, K_LEAF has 6 ports. Observe that the

number of PoDs is not related to Radix unless the ToF Nodes are

constrained to be the same as the PoD nodes in a particular

deployment.

Figure 4: A Leaf Node, K_LEAF=6

The Radix of a PoD's top node may be different than that of the leaf

node. Though, more often than not, a same type of node is used for

both, effectively forming a square (K*K). In the general case,

switches at the top of the PoD with K_TOP southern ports not

necessarily equal to K_LEAF could be considered . For instance, in

the representations below, we pick a 6 port K_LEAF and a 8 port
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K_TOP. In order to form a crossbar, K_TOP Leaf Nodes are necessary

as illustrated in Figure 5.

Figure 5: Southern View of a PoD, K_TOP=8

As further visualized in Figure 6 the K_TOP Leaf Nodes are fully

interconnected with the K_LEAF ToP nodes, providing connectivity

that can be represented as a crossbar when "looked at" from the

north. The result is that, in the absence of a failure, a packet

entering the PoD from the north on any port can be routed to any

port in the south of the PoD and vice versa. And that is precisely

why it makes sense to talk about a "switching matrix".

Figure 6: Northern View of a PoD's Spines, K_TOP=8
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Side views of this PoD is illustrated in Figure 7 and Figure 8.

Figure 7: Side View of a PoD, K_TOP=8, K_LEAF=6

Figure 8: Other Side View of a PoD, K_TOP=8, K_LEAF=6, 90o turn in E-W

Plane from the previous figure

As next step, observe further that a resulting PoD can be abstracted

as a bigger node with a number K of K_POD= K_TOP * K_LEAF, and the

design can recurse.

It will be critical at this point that, before progressing further,

the concept and the picture of "crossed crossbars" is clear. Else,

the following considerations might be difficult to comprehend.

To continue, the PoDs are interconnected with each other through a

Top-of-Fabric (ToF) node at the very top or the north edge of the

fabric. The resulting ToF is *not* partitioned if, and only if

(IIF), every PoD top level node (spine) is connected to every ToF

Node. This topology is also referred to as a single plane

configuration and is quite popular due to its simplicity. In order

to reach a 1:1 connectivity ratio between the ToF and the leaves, it

results that there are K_TOP ToF nodes, because each port of a ToP

node connects to a different ToF node, and K_LEAF ToP nodes for the

same reason. Consequently, it will take (P * K_LEAF) ports on a ToF

node to connect to each of the K_LEAF ToP nodes of the P PoDs. 
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Figure 9 illustrates this, looking at P=3 PoDs from above and 2

sides. The large view is the one from above, with the 8 ToF of 3*6

ports each interconnecting the PoDs, every ToP Node being connected

to every ToF node.

Figure 9: Fabric Spines and TOFs in Single Plane Design, 3 PoDs

The top view can be collapsed into a third dimension where the

hidden depth index is representing the PoD number. One PoD can be

shown then as a class of PoDs and hence save one dimension in the

representation. The Spine Node expands in the depth and the vertical

dimensions, whereas the PoD top level Nodes are constrained, in

horizontal dimension. A port in the 2-D representation represents

effectively the class of all the ports at the same position in all

the PoDs that are projected in its position along the depth axis.

This is shown in Figure 10.

Figure 10: Collapsed Northern View of a Fabric for Any Number of PoDs

As simple as single plane deployment is, it introduces a limit due

to the bound on the available radix of the ToF nodes that has to be

at least P * K_LEAF. Nevertheless, it will be come clear that a

distinct advantage of a connected or non-partitioned Top-of-Fabric

is that all failures can be resolved by simple, non-transitive,

positive disaggregation (i.e. nodes advertising more specific

prefixes with the default to the level below them that is however

not propagated further down the fabric) as described in Section

4.2.5.1 . In other words; non-partitioned ToF nodes can always reach

nodes below or withdraw the routes from PoDs they cannot reach
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unambiguously. And with this, positive disaggregation can heal all

failures and still allow all the ToF nodes to be aware of each other

via south reflection. Disaggregation will be explained in further

detail in Section 4.2.5.

In order to scale beyond the "single plane limit", the Top-of-Fabric

can be partitioned by an N number of identically wired planes where

N is an integer divider of K_LEAF. The 1:1 ratio and the desired

symmetry are still served, this time with (K_TOP * N) ToF nodes,

each of (P * K_LEAF / N) ports. N=1 represents a non-partitioned

Spine and N=K_LEAF is a maximally partitioned Spine. Further, if R

is any integer divisor of K_LEAF, then N=K_LEAF/R is a feasible

number of planes and R a redundancy factor that denotes the number

of independent paths between 2 leaves within a plane. It proves

convenient for deployments to use a radix for the leaf nodes that is

a power of 2 so they can pick a number of planes that is a lower

power of 2. The example in Figure 11 splits the Spine in 2 planes

with a redundancy factor R=3, meaning that there are 3 non-

intersecting paths between any leaf node and any ToF node. A ToF

node must have, in this case, at least 3*P ports, and be directly

connected to 3 of the 6 ToP nodes (spines) in each PoD. The ToP

nodes are represented horizontally with K_TOP=8 ports northwards

each.

Figure 11: Northern View of a Multi-Plane ToF Level, K_LEAF=6, N=2

At the extreme end of the spectrum it is even possible to fully

partition the spine with N = K_LEAF and R=1, while maintaining
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connectivity between each leaf node and each Top-of-Fabric node. In

that case the ToF node connects to a single Port per PoD, so it

appears as a single port in the projected view represented in Figure

12. The number of ports required on the Spine Node is more than or

equal to P, the number of PoDs.

Figure 12: Northern View of a Maximally Partitioned ToF Level, R=1

4.1.3. Fallen Leaf Problem

As mentioned earlier, RIFT exhibits an anisotropic behavior tailored

for fabrics with a North / South orientation and a high level of

interleaving paths. A non-partitioned fabric makes a total loss of

connectivity between a Top-of-Fabric node at the north and a leaf

node at the south a very rare but yet possible occasion that is

fully healed by positive disaggregation as described in Section

4.2.5.1. In large fabrics or fabrics built from switches with low

radix, the ToF ends often being partitioned in planes which makes

the occurrence of having a given leaf being only reachable from a

subset of the ToF nodes more likely to happen. This makes some

further considerations necessary.
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A "Fallen Leaf" is a leaf that can be reached by only a subset, but

not all, of Top-of-Fabric nodes due to missing connectivity. If R is

the redundancy factor, then it takes at least R breakages to reach a

"Fallen Leaf" situation.

In a maximally partitioned fabric, the redundancy factor is R=1, so

any breakage in the fabric will cause one or more fallen leaves in

the affected plane. R=2 guarantees that a single breakage will not

cause a fallen leaf. However, not all cases require disaggregation.

The following cases do not require particular action:

If a southern link on a node goes down, then connectivity through

that node is lost for all nodes south of it. There is no need to

disaggregate since the connectivity to this node is lost for all

spine nodes in a same fashion.

If a ToF Node goes down, then northern traffic towards it is

routed via alternate ToF nodes in the same plane and there is no

need to disaggregate routes.

In a general manner, the mechanism of non-transitive positive

disaggregation is sufficient when the disaggregating ToF nodes

collectively connect to all the ToP nodes in the broken plane. This

happens in the following case:

If the breakage is the last northern link from a ToP node to a

ToF node going down, then the fallen leaf problem affects only

the ToF node, and the connectivity to all the nodes in the PoD is

lost from that ToF node. This can be observed by other ToF nodes

within the plane where the ToP node is located and positively

disaggregated within that plane.

On the other hand, there is a need to disaggregate the routes to

Fallen Leaves within the plane in a transitive fashion, that is, all

the way to the other leaves, in the following cases:

If the breakage is the last northern link from a leaf node within

a plane (there is only one such link in a maximally partitioned

fabric) that goes down, then connectivity to all unicast prefixes

attached to the leaf node is lost within the plane where the link

is located. Southern Reflection by a leaf node, e.g., between ToP

nodes, if the PoD has only 2 levels, happens in between planes,

allowing the ToP nodes to detect the problem within the PoD where

it occurs and positively disaggregate. The breakage can be

observed by the ToF nodes in the same plane through the North

flooding of TIEs from the ToP nodes. The ToF nodes however need

to be aware of all the affected prefixes for the negative,

possibly transitive disaggregation to be fully effective (i.e. a

node advertising in the control plane that it cannot reach a
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certain more specific prefix than default whereas such

disaggregation must in the extreme condition propagate further

down southbound). The problem can also be observed by the ToF

nodes in the other planes through the flooding of North TIEs from

the affected leaf nodes, together with non-node North TIEs which

indicate the affected prefixes. To be effective in that case, the

positive disaggregation must reach down to the nodes that make

the plane selection, which are typically the ingress leaf nodes.

The information is not useful for routing in the intermediate

levels.

If the breakage is a ToP node in a maximally partitioned fabric

(in which case it is the only ToP node serving the plane in that

PoD that goes down), then the connectivity to all the nodes in

the PoD is lost within the plane where the ToP node is located.

Consequently, all leaves of the PoD fall in this plane. Since the

Southern Reflection between the ToF nodes happens only within a

plane, ToF nodes in other planes cannot discover fallen leaves in

a different plane. They also cannot determine beyond their local

plane whether a leaf node that was initially reachable has become

unreachable. As the breakage can be observed by the ToF nodes in

the plane where the breakage happened, the ToF nodes in the plane

need to be aware of all the affected prefixes for the negative

disaggregation to be fully effective. The problem can also be

observed by the ToF nodes in the other planes through the

flooding of North TIEs from the affected leaf nodes, if there are

only 3 levels and the ToP nodes are directly connected to the

leaf nodes, and then again it can only be effective it is

propagated transitively to the leaf, and useless above that

level.

For the sake of easy comprehension the abstractions are rolled back

into a simple example that shows that in Figure 3 the loss of link

between spine node 3 and leaf node 3 will make leaf node 3 a fallen

leaf for Top-of-Fabric plane C. Worse, if the cabling was never

present in the first place, plane C will not even be able to know

that such a fallen leaf exists. Hence partitioning without further

treatment results in two grave problems:

Leaf node 1 trying to route to leaf node 3 must not choose spine

node 3 in plane C as its next hop since it will inevitably drop

the packet when forwarding using default routes or do excessive

bow tying. This information must be in its routing table.

A path computation trying to deal with the problem by

distributing host routes may only form paths through leaves. The

flooding of information about leaf node 3 would have to go up to

Top-of-Fabric nodes in planes A, B, and D and then "loopback"

over other leaves to ToF C leading in extreme cases to traffic
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for leaf node 3 when presented to plane C taking an "inverted

fabric" path where leaves start to serve as ToFs, at least for

the duration of a protocol's convergence.

4.1.4. Discovering Fallen Leaves

When aggregation is used, RIFT deals with fallen leaves by ensuring

that all the ToF nodes share the same north topology database. This

happens naturally in single plane design by the means of northbound

flooding and south reflection but needs additional considerations in

multi-plane fabrics. To enable routing to fallen leaves in multi-

plane designs, RIFT requires additional interconnection across

planes between the ToF nodes, e.g., using rings as illustrated in 

Figure 13. Other solutions are possible but they either need more

cabling or end up having much longer flooding paths and/or single

points of failure.

In detail, by reserving at least two ports on each Top-of-Fabric

node it is possible to connect them together by interplane bi-

directional rings as illustrated in Figure 13. The rings will be

used to exchange full north topology information between planes. All

ToFs having same north topology allows by the means of transitive,

negative disaggregation described in Section 4.2.5.2 to efficiently

fix any possible fallen leaf scenario. Somewhat as a side-effect,

the exchange of information fulfills the requirement to have a full

view of the fabric topology at the Top-of-Fabric level, without the

need to collate it from multiple points.

Figure 13: Binding Planes Together with Inter-Top-of-Fabric Node Rings

4.1.5. Addressing the Fallen Leaves Problem

One consequence of the "Fallen Leaf" problem is that some prefixes

attached to the fallen leaf become unreachable from some of the ToF

nodes. RIFT defines two methods to address this issue, the positive

and the negative disaggregation. Both methods flood corresponding

types of South TIEs to advertise the impacted prefix(es).

When used for the operation of disaggregation, a positive South TIE,

as usual, indicates reachability to a prefix of given length and all
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addresses subsumed by it. In contrast, a negative route

advertisement indicates that the origin cannot route to the

advertised prefix.

The positive disaggregation is originated by a router that can still

reach the advertised prefix, and the operation is not transitive. In

other words, the receiver does *not* generate its own TIEs or flood

them south as a consequence of receiving positive disaggregation

advertisements from a higher level node. The effect of a positive

disaggregation is that the traffic to the impacted prefix will

follow the longest match and will be limited to the northbound

routers that advertised the more specific route.

In contrast, the negative disaggregation can be transitive, and is

propagated south when all the possible routes have been advertised

as negative exceptions. A negative route advertisement is only

actionable when the negative prefix is aggregated by a positive

route advertisement for a shorter prefix. In such case, the negative

advertisement "punches out a hole" in the positive route in the

routing table, making the positive prefix reachable through the

originator with the special consideration of the negative prefix

removing certain next hop neighbors. The specific procedures will be

explained in detail in Section 4.2.5.2.3.

When the top of fabric switches are not partitioned into multiple

planes, the resulting southbound flooding of the positive

disaggregation by the ToF nodes that can still reach the impacted

prefix is in general enough to cover all the switches at the next

level south, typically the ToP nodes. If all those switches are

aware of the disaggregation, they collectively create a ceiling that

intercepts all the traffic north and forwards it to the ToF nodes

that advertised the more specific route. In that case, the positive

disaggregation alone is sufficient to solve the fallen leaf problem.

On the other hand, when the fabric is partitioned in planes, the

positive disaggregation from ToF nodes in different planes do not

reach the ToP switches in the affected plane and cannot solve the

fallen leaves problem. In other words, a breakage in a plane can

only be solved in that plane. Also, the selection of the plane for a

packet typically occurs at the leaf level and the disaggregation

must be transitive and reach all the leaves. In that case, the

negative disaggregation is necessary. The details on the RIFT

approach to deal with fallen leaves in an optimal way are specified

in Section 4.2.5.2.
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4.2. Specification

This section specifies the protocol in a normative fashion by either

prescriptive procedures or behavior defined by Finite State Machines

(FSM).

The FSMs, as usual, are presented as states a neighbor can assume,

events that it can be given and the corresponding actions performed

when transitioning between states on event processing.

Actions are performed before the end state is assumed.

The FSMs can queue events against itself to chain actions or against

other FSMs in the specification. Events are always processed in the

sequence they have been queued.

Consequently, "On Entry" actions on FSM state are performed every

time and right before the corresponding state is entered, i.e. after

any transitions from previous state.

"On Exit" actions are performed every time and immediately when a

state is exited, i.e. before any transitions towards target state

are performed.

Any attempt to transition from a state towards another on reception

of an event where no action is specified must be considered an

unrecoverable error, i.e. the protocol MUST reset all adjacencies,

discard all the state and may not start again.

The data structures and FSMs described in this document are

conceptual and do not have to be implemented precisely as described

here, as long as the implementations support the described

functionality and exhibit the same externally visible behavior.

The machines can use conceptually "timers" for different situations.

Those timers are started through actions and their expiration leads

to queuing of corresponding events to be processed.

The term `holdtime` is used often as short-hand for `holddown timer`

and signifies either the length of the holding down period or the

timer used to expire after such period. Such timers are used to

"hold down" state within an FSM that is cleaned if the machine

triggers a `HoldtimeExpired` event.

4.2.1. Transport

All RIFT packet structures and their contents are defined in the 

Thrift [thrift] models in Appendix B. The packet structure itself is

defined in `ProtocolPacket` which contains the packet header

(`PacketHeader`) and the packet contents (`PacketContent`).
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`PacketContent` is a union of the LIE, TIE, TIDE, and TIRE packets

and are defined in `LIEPacket`, `TIEPacket`, `TIDEPacket`, and

`TIREPacket` respectively.

In terms of bits on the wire, it is the `ProtocolPacket` that is

serialized and carried in an envelope defined in Section 4.4.3

within a UDP frame that provides security and allows validation/

modification of several important fields without de-serialization

for performance and security reasons. Security model and procedures

are further explained in Section 7.

4.2.2. Link (Neighbor) Discovery (LIE Exchange)

RIFT LIE exchange auto-discovers neighbors, negotiates ZTP

parameters and discovers miscablings. The formation progresses under

normal conditions from OneWay to TwoWay and then ThreeWay state at

which point it is ready to exchange TIEs per Section 4.2.3. The

adjacency exchanges ZTP information (Section 4.2.7) in any of the

states, i.e. it is not necessary to reach ThreeWay for zero-touch

provisioning to operate.

RIFT supports any combination of IPv4 and IPv6 addressing on the

fabric with the additional capability for forwarding paths that are

capable of forwarding IPv4 packets in presence of IPv6 addressing

only.

For IPv4 LIE exchange happens over well-known administratively

locally scoped and configured or otherwise well-known IPv4 multicast

address [RFC2365]. For IPv6 [RFC8200] exchange is performed over

link-local multicast scope [RFC4291] address which is configured or

otherwise well-known. In both cases a destination UDP port defined

in Appendix C.1 is used unless configured otherwise. LIEs MUST be

sent with an IPv4 Time to Live (TTL) or an IPv6 Hop Limit (HL) of

either 1 or 255 to prevent RIFT information reaching beyond a single

L3 next-hop in the topology. LIEs SHOULD be sent with network

control precedence unless an implementation is prevented from doing

so [RFC2474].

The originating port of the LIE has no further significance other

than identifying the origination point. LIEs are exchanged over all

links running RIFT.

An implementation may listen and send LIEs on IPv4 and/or IPv6

multicast addresses. A node MUST NOT originate LIEs on an address

family if it does not process received LIEs on that family. LIEs on

same link are considered part of the same LIE FSM independent of the

address family they arrive on. Observe further that the LIE source

address may not identify the peer uniquely in unnumbered or link-

local address cases so the response transmission MUST occur over the
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same interface the LIEs have been received on. A node may use any of

the adjacency's source addresses it saw in LIEs on the specific

interface during adjacency formation to send TIEs (Section 4.2.3.3).

That implies that an implementation MUST be ready to accept TIEs on

all addresses it used as source of LIE frames.

A simplified version MAY be implemented on platforms with limited or

no multicast support (e.g. IoT devices) by sending and receiving LIE

frames on IPv4 subnet broadcast addresses and IPv6 all routers

multicast address. However, this technique is less optimal and

presents a wider attack surface from a security perspective.

A ThreeWay adjacency (as defined in the glossary) over any address

family implies support for IPv4 forwarding if the

`ipv4_forwarding_capable` flag in `LinkCapabilities` is set to true.

A node, in case of absence of IPv4 addresses on such links and

advertising `ipv4_forwarding_capable` as true, MUST forward IPv4

packets using gateways discovered on IPv6-only links advertising

this capability. It is expected that the whole fabric supports the

same type of forwarding of address families on all the links, any

other combination is outside the scope of this specification. If

IPv4 forwarding is supported on an interface,

`ipv4_forwarding_capable` MUST be set to true when LIEs from an IPv4

address are sent and MAY be set to true in LIEs on IPv6 address if

no LIEs are sent from an IPv4 address. If IPv4 and IPv6 LIEs

indicate contradicting information, protocol behavior is

unspecified.

Operation of a fabric where only some of the links are supporting

forwarding on an address family or have an address in a family and

others do not is outside the scope of this specification.

Any attempt to construct IPv6 forwarding over IPv4 only adjacencies

is outside this specification.

Table 1 outlines protocol behavior pertaining to LIE exchange over

different address family combinations. Table 2 outlines the way in

which neighbors forward traffic as it pertains to the

`ipv4_forwarding_capable` flag setting across the same address

family combinations.

The specific forwarding implementation to support the described

behavior is out of scope for this document.

Local

Neighbor

AF

Remote

Neighbor

AF

LIE Exchange Behavior

IPv4 IPv4
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Local

Neighbor

AF

Remote

Neighbor

AF

LIE Exchange Behavior

LIEs and TIEs are exchanged over IPv4 only.

TIEs are received on any of the LIE source

addresses.

IPv6 IPv6

LIEs and TIEs are exchanged over IPv6 only.

TIEs are received on any of the LIE source

addresses.

IPv4,

IPv6
IPv6

The local neighbor sends LIEs for both IPv4

and IPv6 while the remote neighbor only sends

LIEs for IPv6. The resulting adjacency will

exchange TIEs over IPv6 on any of the IPv6

LIE source addresses.

IPv4,

IPv6

IPv4,

IPv6

LIEs and TIEs are exchanged over IPv6 and

IPv4. TIEs are received on any of the IPv4

and IPv6 LIE source addresses.

Table 1: Control Plane Behavior for Neighbor AF Combinations

Local

Neighbor

AF

Remote

Neighbor

AF

Forwarding Behavior

IPv4 IPv4

Both nodes are required to set the

`ipv4_forwarding_capable` flag to true. All

traffic is forwarded over IPv4.

IPv6 IPv6

If either neighbor sets

`ipv4_forwarding_capable` to false, all traffic

is forwarded over IPv6. If both neighbors set

`ipv4_forwarding_capable` to true, IPv4 traffic

can be forwarded.

IPv4,

IPv6
IPv6

If either neighbor sets

`ipv4_forwarding_capable` to false, all traffic

is forwarded over IPv6. If both neighbors set

`ipv4_forwarding_capable` to true, IPv4 traffic

can be forwarded.

IPv4,

IPv6

IPv4,

IPv6

IPv4 and IPv6 traffic can be forwarded. The

behavior is unspecified if either neighbor sets

the `ipv4_forwarding_capable` to false. The

behavior is also unspecified if IPv4 and IPv6

advertise different flags, as described

previously.

Table 2: Forwarding Behavior for Neighbor AF Combinations

The protocol does *not* support selective disabling of address

families after adjacency formation, disabling IPv4 forwarding

capability or any local address changes in ThreeWay state, i.e. if a

link has entered ThreeWay IPv4 and/or IPv6 with a neighbor on an

adjacency and it wants to stop supporting one of the families or



change any of its local addresses or stop IPv4 forwarding, it has to

tear down and rebuild the adjacency. It also has to remove any state

it stored about the remote side of the adjacency such as associated

LIE source addresses.

Unless ZTP as described in Section 4.2.7 is used, each node is

provisioned with the level at which it is operating and advertises

it in the `level` of the `PacketHeader` schema element. It MAY be

also provisioned with its PoD. If level is not provisioned it is not

present in the optional `PacketHeader` schema element and

established by ZTP procedures if feasible. If PoD is not provisioned

it is as governed by the `LIEPacket` schema element assuming the

`common.default_pod` value. This means that switches except top of

fabric do not need to be configured at all. Necessary information to

configure all values is exchanged in the `LIEPacket` and

`PacketHeader` or derived by the node automatically.

Further definitions of leaf flags are found in Section 4.2.7 given

they have implications in terms of level and adjacency forming here.

Leaf flags are carried in `HierarchyIndications`.

A node MUST form a ThreeWay adjacency if at a minimum the following

first order logic conditions are satisfied on a LIE packet as

specified by the `LIEPacket` schema element and received on a link

(such as LIE is considered a "minimally valid" LIE). Observe that

depending on the FSM involved and its state further conditions may

be checked and even a minimally valid LIE can be considered

ultimately invalid if any of the additional conditions fail.

the neighboring node is running the same major schema version

as indicated in the `major_version` element in `PacketHeader`

*and*

the neighboring node uses a valid System ID (i.e. value

different from `IllegalSystemID`) in the `sender` element in

`PacketHeader` *and*

the neighboring node uses a different System ID than the node

itself *and*

(either at least one of the nodes does not advertise MTU in the

`LiePacket` *or* the advertised MTU values in the `LiePacket`

element match on both sides) *and*

both nodes advertise defined level values in `level` element in

`PacketHeader` *and*
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[

i) the node is at `leaf_level` value and has no ThreeWay

adjacencies already to nodes at Highest Adjacency ThreeWay

(HAT as defined later in Section 4.2.7.1) with level

different than the adjacent node *or*

ii) the node is not at `leaf_level` value and the

neighboring node is at `leaf_level` value *or*

iii) both nodes are at `leaf_level` values *and* both

indicate support for Section 4.3.9 *or*

iv) neither node is at `leaf_level` value and the

neighboring node is at most one level difference away

].

LIEs arriving with IPv4 Time to Live (TTL) or an IPv6 Hop Limit (HL)

different than 1 or 255 MUST be ignored.

4.2.2.1. LIE Finite State Machine

This section specifies the precise, normative LIE FSM. For easier

reference the corresponding figure is given as well in Figure 14.

Additionally, some sets of actions repeat often and are hence

summarized into well-known procedures.

Events generated are fairly fine grained, especially when indicating

problems in adjacency forming conditions. The intention of such

differentiation is to simplify tracking of problems in deployment.

Initial state is `OneWay`.

The machine sends LIEs proactively on several transitions to

accelerate adjacency bring-up without waiting for the corresponding

timer tic.

ThreeWay

|TimerTick|
|HALChanged|
|HATChanged|
|HALSChanged|

|LieRcvd|
|ValidReflection|

|FloodLeadersChanged|
|SendLie|

|UpdateZTPOffer|

MultipleNeighborsWait

|MultipleNeighbors|

OneWay

|LevelChanged|
|NeighborChangedLevel|
|NeighborChangedAddress|
|UnacceptableHeader|
|MTUMismatch|
|HoldtimeExpired|

TwoWay

|NeighborDroppedReflection|

|TimerTick|
|HALChanged|
|HATChanged|
|HALSChanged|

|LieRcvd|
|ValidReflection|

|NeighborDroppedReflection|
|NeighborChangedBFDCapability|

|NeighborChangedAddress|
|UnacceptableHeader|
|MTUMismatch|
|HoldtimeExpired|
|MultipleNeighbors|

|FloodLeadersChanged|
|SendLie|

|UpdateZTPOffer|

|LevelChanged|
|MultipleNeighborsDone|

Enter|ValidReflection|

|MultipleNeighbors|

|TimerTick|
|LevelChanged|
|HALChanged|
|HATChanged|
|HALSChanged|

|LieRcvd|
|NeighborDroppedReflection|
|NeighborChangedLevel|
|NeighborChangedAddress|
|UnacceptableHeader|
|MTUMismatch|

|NeighborChangedMinorFields|
|HoldtimeExpired|

|FloodLeadersChanged|
|SendLie|

|UpdateZTPOffer|

|NewNeighbor|

|ValidReflection|

|NewNeighbor|
|MultipleNeighbors|

|NeighborChangedLevel|
|NeighborChangedAddress|
|UnacceptableHeader|
|MTUMismatch|
|HoldtimeExpired|

|TimerTick|
|LevelChanged|
|HALChanged|
|HATChanged|
|HALSChanged|

|LieRcvd|
|FloodLeadersChanged|

|SendLie|
|UpdateZTPOffer|

Figure 14: LIE FSM
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The following words are used for well known procedures:

PUSH Event: queues an event to be executed by the FSM upon exit

of this action

CLEANUP: The FSM *conceptually* holds a 'current neighbor'

variable that contains information received in the remote node's

LIE that is processed against LIE validation rules. In the event

that the LIE is considered to be invalid, the existing state held

by 'current neighbor' MUST be deleted.

SEND_LIE: create and send a new LIE packet

reflecting the neighbor as described in ValidReflection and

setting the necessary `not_a_ztp_offer` variable if level

was derived from the last known neighbor on this interface

and

setting `you_are_flood_repeater` to computed value

PROCESS_LIE:

if LIE has a major version not equal to this node's major

version *or* System ID equal to (this node's system ID or

`IllegalSystemID`) then CLEANUP else

if both sides advertise MTUs and the LIE has non matching

MTUs as compared to MTU advertised by this system then

CLEANUP, PUSH UpdateZTPOffer, PUSH MTUMismatch else

if the LIE has an undefined level *or* this node's level is

undefined *or* this node is a leaf and remote level is lower

than HAT *or* (the LIE's level is not leaf *and* its

difference is more than one from this node's level) then

CLEANUP, PUSH UpdateZTPOffer, PUSH UnacceptableHeader else

PUSH UpdateZTPOffer, construct temporary new neighbor

structure with values from LIE, if no current neighbor

exists then set current neighbor to new neighbor, PUSH

NewNeighbor event, CHECK_THREE_WAY else

if current neighbor system ID differs from LIE's system

ID then PUSH MultipleNeighbors else

if current neighbor stored level differs from LIE's

level then PUSH NeighborChangedLevel else

if current neighbor stored IPv4/v6 address differs from

LIE's address then PUSH NeighborChangedAddress else
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if any of neighbor's flood address port, name, local

LinkID changed then PUSH NeighborChangedMinorFields

CHECK_THREE_WAY

CHECK_THREE_WAY: if current state is OneWay do nothing else

if LIE packet does not contain neighbor then if current

state is ThreeWay then PUSH NeighborDroppedReflection else

if packet reflects this system's ID and local port and state

is ThreeWay then PUSH event ValidReflection else PUSH event

MultipleNeighbors

States:

OneWay: initial state the FSM is starting from. In this state the

neighbors did not receive any valid LIEs from a neighbor after

the state was entered.

TwoWay: that state is entered when a node has received a

minimally valid LIE from a neighbor but not a ThreeWay valid LIE.

ThreeWay: this state signifies that ThreeWay valid LIEs from a

neighbor are received. On achieving this state the link can be

advertised in `neighbors` element in `NodeTIEElement`.

MultipleNeighborsWait: occurs normally when more than two nodes

become aware of each other on the same link or a remote node is

quickly reconfigured or rebooted without regressing to `OneWay`

first. Each occurrence of the event SHOULD generate notification

to help operational deployments.

Events:

TimerTick: one second timer tick, i.e. the event is provided to

the FSM once a second by an implementation-specific mechanism

that is outisde the scope of this specification. This event is

quietly ignored if transition does not exist.

LevelChanged: node's level has been changed by ZTP or

configuration. This is provided by the ZTP FSM.

HALChanged: best HAL computed by ZTP has changed. This is

provided by the ZTP FSM.

HATChanged: HAT computed by ZTP has changed. This is provided by

the ZTP FSM.
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HALSChanged: set of HAL offering systems computed by ZTP has

changed. This is provided by the ZTP FSM.

LieRcvd: received LIE on the interface.

NewNeighbor: new neighbor is present in the received LIE.

ValidReflection: received valid reflection of this node from

neighbor, i.e. all elements in `neighbor` element in `LiePacket`

have values corresponding to this link.

NeighborDroppedReflection: lost previously held reflection from

neighbor, i.e. `neighbor` element in `LiePacket` does not

correspond to this node or is not present.

NeighborChangedLevel: neighbor changed advertised level from the

previously held one.

NeighborChangedAddress: neighbor changed IP address, i.e. LIE has

been received from an address different from previous LIEs. Those

changes will influence the sockets used to listen to TIEs, TIREs,

TIDEs.

UnacceptableHeader: Unacceptable header received.

MTUMismatch: MTU mismatched.

NeighborChangedMinorFields: minor fields changed in neighbor's

LIE.

HoldtimeExpired: adjacency holddown timer expired.

MultipleNeighbors: more than one neighbor is present on interface

MultipleNeighborsDone: multiple neighbors timer expired.

FloodLeadersChanged: node's election algorithm determined new set

of flood leaders.

SendLie: send a LIE out.

UpdateZTPOffer: update this node's ZTP offer. This is sent to the

ZTP FSM.

Actions:

on HATChanged in OneWay finishes in OneWay: store HAT
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on FloodLeadersChanged in OneWay finishes in OneWay: update

`you_are_flood_repeater` LIE elements based on flood leader

election results

on UnacceptableHeader in OneWay finishes in OneWay: no action

on NeighborChangedMinorFields in OneWay finishes in OneWay: no

action

on SendLie in OneWay finishes in OneWay: SEND_LIE

on HALSChanged in OneWay finishes in OneWay: store HALS

on MultipleNeighbors in OneWay finishes in MultipleNeighborsWait:

start multiple neighbors timer with interval

`multiple_neighbors_lie_holdtime_multipler` *

`default_lie_holdtime`

on NeighborChangedLevel in OneWay finishes in OneWay: no action

on LieRcvd in OneWay finishes in OneWay: PROCESS_LIE

on MTUMismatch in OneWay finishes in OneWay: no action

on ValidReflection in OneWay finishes in ThreeWay: no action

on LevelChanged in OneWay finishes in OneWay: update level with

event value, PUSH SendLie event

on HALChanged in OneWay finishes in OneWay: store new HAL

on HoldtimeExpired in OneWay finishes in OneWay: no action

on NeighborChangedAddress in OneWay finishes in OneWay: no action

on NewNeighbor in OneWay finishes in TwoWay: PUSH SendLie event

on UpdateZTPOffer in OneWay finishes in OneWay: send offer to ZTP

FSM

on NeighborDroppedReflection in OneWay finishes in OneWay: no

action

on TimerTick in OneWay finishes in OneWay: PUSH SendLie event

on FloodLeadersChanged in TwoWay finishes in TwoWay: update

`you_are_flood_repeater` LIE elements based on flood leader

election results
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on UpdateZTPOffer in TwoWay finishes in TwoWay: send offer to ZTP

FSM

on NewNeighbor in TwoWay finishes in MultipleNeighborsWait: PUSH

SendLie event

on ValidReflection in TwoWay finishes in ThreeWay: no action

on LieRcvd in TwoWay finishes in TwoWay: PROCESS_LIE

on UnacceptableHeader in TwoWay finishes in OneWay: no action

on HALChanged in TwoWay finishes in TwoWay: store new HAL

on HoldtimeExpired in TwoWay finishes in OneWay: no action

on LevelChanged in TwoWay finishes in TwoWay: update level with

event value

on TimerTick in TwoWay finishes in TwoWay: PUSH SendLie event, if

last valid LIE was received more than `holdtime` ago as

advertised by neighbor then PUSH HoldtimeExpired event

on HATChanged in TwoWay finishes in TwoWay: store HAT

on NeighborChangedLevel in TwoWay finishes in OneWay: no action

on HALSChanged in TwoWay finishes in TwoWay: store HALS

on MTUMismatch in TwoWay finishes in OneWay: no action

on NeighborChangedAddress in TwoWay finishes in OneWay: no action

on SendLie in TwoWay finishes in TwoWay: SEND_LIE

on MultipleNeighbors in TwoWay finishes in MultipleNeighborsWait:

start multiple neighbors timer with interval

`multiple_neighbors_lie_holdtime_multipler` *

`default_lie_holdtime`

on TimerTick in ThreeWay finishes in ThreeWay: PUSH SendLie

event, if last valid LIE was received more than `holdtime` ago as

advertised by neighbor then PUSH HoldtimeExpired event

on LevelChanged in ThreeWay finishes in OneWay: update level with

event value

on HATChanged in ThreeWay finishes in ThreeWay: store HAT

on MTUMismatch in ThreeWay finishes in OneWay: no action
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on UnacceptableHeader in ThreeWay finishes in OneWay: no action

on MultipleNeighbors in ThreeWay finishes in

MultipleNeighborsWait: start multiple neighbors timer with

interval `multiple_neighbors_lie_holdtime_multipler` *

`default_lie_holdtime`

on NeighborChangedLevel in ThreeWay finishes in OneWay: no action

on HALSChanged in ThreeWay finishes in ThreeWay: store HALS

on LieRcvd in ThreeWay finishes in ThreeWay: PROCESS_LIE

on FloodLeadersChanged in ThreeWay finishes in ThreeWay: update

`you_are_flood_repeater` LIE elements based on flood leader

election results, PUSH SendLie

on NeighborDroppedReflection in ThreeWay finishes in TwoWay: no

action

on HoldtimeExpired in ThreeWay finishes in OneWay: no action

on ValidReflection in ThreeWay finishes in ThreeWay: no action

on UpdateZTPOffer in ThreeWay finishes in ThreeWay: send offer to

ZTP FSM

on NeighborChangedAddress in ThreeWay finishes in OneWay: no

action

on HALChanged in ThreeWay finishes in ThreeWay: store new HAL

on SendLie in ThreeWay finishes in ThreeWay: SEND_LIE

on MultipleNeighbors in MultipleNeighborsWait finishes in

MultipleNeighborsWait: start multiple neighbors timer with

interval `multiple_neighbors_lie_holdtime_multipler` *

`default_lie_holdtime`

on FloodLeadersChanged in MultipleNeighborsWait finishes in

MultipleNeighborsWait: update `you_are_flood_repeater` LIE

elements based on flood leader election results

on TimerTick in MultipleNeighborsWait finishes in

MultipleNeighborsWait: check MultipleNeighbors timer, if timer

expired PUSH MultipleNeighborsDone

on ValidReflection in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action
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on UpdateZTPOffer in MultipleNeighborsWait finishes in

MultipleNeighborsWait: send offer to ZTP FSM

on NeighborDroppedReflection in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on LieRcvd in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on UnacceptableHeader in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on NeighborChangedAddress in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on LevelChanged in MultipleNeighborsWait finishes in OneWay:

update level with event value

on HATChanged in MultipleNeighborsWait finishes in

MultipleNeighborsWait: store HAT

on MTUMismatch in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on HALSChanged in MultipleNeighborsWait finishes in

MultipleNeighborsWait: store HALS

on NeighborChangedBFDCapability in MultipleNeighborsWait finishes

in MultipleNeighborsWait: no action

on HALChanged in MultipleNeighborsWait finishes in

MultipleNeighborsWait: store new HAL

on HoldtimeExpired in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on SendLie in MultipleNeighborsWait finishes in

MultipleNeighborsWait: no action

on MultipleNeighborsDone in MultipleNeighborsWait finishes in

OneWay: no action

on Entry into OneWay: CLEANUP

4.2.3. Topology Exchange (TIE Exchange)

4.2.3.1. Topology Information Elements

Topology and reachability information in RIFT is conveyed by the

means of TIEs.
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The TIE exchange mechanism uses the port indicated by each node in

the LIE exchange as `flood_port` in `LIEPacket` and the interface on

which the adjacency has been formed as destination. TIEs MUST be

sent with an IPv4 Time to Live (TTL) or an IPv6 Hop Limit (HL) of

either 1 or 255 and also MUST be ignored if received with values

different than 1 or 255. This prevents RIFT information from

reaching beyond a single L3 next-hop in the topology. TIEs SHOULD be

sent with network control precedence unless an implementation is

prevented from doing so [RFC2474].

TIEs contain sequence numbers, lifetimes and a type. Each type has

ample identifying number space and information is spread across

possibly many TIEs of a certain type by the means of a hash function

that an implementation can individually determine. One extreme

design choice is a prefix per TIE which leads to more BGP-like

behavior where small increments are only advertised on route changes

vs. deploying with dense prefix packing into few TIEs leading to

more traditional IGP trade-off with fewer TIEs. An implementation

may even rehash prefix to TIE mapping at any time at the cost of

significant amount of re-advertisements of TIEs.

More information about the TIE structure can be found in the schema

in Appendix B starting with `TIEPacket` root.

4.2.3.2. Southbound and Northbound TIE Representation

A central concept of RIFT is that each node represents itself

differently depending on the direction in which it is advertising

information. More precisely, a spine node represents two different

databases over its adjacencies depending whether it advertises TIEs

to the north or to the south/east-west. Those differing TIE

databases are called either south- or northbound (South TIEs and

North TIEs) depending on the direction of distribution.

The North TIEs hold all of the node's adjacencies and local prefixes

while the South TIEs hold only all of the node's adjacencies, the

default prefix with necessary disaggregated prefixes and local

prefixes. Section 4.2.5 explains further details.

The TIE types are mostly symmetric in both directions and Table 3

provides a quick reference to main TIE types including direction and

their function. The direction itself is carried in `direction` of

`TIEID` schema element.

TIE-Type Content

Node North TIE node properties and adjacencies

Node South TIE same content as node North TIE

Prefix North TIE contains nodes' directly reachable prefixes
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TIE-Type Content

Prefix South TIE
contains originated defaults and directly

reachable prefixes

Positive

Disaggregation South

TIE

contains disaggregated prefixes

Negative

Disaggregation South

TIE

contains special, negatively disaggregated

prefixes to support multi-plane designs

External Prefix North

TIE
contains external prefixes

Key-Value North TIE contains nodes northbound KVs

Key-Value South TIE contains nodes southbound KVs

Table 3: TIE Types

As an example illustrating a databases holding both representations,

the topology in Figure 2 with the optional link between spine 111

and spine 112 (so that the flooding on an East-West link can be

shown) is considered. Unnumbered interfaces are implicitly assumed

and for simplicity, the key value elements which may be included in

their South TIEs or North TIEs are not shown. First, in Figure 15

are the TIEs generated by some nodes.¶



        ToF 21 South TIEs:

        Node South TIE:

          NodeElement(level=2, neighbors((Spine 111, level 1, cost 1),

          (Spine 112, level 1, cost 1), (Spine 121, level 1, cost 1),

          (Spine 122, level 1, cost 1)))

        Prefix South TIE:

          SouthPrefixesElement(prefixes(0/0, cost 1), (::/0, cost 1))

        Spine 111 South TIEs:

        Node South TIE:

          NodeElement(level=1, neighbors((ToF 21, level 2, cost 1,

                      links(...)),

          (ToF 22, level 2, cost 1, links(...)),

          (Spine 112, level 1, cost 1, links(...)),

          (Leaf111, level 0, cost 1, links(...)),

          (Leaf112, level 0, cost 1, links(...))))

        Prefix South TIE:

          SouthPrefixesElement(prefixes(0/0, cost 1), (::/0, cost 1))

        Spine 111 North TIEs:

        Node North TIE:

          NodeElement(level=1,

          neighbors((ToF 21, level 2, cost 1, links(...)),

          (ToF 22, level 2, cost 1, links(...)),

          (Spine 112, level 1, cost 1, links(...)),

          (Leaf111, level 0, cost 1, links(...)),

          (Leaf112, level 0, cost 1, links(...))))

        Prefix North TIE:

          NorthPrefixesElement(prefixes(Spine 111.loopback)

        Spine 121 South TIEs:

        Node South TIE:

          NodeElement(level=1, neighbors((ToF 21,level 2,cost 1),

          (ToF 22, level 2, cost 1), (Leaf121, level 0, cost 1),

          (Leaf122, level 0, cost 1)))

        Prefix South TIE:

          SouthPrefixesElement(prefixes(0/0, cost 1), (::/0, cost 1))

        Spine 121 North TIEs:

        Node North TIE:

          NodeElement(level=1,

          neighbors((ToF 21, level 2, cost 1, links(...)),

          (ToF 22, level 2, cost 1, links(...)),

          (Leaf121, level 0, cost 1, links(...)),

          (Leaf122, level 0, cost 1, links(...))))

        Prefix North TIE:

          NorthPrefixesElement(prefixes(Spine 121.loopback)

        Leaf112 North TIEs:



        Node North TIE:

          NodeElement(level=0,

          neighbors((Spine 111, level 1, cost 1, links(...)),

          (Spine 112, level 1, cost 1, links(...))))

        Prefix North TIE:

          NorthPrefixesElement(prefixes(Leaf112.loopback, Prefix112,

          Prefix_MH))

¶



Figure 15: Example TIES Generated in a 2 Level Spine-and-Leaf Topology

It may not be obvious here as to why the node South TIEs contain all

the adjacencies of the corresponding node. This will be necessary

for algorithms further elaborated on in Section 4.2.3.9 and Section

4.3.7.

For node TIEs to carry more adjacencies than fit into an MTU, the

element `neighbors` may contain different set of neighbors in each

TIE. Those disjoint sets of neighbors MUST be joined during

corresponding computation. Nevertheless, in case across multiple

node TIEs

`capabilities` do not match *or*

`flags` values do not match *or*

same neighbor repeats in multiple TIEs with different values

the behavior is undefined and a warning SHOULD be generated after a

period of time.

The element `miscabled_links` SHOULD be repeated in every node TIE,

otherwise the behavior is undefined.

A top of fabric node MUST include in the node TIEs in

`same_plane_tofs` element all the other ToFs it is aware of through

reflection. To prevent MTU overrun problems, multiple node TIEs can

carry disjoint sets of ToFs which can be joined to form a single

set. This element allows nodes in other planes that are on the

multi-plane ring with this node to have information describing the

complete plane and with that all ToFs in a multi-plane fabric are

aware of all other ToFs which can be used further to form input to

complex multi-plane elections.

Different TIE types are carried in `TIEElement`. Schema enum

`common.TIETypeType` in `TIEID` indicates which elements MUST be

present in the `TIEElement`. In case of mismatch the unexpected

elements MUST be ignored. In case of lack of expected element in the

TIE an error MUST be reported and the TIE MUST be ignored. The

element `positive_disaggregation_prefixes` and

`positive_external_disaggregation_prefixes` MUST be advertised

southbound only and ignored in North TIEs. The element

`negative_disaggregation_prefixes` MUST be aggregated and propagated

according to Section 4.2.5.2 southwards towards lower levels to heal

pathological upper level partitioning, otherwise traffic loss may

occur in multiplane fabrics. It MUST NOT be advertised within a

North TIE and ignored otherwise.
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4.2.3.3. Flooding

The mechanism used to distribute TIEs is the well-known (albeit

modified in several respects to take advantage of Fat Tree topology)

flooding mechanism used in link-state protocols. Although flooding

is initially more demanding to implement it avoids many problems

with update style used in diffused computation by distance vector

protocols. However, since flooding tends to present a significant

burden in large, densely meshed topologies (Fat Trees being

unfortunately such a topology) RIFT provides as solution a close to

optimal global flood reduction and load balancing optimization in 

Section 4.2.3.9.

As described before, TIEs themselves are transported over UDP with

the ports indicated in the LIE exchanges and using the destination

address on which the LIE adjacency has been formed. For unnumbered

IPv4 interfaces same considerations apply as in other link-state

routing protocols and are largely implementation dependent.

TIEs are uniquely identifed by `TIEID` schema element. `TIEID` space

is a total order achieved by comparing the elements in sequence

defined in the element and comparing each value as an unsigned

integer of corresponding length. They contain a `seq_nr` element to

distinguish newer versions of same TIE. TIEIDs also carry

`origination_time` and `origination_lifetime`. Field

`origination_time` contains the absolute timestamp when the TIE was

generated. Field `origination_lifetime` carries lifetime when the

TIE was generated. Those are normally disregarded during comparison

and carried purely for debugging/security purposes if present. They

may be used for comparison of last resort to differentiate otherwise

equal ties and they can be used on fabrics with synchronized clock

to prevent lifetime modification attacks.

Remaining lifetime counts down to 0 from origination lifetime. TIEs

with lifetimes differing by less than `lifetime_diff2ignore` MUST be

considered EQUAL (if all other fields are equal). This constant MUST

be larger than `purge_lifetime` to avoid retransmissions.

All valid TIE types are defined in `TIETypeType`. This enum

indicates what TIE type the TIE is carrying. In case the value is

not known to the receiver, the TIE MUST be re-flooded. This allows

for future extensions of the protocol within the same major schema

with types opaque to some nodes with some restrictions.

4.2.3.3.1. Normative Flooding Procedures

On reception of a TIE with an undefined level value in the packet

header the node MAY issue a warning and indiscriminately discard the

packet. Such packets can be useful however to establish e.g. via

`instance_name`, `name` and `originator` elements in `LIEPacket`
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whether the cabling of the node fulfills expectations, even before

ZTP procedures determine levels across the topology.

This section specifies the precise, normative flooding mechanism and

can be omitted unless the reader is pursuing an implementation of

the protocol or looks for a deep understanding of underlying

information distribution mechanism.

Flooding Procedures are described in terms of a flooding state of an

adjacency and resulting operations on it driven by packet arrivals.

The FSM itself has basically just a single state and is not well

suited to represent the behavior. An implementation MUST either

implement the given procedures in a verbatim manner or behave on the

wire in the same way as the provided normative procedures of this

paragraph.

RIFT does not specify any kind of flood rate limiting since such

specifications always assume particular points in available

technology speeds and feeds and those points are shifting at faster

and faster rate (speed of light holding for the moment).

To help with adjustement of flooding speeds the encoded packets

provide hints to react accordingly to losses or overruns via

`you_are_sending_too_quickly` in `LIEPacket` and `Packet Number` in

security envelope described in Section 4.4.3. Flooding of all

corresponding topology exchange elements SHOULD be performed at

highest feasible rate whereas the rate of transmission MUST be

throttled by reacting to packet elements and adequate features of

the system such as e.g. queue lengths or congestion indications in

the protocol packets.

A node SHOULD NOT send out any topology information elements if the

adjacency is not in a "ThreeWay" state. No further tightening of

this rule as to e.g. sequence is possible due to possible link

buffering and re-ordering of LIEs and TIEs/TIDEs/TIREs in a real

implementation for e.g. performance purposes.

A node MUST drop any received TIEs/TIDEs/TIREs unless it is in

ThreeWay state.

TIDEs and TIREs MUST NOT be re-flooded the way TIEs of other nodes

MUST be always generated by the node itself and cross only to the

neighboring node.

4.2.3.3.1.1. FloodState Structure per Adjacency

The structure contains conceptually on each adjacency the following

elements. The word collection or queue indicates a set of elements

that can be iterated over:
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TIES_TX:

TIES_ACK:

TIES_REQ:

TIES_RTX:

TIE:

is_flood_reduced(TIE):

is_tide_entry_filtered(TIE):

is_request_filtered(TIE):

is_flood_filtered(TIE):

try_to_transmit_tie(TIE):

Collection containing all the TIEs to transmit on the adjacency.

Collection containing all the TIEs that have to be acknowledged

on the adjacency.

Collection containing all the TIE headers that have to be

requested on the adjacency.

Collection containing all TIEs that need retransmission with the

corresponding time to retransmit.

Following words are used for well known elements and procedures

operating on this structure:

Describes either a full RIFT TIE or just the `TIEHeader` or

`TIEID` equivalent as defined in Appendix B.3. The corresponding

meaning is unambiguously contained in the context of each

algorithm.

returns whether a TIE can be flood reduced or not.

returns whether a header should be propagated in TIDE according

to flooding scopes.

returns whether a TIE request should be propagated to neighbor or

not according to flooding scopes.

returns whether a TIE requested be flooded to neighbor or not

according to flooding scopes.

if not is_flood_filtered(TIE) then

remove TIE from TIES_RTX if present

if TIE" with same key is found on TIES_ACK then

if TIE" is same or newer than TIE do nothing

else
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ack_tie(TIE):

tie_been_acked(TIE):

remove_from_all_queues(TIE):

request_tie(TIE):

move_to_rtx_list(TIE):

clear_requests(TIEs):

bump_own_tie(TIE):

remove TIE" from TIES_ACK and add TIE to

TIES_TX

else insert TIE into TIES_TX

remove TIE from all collections and then insert TIE into

TIES_ACK.

remove TIE from all collections.

same as `tie_been_acked`.

if not is_request_filtered(TIE) then remove_from_all_queues(TIE)

and add to TIES_REQ.

remove TIE from TIES_TX and then add to TIES_RTX using TIE

retransmission interval.

remove all TIEs from TIES_REQ.

for self-originated TIE originate an empty or re-generate with

version number higher then the one in TIE.

The collection SHOULD be served with the following priorities if the

system cannot process all the collections in real time:

Elements on TIES_ACK should be processed with highest priority

TIES_TX

TIES_REQ and TIES_RTX

4.2.3.3.1.2. TIDEs

`TIEID` and `TIEHeader` space forms a strict total order (modulo

incomparable sequence numbers as explained in Appendix A in the very

unlikely event that can occur if a TIE is "stuck" in a part of a

network while the originator reboots and reissues TIEs many times to

the point its sequence# rolls over and forms incomparable distance

to the "stuck" copy) which implies that a comparison relation is

possible between two elements. With that it is implicitly possible

to compare TIEs, TIEHeaders and TIEIDs to each other whereas the

shortest viable key is always implied.
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When generating and sending TIDEs an implementation SHOULD ensure

that enough bandwidth is left to send elements from other queues of

`Floodstate` structure.

4.2.3.3.1.2.1. TIDE Generation

As given by timer constant, periodically generate TIDEs by:

NEXT_TIDE_ID: ID of next TIE to be sent in TIDE.

TIDE_START: Begin of TIDE packet range.

NEXT_TIDE_ID = MIN_TIEID

while NEXT_TIDE_ID not equal to MAX_TIEID do

TIDE_START = NEXT_TIDE_ID

HEADERS = At most TIRDEs_PER_PKT headers in TIEDB starting

at NEXT_TIDE_ID or higher that SHOULD be filtered by

is_tide_entry_filtered and MUST either have a lifetime

left > 0 or have no content

if HEADERS is empty then START = MIN_TIEID else START =

first element in HEADERS

if HEADERS' size less than TIRDEs_PER_PKT then END =

MAX_TIEID else END = last element in HEADERS

send *sorted* HEADERS as TIDE setting START and END as its

range

NEXT_TIDE_ID = END

The constant `TIRDEs_PER_PKT` SHOULD be computed per interface and

used by the implementation to limit the amount of TIE headers per

TIDE so the sent TIDE PDU does not exceed interface MTU.

TIDE PDUs SHOULD be spaced on sending to prevent packet drops.

4.2.3.3.1.2.2. TIDE Processing

On reception of TIDEs the following processing is performed:

TXKEYS: Collection of TIE Headers to be sent after processing of

the packet

REQKEYS: Collection of TIEIDs to be requested after processing of

the packet
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I)

II)

I)

i.

ii.

I)

II)

CLEARKEYS: Collection of TIEIDs to be removed from flood state

queues

LASTPROCESSED: Last processed TIEID in TIDE

DBTIE: TIE in the LSDB if found

LASTPROCESSED = TIDE.start_range

for every HEADER in TIDE do

DBTIE = find HEADER in current LSDB

if HEADER < LASTPROCESSED then report error and reset

adjacency and return

put all TIEs in LSDB where (TIE.HEADER > LASTPROCESSED and

TIE.HEADER < HEADER) into TXKEYS

LASTPROCESSED = HEADER

if DBTIE not found then

if originator is this node then bump_own_tie

else put HEADER into REQKEYS

if DBTIE.HEADER < HEADER then

if originator is this node then bump_own_tie else

if this is a North TIE header from a

northbound neighbor then override DBTIE in

LSDB with HEADER

else put HEADER into REQKEYS

if DBTIE.HEADER > HEADER then put DBTIE.HEADER into TXKEYS

if DBTIE.HEADER = HEADER then

if DBTIE has content already then put DBTIE.HEADER

into CLEARKEYS

else put HEADER into REQKEYS

put all TIEs in LSDB where (TIE.HEADER > LASTPROCESSED and

TIE.HEADER <= TIDE.end_range) into TXKEYS

for all TIEs in TXKEYS try_to_transmit_tie(TIE)
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for all TIEs in REQKEYS request_tie(TIE)

for all TIEs in CLEARKEYS remove_from_all_queues(TIE)

4.2.3.3.1.3. TIREs

4.2.3.3.1.3.1. TIRE Generation

Elements from both TIES_REQ and TIES_ACK MUST be collected and sent

out as fast as feasible as TIREs. When sending TIREs with elements

from TIES_REQ the `remaining_lifetime` field in

`TIEHeaderWithLifeTime` MUST be set to 0 to force reflooding from

the neighbor even if the TIEs seem to be same.

4.2.3.3.1.3.2. TIRE Processing

On reception of TIREs the following processing is performed:

TXKEYS: Collection of TIE Headers to be send after processing of

the packet

REQKEYS: Collection of TIEIDs to be requested after processing of

the packet

ACKKEYS: Collection of TIEIDs that have been acked

DBTIE: TIE in the LSDB if found

for every HEADER in TIRE do

DBTIE = find HEADER in current LSDB

if DBTIE not found then do nothing

if DBTIE.HEADER < HEADER then put HEADER into REQKEYS

if DBTIE.HEADER > HEADER then put DBTIE.HEADER into TXKEYS

if DBTIE.HEADER = HEADER then put DBTIE.HEADER into

ACKKEYS

for all TIEs in TXKEYS try_to_transmit_tie(TIE)

for all TIEs in REQKEYS request_tie(TIE)

for all TIEs in ACKKEYS tie_been_acked(TIE)
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i.

ii.

i.

ii.

i.

ii.

4.2.3.3.1.4. TIEs Processing on Flood State Adjacency

On reception of TIEs the following processing is performed:

ACKTIE: TIE to acknowledge

TXTIE: TIE to transmit

DBTIE: TIE in the LSDB if found

DBTIE = find TIE in current LSDB

if DBTIE not found then

if originator is this node then bump_own_tie with a short

remaining lifetime

else insert TIE into LSDB and ACKTIE = TIE

else

if DBTIE.HEADER = TIE.HEADER then

if DBTIE has content already then ACKTIE = TIE

else process like the "DBTIE.HEADER < TIE.HEADER"

case

if DBTIE.HEADER < TIE.HEADER then

if originator is this node then bump_own_tie

else insert TIE into LSDB and ACKTIE = TIE

if DBTIE.HEADER > TIE.HEADER then

if DBTIE has content already then TXTIE = DBTIE

else ACKTIE = DBTIE

if TXTIE is set then try_to_transmit_tie(TXTIE)

if ACKTIE is set then ack_tie(TIE)

4.2.3.3.1.5. Sending TIEs

On a periodic basis all TIEs with lifetime left > 0 MUST be sent out

on the adjacency, removed from TIES_TX list and requeued onto

TIES_RTX list.
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4.2.3.3.1.6. TIEs Processing In LSDB

The Link State Database can be considered to be a switchboard that

does not need any flooding procedures but can be given versions of

TIEs by peers. Consecutively, after version tie-breaking by LSDB, a

peer receives from the LSDB newest versions of TIEs received by

other peers and processes them (without any filtering) just like

receiving TIEs from its remote peer. Such a publisher model can be

implemented in many ways, either in a single thread of execution of

in parallel threads.

LSDB can be logically considered as the entity aging out TIEs, i.e.

being responsible to discard TIEs that are stored longer than

`remaining_lifetime` on their reception.

LSDB is also expected to periodically re-originate the node's own

TIEs. It is recommended to originate at interval significantly

shorter than `default_lifetime` to prevent TIE expiration by other

nodes in the network which can lead to instabilities.

4.2.3.4. TIE Flooding Scopes

In a somewhat analogous fashion to link-local, area and domain

flooding scopes, RIFT defines several complex "flooding scopes"

depending on the direction and type of TIE propagated.

Every North TIE is flooded northbound, providing a node at a given

level with the complete topology of the Clos or Fat Tree network

that is reachable southwards of it, including all specific prefixes.

This means that a packet received from a node at the same or lower

level whose destination is covered by one of those specific prefixes

will be routed directly towards the node advertising that prefix

rather than sending the packet to a node at a higher level.

A node's Node South TIEs, consisting of all node's adjacencies and

prefix South TIEs limited to those related to default IP prefix and

disaggregated prefixes, are flooded southbound in order inform nodes

one level down of connectivity of the higher level as well as

reachability to the rest of the fabric. In order to allow an E-W

disconnected node in a given level to receive the South TIEs of

other nodes at its level, every *NODE* South TIE is "reflected"

northbound to level from which it was received. It should be noted

that East-West links are included in South TIE flooding (except at

ToF level); those TIEs need to be flooded to satisfy algorithms in 

Section 4.2.4. In that way nodes at same level can learn about each

other without a lower level except in case of leaf level. The

precise, normative flooding scopes are given in Table 4. Those rules

govern as well what SHOULD be included in TIDEs on the adjacency.

Again, East-West flooding scopes are identical to South flooding
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scopes except in case of ToF East-West links (rings) which are

basically performing northbound flooding.

Node South TIE "south reflection" allows to support positive

disaggregation on failures as described in in Section 4.2.5 and

flooding reduction in Section 4.2.3.9.

Type /

Direction
South North East-West

node

South TIE

flood if level of

originator is equal

to this node

flood if level

of originator is

higher than this

node

flood only if

this node is not

ToF

non-node

South TIE

flood self-

originated only

flood only if

neighbor is

originator of

TIE

flood only if

self-originated

and this node is

not ToF

all North

TIEs
never flood flood always

flood only if

this node is ToF

TIDE

include at least all

non-self originated

North TIE headers

and self-originated

South TIE headers

and node South TIEs

of nodes at same

level

include at least

all node South

TIEs and all

South TIEs

originated by

peer and all

North TIEs

if this node is

ToF then include

all North TIEs,

otherwise only

self-originated

TIEs

TIRE as

Request

request all North

TIEs and all peer's

self-originated TIEs

and all node South

TIEs

request all

South TIEs

if this node is

ToF then apply

North scope

rules, otherwise

South scope

rules

TIRE as

Ack

Ack all received

TIEs

Ack all received

TIEs

Ack all received

TIEs

Table 4: Normative Flooding Scopes

If the TIDE includes additional TIE headers beside the ones

specified, the receiving neighbor must apply the corresponding

filter to the received TIDE strictly and MUST NOT request the extra

TIE headers that were not allowed by the flooding scope rules in its

direction.

As an example to illustrate these rules, consider using the topology

in Figure 2, with the optional link between spine 111 and spine 112,

and the associated TIEs given in Figure 15. The flooding from

particular nodes of the TIEs is given in Table 5.
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Local

Node

Neighbor

Node
TIEs Flooded from Local to Neighbor Node

Leaf111 Spine 112 Leaf111 North TIEs, Spine 111 node South TIE

Leaf111 Spine 111 Leaf111 North TIEs, Spine 112 node South TIE

... ... ...

Spine

111
Leaf111 Spine 111 South TIEs 

Spine

111
Leaf112 Spine 111 South TIEs 

Spine

111
Spine 112 Spine 111 South TIEs

Spine

111
ToF 21

Spine 111 North TIEs, Leaf111 North TIEs,

Leaf112 North TIEs, ToF 22 node South TIE 

Spine

111
ToF 22

Spine 111 North TIEs, Leaf111 North TIEs,

Leaf112 North TIEs, ToF 21 node South TIE 

... ... ...

ToF 21 Spine 111 ToF 21 South TIEs

ToF 21 Spine 112 ToF 21 South TIEs

ToF 21 Spine 121 ToF 21 South TIEs

ToF 21 Spine 122 ToF 21 South TIEs

... ... ...

Table 5: Flooding some TIEs from example topology

4.2.3.5. 'Flood Only Node TIEs' Bit

RIFT includes an optional ECN (Explicit Congestion Notification)

mechanism to prevent "flooding inrush" on restart or bring-up with

many southbound neighbors. A node MAY set on its LIEs the

corresponding `you_are_sending_too_quickly` flag to indicate to the

neighbor that it should temporarily flood node TIEs only to it and

slow down the flooding of any other TIEs. It SHOULD only set it in

the southbound direction. The receiving node SHOULD accommodate the

request to lessen the flooding load on the affected node if south of

the sender and SHOULD ignore the indication if northbound.

Obviously this mechanism is most useful in the southbound direction.

The distribution of node TIEs guarantees correct behavior of

algorithms like disaggregation or default route origination.

Furthermore though, the use of this bit presents an inherent trade-

off between processing load and convergence speed since suppressing

flooding of northbound prefixes from neighbors permanently will lead

to traffic loss.

4.2.3.6. Initial and Periodic Database Synchronization

The initial exchange of RIFT includes periodic TIDE exchanges that

contain description of the link state database and TIREs which

perform the function of requesting unknown TIEs as well as
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confirming reception of flooded TIEs. The content of TIDEs and TIREs

is governed by Table 4.

4.2.3.7. Purging and Roll-Overs

When a node exits the network, if "unpurged", residual stale TIEs

may exist in the network until their lifetimes expire (which in case

of RIFT is by default a rather long period to prevent ongoing re-

origination of TIEs in very large topologies). RIFT does however not

have a "purging mechanism" in the traditional sense based on sending

specialized "purge" packets. In other routing protocols such

mechanism has proven to be complex and fragile based on many years

of experience. RIFT simply issues a new, i.e. higher sequence

number, empty version of the TIE with a short lifetime given by

`purge_lifetime` constant and relies on each node to age out and

delete such TIE copy independently. Abundant amounts of memory are

available today even on low-end platforms and hence keeping those

relatively short-lived extra copies for a while is acceptable. The

information will age out and in the meantime all computations will

deliver correct results if a node leaves the network due to the new

information distributed by its adjacent nodes breaking bi-

directional connectivity checks in different computations.

Once a RIFT node issues a TIE with an ID, it SHOULD preserve the ID

as long as feasible (also when the protocol restarts), even if the

TIE looses all content. The re-advertisement of empty TIE fulfills

the purpose of purging any information advertised in previous

versions. The originator is free to not re-originate the

corresponding empty TIE again or originate an empty TIE with

relatively short lifetime to prevent large number of long-lived

empty stubs polluting the network. Each node MUST timeout and clean

up the corresponding empty TIEs independently.

Upon restart a node MUST, as any link-state implementation, be

prepared to receive TIEs with its own system ID and supersede them

with equivalent, newly generated, empty TIEs with a higher sequence

number. As above, the lifetime can be relatively short since it only

needs to exceed the necessary propagation and processing delay by

all the nodes that are within the TIE's flooding scope.

TIE sequence numbers are rolled over using the method described in 

Appendix A. First sequence number of any spontaneously originated

TIE (i.e. not originated to override a detected older copy in the

network) MUST be a reasonably unpredictable random number in the

interval [0, 2^30-1] which will prevent otherwise identical TIE

headers to remain "stuck" in the network with content different from

TIE originated after reboot. In traditional link-state protocols

this is delegated to a 16-bit checksum on packet content. RIFT

avoids this design due to the CPU burden presented by computation of
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such checksums and additional complications tied to the fact that

the checksum must be "patched" into the packet after the generation

of the content, a difficult proposition in binary hand-crafted

formats already and highly incompatible with model-based, serialized

formats. The sequence number space is hence consciously chosen to be

64-bits wide to make the occurrence of a TIE with same sequence

number but different content as much or even more unlikely than the

checksum method. To emulate the "checksum behavior" an

implementation could e.g. choose to compute 64-bit checksum over the

TIE content and use that as part of the first sequence number after

reboot.

4.2.3.8. Southbound Default Route Origination

Under certain conditions nodes issue a default route in their South

Prefix TIEs with costs as computed in Section 4.3.7.1.

A node X that

is *not* overloaded *and*

has southbound or East-West adjacencies

SHOULD originate in its south prefix TIE such a default route if and

only if

all other nodes at X's' level are overloaded *or*

all other nodes at X's' level have NO northbound adjacencies

*or*

X has computed reachability to a default route during N-SPF.

The term "all other nodes at X's' level" describes obviously just

the nodes at the same level in the PoD with a viable lower level

(otherwise the node South TIEs cannot be reflected and the nodes in

e.g. PoD 1 and PoD 2 are "invisible" to each other).

A node originating a southbound default route SHOULD install a

default discard route if it did not compute a default route during

N-SPF. This basically means that the top of the fabric will drop

traffic for unreachable addresses.

4.2.3.9. Northbound TIE Flooding Reduction

RIFT chooses only a subset of northbound nodes to propagate flooding

and with that both balances it (to prevent 'hot' flooding links)
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across the fabric as well as reduces its volume. The solution is

based on several principles:

a node MUST flood self-originated North TIEs to all the

reachable nodes at the level above which is called the node's

"parents";

it is typically not necessary that all parents reflood the

North TIEs to achieve a complete flooding of all the reachable

nodes two levels above which we choose to call the node's

"grandparents";

to control the volume of its flooding two hops North and yet

keep it robust enough, it is advantageous for a node to select

a subset of its parents as "Flood Repeaters" (FRs), which

combined together deliver two or more copies of its flooding to

all of its parents, i.e. the originating node's grandparents;

nodes at the same level do *not* have to agree on a specific

algorithm to select the FRs, but overall load balancing should

be achieved so that different nodes at the same level should

tend to select different parents as FRs;

there are usually many solutions to the problem of finding a

set of FRs for a given node; the problem of finding the minimal

set is (similar to) a NP-Complete problem and a globally

optimal set may not be the minimal one if load-balancing with

other nodes is an important consideration;

it is expected that there will be often sets of equivalent

nodes at a level L, defined as having a common set of parents

at L+1. Applying this observation at both L and L+1, an

algorithm may attempt to split the larger problem in a sum of

smaller separate problems;

it is another expectation that there will be from time to time

a broken link between a parent and a grandparent, and in that

case the parent is probably a poor FR due to its lower

reliability. An algorithm may attempt to eliminate parents with

broken northbound adjacencies first in order to reduce the

number of FRs. Albeit it could be argued that relying on higher

fanout FRs will slow flooding due to higher replication load

reliability of FR's links seems to be a more pressing concern.

In a fully connected Clos Network, this means that a node selects

one arbitrary parent as FR and then a second one for redundancy. The

computation can be kept relatively simple and completely distributed

without any need for synchronization amongst nodes. In a "PoD"

structure, where the Level L+2 is partitioned in silos of equivalent

grandparents that are only reachable from respective parents, this
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means treating each silo as a fully connected Clos Network and solve

the problem within the silo.

In terms of signaling, a node has enough information to select its

set of FRs; this information is derived from the node's parents'

Node South TIEs, which indicate the parent's reachable northbound

adjacencies to its own parents, i.e. the node's grandparents. A node

may send a LIE to a northbound neighbor with the optional boolean

field `you_are_flood_repeater` set to false, to indicate that the

northbound neighbor is not a flood repeater for the node that sent

the LIE. In that case the northbound neighbor SHOULD NOT reflood

northbound TIEs received from the node that sent the LIE. If the

`you_are_flood_repeater` is absent or if `you_are_flood_repeater` is

set to true, then the northbound neighbor is a flood repeater for

the node that sent the LIE and MUST reflood northbound TIEs received

from that node. The element `you_are_flood_repeater` MUST be ignored

if received from a northbound adjacency.

This specification provides a simple default algorithm that SHOULD

be implemented and used by default on every RIFT node.

let |NA(Node) be the set of Northbound adjacencies of node Node

and CN(Node) be the cardinality of |NA(Node);

let |SA(Node) be the set of Southbound adjacencies of node Node

and CS(Node) be the cardinality of |SA(Node);

let |P(Node) be the set of node Node's parents;

let |G(Node) be the set of node Node's grandparents. Observe that

|G(Node) = |P(|P(Node));

let N be the child node at level L computing a set of FR;

let P be a node at level L+1 and a parent node of N, i.e. bi-

directionally reachable over adjacency ADJ(N, P);

let G be a grandparent node of N, reachable transitively via a

parent P over adjacencies ADJ(N, P) and ADJ(P, G). Observe that N

does not have enough information to check bidirectional

reachability of ADJ(P, G);

let R be a redundancy constant integer; a value of 2 or higher

for R is RECOMMENDED;

let S be a similarity constant integer; a value in range 0 .. 2

for S is RECOMMENDED, the value of 1 SHOULD be used. Two

cardinalities are considered as equivalent if their absolute

difference is less than or equal to S, i.e. |a-b|<=S.
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i)

ii)

a.

b.

iii)

let RND be a 64-bit random number generated by the system once on

startup.

The algorithm consists of the following steps:

Derive a 64-bits number by XOR'ing 'N's system ID with RND.

Derive a 16-bits pseudo-random unsigned integer PR(N) from the

resulting 64-bits number by splitting it in 16-bits-long words

W1, W2, W3, W4 (where W1 are the least significant 16 bits of

the 64-bits number, and W4 are the most significant 16 bits)

and then XOR'ing the circularly shifted resulting words

together:

(W1<<1) xor (W2<<2) xor (W3<<3) xor (W4<<4);

where << is the circular shift operator.

Sort the parents by decreasing number of northbound adjacencies

(using decreasing system id of the parent as tie-breaker): sort

|P(N) by decreasing CN(P), for all P in |P(N), as ordered array

|A(N)

Partition |A(N) in subarrays |A_k(N) of parents with equivalent

cardinality of northbound adjacencies (in other words with

equivalent number of grandparents they can reach):

set k=0; // k is the ID of the subarrray

set i=0;

while i < CN(N) do

set j=i;

while i < CN(N) and CN(|A(N)[j]) - CN(|A(N)[i]) <= S

place |A(N)[i] in |A_k(N) // abstract action,

maybe noop

set i=i+1;

/* At this point j is the index in |A(N) of the

first member of |A_k(N) and (i-j) is C_k(N) defined

as the cardinality of |A_k(N) */

set k=k+1;

/* At this point k is the total number of subarrays,

initialized for the shuffling operation below */

*
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i)

a.

b.

ii)

i)

a.

b.

shuffle individually each subarrays |A_k(N) of cardinality

C_k(N) within |A(N) using the Durstenfeld variation of Fisher-

Yates algorithm that depends on N's System ID:

while k > 0 do

for i from C_k(N)-1 to 1 decrementing by 1 do

set j to PR(N) modulo i;

exchange |A_k[j] and |A_k[i];

set k=k-1;

For each grandparent G, initialize a counter c(G) with the

number of its south-bound adjacencies to elected flood

repeaters (which is initially zero):

for each G in |G(N) set c(G) = 0;

Finally keep as FRs only parents that are needed to maintain

the number of adjacencies between the FRs and any grandparent G

equal or above the redundancy constant R:

for each P in reshuffled |A(N);

if there exists an adjacency ADJ(P, G) in |NA(P)

such that c(G) < R then

place P in FR set;

for all adjacencies ADJ(P, G') in |NA(P)

increment c(G')

If any c(G) is still < R, it was not possible to elect a

set of FRs that covers all grandparents with redundancy R

Additional rules for flooding reduction:

The algorithm MUST be re-evaluated by a node on every change of

local adjacencies or reception of a parent South TIE with

changed adjacencies. A node MAY apply a hysteresis to prevent

excessive amount of computation during periods of network

instability just like in case of reachability computation.

Upon a change of the flood repeater set, a node SHOULD send out

LIEs that grant flood repeater status to newly promoted nodes

before it sends LIEs that revoke the status to the nodes that

have been newly demoted. This is done to prevent transient

behavior where the full coverage of grandparents is not
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guaranteed. Such a condition is sometimes unavoidable in case

of lost LIEs but it will correct itself though at possible

transient hit in flooding propagation speeds. The election can

use the LIE FSM `FloodLeadersChanged` event to notify LIE FSMs

of necessity to update the sent LIEs.

A node MUST always flood its self-originated TIEs to all its

neighbors.

A node receiving a TIE originated by a node for which it is not

a flood repeater SHOULD NOT reflood such TIEs to its neighbors

except for rules in Section 4.2.3.9, Paragraph 10, Item 6.

The indication of flood reduction capability MUST be carried in

the node TIEs in the `flood_reduction` element and MAY be used

to optimize the algorithm to account for nodes that will flood

regardless.

A node generates TIDEs as usual but when receiving TIREs or

TIDEs resulting in requests for a TIE of which the newest

received copy came on an adjacency where the node was not flood

repeater it SHOULD ignore such requests on first and only first

request. Normally, the nodes that received the TIEs as flooding

repeaters should satisfy the requesting node and with that no

further TIREs for such TIEs will be generated. Otherwise, the

next set of TIDEs and TIREs MUST lead to flooding independent

of the flood repeater status. This solves a very difficult

incast problem on nodes restarting with a very wide fanout,

especially northbound. To retrieve the full database they often

end up processing many in-rushing copies whereas this approach

load-balances the incoming database between adjacent nodes and

flood repeaters should guarantee that two copies are sent by

different nodes to ensure against any losses.

4.2.3.10. Special Considerations

First, due to the distributed, asynchronous nature of ZTP, it can

create temporary convergence anomalies where nodes at higher levels

of the fabric temporarily become lower than where they ultimately

belong. Since flooding can begin before ZTP is "finished" and in

fact must do so given there is no global termination criteria for

the unsychronized ZTP algorithm, information may end up temporarily

in wrong layers. A special clause when changing level takes care of

that.

More difficult is a condition where a node (e.g. a leaf) floods a

TIE north towards its grandparent, then its parent reboots,

partitioning the grandparent from leaf directly and then the leaf

itself reboots. That can leave the grandparent holding the "primary
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copy" of the leaf's TIE. Normally this condition is resolved easily

by the leaf re-originating its TIE with a higher sequence number

than it notices in the northbound TIEs, here however, when the

parent comes back it won't be able to obtain leaf's North TIE from

the grandparent easily and with that the leaf may not issue the TIE

with a higher sequence number that can reach the grandparent for a

long time. Flooding procedures are extended to deal with the problem

by the means of special clauses that override the database of a

lower level with headers of newer TIEs received in TIDEs coming from

the north. Those headers are then propagated southbound towards the

leaf nudging it to originate a higher sequence number of the TIE

effectively refreshing it all the way up to ToF.

4.2.4. Reachability Computation

A node has three possible sources of relevant information for

reachability computation. A node knows the full topology south of it

from the received North Node TIEs or alternately north of it from

the South Node TIEs. A node has the set of prefixes with their

associated distances and bandwidths from corresponding prefix TIEs.

To compute prefix reachability, a node runs conceptually a

northbound and a southbound SPF. N-SPF and S-SPF notation denotes

here the direction in which the computation front is progressing.

Since neither computation can "loop", it is possible to compute non-

equal-cost or even k-shortest paths [EPPSTEIN] and "saturate" the

fabric to the extent desired. This specification however uses

simple, familiar SPF algorithms and concepts as example due to their

prevalence in today's routing.

For reachability computation purposes RIFT considers all parallel

links between two nodes to be of the same cost advertised in `cost`

element of `NodeNeighborsTIEElement`. In case the neighbor has

multiple parallel links at different cost, the largest distance

(highest numerical value) MUST be advertised. Given the range of

thrift encodings, `infinite_distance` is defined as largest non-

negative `MetricType`. Any link with metric larger than that (i.e.

negative MetricType) MUST be ignored in computations. Any link with

metric set to `invalid_distance` MUST be ignored in computation as

well. In case of a negatively distributed prefix the metric

attribute MUST be set to `infinite_distance` by the originator and

it MUST be ignored by all nodes during computation except for the

purpose of determining transitive propagation and building the

corresponding routing table.

A prefix can carry the `directly_attached` attribute to indicate

that the prefix is directly attached, i.e. should be routed to even

if the node is in overload. In case of a negatively distributed
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prefix this attribute MUST not be included by the originator and it

MUST be ignored by all nodes during SPF computation. If a prefix is

locally originated the attribute `from_link` can indicate the

interface to which the address belongs to. In case of a negatively

distributed prefix this attribute MUST NOT be included by the

originator and it MUST be ignored by all nodes during computation. A

prefix can also carry the `loopback` attribute to indicate the said

property.

Prefixes are carried in different type of TIEs indicating their

type. For same prefix being included in different TIE types

according to Section 4.3.1. In case the same prefix is included

multiple times in multiple TIEs of same type originating at the same

node the resulting behavior is unspecified.

4.2.4.1. Northbound Reachability SPF

N-SPF MUST use exclusively northbound and East-West adjacencies in

the computing node's node North TIEs (since if the node is a leaf it

may not have generated a node South TIE) when starting SPF. Observe

that N-SPF is really just a one hop variety since Node South TIEs

are not re-flooded southbound beyond a single level (or East-West)

and with that the computation cannot progress beyond adjacent nodes.

Once progressing, the computation uses the next higher level's node

South TIEs to find corresponding adjacencies to verify backlink

connectivity. Two unidirectional links MUST be associated together

to confirm bidirectional connectivity, a process often known as

`backlink check`. As part of the check, both node TIEs MUST contain

the correct system IDs *and* expected levels.

Default route found when crossing an E-W link SHOULD be used if and

only if

the node itself does *not* have any northbound adjacencies

*and*

the adjacent node has one or more northbound adjacencies

This rule forms a "one-hop default route split-horizon" and prevents

looping over default routes while allowing for "one-hop protection"

of nodes that lost all northbound adjacencies except at Top-of-

Fabric where the links are used exclusively to flood topology

information in multi-plane designs.

Other south prefixes found when crossing E-W link MAY be used if and

only if

no north neighbors are advertising same or supersuming non-

default prefix *and*
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the node does not originate a non-default supersuming prefix

itself.

i.e. the E-W link can be used as a gateway of last resort for a

specific prefix only. Using south prefixes across E-W link can be

beneficial e.g. on automatic disaggregation in pathological fabric

partitioning scenarios.

A detailed example can be found in Section 5.4.

4.2.4.2. Southbound Reachability SPF

S-SPF MUST use the southbound adjacencies in the node South TIEs

exclusively, i.e. progresses towards nodes at lower levels. Observe

that E-W adjacencies are NEVER used in this computation. This

enforces the requirement that a packet traversing in a southbound

direction must never change its direction.

S-SPF MUST use northbound adjacencies in node North TIEs to verify

backlink connectivity by checking for presence of the link beside

correct System ID and level.

4.2.4.3. East-West Forwarding Within a non-ToF Level

Using south prefixes over horizontal links MAY occur if the N-SPF

includes East-West adjacencies in computation. It can protect

against pathological fabric partitioning cases that leave only paths

to destinations that would necessitate multiple changes of

forwarding direction between north and south.

4.2.4.4. East-West Links Within ToF Level

E-W ToF links behave in terms of flooding scopes defined in Section

4.2.3.4 like northbound links and MUST be used exclusively for

control plane information flooding. Even though a ToF node could be

tempted to use those links during southbound SPF and carry traffic

over them this MUST NOT be attempted since it may lead in, e.g.

anycast cases to routing loops. An implementation MAY try to resolve

the looping problem by following on the ring strictly tie-broken

shortest-paths only but the details are outside this specification.

And even then, the problem of proper capacity provisioning of such

links when they become traffic-bearing in case of failures is vexing

and when used for forwarding purposes, they defeat statistical non-

blocking guarantees that Clos is providing normally.
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4.2.5. Automatic Disaggregation on Link & Node Failures

4.2.5.1. Positive, Non-transitive Disaggregation

Under normal circumstances, a node's South TIEs contain just the

adjacencies and a default route. However, if a node detects that its

default IP prefix covers one or more prefixes that are reachable

through it but not through one or more other nodes at the same

level, then it MUST explicitly advertise those prefixes in an South

TIE. Otherwise, some percentage of the northbound traffic for those

prefixes would be sent to nodes without corresponding reachability,

causing it to be dropped. Even when traffic is not being dropped,

the resulting forwarding could 'backhaul' packets through the higher

level spines, clearly an undesirable condition affecting the

blocking probabilities of the fabric.

This specification refers to the process of advertising additional

prefixes southbound as 'positive disaggregation'. Such

disaggregation is non-transitive, i.e. its' effects are always

contained to a single level of the fabric only. Naturally, multiple

node or link failures can lead to several independent instances of

positive disaggregation necessary to prevent looping or bow-tying

the fabric.

A node determines the set of prefixes needing disaggregation using

the following steps:

A DAG computation in the southern direction is performed first,

i.e. the North TIEs are used to find all of prefixes it can

reach and the set of next-hops in the lower level for each of

them. Such a computation can be easily performed on a Fat Tree

by e.g. setting all link costs in the southern direction to 1

and all northern directions to infinity. We term set of those

prefixes |R, and for each prefix, r, in |R, its set of next-

hops is defined to be |H(r).

The node uses reflected South TIEs to find all nodes at the

same level in the same PoD and the set of southbound

adjacencies for each. The set of nodes at the same level is

termed |N and for each node, n, in |N, its set of southbound

adjacencies is defined to be |A(n).

For a given r, if the intersection of |H(r) and |A(n), for any

n, is empty then that prefix r must be explicitly advertised by

the node in an South TIE.

Identical set of disaggregated prefixes is flooded on each of

the node's southbound adjacencies. In accordance with the

normal flooding rules for an South TIE, a node at the lower

level that receives this South TIE SHOULD NOT propagate it
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south-bound or reflect the disaggregated prefixes back over its

adjacencies to nodes at the level from which it was received.

To summarize the above in simplest terms: if a node detects that its

default route encompasses prefixes for which one of the other nodes

in its level has no possible next-hops in the level below, it has to

disaggregate it to prevent traffic loss or suboptimal routing

through such nodes. Hence a node X needs to determine if it can

reach a different set of south neighbors than other nodes at the

same level, which are connected to it via at least one common south

neighbor. If it can, then prefix disaggregation may be required. If

it can't, then no prefix disaggregation is needed. An example of

disaggregation is provided in Section 5.3.

Finally, a possible algorithm is described here:

Create partial_neighbors = (empty), a set of neighbors with

partial connectivity to the node X's level from X's

perspective. Each entry in the set is a south neighbor of X and

a list of nodes of X.level that can't reach that neighbor.

A node X determines its set of southbound neighbors

X.south_neighbors.

For each South TIE originated from a node Y that X has which is

at X.level, if Y.south_neighbors is not the same as

X.south_neighbors but the nodes share at least one southern

neighbor, for each neighbor N in X.south_neighbors but not in

Y.south_neighbors, add (N, (Y)) to partial_neighbors if N isn't

there or add Y to the list for N.

If partial_neighbors is empty, then node X does not

disaggregate any prefixes. If node X is advertising

disaggregated prefixes in its South TIE, X SHOULD remove them

and re-advertise its South TIEs.

A node X computes reachability to all nodes below it based upon the

received North TIEs first. This results in a set of routes, each

categorized by (prefix, path_distance, next-hop set). Alternately,

for clarity in the following procedure, these can be organized by

next-hop set as ((next-hops), {(prefix, path_distance)}). If

partial_neighbors isn't empty, then the procedure in Figure 16

describes how to identify prefixes to disaggregate.
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Figure 16: Computation of Disaggregated Prefixes

Each disaggregated prefix is sent with the corresponding

path_distance. This allows a node to send the same South TIE to each

south neighbor. The south neighbor which is connected to that prefix

will thus have a shorter path.

Finally, to summarize the less obvious points partially omitted in

the algorithms to keep them more tractable:

all neighbor relationships MUST perform backlink checks.

overload bits as introduced in Section 4.3.2 and carried in

`overload` schema element have to be respected during the

computation, i.e. node advertising themselves as overloaded

MUST NOT be transited in reachability computation but MUST be

used as terminal nodes with prefixes they advertise being

reachable.

            disaggregated_prefixes = { empty }

            nodes_same_level = { empty }

            for each South TIE

              if (South TIE.level == X.level and

                  X shares at least one S-neighbor with X)

                add South TIE.originator to nodes_same_level

                end if

              end for

            for each next-hop-set NHS

              isolated_nodes = nodes_same_level

              for each NH in NHS

                if NH in partial_neighbors

                  isolated_nodes =

                    intersection(isolated_nodes,

                                 partial_neighbors[NH].nodes)

                  end if

                end for

              if isolated_nodes is not empty

                for each prefix using NHS

                  add (prefix, distance) to disaggregated_prefixes

                  end for

                end if

              end for

            copy disaggregated_prefixes to X's South TIE

            if X's South TIE is different

              schedule South TIE for flooding

              end if
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all the lower level nodes are flooded the same disaggregated

prefixes since RIFT does not build an South TIE per node which

would complicate things unnecessarily. The lower level node

that can compute a southbound route to the prefix will prefer

it to the disaggregated route anyway based on route preference

rules.

positively disaggregated prefixes do *not* have to propagate to

lower levels. With that the disturbance in terms of new

flooding is contained to a single level experiencing failures.

disaggregated Prefix South TIEs are not "reflected" by the

lower level, i.e. nodes within same level do *not* need to be

aware which node computed the need for disaggregation.

The fabric is still supporting maximum load balancing

properties while not trying to send traffic northbound unless

necessary.

In case positive disaggregation is triggered and due to the very

stable but un-synchronized nature of the algorithm the nodes may

issue the necessary disaggregated prefixes at different points in

time. This can lead for a short time to an "incast" behavior where

the first advertising router based on the nature of longest prefix

match will attract all the traffic. Different implementation

strategies can be used to lessen that effect but those are clearly

outside the scope of this specification.

To close this section it is worth to observe that in a single plane

ToF this disaggregation prevents traffic loss up to (K_LEAF * P)

link failures in terms of Section 4.1.2 or in other terms, it takes

at minimum that many link failures to partition the ToF into

multiple planes.

4.2.5.2. Negative, Transitive Disaggregation for Fallen Leaves

As explained in Section 4.1.3 failures in multi-plane Top-of-Fabric

or more than (K_LEAF * P) links failing in single plane design can

generate fallen leaves. Such scenario cannot be addressed by

positive disaggregation only and needs a further mechanism.

4.2.5.2.1. Cabling of Multiple Top-of-Fabric Planes

Returning in this section to designs with multiple planes as shown

originally in Figure 3, Figure 17 highlights now how the ToF is

cabled in case of two planes by the means of dual-rings to

distribute all the North TIEs within both planes.
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Figure 17: Topologically Connected Planes

Section 4.1.3 already describes how failures in multi-plane fabrics

can lead to traffic loss that normal positive disaggregation cannot

fix. The mechanism of negative, transitive disaggregation

incorporated in RIFT provides the corresponding solution and next

section explains the involved mechanisms in more detail.

4.2.5.2.2. Transitive Advertisement of Negative Disaggregates

A ToF node discovering that it cannot reach a fallen leaf SHOULD

disaggregate all the prefixes of such leaves. It uses for that

purpose negative prefix South TIEs that are, as usual, flooded

southwards with the scope defined in Section 4.2.3.4.

Transitively, a node explicitly loses connectivity to a prefix when

none of its children advertises it and when the prefix is negatively

disaggregated by all of its parents. When that happens, the node

originates the negative prefix further down south. Since the

mechanism applies recursively south the negative prefix may

propagate transitively all the way down to the leaf. This is

necessary since leaves connected to multiple planes by means of

disjointed paths may have to choose the correct plane already at the

very bottom of the fabric to make sure that they don't send traffic

towards another leaf using a plane where it is "fallen" at which

point will make traffic loss unavoidable.

When the connectivity is restored, a node that disaggregated a

prefix withdraws the negative disaggregation by the usual mechanism

of re-advertising TIEs omitting the negative prefix.

4.2.5.2.3. Computation of Negative Disaggregates

The document omitted so far the description of the computation

necessary to generate the correct set of negative prefixes. Negative

prefixes can in fact be advertised due to two different triggers.

This will be described consecutively.

The first origination reason is a computation that uses all the node

North TIEs to build the set of all reachable nodes by reachability

computation over the complete graph and including horizontal ToF
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links. The computation uses the node itself as root. This is

compared with the result of the normal southbound SPF as described

in Section 4.2.4.2. The difference are the fallen leaves and all

their attached prefixes are advertised as negative prefixes

southbound if the node does not consider the prefix to be reachable

within the southbound SPF.

The second mechanism hinges on the understanding how the negative

prefixes are used within the computation as described in Figure 18.

When attaching the negative prefixes at certain point in time the

negative prefix may find itself with all the viable nodes from the

shorter match nexthop being pruned. In other words, all its

northbound neighbors provided a negative prefix advertisement. This

is the trigger to advertise this negative prefix transitively south

and normally caused by the node being in a plane where the prefix

belongs to a fabric leaf that has "fallen" in this plane. Obviously,

when one of the northbound switches withdraws its negative

advertisement, the node has to withdraw its transitively provided

negative prefix as well.

4.2.6. Attaching Prefixes

After SPF is run, it is necessary to attach the resulting

reachability information in form of prefixes. For S-SPF, prefixes

from an North TIE are attached to the originating node with that

node's next-hop set and a distance equal to the prefix's cost plus

the node's minimized path distance. The RIFT route database, a set

of (prefix, prefix-type, attributes, path_distance, next-hop set),

accumulates these results.

In case of N-SPF prefixes from each South TIE need to also be added

to the RIFT route database. The N-SPF is really just a stub so the

computing node needs simply to determine, for each prefix in an

South TIE that originated from adjacent node, what next-hops to use

to reach that node. Since there may be parallel links, the next-hops

to use can be a set; presence of the computing node in the

associated Node South TIE is sufficient to verify that at least one

link has bidirectional connectivity. The set of minimum cost next-

hops from the computing node X to the originating adjacent node is

determined.

Each prefix has its cost adjusted before being added into the RIFT

route database. The cost of the prefix is set to the cost received

plus the cost of the minimum distance next-hop to that neighbor

while taking into account its attributes such as mobility per 

Section 4.3.4. Then each prefix can be added into the RIFT route

database with the next-hop set; ties are broken based upon type

first and then distance and further on `PrefixAttributes` and only
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the best combination is used for forwarding. RIFT route preferences

are normalized by the corresponding Thrift [thrift] model type.

An example implementation for node X follows:

Figure 18: Adding Routes from South TIE Positive and Negative Prefixes

After the positive prefixes are attached and tie-broken, negative

prefixes are attached and used in case of northbound computation,

ideally from the shortest length to the longest. The nexthop

adjacencies for a negative prefix are inherited from the longest

positive prefix that aggregates it, and subsequently adjacencies to

nodes that advertised negative for this prefix are removed.

The rule of inheritance MUST be maintained when the nexthop list for

a prefix is modified, as the modification may affect the entries for

matching negative prefixes of immediate longer prefix length. For

¶

¶

  for each South TIE

     if South TIE.level > X.level

        next_hop_set = set of minimum cost links to the

            South TIE.originator

        next_hop_cost = minimum cost link to

            South TIE.originator

        end if

     for each prefix P in the South TIE

        P.cost = P.cost + next_hop_cost

        if P not in route_database:

          add (P, P.cost, P.type,

               P.attributes, next_hop_set) to route_database

          end if

        if (P in route_database):

          if route_database[P].cost > P.cost or

                route_database[P].type > P.type:

            update route_database[P] with (P, P.type, P.cost,

                                           P.attributes,

                                           next_hop_set)

          else if route_database[P].cost == P.cost and

                route_database[P].type == P.type:

            update route_database[P] with (P, P.type,

                                           P.cost, P.attributes,

               merge(next_hop_set, route_database[P].next_hop_set))

          else

            // Not preferred route so ignore

            end if

          end if

        end for

     end for
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instance, if a nexthop is added, then by inheritance it must be

added to all the negative routes of immediate longer prefixes length

unless it is pruned due to a negative advertisement for the same

next hop. Similarly, if a nexthop is deleted for a given prefix,

then it is deleted for all the immediately aggregated negative

routes. This will recurse in the case of nested negative prefix

aggregations.

The rule of inheritance must also be maintained when a new prefix of

intermediate length is inserted, or when the immediately aggregating

prefix is deleted from the routing table, making an even shorter

aggregating prefix the one from which the negative routes now

inherit their adjacencies. As the aggregating prefix changes, all

the negative routes must be recomputed, and then again the process

may recurse in case of nested negative prefix aggregations.

Although these operations can be computationally expensive, the

overall load on devices in the network is low because these

computations are not run very often, as positive route

advertisements are always preferred over negative ones. This

prevents recursion in most cases because positive reachability

information never inherits next hops.

To make the negative disaggregation less abstract and provide an

example ToP node T1 with 4 ToF parents S1..S4 as represented in 

Figure 19 are considered further:

Figure 19: A ToP Node with 4 Parents

If all ToF nodes can reach all the prefixes in the network; with

RIFT, they will normally advertise a default route south. An

abstract Routing Information Base (RIB), more commonly known as a

routing table, stores all types of maintained routes including the

negative ones and "tie-breaks" for the best one, whereas an abstract

Forwarding table (FIB) retains only the ultimately computed

"positive" routing instructions. In T1, those tables would look as

illustrated in Figure 20:
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Figure 20: Abstract RIB

In case T1 receives a negative advertisement for prefix

2001:db8::/32 from S1 a negative route is stored in the RIB

(indicated by a ~ sign), while the more specific routes to the

complementing ToF nodes are installed in FIB. RIB and FIB in T1 now

look as illustrated in Figure 21 and Figure 22, respectively:

Figure 21: Abstract RIB after Negative 2001:db8::/32 from S1

The negative 2001:db8::/32 prefix entry inherits from ::/0, so the

positive more specific routes are the complements to S1 in the set

of next-hops for the default route. That entry is composed of S2,

S3, and S4, or, in other words, it uses all entries the the default

route with a "hole punched" for S1 into them. These are the next

hops that are still available to reach 2001:db8::/32, now that S1

advertised that it will not forward 2001:db8::/32 anymore.

Ultimately, those resulting next-hops are installed in FIB for the

more specific route to 2001:db8::/32 as illustrated below:
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Figure 22: Abstract FIB after Negative 2001:db8::/32 from S1

To illustrate matters further consider T1 receiving a negative

advertisement for prefix 2001:db8:1::/48 from S2, which is stored in

RIB again. After the update, the RIB in T1 is illustrated in Figure

23:

Figure 23: Abstract RIB after Negative 2001:db8:1::/48 from S2

Negative 2001:db8:1::/48 inherits from 2001:db8::/32 now, so the

positive more specific routes are the complements to S2 in the set

of next hops for 2001:db8::/32, which are S3 and S4, or, in other

words, all entries of the parent with the negative holes "punched

in" again. After the update, the FIB in T1 shows as illustrated in 

Figure 24:

Figure 24: Abstract FIB after Negative 2001:db8:1::/48 from S2

Further, assume that S3 stops advertising its service as default

gateway. The entry is removed from RIB as usual. In order to update

the FIB, it is necessary to eliminate the FIB entry for the default

route, as well as all the FIB entries that were created for negative

routes pointing to the RIB entry being removed (::/0). This is done

recursively for 2001:db8::/32 and then for, 2001:db8:1::/48. The

related FIB entries via S3 are removed, as illustrated in Figure 25.
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Figure 25: Abstract FIB after Loss of S3

Say that at that time, S4 would also disaggregate prefix

2001:db8:1::/48. This would mean that the FIB entry for

2001:db8:1::/48 becomes a discard route, and that would be the

signal for T1 to disaggregate prefix 2001:db8:1::/48 negatively in a

transitive fashion with its own children.

Finally, the case occurs where S3 becomes available again as a

default gateway, and a negative advertisement is received from S4

about prefix 2001:db8:2::/48 as opposed to 2001:db8:1::/48. Again, a

negative route is stored in the RIB, and the more specific route to

the complementing ToF nodes are installed in FIB. Since

2001:db8:2::/48 inherits from 2001:db8::/32, the positive FIB routes

are chosen by removing S4 from S2, S3, S4. The abstract FIB in T1

now shows as illustrated in Figure 26:

Figure 26: Abstract FIB after Negative 2001:db8:2::/48 from S4

4.2.7. Optional Zero Touch Provisioning (ZTP)

Each RIFT node can operate in zero touch provisioning (ZTP) mode,

i.e. it has no configuration (unless it is a ToF or it is configured

to operate in the overall topology as leaf and/or support leaf-2-

leaf procedures) and it will fully configure itself after being

attached to the topology. Configured nodes and nodes operating in

ZTP can be mixed and will form a valid topology if achievable.

The derivation of the level of each node happens based on offers

received from its neighbors whereas each node (with possibly
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Automatic Level Derivation:

UNDEFINED_LEVEL:

LEAF_ONLY:

TOP_OF_FABRIC flag:

exceptions of configured leaves) tries to attach at the highest

possible point in the fabric. This guarantees that even if the

diffusion front of offers reaches a node from "below" faster than

from "above", it will greedily abandon already negotiated level

derived from nodes topologically below it and properly peer with

nodes above.

The fabric is very consciously numbered from the top down to allow

for PoDs of different heights and minimize number of provisioning

necessary, in this case just a TOP_OF_FABRIC flag on every node at

the top of the fabric.

This section describes the necessary concepts and procedures for ZTP

operation.

4.2.7.1. Terminology

The interdependencies between the different flags and the configured

level can be somewhat vexing at first and it may take multiple reads

of the glossary to comprehend them.

Procedures which allow nodes without level configured to derive

it automatically. Only applied if CONFIGURED_LEVEL is undefined.

A "null" value that indicates that the level has not been

determined and has not been configured. Schemas normally indicate

that by a missing optional value without an available defined

default.

An optional configuration flag that can be configured on a node

to make sure it never leaves the "bottom of the hierarchy".

TOP_OF_FABRIC flag and CONFIGURED_LEVEL cannot be defined at the

same time as this flag. It implies CONFIGURED_LEVEL value of

`leaf_level`. It is indicated in `leaf_only` schema element.

Configuration flag that MUST be provided to all Top-of-Fabric

nodes. LEAF_FLAG and CONFIGURED_LEVEL cannot be defined at the

same time as this flag. It implies a CONFIGURED_LEVEL value. In

fact, it is basically a shortcut for configuring same level at

all Top-of-Fabric nodes which is unavoidable since an initial

'seed' is needed for other ZTP nodes to derive their level in the

topology. The flag plays an important role in fabrics with

multiple planes to enable successful negative disaggregation

(Section 4.2.5.2). It is carried in `top_of_fabric` schema

element. A standards conform RIFT implementation implies a

CONFIGURED_LEVEL value of `top_of_fabric_level` in case of
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CONFIGURED_LEVEL:

DERIVED_LEVEL:

LEAF_2_LEAF:

LEVEL_VALUE:

Valid Offered Level (VOL):

Highest Available Level (HAL):

Highest Available Level Systems (HALS):

TOP_OF_FABRIC. This value is kept reasonably low to alow for fast

ZTP re-convergence on failures.

A level value provided manually. When this is defined (i.e. it is

not an UNDEFINED_LEVEL) the node is not participating in ZTP in

the sense of deriving its own level based on other nodes'

information. TOP_OF_FABRIC flag is ignored when this value is

defined. LEAF_ONLY can be set only if this value is undefined or

set to `leaf_level`.

Level value computed via automatic level derivation when

CONFIGURED_LEVEL is equal to UNDEFINED_LEVEL.

An optional flag that can be configured on a node to make sure it

supports procedures defined in Section 4.3.9. In a strict sense

it is a capability that implies LEAF_ONLY and the corresponding

restrictions. TOP_OF_FABRIC flag is ignored when set at the same

time as this flag. It is carried in the

`leaf_only_and_leaf_2_leaf_procedures` schema flag.

In ZTP case the original definition of "level" in Section 3.1 is

both extended and relaxed. First, level is defined now as

LEVEL_VALUE and is the first defined value of CONFIGURED_LEVEL

followed by DERIVED_LEVEL. Second, it is possible for nodes to be

more than one level apart to form adjacencies if any of the nodes

is at least LEAF_ONLY.

A neighbor's level received on a valid LIE (i.e. passing all

checks for adjacency formation while disregarding all clauses

involving level values) persisting for the duration of the

holdtime interval on the LIE. Observe that offers from nodes

offering level value of `leaf_level` do not constitute VOLs

(since no valid DERIVED_LEVEL can be obtained from those and

consequently `not_a_ztp_offer` flag MUST be ignored). Offers from

LIEs with `not_a_ztp_offer` being true are not VOLs either. If a

node maintains parallel adjacencies to the neighbor, VOL on each

adjacency is considered as equivalent, i.e. the newest VOL from

any such adjacency updates the VOL received from the same node.

Highest defined level value received from all VOLs received.

Set of nodes offering HAL VOLs.
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Highest Adjacency ThreeWay (HAT):

Highest neighbor level of all the formed ThreeWay adjacencies for

the node.

4.2.7.2. Automatic System ID Selection

RIFT nodes require a 64 bit System ID which SHOULD be derived as

EUI-64 MA-L derive according to [EUI64]. The organizationally

governed portion of this ID (24 bits) can be used to generate

multiple IDs if required to indicate more than one RIFT instance."

As matter of operational concern, the router MUST ensure that such

identifier is not changing very frequently (or at least not without

sending all its TIEs with fairly short lifetimes, i.e. purging them)

since otherwise the network may be left with large amounts of stale

TIEs in other nodes (though this is not necessarily a serious

problem if the procedures described in Section 7 are implemented).

4.2.7.3. Generic Fabric Example

ZTP forces considerations of miscabled or unusually cabled fabric

and how such a topology can be forced into a "lattice" structure

which a fabric represents (with further restrictions). A necessary

and sufficient physical cabling is shown in Figure 27. The

assumption here is that all nodes are in the same PoD.
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Figure 27: Generic ZTP Cabling Considerations

First, RIFT must anchor the "top" of the cabling and that's what the

TOP_OF_FABRIC flag at node A is for. Then things look smooth until

the protocol has to decide whether node Y is at the same level as I,

J (and as consequence, X is south of it) or at the same level as X.

This is unresolvable here until we "nail down the bottom" of the

topology. To achieve that the protocol chooses to use in this

example the leaf flags in X and Y. In case where Y would not have a

leaf flag it will try to elect highest level offered and end up

being in same level as I and J.

4.2.7.4. Level Determination Procedure

A node starting up with UNDEFINED_VALUE (i.e. without a

CONFIGURED_LEVEL or any leaf or TOP_OF_FABRIC flag) MUST follow

those additional procedures:

It advertises its LEVEL_VALUE on all LIEs (observe that this

can be UNDEFINED_LEVEL which in terms of the schema is simply

an omitted optional value).
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It computes HAL as numerically highest available level in all

VOLs.

It chooses then MAX(HAL-1,0) as its DERIVED_LEVEL. The node

then starts to advertise this derived level.

A node that lost all adjacencies with HAL value MUST hold down

computation of new DERIVED_LEVEL for a short period of time

unless it has no VOLs from southbound adjacencies. After the

holddown timer expired, it MUST discard all received offers,

recompute DERIVED_LEVEL and announce it to all neighbors.

A node MUST reset any adjacency that has changed the level it

is offering and is in ThreeWay state.

A node that changed its defined level value MUST readvertise

its own TIEs (since the new `PacketHeader` will contain a

different level than before). Sequence number of each TIE MUST

be increased.

After a level has been derived the node MUST set the

`not_a_ztp_offer` on LIEs towards all systems offering a VOL

for HAL.

A node that changed its level SHOULD flush from its link state

database TIEs of all other nodes, otherwise stale information

may persist on "direction reversal", i.e. nodes that seemed

south are now north or east-west. This will not prevent the

correct operation of the protocol but could be slightly

confusing operationally.

A node starting with LEVEL_VALUE being 0 (i.e. it assumes a leaf

function by being configured with the appropriate flags or has a

CONFIGURED_LEVEL of 0) MUST follow those additional procedures:

It computes HAT per procedures above but does *not* use it to

compute DERIVED_LEVEL. HAT is used to limit adjacency formation

per Section 4.2.2.

It MAY also follow modified procedures:

It may pick a different strategy to choose VOL, e.g. use the

VOL value with highest number of VOLs. Such strategies are only

possible since the node always remains "at the bottom of the

fabric" while another layer could "invert" the fabric by

picking its preferred VOL in a different fashion than always

trying to achieve the highest viable level.
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4.2.7.5. ZTP FSM

This section specifies the precise, normative ZTP FSM and can be

omitted unless the reader is pursuing an implementation of the

protocol. For additional clarity a graphical representation of the

ZTP FSM is depicted in Figure 28.

Initial state is ComputeBestOffer.

ComputeBestOffer

|ChangeLocalHierarchyIndications|
|ChangeLocalConfiguredLevel|

|NeighborOffer|
|BetterHAL|
|BetterHAT|
|LostHAT|
|ShortTic|

UpdatingClients

|ComputationDone|

HoldingDown

|LostHAL|

Enter

|ChangeLocalHierarchyIndications|
|ChangeLocalConfiguredLevel|

|BetterHAL|
|BetterHAT|
|LostHAT|

|NeighborOffer|
|ShortTic|

|LostHAL|

Enter

|ChangeLocalHierarchyIndications|
|ChangeLocalConfiguredLevel|

|HoldDownExpired|

|NeighborOffer|
|BetterHAL|
|BetterHAT|
|LostHAL|
|LostHAT|

|ComputationDone|
|ShortTic|

Figure 28: ZTP FSM

The following words are used for well known procedures:

PUSH Event: queues an event to be executed by the FSM upon exit

of this action

COMPARE_OFFERS: checks whether based on current offers and held

last results the events BetterHAL/LostHAL/BetterHAT/LostHAT are

necessary and returns them

UPDATE_OFFER: store current offer with adjancency holdtime as

lifetime and COMPARE_OFFERS, then PUSH corresponding events

LEVEL_COMPUTE: compute best offered or configured level and HAL/

HAT, if anything changed PUSH ComputationDone

REMOVE_OFFER: remove the corresponding offer and COMPARE_OFFERS,

PUSH corresponding events

PURGE_OFFERS: REMOVE_OFFER for all held offers, COMPARE OFFERS,

PUSH corresponding events

PROCESS_OFFER:

if no level offered then REMOVE_OFFER

else

if offered level > leaf then UPDATE_OFFER
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else REMOVE_OFFER

States:

ComputeBestOffer: processes received offers to derive ZTP

variables

HoldingDown: holding down while receiving updates

UpdatingClients: updates other FSMs with computation results

Events:

ChangeLocalHierarchyIndications: node locally configured with new

leaf flags.

ChangeLocalConfiguredLevel: node locally configured with a

defined level

NeighborOffer: a new neighbor offer with optional level and

neighbor state.

BetterHAL: better HAL computed internally.

BetterHAT: better HAT computed internally.

LostHAL: lost last HAL in computation.

LostHAT: lost HAT in computation.

ComputationDone: computation performed.

HoldDownExpired: holddown timer expired.

ShortTic: one second timer tick, i.e. the event is provided to

the FSM once a second by an implementation-specific mechanism

that is outisde the scope of this specification. This event is

quietly ignored if transition does not exist.

Actions:

on ChangeLocalConfiguredLevel in HoldingDown finishes in

ComputeBestOffer: store configured level

on BetterHAT in HoldingDown finishes in HoldingDown: no action

on ShortTic in HoldingDown finishes in HoldingDown: remove

expired offers and if holddown timer expired PUSH_EVENT

HoldDownExpired
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on NeighborOffer in HoldingDown finishes in HoldingDown:

PROCESS_OFFER

on ComputationDone in HoldingDown finishes in HoldingDown: no

action

on BetterHAL in HoldingDown finishes in HoldingDown: no action

on LostHAT in HoldingDown finishes in HoldingDown: no action

on LostHAL in HoldingDown finishes in HoldingDown: no action

on HoldDownExpired in HoldingDown finishes in ComputeBestOffer:

PURGE_OFFERS

on ChangeLocalHierarchyIndications in HoldingDown finishes in

ComputeBestOffer: store leaf flags

on LostHAT in ComputeBestOffer finishes in ComputeBestOffer:

LEVEL_COMPUTE

on NeighborOffer in ComputeBestOffer finishes in

ComputeBestOffer: PROCESS_OFFER

on BetterHAT in ComputeBestOffer finishes in ComputeBestOffer:

LEVEL_COMPUTE

on ChangeLocalHierarchyIndications in ComputeBestOffer finishes

in ComputeBestOffer: store leaf flags and LEVEL_COMPUTE

on LostHAL in ComputeBestOffer finishes in HoldingDown: if any

southbound adjacencies present then update holddown timer to

normal duration else fire holddown timer immediately

on ShortTic in ComputeBestOffer finishes in ComputeBestOffer:

remove expired offers

on ComputationDone in ComputeBestOffer finishes in

UpdatingClients: no action

on ChangeLocalConfiguredLevel in ComputeBestOffer finishes in

ComputeBestOffer: store configured level and LEVEL_COMPUTE

on BetterHAL in ComputeBestOffer finishes in ComputeBestOffer:

LEVEL_COMPUTE

on ShortTic in UpdatingClients finishes in UpdatingClients:

remove expired offers
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on LostHAL in UpdatingClients finishes in HoldingDown: if any

southbound adjacencies present then update holddown timer to

normal duration else fire holddown timer immediately

on BetterHAT in UpdatingClients finishes in ComputeBestOffer: no

action

on BetterHAL in UpdatingClients finishes in ComputeBestOffer: no

action

on ChangeLocalConfiguredLevel in UpdatingClients finishes in

ComputeBestOffer: store configured level

on ChangeLocalHierarchyIndications in UpdatingClients finishes in

ComputeBestOffer: store leaf flags

on NeighborOffer in UpdatingClients finishes in UpdatingClients:

PROCESS_OFFER

on LostHAT in UpdatingClients finishes in ComputeBestOffer: no

action

on Entry into ComputeBestOffer: LEVEL_COMPUTE

on Entry into UpdatingClients: update all LIE FSMs with

computation results

4.2.7.6. Resulting Topologies

The procedures defined in Section 4.2.7.4 will lead to the RIFT

topology and levels depicted in Figure 29.
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Figure 29: Generic ZTP Topology Autoconfigured

In case where the LEAF_ONLY restriction on Y is removed the outcome

would be very different however and result in Figure 30. This

demonstrates basically that auto configuration makes miscabling

detection hard and with that can lead to undesirable effects in

cases where leaves are not "nailed" by the appropriately configured

flags and arbitrarily cabled.

A node MAY analyze the outstanding level offers on its interfaces

and generate warnings when its internal ruleset flags a possible

miscabling. As an example, when a node's receives ZTP level offers

that differ by more than one level from its chosen level (with

proper accounting for leaf's being at level `leaf_level`) this can

indicate miscabling.
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Figure 30: Generic ZTP Topology Autoconfigured

4.3. Further Mechanisms

4.3.1. Route Preferences

Since RIFT distinguishes between different route types such as e.g.

external routes from other protocols and additionally advertises

special types of routes on disaggregation, the protocol MUST tie-

break internally different types on a clear preference scale to

prevent traffic loss or loops. The preferences are given in the

schema type `RouteType`.

Table Table 6 contains the route type as derived from the TIE type

carrying it from the most preferred to the least preferred one.

TIE Type
Resulting Route

Type

None Discard

Local Interface LocalPrefix
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TIE Type
Resulting Route

Type

S-PGP South PGP

N-PGP North PGP

North Prefix NorthPrefix

North External Prefix NorthExternalPrefix

South Prefix and South Positive Disaggregation SouthPrefix

South External Prefix and South Positive

External Disaggregation
SouthExternalPrefix

South Negative Prefix NegativeSouthPrefix

Table 6: TIEs and Contained Route Types

4.3.2. Overload Bit

Overload attribute is specified in the packet encoding schema

(Appendix B).

The overload bit MUST be respected by all necessary SPF

computations. A node with the overload bit set SHOULD advertise all

locally hosted prefixes both northbound and southbound, all other

southbound prefixes SHOULD NOT be advertised.

Leaf nodes SHOULD set the overload attribute on all originated Node

TIEs. If spine nodes were to forward traffic not intended for the

local node, the leaf node would not be able to prevent routing/

forwarding loops as it does not have the necessary topology

information to do so.

4.3.3. Optimized Route Computation on Leaves

Leaf nodes only have visibility to directly connected nodes and

therefore are not required to run "full" SPF computations. Instead,

prefixes from neighboring nodes can be gathered to run a "partial"

SPF computation in order to build the routing table.

Leaf nodes SHOULD only hold their own N-TIEs, and in cases of L2L

implementations, the N-TIEs of their East/West neighbors. Leaf nodes

MUST hold all S-TIEs from their neighbors.

Normally, a full network graph is created based on local N-TIEs and

remote S-TIEs that it receives from neighbors, at which time,

necessary SPF computations are performed. Instead, leaf nodes can

simply compute the minimum cost and next-hop set of each leaf

neighbor by examining its local adjacencies. Associated N-TIEs are

used to determine bi-directionality and derive the next-hop set.

Cost is then derived from the minimum cost of the local adjacency to

the neighbor and the prefix cost.
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timestamp:

sequence counter:

Leaf nodes would then attach necessary prefixes as described in 

Section 4.2.6.

4.3.4. Mobility

The RIFT control plane MUST maintain the real time status of every

prefix, to which port it is attached, and to which leaf node that

port belongs. This is still true in cases of IP mobility where the

point of attachment may change several times a second.

There are two classic approaches to explicitly maintain this

information:

With this method, the infrastructure SHOULD record the precise

time at which the movement is observed. One key advantage of this

technique is that it has no dependency on the mobile device. One

drawback is that the infrastructure MUST be precisely

synchronized in order to be able to compare timestamps as the

points of attachment change. This could be accomplished by

utilizing Precision Time Protocol (PTP) IEEE Std. 1588 

[IEEEstd1588] or 802.1AS [IEEEstd8021AS] which is designed for

bridged LANs. Both the precision of the synchronization protocol

and the resolution of the timestamp must beat the highest

possible roaming time on the fabric. Another drawback is that the

presence of a mobile device may only be observed asynchronously,

such as when it starts using an IP protocol like ARP [RFC0826],

IPv6 Neighbor Discovery [RFC4861], IPv6 Stateless Address

Configuration [RFC4862], DHCP [RFC2131], or DHCPv6 [RFC8415].

With this method, a mobile device notifies its point of

attachment on arrival with a sequence counter that is incremented

upon each movement. On the positive side, this method does not

have a dependency on a precise sense of time, since the sequence

of movements is kept in order by the mobile device. The

disadvantage of this approach is the lack of support for

protocols that may be used by the mobile device to register its

presence to the leaf node with the capability to provide a

sequence counter. Well-known issues with sequence counters such

as wrapping and comparison rules MUST be addressed properly.

Sequence numbers MUST be compared by a single homogenous source

to make operation feasible. Sequence number comparison from

multiple heterogeneous sources would be extremely difficult to

implement.

RIFT supports a hybrid approach by using an optional

'PrefixSequenceType' attribute (that is also called a `monotonic

clock` in the schema) that consists of a timestamp and optional

¶

¶

¶

¶

¶



sequence number field. In case of a negatively distributed prefix

this attribute MUST NOT be included by the originator and it MUST be

ignored by all nodes during computation. When this attribute is

present (observe that per data schema the attribute itself is

optional but in case it is included the 'timestamp' field is

required):

The leaf node MAY advertise a timestamp of the latest sighting of

a prefix, e.g., by snooping IP protocols or the node using the

time at which it advertised the prefix. RIFT transports the

timestamp within the desired prefix North TIEs as 802.1AS

timestamp.

RIFT MAY interoperate with "Registration Extensions for 6LoWPAN

Neighbor Discovery" [RFC8505], which provides a method for

registering a prefix with a sequence number called a Transaction

ID (TID). In such cases, RIFT SHOULD transport the derived TID

without modification.

RIFT also defines an abstract negative clock (ASNC) (also called

an 'undefined' clock). ASNC MUST be considered older than any

other defined clock. By default, when a node receives a prefix

North TIE that does not contain a 'PrefixSequenceType' attribute,

it MUST interpret the absence as ASNC.

Any prefix present on the fabric in multiple nodes that has the

`same` clock is considered as anycast.

RIFT specification assumes that all nodes are being synchronized

to at least 200 milliseconds of precision. This is achievable

through the use of NTP [RFC5905]. An implementation MAY provide a

way to reconfigure a domain to a different value, and provides

for this purpose a variable called MAXIMUM_CLOCK_DELTA.

4.3.4.1. Clock Comparison

All monotonic clock values MUST be compared to each other using the

following rules:

ASNC is older than any other value except ASNC *and*

Clock with timestamp differing by more than MAXIMUM_CLOCK_DELTA

are comparable by using the timestamps only *and*

Clocks with timestamps differing by less than

MAXIMUM_CLOCK_DELTA are comparable by using their TIDs only

*and*

An undefined TID is always older than any other TID *and*
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TIDs are compared using rules of [RFC8505].

4.3.4.2. Interaction between Time Stamps and Sequence Counters

For attachment changes that occur less frequently (e.g. once per

second), the timestamp that the RIFT infrastructure captures should

be enough to determine the most current discovery. If the point of

attachment changes faster than the maximum drift of the time

stamping mechanism (i.e. MAXIMUM_CLOCK_DELTA), then a sequence

number SHOULD be used to enable necessary precision to determine

currency.

The sequence counter in [RFC8505] is encoded as one octet and wraps

around using Appendix A.

Within the resolution of MAXIMUM_CLOCK_DELTA, sequence counter

values captured during 2 sequential iterations of the same timestamp

SHOULD be comparable. This means that with default values, a node

may move up to 127 times in a 200 millisecond period and the clocks

will remain comparable. This allows the RIFT infrastructure to

explicitly assert the most up-to-date advertisement.

4.3.4.3. Anycast vs. Unicast

A unicast prefix can be attached to at most one leaf, whereas an

anycast prefix may be reachable via more than one leaf.

If a monotonic clock attribute is provided on the prefix, then the

prefix with the `newest` clock value is strictly preferred. An

anycast prefix does not carry a clock or all clock attributes MUST

be the same under the rules of Section 4.3.4.1.

Observe that it is important that in mobility events the leaf is re-

flooding as quickly as possible the absence of the prefix that moved

away.

Observe further that without support for [RFC8505] movements on the

fabric within intervals smaller than 100msec will be interpreted as

anycast.

4.3.4.4. Overlays and Signaling

RIFT is agnostic to any overlay technologies and their associated

control and transports that run on top of it (e.g. VXLAN). It is

expected that leaf nodes and possibly Top-of-Fabric nodes can

perform necessary data plane encapsulation.

In the context of mobility, overlays provide another possible

solution to avoid injecting mobile prefixes into the fabric as well

as improving scalability of the deployment. It makes sense to
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consider overlays for mobility solutions in IP fabrics. As an

example, a mobility protocol such as LISP [RFC6830] may inform the

ingress leaf of the location of the egress leaf in real time.

Another possibility is to consider that mobility as an underlay

service and support it in RIFT to an extent. The load on the fabric

augments with the amount of mobility obviously since a move forces

flooding and computation on all nodes in the scope of the move so

tunneling from leaf to the Top-of-Fabric may be desired to speed up

convergence times.

4.3.5. Key/Value Store

4.3.5.1. Southbound

RIFT supports the southbound distribution of key-value pairs that

can be used to distribute information to facilitate higher levels of

functionality (e.g. distribution of configuration information). KV

South TIEs may arrive from multiple nodes and therefore MUST execute

the following tie-breaking rules for each key:

Only KV TIEs received from nodes to which a bi-directional

adjacency exists MUST be considered.

For each valid KV South TIEs that contains the same key, the

value within the South TIE with the highest level will be

preferred. If the levels are identical, the highest originating

system ID will be preferred. In the case of overlapping keys in

the winning South TIE, the behavior is undefined.

Consider that if a node goes down, nodes south of it will lose

associated adjacencies causing them to disregard corresponding KVs.

New KV South TIEs are advertised to prevent stale information being

used by nodes that are farther south. KV advertisements southbound

are not a result of independent computation by every node over the

same set of South TIEs, but a diffused computation.

4.3.5.2. Northbound

Certain use cases necessitate distribution of essential KV

information that is generated by the leaves in the northbound

direction. Such information is flooded in KV North TIEs. Since the

originator of the KV North TIEs is preserved during flooding, the

corresponding mechanism will define, if necessary, tie-breaking

rules depending on the semantics of the information.

Only KV TIEs from nodes that are reachable via multiplane

reachability computation mentioned in Section 4.2.5.2.3 SHOULD be

considered.
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4.3.6. Interactions with BFD

RIFT MAY incorporate BFD [RFC5881] to react quickly to link

failures. In such case following procedures are introduced:

After RIFT ThreeWay hello adjacency convergence a BFD session MAY

be formed automatically between the RIFT endpoints without

further configuration using the exchanged discriminators. The

capability of the remote side to support BFD is carried in the

LIEs in `LinkCapabilities`.

In case established BFD session goes Down after it was Up, RIFT

adjacency SHOULD be re-initialized and subsequently started from

Init after it receives a consecutive BFD Up.

In case of parallel links between nodes each link MAY run its own

independent BFD session or they MAY share a session.

If link identifiers or BFD capabilities change, both the LIE and

any BFD sessions SHOULD be brought down and back up again. In

case only the advertised capabilities change, the node MAY choose

to persist the BFD session.

Multiple RIFT instances MAY choose to share a single BFD session,

in such cases the behavior for which discriminators are used is

undefined. However, RIFT MAY advertise the same link ID for the

same interface in multiple instances to "share" discriminators.

BFD TTL follows [RFC5082].

4.3.7. Fabric Bandwidth Balancing

A well understood problem in fabrics is that in case of link

failures, it would be ideal to rebalance how much traffic is sent to

switches in the next level based on available ingress and egress

bandwidth.

RIFT supports a very light weight mechanism that can deal with the

problem in an approximate way based on the fact that RIFT is loop-

free.

4.3.7.1. Northbound Direction

Every RIFT node SHOULD compute the amount of northbound bandwidth

available through neighbors at higher level and modify distance

received on default route from this neighbor. The bandwidth is

advertised in `NodeNeighborsTIEElement` element which represents the

sum of the bandwidths of all the parallel links to a neighbor.

Default routes with differing distances SHOULD be used to support

weighted ECMP forwarding. Such a distance is called Bandwidth
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Adjusted Distance or BAD. This is best illustrated by a simple

example.

Figure 31: Balancing Bandwidth

Figure 31 depicts an example topology where links between leaf and

spine nodes are 10 MBit/s and links from spine nodes northbound are

100 MBit/s. It includes parallel link failure between Leaf 111 and

Spine 111 and as a result, Leaf 111 wants to forward more traffic

toward Spine 112. Additionally, it includes as well an uplink

failure on Spine 111.

The local modification of the received default route distance from

upper level is achieved by running a relatively simple algorithm

where the bandwidth is weighted exponentially, while the distance on

the default route represents a multiplier for the bandwidth weight

for easy operational adjustments.

On a node, L, use Node TIEs to compute from each non-overloaded

northbound neighbor N to compute 3 values:

L_N_u: as sum of the bandwidth available to N

N_u: as sum of the uplink bandwidth available on N

T_N_u: as sum of L_N_u * OVERSUBSCRIPTION_CONSTANT + N_u
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For all T_N_u determine the corresponding M_N_u as

log_2(next_power_2(T_N_u)) and determine MAX_M_N_u as maximum value

of all such M_N_u values.

For each advertised default route from a node N modify the

advertised distance D to BAD = D * (1 + MAX_M_N_u - M_N_u) and use

BAD instead of distance D to weight balance default forwarding

towards N.

For the example above, a simple table of values will help in

understanding of the concept. The implicit assumption here is that

all default route distances are advertised with D=1 and that

OVERSUBSCRIPTION_CONSTANT = 1.

Node N T_N_u M_N_u BAD

Leaf111 Spine 111 110 7 2

Leaf111 Spine 112 220 8 1

Leaf112 Spine 111 120 7 2

Leaf112 Spine 112 220 8 1

Table 7: BAD Computation

If a calculation produces a result exceeding the range of the type,

e.g. bandwidth, the result is set to the highest possible value for

that type.

BAD SHOULD be only computed for default routes. A node MAY compute

and use BAD for any disaggregated prefixes or other RIFT routes. A

node MAY use a different algorithm to weight northbound traffic

based on bandwidth. If a different algorithm is used, its successful

behavior MUST NOT depend on uniformity of algorithm or

synchronization of BAD computations across the fabric. E.g. it is

conceivable that leaves could use real time link loads gathered by

analytics to change the amount of traffic assigned to each default

route next hop.

Furthermore, a change in available bandwidth will only affect, at

most, two levels down in the fabric, i.e. the blast radius of

bandwidth adjustments is constrained no matter the fabric's height.

4.3.7.2. Southbound Direction

Due to its loop free nature, during South SPF, a node MAY account

for maximum available bandwidth on nodes in lower levels and modify

the amount of traffic offered to the next level's southbound nodes.

It is worth considering that such computations may be more effective

if standardized, but do not have to be. As long as a packet

continues to flow southbound, it will take some viable, loop-free

path to reach its destination.
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4.3.8. Label Binding

A node MAY advertise in its LIEs, a locally significant, downstream

assigned, interface specific label. One use of such a label is a

hop-by-hop encapsulation allowing forwarding planes to be easily

distinguished among multiple RIFT instances.

4.3.9. Leaf to Leaf Procedures

RIFT implementations SHOULD support special East-West adjacencies

between leaf nodes. Leaf nodes supporting these procedures MUST:

advertise the LEAF_2_LEAF flag in its node capabilities *and*

set the overload bit on all leaf's node TIEs *and*

flood only a node's own north and south TIEs over E-W leaf

adjacencies *and*

always use E-W leaf adjacency in all SPF computations *and*

install a discard route for any advertised aggregate routes in a

leaf?s TIE *and*

never form southbound adjacencies.

This will allow the E-W leaf nodes to exchange traffic strictly for

the prefixes advertised in each other's north prefix TIEs (since the

southbound computation will find the reverse direction in the other

node's TIE and install its north prefixes).

4.3.10. Address Family and Multi Topology Considerations

Multi-Topology (MT)[RFC5120] and Multi-Instance (MI)[RFC8202]

concepts are used today in link-state routing protocols to support

several domains on the same physical topology. RIFT supports this

capability by carrying transport ports in the LIE protocol

exchanges. Multiplexing of LIEs can be achieved by either choosing

varying multicast addresses or ports on the same address.

BFD interactions in Section 4.3.6 are implementation dependent when

multiple RIFT instances run on the same link.

4.3.11. One-Hop Healing of Levels with East-West Links

Based on the rules defined in Section 4.2.4, Section 4.2.3.8 and

given presence of E-W links, RIFT can provide a one-hop protection

for nodes that lost all their northbound links. This can also be

applied to multi-plane designs where complex link set failures occur
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at the Top-of-Fabric when links are exclusively used for flooding

topology information. Section 5.4 outlines this behavior.

4.4. Security

4.4.1. Security Model

An inherent property of any security and ZTP architecture is the

resulting trade-off in regard to integrity verification of the

information distributed through the fabric vs. provisioning and

auto-configuration requirements. At a minimum the security of an

established adjacency should be ensured. The stricter the security

model the more provisioning must take over the role of ZTP.

RIFT supports the following security models to allow for flexible

control by the operator.

The most security conscious operators may choose to have control

over which ports interconnect between a given pair of nodes, such

a model is called the "Port-Association Model" (PAM). This is

achievable by configuring each pair of directly connected ports

with a designated shared key or public/private key pair.

In physically secure data center locations, operators may choose

to control connectivity between entire nodes, called here the

"Node-Association Model" (NAM). A benefit of this model is that

it allows for simplified port sparing.

In the most relaxed environments, an operator may only choose to

control which nodes join a particular fabric. This is denoted as

the "Fabric-Association Model" (FAM). This is achievable by using

a single shared secret across the entire fabric. Such flexibility

makes sense when servers are considered as leaf devices, as those

are replaced more often than network nodes. In addition, this

model allows for simplified node sparing.

These models may be mixed throughout the fabric depending upon

security requirements at various levels of the fabric and

willingness to accept increased provisioning complexity.

In order to support the cases mentioned above, RIFT implementations

supports, through operator control, mechanisms that allow for:

specification of the appropriate level in the fabric,

discovery and reporting of missing connections,

discovery and reporting of unexpected connections while

preventing them from forming insecure adjacencies.
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Operators may only choose to configure the level of each node, but

not explicitly configure which connections are allowed. In this

case, RIFT will only allow adjacencies to establish between nodes

that are in adjacent levels. Operators with the lowest security

requirements may not use any configuration to specify which

connections are allowed. Nodes in such fabrics could rely fully on

ZTP and only established adjacencies between nodes in adjacent

levels. Figure 32 illustrates inherent tradeoffs between the

different security models.

Some level of link quality verification may be required prior to an

adjacency being used for forwarding. For example, an implementation

may require that a BFD session comes up before advertising the

adjacency.

For the cases outlined above, RIFT has two approaches to enforce

that a local port is connected to the correct port on the correct

remote node. One approach is to piggy-back on RIFT's authentication

mechanism. Assuming the provisioning model (e.g. the YANG model) is

flexible enough, operators can choose to provision a unique

authentication key for:

each pair of ports in "port-association model" or

each pair of switches in "node-association model" or

each pair of levels or

the entire fabric in "fabric-association model".

The other approach is to rely on the system-id, port-id and level

fields in the LIE message to validate an adjacency against the

expected cabling topology, and optionally introduce some new rules

in the FSM to allow the adjacency to come up if the expectations are

met.
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Figure 32: Security Model

4.4.2. Security Mechanisms

RIFT Security goals are to ensure:

authentication

message integrity

the prevention of replay attacks

low processing overhead

efficient messaging

Message confidentiality is a non-goal.

The model in the previous section allows a range of security key

types that are analogous to the various security association models.

PAM and NAM allow security associations at the port or node level

using symmetric or asymmetric keys that are pre-installed. FAM

argues for security associations to be applied only at a group level

or to be refined once the topology has been established. RIFT does

not specify how security keys are installed or updated, though it

does specify how the key can be used to achieve security goals.

The protocol has provisions for "weak" nonces to prevent replay

attacks and includes authentication mechanisms comparable to 

[RFC5709] and [RFC7987].
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4.4.3. Security Envelope

A serialized schema `ProtocolPacket` MUST be carried in a secure

envelope illustrated in Figure 33. The `ProtocolPacket` MUST be

serialized using the default Thrift's Binary Protocol. Any value in

the packet following a security fingerprint MUST be used only after

the appropriate fingerprint has been validated against the data

covered by it and advertised key.

Local configuration MAY allow for the envelope's integrity checks to

be skipped.

¶

¶



Figure 33: Security Envelope

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   UDP Header:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |           Source Port         |       RIFT destination port   |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |           UDP Length          |        UDP Checksum           |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Outer Security Envelope Header:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |           RIFT MAGIC          |         Packet Number         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |    Reserved   |  RIFT Major   | Outer Key ID  | Fingerprint   |

   |               |    Version    |               |    Length     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                                                               |

   ~       Security Fingerprint covers all following content       ~

   |                                                               |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   | Weak Nonce Local              | Weak Nonce Remote             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |            Remaining TIE Lifetime (all 1s in case of LIE)     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   TIE Origin Security Envelope Header:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              TIE Origin Key ID                |  Fingerprint  |

   |                                               |    Length     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                                                               |

   ~       Security Fingerprint covers all following content       ~

   |                                                               |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Serialized RIFT Model Object

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                                                               |

   ~                Serialized RIFT Model Object                   ~

   |                                                               |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶



RIFT MAGIC:

Packet Number:

RIFT Major Version:

Outer Key ID:

TIE Origin Key ID:

Length of Fingerprint:

Security Fingerprint:

16 bits. Constant value of 0xA1F7 that allows to classify RIFT

packets easily independent of UDP port used.

16 bits. An optional, per adjacency, per packet type

monotonically increasing number rolling over using sequence

number arithmetic defined in Appendix A. A node SHOULD correctly

set the number on subsequent packets or otherwise MUST set the

value to `undefined_packet_number` as provided in the schema.

This number can be used to detect losses and misordering in

flooding for either operational purposes or in implementation to

adjust flooding behavior to current link or buffer quality. This

number MUST NOT be used to discard or validate the correctness of

packets. Packet numbers are incremented on each interface and

within that for each type of packet independently. This allows to

parallelize packet generation and processing for different types

within an implementation if so desired.

8 bits. It allows to check whether protocol versions are

compatible, i.e. if the serialized object can be decoded at all.

An implementation MUST drop packets with unexpected values and

MAY report a problem.

8 bits to allow key rollovers. This implies key type and

algorithm. Value `invalid_key_value_key` means that no valid

fingerprint was computed. This key ID scope is local to the nodes

on both ends of the adjacency.

24 bits. This implies key type and used algorithm. Value

`invalid_key_value_key` means that no valid fingerprint was

computed. This key ID scope is global to the RIFT instance since

it may imply the originator of the TIE so the contained object

does not have to be de-serialized to obtain the originator.

8 bits. Length in 32-bit multiples of the following fingerprint

(not including lifetime or weak nonces). It allows the structure

to be navigated when an unknown key type is present. To clarify,

a common corner case when this value is set to 0 is when it

signifies an empty (0 bytes long) security fingerprint.

32 bits * Length of Fingerprint. This is a signature that is

computed over all data following after it. If the significant

bits of fingerprint are fewer than the 32 bits padded length than
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Remaining TIE Lifetime:

Weak Nonce Local:

Weak Nonce Remote:

TIE Origin Security Envelope Header:

the significant bits MUST be left aligned and remaining bits on

the right padded with 0s. When using PKI the Security fingerprint

originating node uses its private key to create the signature.

The original packet can then be verified provided the public key

is shared and current.

32 bits. In case of anything but TIEs this field MUST be set to

all ones and Origin Security Envelope Header MUST NOT be present

in the packet. For TIEs this field represents the remaining

lifetime of the TIE and Origin Security Envelope Header MUST be

present in the packet.

16 bits. Local Weak Nonce of the adjacency as advertised in LIEs.

16 bits. Remote Weak Nonce of the adjacency as received in LIEs.

It MUST be present if and only if the Remaining TIE Lifetime

field is *not* all ones. It carries through the originators key

ID and corresponding fingerprint of the object to protect TIE

from modification during flooding. This ensures origin validation

and integrity (but does not provide validation of a chain of

trust).

Observe that due to the schema migration rules per Appendix B the

contained model can be always decoded if the major version matches

and the envelope integrity has been validated. Consequently,

description of the TIE is available to flood it properly including

unknown TIE types.

4.4.4. Weak Nonces

The protocol uses two 16 bit nonces to salt generated signatures.

The term "nonce" is used a bit loosely since RIFT nonces are not

being changed in every packet as often common in cryptography. For

efficiency purposes they are changed at a high enough frequency to

dwarf practical replay attack attempts. And hence, such nonces are

called from this point on "weak" nonces.

Any implementation including RIFT security MUST generate and wrap

around local nonces properly. When a nonce increment leads to

`undefined_nonce` value, the value MUST be incremented again

immediately. All implementation MUST reflect the neighbor's nonces.

An implementation SHOULD increment a chosen nonce on every LIE FSM

transition that ends up in a different state from the previous one

and MUST increment its nonce at least every

`nonce_regeneration_interval` (such considerations allow for
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efficient implementations without opening a significant security

risk). When flooding TIEs, the implementation MUST use recent (i.e.

within allowed difference) nonces reflected in the LIE exchange. The

schema specifies in `maximum_valid_nonce_delta` the maximum

allowable nonce value difference on a packet compared to reflected

nonces in the LIEs. Any packet received with nonces deviating more

than the allowed delta MUST be discarded without further computation

of signatures to prevent computation load attacks. The delta is

either a negative or positive difference that a mirrored nonce can

deviate from local value to be considered valid. If nonces are not

changed on every packet but at the maximum interval on both sides

this opens statistically a `maximum_valid_nonce_delta`/2 window of

identical LIEs, TIE and TI(x)E replays. The interval cannot be too

small since LIE FSM may change states fairly quickly during ZTP

without sending LIEs and additionally, UDP can both loose as well as

misorder packets.

In cases where a secure implementation does not receive signatures

or receives undefined nonces from a neighbor (indicating that it

does not support or verify signatures), it is a matter of local

policy as to how those packets are treated. A secure implementation

MAY refuse forming an adjacency with an implementation that is not

advertising signatures or valid nonces, or it MAY continue signing

local packets while accepting a neighbor's packets without further

security validation.

As a necessary exception, an implementation MUST advertise the

remote nonce value as `undefined_nonce` when the FSM is not in

TwoWay or ThreeWay state and accept an `undefined_nonce` for its

local nonce value on packets in any other state than ThreeWay.

As optional optimization, an implementation MAY send one LIE with

previously negotiated neighbor's nonce to try to speed up a

neighbor's transition from ThreeWay to OneWay and MUST revert to

sending `undefined_nonce` after that.

4.4.5. Lifetime

Protecting flooding lifetime may lead to an excessive number of

security fingerprint computations and to avoid this the application

generating the fingerprints for advertised TIEs MAY round the value

down to the next `rounddown_lifetime_interval`. This will limit the

number of computations performed for security purposes caused by

lifetime attacks as long the weak nonce did not advance.

4.5. Security Association Changes

There in no mechanism to convert a security envelope for the same

key ID from one algorithm to another once the envelope is
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operational. The recommended procedure to change to a new algorithm

is to take the adjacency down, make the necessary changes, and bring

the adjacency back up. Obviously, an implementation MAY choose to

stop verifying security envelope for the duration of algorithm

change to keep the adjacency up but since this introduces a security

vulnerability window, such roll-over SHOULD NOT be recommended.

5. Examples

5.1. Normal Operation

Figure 34: Normal Case Topology

This section describes RIFT deployment in example topology given in 

Figure 34 without any node or link failures. The scenario disregards

flooding reduction for simplicity's sake and compresses the node

names in some cases to fit them into the picture better.

First, the following bi-directional adjacencies will be established:

ToF 21 (PoD 0) to Spine 111, Spine 112, Spine 121, and Spine

122

ToF 22 (PoD 0) to Spine 111, Spine 112, Spine 121, and Spine

122

Spine 111 to Leaf 111, Leaf 112

Spine 112 to Leaf 111, Leaf 112

Spine 121 to Leaf 121, Leaf 122

Spine 122 to Leaf 121, Leaf 122

Leaf 111 and Leaf 112 originate N-TIEs for Prefix 111 and Prefix 112

(respectively) to both Spine 111 and Spine 112 (Leaf 112 also

originates an N-TIE for the multi-homed prefix). Spine 111 and Spine

112 will then originate their own N-TIEs, as well as flood the N-

TIEs received from Leaf 111 and Leaf 112 to both ToF 21 and ToF 22.
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Similarly, Leaf 121 and Leaf 122 originate North TIEs for Prefix 121

and Prefix 122 (respectively) to Spine 121 and Spine 122 (Leaf 121

also originates an North TIE for the multi-homed prefix). Spine 121

and Spine 122 will then originate their own North TIEs, as well as

flood the North TIEs received from Leaf 121 and Leaf 122 to both ToF

21 and ToF 22.

Spines hold only North TIEs of level 0 for their PoD, while leaves

only hold their own North TIEs while at this point, both ToF 21 and

ToF 22 (as well as any northbound connected controllers) would have

the complete network topology.

ToF 21 and ToF 22 would then originate and flood South TIEs

containing any established adjacencies and a default IP route to all

spines. Spine 111, Spine 112, Spine 121, and Spine 122 will reflect

all Node South TIEs received from ToF 21 to ToF 22, and all Node

South TIEs from ToF 22 to ToF 21. South TIEs will not be re-

propagated southbound.

South TIEs containing a default IP route are then originated by both

Spine 111 and Spine 112 toward Leaf 111 and Leaf 112. Similarly,

South TIEs containing a default IP route are originated by Spine 121

and Spine 122 toward Leaf 121 and Leaf 122.

At this point IP connectivity across maximum number of viable paths

has been established for all leaves, with routing information

constrained to only the minimum amount that allows for normal

operation and redundancy.

5.2. Leaf Link Failure
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Figure 35: Single Leaf Link Failure

In the event of a link failure between Spine 112 and Leaf 112, both

nodes will originate new Node TIEs that contain their connected

adjacencies, except for the one that just failed. Leaf 112 will send

a Node North TIE to Spine 111. Spine 112 will send a Node North TIE

to ToF 21 and ToF 22 as well as a new Node South TIE to Leaf 111

that will be reflected to Spine 111. Necessary SPF recomputation

will occur, resulting in Spine 112 no longer being in the forwarding

path for Prefix 112.

Spine 111 will also disaggregate Prefix 112 by sending new Prefix

South TIE to Leaf 111 and Leaf 112. Though disaggregation is covered

in more detail in the following section, it is worth mentioning in

this example as it further illustrates RIFT's mechanism to mitigate

traffic loss. Consider that Leaf 111 has yet to receive the more

specific (disaggregated) route from Spine 111. In such a scenario,

traffic from Leaf 111 toward Prefix 112 may still use Spine 112's

default route, causing it to traverse ToF 21 and ToF 22 back down

via Spine 111. While this behavior is suboptimal, it is transient in

nature and preferred to dropping traffic.

5.3. Partitioned Fabric
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Figure 36: Fabric Partition

Figure 36 shows one of more catastrophic scenarios where ToF 21 is

completely severed from access to Prefix 121 due to a double link

failure. If only default routes existed, this would result in 50% of

traffic from Leaf 111 and Leaf 112 toward Prefix 121 being dropped.

The mechanism to resolve this scenario hinges on ToF 21's South TIEs

being reflected from Spine 111 and Spine 112 to ToF 22. Once ToF 22

is informed that Prefix 121 cannot be reached from ToF 21, it will

begin to disaggregate Prefix 121 by advertising a more specific

route (1.1/16) along with the default IP prefix route to all spines

(ToF 21 still only sends a default route). The result is Spine 111

and Spine112 using the more specific route to Prefix 121 via ToF 22.

All other prefixes continue to use the default IP prefix route

toward both ToF 21 and ToF 22.

The more specific route for Prefix 121 being advertised by ToF 22

does not need to be propagated further south to the leaves, as they

do not benefit from this information. Spine 111 and Spine 112 are

only required to reflect the new South Node TIEs received from ToF

22 to ToF 21. In short, only the relevant nodes received the

relevant updates, thereby restricting the failure to only the

partitioned level rather than burdening the whole fabric with the

flooding and recomputation of the new topology information.

To finish this example, the following table shows sets computed by

ToF 22 using notation introduced in Section 4.2.5:

|R = Prefix 111, Prefix 112, Prefix 121, Prefix 122

|H (for r=Prefix 111) = Spine 111, Spine 112

|H (for r=Prefix 112) = Spine 111, Spine 112

|H (for r=Prefix 121) = Spine 121, Spine 122

|H (for r=Prefix 122) = Spine 121, Spine 122

|A (for ToF 21) = Spine 111, Spine 112
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With that and |H (for r=Prefix 121) and |H (for r=Prefix 122) being

disjoint from |A (for ToF 21), ToF 22 will originate an South TIE

with Prefix 121 and Prefix 122, which will be flooded to all spines.

5.4. Northbound Partitioned Router and Optional East-West Links

Figure 37: North Partitioned Router

Figure 37 shows a part of a fabric where level 1 is horizontally

connected and A01 lost its only northbound adjacency. Based on N-SPF

rules in Section 4.2.4.1 A01 will compute northbound reachability by

using the link A01 to A02. A02 however, will *not* use this link

during N-SPF. The result is A01 utilizing the horizontal link for

default route advertisement and unidirectional routing.

Furthermore, if A02 also loses its only northbound adjacency (N2),

the situation evolves. A01 will no longer have northbound

reachability while it receives A03's northbound adjacencies in South

Node TIEs reflected by nodes south of it. As a result, A01 will no

longer advertise its default route in accordance with Section

4.2.3.8.

6. Further Details on Implementation

6.1. Considerations for Leaf-Only Implementation

RIFT can and is intended to be stretched to the lowest level in the

IP fabric to integrate ToRs or even servers. Since those entities

would run as leaves only, it is worth to observe that a leaf only
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version is significantly simpler to implement and requires much less

resources:

Leaf nodes only need to maintain a multipath default route

under normal circumstances. However, in cases of catastrophic

partitioning, leaf nodes SHOULD be capable of accommodating all

the leaf routes in its own PoD to prevent traffic loss.

Leaf nodes hold only their own North TIEs and South TIEs of

Level 1 nodes they are connected to.

Leaf nodes do not have to support any type of disaggregation

computation or propagation.

Leaf nodes are not required to support overload bit.

Leaf nodes do not need to originate S-TIEs unless optional

leaf-2-leaf features are desired.

6.2. Considerations for Spine Implementation

Nodes that do not act as ToF are not required to discover fallen

leaves by comparing reachable destinations with peers and therefore

do not need to run the computation of disaggregated routes based on

that discovery. On the other hand, non-ToF nodes need to respect

disaggregated routes advertised from the north. In the case of

negative disaggregation, spines nodes need to generate southbound

disaggregated routes when all parents are lost for a fallen leaf.

7. Security Considerations

7.1. General

One can consider attack vectors where a router may reboot many times

while changing its system ID and pollute the network with many stale

TIEs or TIEs are sent with very long lifetimes and not cleaned up

when the routes vanish. Those attack vectors are not unique to RIFT.

Given large memory footprints available today those attacks should

be relatively benign. Otherwise a node SHOULD implement a strategy

of discarding contents of all TIEs that were not present in the SPF

tree over a certain, configurable period of time. Since the

protocol, like all modern link-state protocols, is self-stabilizing

and will advertise the presence of such TIEs to its neighbors, they

can be re-requested again if a computation finds that it has an

adjacency formed towards the system ID of the discarded TIEs.

7.2. Malformed Packets

The protocol protects packets extensively through optional

signatures and nonces so if the possibility of maliciously injected
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malformed or replayed packets exist in a deployment, this

conclusively protects against such attacks.

Even with security envelope, since RIFT relies on Thrift encoders

and decoders generated automatically from IDL it is conceivable that

errors in such encoders/decoders could be discovered and lead to

delivery of corrupted packets or reception of packets that cannot be

decoded. Misformatted packets lead normally to decoder returning an

error condition to the caller and with that the packet is basically

unparsable with no other choice but to discard it. Should the

unlikely scenario occur of the decoder being forced to abort the

protocol this is neither better nor worse than today's behavior of

other protocols.

7.3. ZTP

Section 4.2.7 presents many attack vectors in untrusted

environments, starting with nodes that oscillate their level offers

to the possibility of nodes offering a ThreeWay adjacency with the

highest possible level value and a very long holdtime trying to put

itself "on top of the lattice" thereby allowing it to gain access to

the whole southbound topology. Session authentication mechanisms are

necessary in environments where this is possible and RIFT provides

the security envelope to ensure this if so desired.

7.4. Lifetime

Traditional IGP protocols are vulnerable to lifetime modification

and replay attacks that can be somewhat mitigated by using

techniques like [RFC7987]. RIFT removes this attack vector by

protecting the lifetime behind a signature computed over it and

additional nonce combination which makes even the replay attack

window very small and for practical purposes irrelevant since

lifetime cannot be artificially shortened by the attacker.

7.5. Packet Number

Optional packet number is carried in the security envelope without

any encryption protection and is hence vulnerable to replay and

modification attacks. Contrary to nonces this number must change on

every packet and would present a very high cryptographic load if

signed. The attack vector packet number present is relatively

benign. Changing the packet number by a man-in-the-middle attack

will only affect operational validation tools and possibly some

performance optimizations on flooding. It is expected that an

implementation detecting too many "fake losses" or "misorderings"

due to the attack on the packet number would simply suppress its

further processing.
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7.6. Outer Fingerprint Attacks

A node can try to inject LIE packets observing a conversation on the

wire by using the outer key ID albeit it cannot generate valid

hashes in case it changes the integrity of the message so the only

possible attack is DoS due to excessive LIE validation.

A node can try to replay previous LIEs with changed state that it

recorded but the attack is hard to replicate since the nonce

combination must match the ongoing exchange and is then limited to a

single flap only since both nodes will advance their nonces in case

the adjacency state changed. Even in the most unlikely case the

attack length is limited due to both sides periodically increasing

their nonces.

7.7. TIE Origin Fingerprint DoS Attacks

A compromised node can attempt to generate "fake TIEs" using other

nodes' TIE origin key identifiers. Albeit the ultimate validation of

the origin fingerprint will fail in such scenarios and not progress

further than immediately peering nodes, the resulting denial of

service attack seems unavoidable since the TIE origin key id is only

protected by the, here assumed to be compromised, node.

7.8. Host Implementations

It can be reasonably expected that with the proliferation of RotH

servers, rather than dedicated networking devices, will represent a

significant amount of RIFT devices. Given their normally far wider

software envelope and access granted to them, such servers are also

far more likely to be compromised and present an attack vector on

the protocol. Hijacking of prefixes to attract traffic is a trust

problem and cannot be easily addressed within the protocol if the

trust model is breached, i.e. the server presents valid credentials

to form an adjacency and issue TIEs. In an even more devious way,

the servers can present DoS (or even DDos) vectors of issuing too

many LIE packets, flood large amounts of North TIEs and attempt

similar resource overrun attacks. A prudent implementation forming

adjacencies to leaves should implement thresholds mechanisms and

raise warnings when e.g. a leaf is advertising an excess number of

TIEs or prefixes. Additionally, such implementation could refuse any

topology information except the node's own TIEs and authenticated,

reflected South Node TIEs at own level.

To isolate possible attack vectors on the leaf to the largest

possible extent a dedicated leaf-only implementation could run

without any configuration by hard-coding a well-known adjacency key

(which can be always rolled-over by the means of e.g. well-known

key-value distributed from top of the fabric), leaf level value and
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always setting overload bit. All other values can be derived by

automatic means as described earlier in the protocol specification.

8. IANA Considerations

This specification requests multicast address assignments and

standard port numbers. Additionally registries for the schema are

requested and suggested values provided that reflect the numbers

allocated in the given schema.

8.1. Requested Multicast and Port Numbers

This document requests allocation in the 'IPv4 Multicast Address

Space' registry the suggested value of 224.0.0.120 as

'ALL_V4_RIFT_ROUTERS' and in the 'IPv6 Multicast Address Space'

registry the suggested value of FF02::A1F7 as 'ALL_V6_RIFT_ROUTERS'.

This document requests allocation in the 'Service Name and Transport

Protocol Port Number Registry' the allocation of a suggested value

of 914 on udp for 'RIFT_LIES_PORT' and suggested value of 915 for

'RIFT_TIES_PORT'.

8.2. Requested Registries with Suggested Values

This section requests registries that help govern the schema via

usual IANA registry procedures. A top-level category named 'RIFT'

should hold the corresponding registries requested in the following

sections with their pre-defined values. IANA is requested to store

the schema version introducing the allocated value as well as,

optionally, its description when present. This will allow to assign

different values to an entry depending on schema version.

Alternately, IANA is requested to consider a root RIFT/6 registry to

store RIFT schema major version 6 values and may be requested in the

future to create a RIFT/7 registry under that. In any case, IANA is

requested to store the schema version in the entries since that will

allow to distinguish between minor versions in the same major schema

version. All values not suggested as to be considered `Unassigned`.

The range of every registry is a 16-bit integer. Allocation of new

values is always performed via `Expert Review` action.

8.2.1. Registry RIFT_v6/common/AddressFamilyType"

Address family type.

8.2.1.1. Requested Entries

Name Value Schema Version Description

Illegal 0 6.1

AddressFamilyMinValue 1 6.1

IPv4 2 6.1
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Name Value Schema Version Description

IPv6 3 6.1

AddressFamilyMaxValue 4 6.1

Table 8

8.2.2. Registry RIFT_v6/common/HierarchyIndications"

Flags indicating node configuration in case of ZTP.

8.2.2.1. Requested Entries

Name Value
Schema

Version
Description

leaf_only 0 6.1

leaf_only_and_leaf_2_leaf_procedures 1 6.1

top_of_fabric 2 6.1

Table 9

8.2.3. Registry RIFT_v6/common/IEEE802_1ASTimeStampType"

Timestamp per IEEE 802.1AS, all values MUST be interpreted in

implementation as unsigned.

8.2.3.1. Requested Entries

Name Value Schema Version Description

AS_sec 1 6.1

AS_nsec 2 6.1

Table 10

8.2.4. Registry RIFT_v6/common/IPAddressType"

IP address type.

8.2.4.1. Requested Entries

Name Value Schema Version Description

ipv4address 1 6.1 Content is IPv4

ipv6address 2 6.1 Content is IPv6

Table 11

8.2.5. Registry RIFT_v6/common/IPPrefixType"

Prefix advertisement.

@note: for interface addresses the protocol can propagate the

address part beyond the subnet mask and on reachability computation

that has to be normalized. The non-significant bits can be used for

operational purposes.
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8.2.5.1. Requested Entries

Name Value Schema Version Description

ipv4prefix 1 6.1

ipv6prefix 2 6.1

Table 12

8.2.6. Registry RIFT_v6/common/IPv4PrefixType"

IPv4 prefix type.

8.2.6.1. Requested Entries

Name Value Schema Version Description

address 1 6.1

prefixlen 2 6.1

Table 13

8.2.7. Registry RIFT_v6/common/IPv6PrefixType"

IPv6 prefix type.

8.2.7.1. Requested Entries

Name Value Schema Version Description

address 1 6.1

prefixlen 2 6.1

Table 14

8.2.8. Registry RIFT_v6/common/KVTypes"

8.2.8.1. Requested Entries

Name Value Schema Version Description

Experimental 1 6.1

WellKnown 2 6.1

OUI 3 6.1

Table 15

8.2.9. Registry RIFT_v6/common/PrefixSequenceType"

Sequence of a prefix in case of move.

8.2.9.1. Requested Entries

Name Value
Schema

Version
Description

timestamp 1 6.1

transactionid 2 6.1
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Name Value
Schema

Version
Description

Transaction ID set by client in

e.g. in 6LoWPAN.

Table 16

8.2.10. Registry RIFT_v6/common/RouteType"

RIFT route types. @note: The only purpose of those values is to

introduce an ordering whereas an implementation can choose

internally any other values as long the ordering is preserved

8.2.10.1. Requested Entries

Name Value Schema Version Description

Illegal 0 6.1

RouteTypeMinValue 1 6.1

Discard 2 6.1

LocalPrefix 3 6.1

SouthPGPPrefix 4 6.1

NorthPGPPrefix 5 6.1

NorthPrefix 6 6.1

NorthExternalPrefix 7 6.1

SouthPrefix 8 6.1

SouthExternalPrefix 9 6.1

NegativeSouthPrefix 10 6.1

RouteTypeMaxValue 11 6.1

Table 17

8.2.11. Registry RIFT_v6/common/TIETypeType"

Type of TIE.

8.2.11.1. Requested Entries

Name Value
Schema

Version
Description

Illegal 0 6.1

TIETypeMinValue 1 6.1

NodeTIEType 2 6.1

PrefixTIEType 3 6.1

PositiveDisaggregationPrefixTIEType 4 6.1

NegativeDisaggregationPrefixTIEType 5 6.1

PGPrefixTIEType 6 6.1

KeyValueTIEType 7 6.1

ExternalPrefixTIEType 8 6.1

PositiveExternalDisaggregationPrefixTIEType 9 6.1

TIETypeMaxValue 10 6.1
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Table 18

8.2.12. Registry RIFT_v6/common/TieDirectionType"

Direction of TIEs.

8.2.12.1. Requested Entries

Name Value Schema Version Description

Illegal 0 6.1

South 1 6.1

North 2 6.1

DirectionMaxValue 3 6.1

Table 19

8.2.13. Registry RIFT_v6/encoding/Community"

Prefix community.

8.2.13.1. Requested Entries

Name Value Schema Version Description

top 1 6.1 Higher order bits

bottom 2 6.1 Lower order bits

Table 20

8.2.14. Registry RIFT_v6/encoding/KeyValueTIEElement"

Generic key value pairs.

8.2.14.1. Requested Entries

Name Value Schema Version Description

keyvalues 1 6.1

Table 21

8.2.15. Registry RIFT_v6/encoding/LIEPacket"

RIFT LIE Packet.

@note: this node's level is already included on the packet header

8.2.15.1. Requested Entries

Name Value
Schema

Version
Description

name 1 6.1
Node or adjacency

name.

local_id 2 6.1 Local link ID.
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Name Value
Schema

Version
Description

flood_port 3 6.1

UDP port to which we

can receive flooded

TIEs.

link_mtu_size 4 6.1
Layer 3 MTU, used to

discover mismatch.

link_bandwidth 5 6.1
Local link bandwidth

on the interface.

neighbor 6 6.1

Reflects the

neighbor once

received to provide

3-way connectivity.

pod 7 6.1 Node's PoD.

node_capabilities 10 6.1
Node capabilities

supported.

link_capabilities 11 6.1
Capabilities of this

link.

holdtime 12 6.1

Required holdtime of

the adjacency, i.e.

for how long a

period should

adjacency be kept up

without valid LIE

reception.

label 13 6.1

Optional,

unsolicited,

downstream assigned

locally significant

label value for the

adjacency.

not_a_ztp_offer 21 6.1

Indicates that the

level on the LIE

must not be used to

derive a ZTP level

by the receiving

node.

you_are_flood_repeater 22 6.1

Indicates to

northbound neighbor

that it should be

reflooding TIEs

received from this

node to achieve

flood reduction and

balancing for

northbound flooding.

you_are_sending_too_quickly 23 6.1
Indicates to

neighbor to flood



Name Value
Schema

Version
Description

node TIEs only and

slow down all other

TIEs. Ignored when

received from

southbound neighbor.

instance_name 24 6.1

Instance name in

case multiple RIFT

instances running on

same interface.

Table 22

8.2.16. Registry RIFT_v6/encoding/LinkCapabilities"

Link capabilities.

8.2.16.1. Requested Entries

Name Value
Schema

Version
Description

bfd 1 6.1
Indicates that the link

is supporting BFD.

ipv4_forwarding_capable 2 6.1

Indicates whether the

interface will support

IPv4 forwarding.

Table 23

8.2.17. Registry RIFT_v6/encoding/LinkIDPair"

LinkID pair describes one of parallel links between two nodes.

8.2.17.1. Requested Entries

Name Value
Schema

Version
Description

local_id 1 6.1

Node-wide unique

value for the local

link.

remote_id 2 6.1
Received remote link

ID for this link.

platform_interface_index 10 6.1

Describes the local

interface index of

the link.

platform_interface_name 11 6.1
Describes the local

interface name.

trusted_outer_security_key 12 6.1

Indicates whether the

link is secured, i.e.

protected by outer
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Name Value
Schema

Version
Description

key, absence of this

element means no

indication, undefined

outer key means not

secured.

bfd_up 13 6.1

Indicates whether the

link is protected by

established BFD

session.

address_families 14 6.1

Optional indication

which address

families are up on

the interface

Table 24

8.2.18. Registry RIFT_v6/encoding/Neighbor"

Neighbor structure.

8.2.18.1. Requested Entries

Name Value Schema Version Description

originator 1 6.1 System ID of the originator.

remote_id 2 6.1 ID of remote side of the link.

Table 25

8.2.19. Registry RIFT_v6/encoding/NodeCapabilities"

Capabilities the node supports.

8.2.19.1. Requested Entries

Name Value
Schema

Version
Description

protocol_minor_version 1 6.1

Must advertise supported

minor version dialect

that way.

flood_reduction 2 6.1
Indicates that node

supports flood reduction.

hierarchy_indications 3 6.1

Indicates place in

hierarchy, i.e. top-of-

fabric or leaf only (in

ZTP) or support for

leaf-2-leaf procedures.

Table 26
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8.2.20. Registry RIFT_v6/encoding/NodeFlags"

Indication flags of the node.

8.2.20.1. Requested Entries

Name Value
Schema

Version
Description

overload 1 6.1
Indicates that node is in overload,

do not transit traffic through it.

Table 27

8.2.21. Registry RIFT_v6/encoding/NodeNeighborsTIEElement"

neighbor of a node

8.2.21.1. Requested Entries

Name Value
Schema

Version
Description

level 1 6.1 Level of neighbor

cost 3 6.1

Cost to neighbor. Ignore anything

larger than `infinite_distance` and

`invalid_distance`

link_ids 4 6.1
Can carry description of multiple

parallel links in a TIE

bandwidth 5 6.1
Total bandwith to neighbor as sum of

all parallel links

Table 28

8.2.22. Registry RIFT_v6/encoding/NodeTIEElement"

Description of a node.

8.2.22.1. Requested Entries

Name Value
Schema

Version
Description

level 1 6.1 Level of the node.

neighbors 2 6.1

Node's neighbors. Multiple node

TIEs can carry disjoint sets of

neighbors.

capabilities 3 6.1 Capabilities of the node.

flags 4 6.1 Flags of the node.

name 5 6.1
Optional node name for easier

operations.

pod 6 6.1 PoD to which the node belongs.

startup_time 7 6.1
Optional startup time of the

node
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Name Value
Schema

Version
Description

miscabled_links 10 6.1

If any local links are

miscabled, this indication is

flooded.

same_plane_tofs 12 6.1

ToFs in the same plane. Only

carried by ToF. Multiple node

TIEs can carry disjoint sets of

ToFs which can be joined to form

a single set. Used in complex

multi-plane elections.

fabric_id 22 6.1
It provides the optional ID of

the Fabric configured

Table 29

8.2.23. Registry RIFT_v6/encoding/PacketContent"

Content of a RIFT packet.

8.2.23.1. Requested Entries

Name Value Schema Version Description

lie 1 6.1

tide 2 6.1

tire 3 6.1

tie 4 6.1

Table 30

8.2.24. Registry RIFT_v6/encoding/PacketHeader"

Common RIFT packet header.

8.2.24.1. Requested Entries

Name Value
Schema

Version
Description

major_version 1 6.1 Major version of protocol.

minor_version 2 6.1 Minor version of protocol.

sender 3 6.1

Node sending the packet, in case

of LIE/TIRE/TIDE also the

originator of it.

level 4 6.1

Level of the node sending the

packet, required on everything

except LIEs. Lack of presence on

LIEs indicates UNDEFINED_LEVEL and

is used in ZTP procedures.

Table 31
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8.2.25. Registry RIFT_v6/encoding/PrefixAttributes"

Attributes of a prefix.

8.2.25.1. Requested Entries

Name Value
Schema

Version
Description

metric 2 6.1 Distance of the prefix.

tags 3 6.1

Generic unordered set of route

tags, can be redistributed to

other protocols or use within

the context of real time

analytics.

monotonic_clock 4 6.1
Monotonic clock for mobile

addresses.

loopback 6 6.1
Indicates if the prefix is a

node loopback.

directly_attached 7 6.1
Indicates that the prefix is

directly attached.

from_link 10 6.1
Link to which the address

belongs to.

label 12 6.1
Optional, per prefix

significant label.

Table 32

8.2.26. Registry RIFT_v6/encoding/PrefixTIEElement"

TIE carrying prefixes

8.2.26.1. Requested Entries

Name Value
Schema

Version
Description

prefixes 1 6.1
Prefixes with the associated

attributes.

Table 33

8.2.27. Registry RIFT_v6/encoding/ProtocolPacket"

RIFT packet structure.

8.2.27.1. Requested Entries

Name Value Schema Version Description

header 1 6.1

content 2 6.1

Table 34

¶

¶

¶



8.2.28. Registry RIFT_v6/encoding/TIDEPacket"

TIDE with *sorted* TIE headers.

8.2.28.1. Requested Entries

Name Value
Schema

Version
Description

start_range 1 6.1
First TIE header in the tide

packet.

end_range 2 6.1
Last TIE header in the tide

packet.

headers 3 6.1 _Sorted_ list of headers.

Table 35

8.2.29. Registry RIFT_v6/encoding/TIEElement"

Single element in a TIE.

8.2.29.1. Requested Entries

Name Value
Schema

Version
Description

node 1 6.1
Used in case of enum

common.TIETypeType.NodeTIEType.

prefixes 2 6.1
Used in case of enum

common.TIETypeType.PrefixTIEType.

positive_disaggregation_prefixes 3 6.1
Positive prefixes (always

southbound).

negative_disaggregation_prefixes 5 6.1
Transitive, negative prefixes

(always southbound)

external_prefixes 6 6.1 Externally reimported prefixes.

positive_external_disaggregation_prefixes 7 6.1
Positive external disaggregated

prefixes (always southbound).

keyvalues 9 6.1 Key-Value store elements.

Table 36

8.2.30. Registry RIFT_v6/encoding/TIEHeader"

Header of a TIE.

8.2.30.1. Requested Entries

Name Value
Schema

Version
Description

tieid 2 6.1 ID of the tie.

seq_nr 3 6.1
Sequence number of the

tie.

origination_time 10 6.1

¶

¶

¶



Name Value
Schema

Version
Description

Absolute timestamp when

the TIE was generated.

origination_lifetime 12 6.1
Original lifetime when

the TIE was generated.

Table 37

8.2.31. Registry RIFT_v6/encoding/TIEHeaderWithLifeTime"

Header of a TIE as described in TIRE/TIDE.

8.2.31.1. Requested Entries

Name Value Schema Version Description

header 1 6.1

remaining_lifetime 2 6.1 Remaining lifetime.

Table 38

8.2.32. Registry RIFT_v6/encoding/TIEID"

Unique ID of a TIE.

8.2.32.1. Requested Entries

Name Value Schema Version Description

direction 1 6.1 Direction of TIE

originator 2 6.1 Indicates originator of the TIE

tietype 3 6.1 Type of the tie

tie_nr 4 6.1 Number of the tie

Table 39

8.2.33. Registry RIFT_v6/encoding/TIEPacket"

TIE packet

8.2.33.1. Requested Entries

Name Value Schema Version Description

header 1 6.1

element 2 6.1

Table 40

8.2.34. Registry RIFT_v6/encoding/TIREPacket"

TIRE packet

¶

¶

¶

¶



8.2.34.1. Requested Entries

Name Value Schema Version Description

headers 1 6.1

Table 41
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The >: relationship is anti-symmetric but not transitive. Observe

that this leaves >: of the numbers having maximum two complement

distance, e.g. ( 0 and 0x800 ) undefined in the 12-bits case since

D_f and D_b are both -0x7ff.

A simple example of the relationship in case of 3-bit arithmetic

follows as table indicating D_f/D_b values and then the relationship

of U_1 to U_2:

Appendix B. Information Elements Schema

This section introduces the schema for information elements. The IDL

is Thrift [thrift].

On schema changes that

change field numbers *or*

add new *required* fields *or*

remove any fields *or*

    U_1, U_2 are 12-bits aligned unsigned version number

    D_f is  ( U_1 - U_2 ) interpreted as two complement signed 12-bits

    D_b is  ( U_2 - U_1 ) interpreted as two complement signed 12-bits

    U_1 >: U_2 IIF D_f > 0 *and* D_b < 0

    U_1 =: U_2 IIF D_f = 0

¶

¶

¶

        U2 / U1   0    1    2    3    4    5    6    7

        0        +/+  +/-  +/-  +/-  -/-  -/+  -/+  -/+

        1        -/+  +/+  +/-  +/-  +/-  -/-  -/+  -/+

        2        -/+  -/+  +/+  +/-  +/-  +/-  -/-  -/+

        3        -/+  -/+  -/+  +/+  +/-  +/-  +/-  -/-

        4        -/-  -/+  -/+  -/+  +/+  +/-  +/-  +/-

        5        +/-  -/-  -/+  -/+  -/+  +/+  +/-  +/-

        6        +/-  +/-  -/-  -/+  -/+  -/+  +/+  +/-

        7        +/-  +/-  +/-  -/-  -/+  -/+  -/+  +/+

¶

       U2 / U1   0    1    2    3    4    5    6    7

       0         =    >    >    >    ?    <    <    <

       1         <    =    >    >    >    ?    <    <

       2         <    <    =    >    >    >    ?    <

       3         <    <    <    =    >    >    >    ?

       4         ?    <    <    <    =    >    >    >

       5         >    ?    <    <    <    =    >    >

       6         >    >    ?    <    <    <    =    >

       7         >    >    >    ?    <    <    <    =

¶

¶

¶

1. ¶

2. ¶

3. ¶



change lists into sets, unions into structures *or*

change multiplicity of fields *or*

changes name of any field or type *or*

change data types of any field *or*

adds, changes or removes a default value of any *existing*

field *or*

removes or changes any defined constant or constant value *or*

changes any enumeration type except extending

`common.TIETypeType` (use of enumeration types is generally

discouraged) *or*

add new TIE type to `TIETypeType` with flooding scope different

from prefix TIE flooding scope

major version of the schema MUST increase. All other changes MUST

increase minor version within the same major.

Introducing an optional field does not cause a major version

increase even if the fields inside the structure are optional with

defaults.

All signed integer as forced by Thrift [thrift] support must be cast

for internal purposes to equivalent unsigned values without

discarding the signedness bit. An implementation SHOULD try to avoid

using the signedness bit when generating values.

The schema is normative.

B.1. Backwards-Compatible Extension of Schema

The set of rules in Appendix B guarantees that every decoder can

process serialized content generated by a higher minor version of

the schema and with that the protocol can progress without a 'fork-

lift'. Contrary to that, content serialized using a major version X

is *not* expected to be decodable by any implementation using

decoder for a model with a major version lower than X.

Additionally, based on the propagated minor version in encoded

content and added optional node capabilities new TIE types or even

de-facto mandatory fields can be introduced without progressing the

major version albeit only nodes supporting such new extensions would

decode them. Given the model is encoded at the source and never re-

encoded flooding through nodes not understanding any new extensions

will preserve the corresponding fields. However, it is important to

4. ¶

5. ¶

6. ¶

7. ¶

8. 

¶

9. ¶

10. 

¶

11. 

¶

¶

¶

¶

¶

¶



understand that a higher minor version of a schema does *not*

guarantee that capabilities introduced in lower minors of the same

major are supported. The `node_capabilities` field is used to

indicate which capabilities are supported.

Specifically, the schema SHOULD add elements to `NodeCapabilities`

field future capabilities to indicate whether it will support

interpretation of schema extensions on the same major revision if

they are present. Such fields MUST be optional and have an implicit

or explicit false default value. If a future capability changes

route selection or generates conditions that cause packet loss if

some nodes are not supporting it then a major version increment will

be however unavoidable. `NodeCapabilities` shown in LIE MUST match

the capabilities shown in the Node TIEs, otherwise the behavior is

unspecified. A node detecting the mismatch SHOULD generate a

notification.

Alternately or additionally, new optional fields can be introduced

into e.g. `NodeTIEElement` if a special field is chosen to indicate

via its presence that an optional feature is enabled (since

capability to support a feature does not necessarily mean that the

feature is actually configured and operational).

To support new TIE types without increasing the major version

enumeration `TIEElement` can be extended with new optional elements

for new `common.TIETypeType` values as long the scope of the new TIE

matches the prefix TIE scope. In case it is necessary to understand

whether all nodes can parse the new TIE type a node capability MUST

be added in `NodeCapabilities` to prevent a non-homogenous network.

¶

¶

¶

¶



B.2. common.thrift



/**

    Thrift file with common definitions for RIFT

*/

namespace py common

/** @note MUST be interpreted in implementation as unsigned 64 bits.

 */

typedef i64      SystemIDType

typedef i32      IPv4Address

typedef i32      MTUSizeType

/** @note MUST be interpreted in implementation as unsigned

    rolling over number */

typedef i64      SeqNrType

/** @note MUST be interpreted in implementation as unsigned */

typedef i32      LifeTimeInSecType

/** @note MUST be interpreted in implementation as unsigned */

typedef i8       LevelType

typedef i16      PacketNumberType

/** @note MUST be interpreted in implementation as unsigned */

typedef i32      PodType

/** @note MUST be interpreted in implementation as unsigned.

/** this has to be long enough to accomodate prefix */

typedef binary   IPv6Address

/** @note MUST be interpreted in implementation as unsigned */

typedef i16      UDPPortType

/** @note MUST be interpreted in implementation as unsigned */

typedef i32      TIENrType

/** @note MUST be interpreted in implementation as unsigned

          This is carried in the

          security envelope and must hence fit into 8 bits. */

typedef i8       VersionType

/** @note MUST be interpreted in implementation as unsigned */

typedef i16      MinorVersionType

/** @note MUST be interpreted in implementation as unsigned */

typedef i32      MetricType

/** @note MUST be interpreted in implementation as unsigned

          and unstructured */

typedef i64      RouteTagType

/** @note MUST be interpreted in implementation as unstructured

          label value */

typedef i32      LabelType

/** @note MUST be interpreted in implementation as unsigned */

typedef i32      BandwithInMegaBitsType

/** @note Key Value key ID type */

typedef i32      KeyIDType

/** node local, unique identification for a link (interface/tunnel

  * etc. Basically anything RIFT runs on). This is kept



  * at 32 bits so it aligns with BFD [RFC5880] discriminator size.

  */

typedef i32    LinkIDType

/** @note MUST be interpreted in implementation as unsigned,

          especially since we have the /128 IPv6 case. */

typedef i8     PrefixLenType

/** timestamp in seconds since the epoch */

typedef i64    TimestampInSecsType

/** security nonce.

    @note MUST be interpreted in implementation as rolling

          over unsigned value */

typedef i16    NonceType

/** LIE FSM holdtime type */

typedef i16    TimeIntervalInSecType

/** Transaction ID type for prefix mobility as specified by RFC6550,

    value MUST be interpreted in implementation as unsigned  */

typedef i8     PrefixTransactionIDType

/** Timestamp per IEEE 802.1AS, all values MUST be interpreted in

    implementation as unsigned.  */

struct IEEE802_1ASTimeStampType {

    1: required     i64     AS_sec;

    2: optional     i32     AS_nsec;

}

/** generic counter type */

typedef i64 CounterType

/** Platform Interface Index type, i.e. index of interface on hardware,

    can be used e.g. with RFC5837 */

typedef i32 PlatformInterfaceIndex

/** Flags indicating node configuration in case of ZTP.

 */

enum HierarchyIndications {

    /** forces level to `leaf_level` and enables according procedures */

    leaf_only                            = 0,

    /** forces level to `leaf_level` and enables according procedures */

    leaf_only_and_leaf_2_leaf_procedures = 1,

    /** forces level to `top_of_fabric` and enables according

        procedures */

    top_of_fabric                        = 2,

}

const PacketNumberType  undefined_packet_number    = 0

/** used when node is configured as top of fabric in ZTP.*/

const LevelType   top_of_fabric_level              = 24

/** default bandwidth on a link */

const BandwithInMegaBitsType  default_bandwidth    = 100

/** fixed leaf level when ZTP is not used */

const LevelType   leaf_level                  = 0

const LevelType   default_level               = leaf_level



const PodType     default_pod                 = 0

const LinkIDType  undefined_linkid            = 0

/** invalid key for key value */

const KeyIDType   invalid_key_value_key    = 0

/** default distance used */

const MetricType  default_distance         = 1

/** any distance larger than this will be considered infinity */

const MetricType  infinite_distance       = 0x7FFFFFFF

/** represents invalid distance */

const MetricType  invalid_distance        = 0

const bool overload_default               = false

const bool flood_reduction_default        = true

/** default LIE FSM LIE TX internval time */

const TimeIntervalInSecType   default_lie_tx_interval  = 1

/** default LIE FSM holddown time */

const TimeIntervalInSecType   default_lie_holdtime  = 3

/** multipler for default_lie_holdtime to hold down multiple neighbors */

const i8                      multiple_neighbors_lie_holdtime_multipler = 4

/** default ZTP FSM holddown time */

const TimeIntervalInSecType   default_ztp_holdtime  = 1

/** by default LIE levels are ZTP offers */

const bool default_not_a_ztp_offer        = false

/** by default everyone is repeating flooding */

const bool default_you_are_flood_repeater = true

/** 0 is illegal for SystemID */

const SystemIDType IllegalSystemID        = 0

/** empty set of nodes */

const set<SystemIDType> empty_set_of_nodeids = {}

/** default lifetime of TIE is one week */

const LifeTimeInSecType default_lifetime      = 604800

/** default lifetime when TIEs are purged is 5 minutes */

const LifeTimeInSecType purge_lifetime        = 300

/** optional round down interval when TIEs are sent with security hashes

    to prevent excessive computation. **/

const LifeTimeInSecType rounddown_lifetime_interval = 60

/** any `TieHeader` that has a smaller lifetime difference

    than this constant is equal (if other fields equal). */

const LifeTimeInSecType lifetime_diff2ignore  = 400

/** default UDP port to run LIEs on */

const UDPPortType     default_lie_udp_port       =  914

/** default UDP port to receive TIEs on, that can be peer specific */

const UDPPortType     default_tie_udp_flood_port =  915

/** default MTU link size to use */

const MTUSizeType     default_mtu_size           = 1400

/** default link being BFD capable */

const bool            bfd_default                = true



/** undefined nonce, equivalent to missing nonce */

const NonceType       undefined_nonce            = 0;

/** outer security key id, MUST be interpreted as in implementation

    as unsigned */

typedef i8            OuterSecurityKeyID

/** security key id, MUST be interpreted as in implementation

    as unsigned */

typedef i32           TIESecurityKeyID

/** undefined key */

const TIESecurityKeyID undefined_securitykey_id   = 0;

/** Maximum delta (negative or positive) that a mirrored nonce can

    deviate from local value to be considered valid. */

const i16                     maximum_valid_nonce_delta   = 5;

const TimeIntervalInSecType   nonce_regeneration_interval = 300;

/** Direction of TIEs. */

enum TieDirectionType {

    Illegal           = 0,

    South             = 1,

    North             = 2,

    DirectionMaxValue = 3,

}

/** Address family type. */

enum AddressFamilyType {

   Illegal                = 0,

   AddressFamilyMinValue  = 1,

   IPv4                   = 2,

   IPv6                   = 3,

   AddressFamilyMaxValue  = 4,

}

/** IPv4 prefix type. */

struct IPv4PrefixType {

    1: required IPv4Address    address;

    2: required PrefixLenType  prefixlen;

} (python.immutable = "")

/** IPv6 prefix type. */

struct IPv6PrefixType {

    1: required IPv6Address    address;

    2: required PrefixLenType  prefixlen;

} (python.immutable = "")

/** IP address type. */

union IPAddressType {

    /** Content is IPv4 */

    1: optional IPv4Address   ipv4address;



    /** Content is IPv6 */

    2: optional IPv6Address   ipv6address;

} (python.immutable = "")

/** Prefix advertisement.

    @note: for interface

        addresses the protocol can propagate the address part beyond

        the subnet mask and on reachability computation that has to

        be normalized. The non-significant bits can be used

        for operational purposes.

*/

union IPPrefixType {

    1: optional IPv4PrefixType   ipv4prefix;

    2: optional IPv6PrefixType   ipv6prefix;

} (python.immutable = "")

/** Sequence of a prefix in case of move.

 */

struct PrefixSequenceType {

    1: required IEEE802_1ASTimeStampType  timestamp;

    /** Transaction ID set by client in e.g. in 6LoWPAN. */

    2: optional PrefixTransactionIDType   transactionid;

}

/** Type of TIE.

*/

enum TIETypeType {

    Illegal                                     = 0,

    TIETypeMinValue                             = 1,

    /** first legal value */

    NodeTIEType                                 = 2,

    PrefixTIEType                               = 3,

    PositiveDisaggregationPrefixTIEType         = 4,

    NegativeDisaggregationPrefixTIEType         = 5,

    PGPrefixTIEType                             = 6,

    KeyValueTIEType                             = 7,

    ExternalPrefixTIEType                       = 8,

    PositiveExternalDisaggregationPrefixTIEType = 9,

    TIETypeMaxValue                             = 10,

}

/** RIFT route types.

    @note: The only purpose of those values is to introduce an

           ordering whereas an implementation can choose internally

           any other values as long the ordering is preserved

 */

enum RouteType {

    Illegal               =  0,



    RouteTypeMinValue     =  1,

    /** First legal value. */

    /** Discard routes are most preferred */

    Discard               =  2,

    /** Local prefixes are directly attached prefixes on the

     *  system such as e.g. interface routes.

     */

    LocalPrefix           =  3,

    /** Advertised in S-TIEs */

    SouthPGPPrefix        =  4,

    /** Advertised in N-TIEs */

    NorthPGPPrefix        =  5,

    /** Advertised in N-TIEs */

    NorthPrefix           =  6,

    /** Externally imported north */

    NorthExternalPrefix   =  7,

    /** Advertised in S-TIEs, either normal prefix or positive

        disaggregation */

    SouthPrefix           =  8,

    /** Externally imported south */

    SouthExternalPrefix   =  9,

    /** Negative, transitive prefixes are least preferred */

    NegativeSouthPrefix   = 10,

    RouteTypeMaxValue     = 11,

}

enum   KVTypes {

    Experimental = 1,

    WellKnown    = 2,

    OUI          = 3,

}

¶



B.3. encoding.thrift



/**

    Thrift file for packet encodings for RIFT

*/

include "common.thrift"

namespace py encoding

/** Represents protocol encoding schema major version */

const common.VersionType protocol_major_version = 6

/** Represents protocol encoding schema minor version */

const common.MinorVersionType protocol_minor_version =  0

/** Common RIFT packet header. */

struct PacketHeader {

    /** Major version of protocol. */

    1: required common.VersionType      major_version =

            protocol_major_version;

    /** Minor version of protocol. */

    2: required common.MinorVersionType minor_version =

            protocol_minor_version;

    /** Node sending the packet, in case of LIE/TIRE/TIDE

        also the originator of it. */

    3: required common.SystemIDType  sender;

    /** Level of the node sending the packet, required on everything

        except LIEs. Lack of presence on LIEs indicates UNDEFINED_LEVEL

        and is used in ZTP procedures.

     */

    4: optional common.LevelType            level;

}

/** Prefix community. */

struct Community {

    /** Higher order bits */

    1: required i32          top;

    /** Lower order bits */

    2: required i32          bottom;

} (python.immutable = "")

/** Neighbor structure.  */

struct Neighbor {

    /** System ID of the originator. */

    1: required common.SystemIDType        originator;

    /** ID of remote side of the link. */

    2: required common.LinkIDType          remote_id;

} (python.immutable = "")

/** Capabilities the node supports. */

struct NodeCapabilities {



    /** Must advertise supported minor version dialect that way. */

    1: required common.MinorVersionType        protocol_minor_version =

            protocol_minor_version;

    /** indicates that node supports flood reduction. */

    2: optional bool                           flood_reduction =

            common.flood_reduction_default;

    /** indicates place in hierarchy, i.e. top-of-fabric or

        leaf only (in ZTP) or support for leaf-2-leaf

        procedures. */

    3: optional common.HierarchyIndications    hierarchy_indications;

} (python.immutable = "")

/** Link capabilities. */

struct LinkCapabilities {

    /** Indicates that the link is supporting BFD. */

    1: optional bool                           bfd =

            common.bfd_default;

    /** Indicates whether the interface will support IPv4 forwarding. */

    2: optional bool                           ipv4_forwarding_capable =

            true;

} (python.immutable = "")

/** RIFT LIE Packet.

    @note: this node's level is already included on the packet header

*/

struct LIEPacket {

    /** Node or adjacency name. */

    1: optional string                    name;

    /** Local link ID. */

    2: required common.LinkIDType         local_id;

    /** UDP port to which we can receive flooded TIEs. */

    3: required common.UDPPortType        flood_port =

            common.default_tie_udp_flood_port;

    /** Layer 3 MTU, used to discover mismatch. */

    4: optional common.MTUSizeType        link_mtu_size =

            common.default_mtu_size;

    /** Local link bandwidth on the interface. */

    5: optional common.BandwithInMegaBitsType

            link_bandwidth = common.default_bandwidth;

    /** Reflects the neighbor once received to provide

        3-way connectivity. */

    6: optional Neighbor                  neighbor;

    /** Node's PoD. */

    7: optional common.PodType            pod =

            common.default_pod;

    /** Node capabilities supported. */



   10: required NodeCapabilities          node_capabilities;

   /** Capabilities of this link. */

   11: optional LinkCapabilities          link_capabilities;

   /** Required holdtime of the adjacency, i.e. for how

       long a period should adjacency be kept up without valid LIE reception. */

   12: required common.TimeIntervalInSecType

            holdtime = common.default_lie_holdtime;

   /** Optional, unsolicited, downstream assigned locally significant label

       value for the adjacency. */

   13: optional common.LabelType          label;

    /** Indicates that the level on the LIE must not be used

        to derive a ZTP level by the receiving node. */

   21: optional bool                      not_a_ztp_offer =

            common.default_not_a_ztp_offer;

   /** Indicates to northbound neighbor that it should

       be reflooding TIEs received from this node to achieve flood

       reduction and balancing for northbound flooding. */

   22: optional bool                      you_are_flood_repeater =

             common.default_you_are_flood_repeater;

   /** Indicates to neighbor to flood node TIEs only and slow down

       all other TIEs. Ignored when received from southbound neighbor. */

   23: optional bool                      you_are_sending_too_quickly =

             false;

   /** Instance name in case multiple RIFT instances running on same

       interface. */

   24: optional string                    instance_name;

}

/** LinkID pair describes one of parallel links between two nodes. */

struct LinkIDPair {

    /** Node-wide unique value for the local link. */

    1: required common.LinkIDType      local_id;

    /** Received remote link ID for this link. */

    2: required common.LinkIDType      remote_id;

    /** Describes the local interface index of the link. */

   10: optional common.PlatformInterfaceIndex platform_interface_index;

   /** Describes the local interface name. */

   11: optional string                        platform_interface_name;

   /** Indicates whether the link is secured, i.e. protected by

       outer key, absence of this element means no indication,

       undefined outer key means not secured. */

   12: optional common.OuterSecurityKeyID

                trusted_outer_security_key;

   /** Indicates whether the link is protected by established

       BFD session. */

   13: optional bool                          bfd_up;

   /** Optional indication which address families are up on the



       interface */

   14: optional set<common.AddressFamilyType>

       (python.immutable = "")                address_families;

} (python.immutable = "")

/** Unique ID of a TIE. */

struct TIEID {

    /** direction of TIE */

    1: required common.TieDirectionType    direction;

    /** indicates originator of the TIE */

    2: required common.SystemIDType        originator;

    /** type of the tie */

    3: required common.TIETypeType         tietype;

    /** number of the tie */

    4: required common.TIENrType           tie_nr;

} (python.immutable = "")

/** Header of a TIE. */

struct TIEHeader {

    /** ID of the tie. */

    2: required TIEID                             tieid;

    /** Sequence number of the tie. */

    3: required common.SeqNrType                  seq_nr;

    /** Absolute timestamp when the TIE was generated. */

   10: optional common.IEEE802_1ASTimeStampType   origination_time;

   /** Original lifetime when the TIE was generated.  */

   12: optional common.LifeTimeInSecType          origination_lifetime;

}

/** Header of a TIE as described in TIRE/TIDE.

*/

struct TIEHeaderWithLifeTime {

    1: required     TIEHeader                       header;

    /** Remaining lifetime. */

    2: required     common.LifeTimeInSecType        remaining_lifetime;

}

/** TIDE with *sorted* TIE headers. */

struct TIDEPacket {

    /** First TIE header in the tide packet. */

    1: required TIEID                       start_range;

    /** Last TIE header in the tide packet. */

    2: required TIEID                       end_range;

    /** _Sorted_ list of headers. */

    3: required list<TIEHeaderWithLifeTime>

       (python.immutable = "")              headers;

}



/** TIRE packet */

struct TIREPacket {

    1: required set<TIEHeaderWithLifeTime>

       (python.immutable = "")              headers;

}

/** neighbor of a node */

struct NodeNeighborsTIEElement {

    /** level of neighbor */

    1: required common.LevelType                level;

    /**  Cost to neighbor. Ignore anything larger than `infinite_distance` and `invalid_distance` */

    3: optional common.MetricType               cost

                = common.default_distance;

    /** can carry description of multiple parallel links in a TIE */

    4: optional set<LinkIDPair>

       (python.immutable = "")                  link_ids;

    /** total bandwith to neighbor as sum of all parallel links */

    5: optional common.BandwithInMegaBitsType

                bandwidth = common.default_bandwidth;

} (python.immutable = "")

/** Indication flags of the node. */

struct NodeFlags {

    /** Indicates that node is in overload, do not transit traffic

        through it. */

     1: optional bool         overload = common.overload_default;

} (python.immutable = "")

/** Description of a node. */

struct NodeTIEElement {

    /** Level of the node. */

    1: required common.LevelType            level;

    /** Node's neighbors. Multiple node TIEs can carry disjoint sets of neighbors. */

    2: required map<common.SystemIDType,

                NodeNeighborsTIEElement>    neighbors;

    /** Capabilities of the node. */

    3: required NodeCapabilities            capabilities;

    /** Flags of the node. */

    4: optional NodeFlags                   flags;

    /** Optional node name for easier operations. */

    5: optional string                      name;

    /** PoD to which the node belongs. */

    6: optional common.PodType              pod;

    /** optional startup time of the node */

    7: optional common.TimestampInSecsType  startup_time;

    /** If any local links are miscabled, this indication is flooded. */

   10: optional set<common.LinkIDType>

        (python.immutable = "")             miscabled_links;



   /** ToFs in the same plane. Only carried by ToF. Multiple node TIEs can carry disjoint sets of ToFs

       which can be joined to form a single set. Used in complex multi-plane elections. */

   12: optional set<common.SystemIDType>        same_plane_tofs;

} (python.immutable = "")

/** Attributes of a prefix. */

struct PrefixAttributes {

    /** Distance of the prefix. */

    2: required common.MetricType            metric

            = common.default_distance;

    /** Generic unordered set of route tags, can be redistributed

        to other protocols or use within the context of real time

        analytics. */

    3: optional set<common.RouteTagType>

       (python.immutable = "")               tags;

    /** Monotonic clock for mobile addresses.  */

    4: optional common.PrefixSequenceType    monotonic_clock;

    /** Indicates if the prefix is a node loopback. */

    6: optional bool                         loopback = false;

    /** Indicates that the prefix is directly attached. */

    7: optional bool                         directly_attached = true;

    /** link to which the address belongs to.  */

   10: optional common.LinkIDType            from_link;

} (python.immutable = "")

/** TIE carrying prefixes */

struct PrefixTIEElement {

    /** Prefixes with the associated attributes. */

    1: required map<common.IPPrefixType, PrefixAttributes> prefixes;

} (python.immutable = "")

/** Generic key value pairs. */

struct KeyValueTIEElement {

    1: required map<common.KeyIDType, binary>    keyvalues;

} (python.immutable = "")

/** Single element in a TIE. */

union TIEElement {

    /** Used in case of enum common.TIETypeType.NodeTIEType. */

    1: optional NodeTIEElement     node;

    /** Used in case of enum common.TIETypeType.PrefixTIEType. */

    2: optional PrefixTIEElement          prefixes;

    /** Positive prefixes (always southbound). */

    3: optional PrefixTIEElement   positive_disaggregation_prefixes;

    /** Transitive, negative prefixes (always southbound) */

    5: optional PrefixTIEElement   negative_disaggregation_prefixes;



    /** Externally reimported prefixes. */

    6: optional PrefixTIEElement          external_prefixes;

    /** Positive external disaggregated prefixes (always southbound). */

    7: optional PrefixTIEElement

            positive_external_disaggregation_prefixes;

    /** Key-Value store elements. */

    9: optional KeyValueTIEElement keyvalues;

} (python.immutable = "")

/** TIE packet */

struct TIEPacket {

    1: required TIEHeader  header;

    2: required TIEElement element;

}

/** Content of a RIFT packet. */

union PacketContent {

    1: optional LIEPacket     lie;

    2: optional TIDEPacket    tide;

    3: optional TIREPacket    tire;

    4: optional TIEPacket     tie;

}

/** RIFT packet structure. */

struct ProtocolPacket {

    1: required PacketHeader  header;

    2: required PacketContent content;

}

¶



Appendix C. Constants

C.1. Configurable Protocol Constants

This section gathers constants that are provided in the schema files

and in the document.

Type Value

LIE IPv4

Multicast

Address

Default

Value,

Configurable

224.0.0.120 or all-rift-routers to

be assigned in IPv4 Multicast

Address Space Registry in Local

Network Control Block

LIE IPv6

Multicast

Address

Default

Value,

Configurable

FF02::A1F7 or all-rift-routers to be

assigned in IPv6 Multicast Address

Assignments

LIE Destination

Port

Default

Value,

Configurable

914

Level value for

TOP_OF_FABRIC

flag

Constant 24

Default LIE

Holdtime

Default

Value,

Configurable

3 seconds

TIE

Retransmission

Interval

Default Value 1 second

TIDE Generation

Interval

Default

Value,

Configurable

5 seconds

MIN_TIEID

signifies start

of TIDEs

Constant

TIE Key with minimal values:

TIEID(originator=0,

tietype=TIETypeMinValue, tie_nr=0,

direction=South)

MAX_TIEID

signifies end

of TIDEs

Constant

TIE Key with maximal values:

TIEID(originator=MAX_UINT64,

tietype=TIETypeMaxValue,

tie_nr=MAX_UINT64, direction=North)

Table 43: all_constants
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