
RTP Media Congestion Avoidance Techniques (rmcat) S. Islam
Internet-Draft M. Welzl
Intended status: Experimental S. Gjessing
Expires: February 23, 2020 University of Oslo
 August 22, 2019

Coupled congestion control for RTP media
draft-ietf-rmcat-coupled-cc-09

Abstract

 When multiple congestion controlled Real-time Transport Protocol
 (RTP) sessions traverse the same network bottleneck, combining their
 controls can improve the total on-the-wire behavior in terms of
 delay, loss and fairness. This document describes such a method for
 flows that have the same sender, in a way that is as flexible and
 simple as possible while minimizing the amount of changes needed to
 existing RTP applications. It specifies how to apply the method for
 the Network-Assisted Dynamic Adaptation (NADA) congestion control
 algorithm, and provides suggestions on how to apply it to other
 congestion control algorithms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 23, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Islam, et al. Expires February 23, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Coupled congestion control for RTP media August 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Definitions . 3
3. Limitations . 4
4. Architectural overview 5
5. Roles . 6
5.1. SBD . 6
5.2. FSE . 7
5.3. Flows . 8
5.3.1. Example algorithm 1 - Active FSE 9
5.3.2. Example algorithm 2 - Conservative Active FSE 10

6. Application . 11
6.1. NADA . 11
6.2. General recommendations 11

7. Expected feedback from experiments 12
8. Acknowledgements . 12
9. IANA Considerations . 13
10. Security Considerations 13
11. References . 13
11.1. Normative References 13
11.2. Informative References 14

Appendix A. Application to GCC 16
Appendix B. Scheduling . 16
Appendix C. Example algorithm - Passive FSE 16
C.1. Example operation (passive) 19

Appendix D. Change log . 23
D.1. draft-welzl-rmcat-coupled-cc 23
D.1.1. Changes from -00 to -01 23
D.1.2. Changes from -01 to -02 23
D.1.3. Changes from -02 to -03 23
D.1.4. Changes from -03 to -04 24
D.1.5. Changes from -04 to -05 24

D.2. draft-ietf-rmcat-coupled-cc 24
D.2.1. Changes from draft-welzl-rmcat-coupled-cc-05 24
D.2.2. Changes from -00 to -01 24
D.2.3. Changes from -01 to -02 24
D.2.4. Changes from -02 to -03 24
D.2.5. Changes from -03 to -04 24
D.2.6. Changes from -04 to -05 25
D.2.7. Changes from -05 to -06 25

https://datatracker.ietf.org/doc/html/draft-welzl-rmcat-coupled-cc
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-coupled-cc
https://datatracker.ietf.org/doc/html/draft-welzl-rmcat-coupled-cc-05

Islam, et al. Expires February 23, 2020 [Page 2]

Internet-Draft Coupled congestion control for RTP media August 2019

D.2.8. Changes from -06 to -07 25
D.2.9. Changes from -07 to -08 25
D.2.10. Changes from -08 to -09 25

 Authors' Addresses . 25

1. Introduction

 When there is enough data to send, a congestion controller attempts
 to increase its sending rate until the path's capacity has been
 reached. Some controllers detect path capacity by increasing the
 sending rate further, until packets are ECN-marked [RFC8087] or
 dropped, and then decreasing the sending rate until that stops
 happening. This process inevitably creates undesirable queuing delay
 when multiple congestion-controlled connections traverse the same
 network bottleneck, and each connection overshoots the path capacity
 as it determines its sending rate.

 The Congestion Manager (CM) [RFC3124] couples flows by providing a
 single congestion controller. It is hard to implement because it
 requires an additional congestion controller and removes all per-
 connection congestion control functionality, which is quite a
 significant change to existing RTP based applications. This document
 presents a method to combine the behavior of congestion control
 mechanisms that is easier to implement than the Congestion Manager
 [RFC3124] and also requires less significant changes to existing RTP
 based applications. It attempts to roughly approximate the CM
 behavior by sharing information between existing congestion
 controllers. It is able to honor user-specified priorities, which is
 required by rtcweb [I-D.ietf-rtcweb-overview] [RFC7478].

 The described mechanisms are believed safe to use, but are
 experimental and are presented for wider review and operational
 evaluation.

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Available Bandwidth:
 The available bandwidth is the nominal link capacity minus the
 amount of traffic that traversed the link during a certain time
 interval, divided by that time interval.

 Bottleneck:
 The first link with the smallest available bandwidth along the
 path between a sender and receiver.

https://datatracker.ietf.org/doc/html/rfc8087
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc7478
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Islam, et al. Expires February 23, 2020 [Page 3]

Internet-Draft Coupled congestion control for RTP media August 2019

 Flow:
 A flow is the entity that congestion control is operating on.
 It could, for example, be a transport layer connection, or an
 RTP stream [RFC7656], whether or not this RTP stream is
 multiplexed onto an RTP session with other RTP streams.

 Flow Group Identifier (FGI):
 A unique identifier for each subset of flows that is limited by
 a common bottleneck.

 Flow State Exchange (FSE):
 The entity that maintains information that is exchanged between
 flows.

 Flow Group (FG):
 A group of flows having the same FGI.

 Shared Bottleneck Detection (SBD):
 The entity that determines which flows traverse the same
 bottleneck in the network, or the process of doing so.

3. Limitations

 Sender-side only:
 Shared bottlenecks can exist when multiple flows originate from
 the same sender, or when flows from different senders reach the
 same receiver (see [RFC8382], section 3). Coupled congestion
 control as described here only supports the former case, not
 the latter, as it operates inside a single host on the sender
 side.

 Shared bottlenecks do not change quickly:
 As per the definition above, a bottleneck depends on cross
 traffic, and since such traffic can heavily fluctuate,
 bottlenecks can change at a high frequency (e.g., there can be
 oscillation between two or more links). This means that, when
 flows are partially routed along different paths, they may
 quickly change between sharing and not sharing a bottleneck.
 For simplicity, here it is assumed that a shared bottleneck is
 valid for a time interval that is significantly longer than the
 interval at which congestion controllers operate. Note that,
 for the only SBD mechanism defined in this document
 (multiplexing on the same five-tuple), the notion of a shared
 bottleneck stays correct even in the presence of fast traffic
 fluctuations: since all flows that are assumed to share a
 bottleneck are routed in the same way, if the bottleneck
 changes, it will still be shared.

https://datatracker.ietf.org/doc/html/rfc7656
https://datatracker.ietf.org/doc/html/rfc8382#section-3

Islam, et al. Expires February 23, 2020 [Page 4]

Internet-Draft Coupled congestion control for RTP media August 2019

4. Architectural overview

 Figure 1 shows the elements of the architecture for coupled
 congestion control: the Flow State Exchange (FSE), Shared Bottleneck
 Detection (SBD) and Flows. The FSE is a storage element that can be
 implemented in two ways: active and passive. In the active version,
 it initiates communication with flows and SBD. However, in the
 passive version, it does not actively initiate communication with
 flows and SBD; its only active role is internal state maintenance
 (e.g., an implementation could use soft state to remove a flow's data
 after long periods of inactivity). Every time a flow's congestion
 control mechanism would normally update its sending rate, the flow
 instead updates information in the FSE and performs a query on the
 FSE, leading to a sending rate that can be different from what the
 congestion controller originally determined. Using information
 about/from the currently active flows, SBD updates the FSE with the
 correct Flow Group Identifiers (FGIs).

 This document describes both active and passive versions. While the
 passive algorithm works better for congestion controls with RTT-
 independent convergence, it can still produce oscillations on short
 time scales. The passive algorithm, described in Appendix C, is
 therefore considered as highly experimental and not safe to deploy
 outside of testbed environments. Figure 2 shows the interaction
 between flows and the FSE, using the variable names defined in

Section 5.2.

 ------- <--- Flow 1
 | FSE | <--- Flow 2 ..
 ------- <--- .. Flow N
 ^
 | |
 ------- |
 | SBD | <-------|

 Figure 1: Coupled congestion control architecture

Islam, et al. Expires February 23, 2020 [Page 5]

Internet-Draft Coupled congestion control for RTP media August 2019

 Flow#1(cc) FSE Flow#2(cc)
 ---------- --- ----------
 #1 JOIN ----register--> REGISTER

 REGISTER <--register-- JOIN #1

 #2 CC_R(1) ----UPDATE----> UPDATE (in)

 #3 NEW RATE <---FSE_R(1)-- UPDATE (out) --FSE_R(2)-> #3 NEW RATE

 Figure 2: Flow-FSE interaction

 Since everything shown in Figure 1 is assumed to operate on a single
 host (the sender) only, this document only describes aspects that
 have an influence on the resulting on-the-wire behavior. It does
 not, for instance, define how many bits must be used to represent
 FGIs, or in which way the entities communicate.

 Implementations can take various forms: for instance, all the
 elements in the figure could be implemented within a single
 application, thereby operating on flows generated by that application
 only. Another alternative could be to implement both the FSE and SBD
 together in a separate process which different applications
 communicate with via some form of Inter-Process Communication (IPC).
 Such an implementation would extend the scope to flows generated by
 multiple applications. The FSE and SBD could also be included in the
 Operating System kernel. However, only one type of coupling
 algorithm should be used for all flows. Combinations of multiple
 algorithms at different aggregation levels (e.g., the Operating
 System coupling application aggregates with one algorithm, and
 applications coupling their flows with another) have not been tested
 and are therefore not recommended.

5. Roles

 This section gives an overview of the roles of the elements of
 coupled congestion control, and provides an example of how coupled
 congestion control can operate.

5.1. SBD

 SBD uses knowledge about the flows to determine which flows belong in
 the same Flow Group (FG), and assigns FGIs accordingly. This
 knowledge can be derived in three basic ways:

 1. From multiplexing: it can be based on the simple assumption that
 packets sharing the same five-tuple (IP source and destination

Islam, et al. Expires February 23, 2020 [Page 6]

Internet-Draft Coupled congestion control for RTP media August 2019

 address, protocol, and transport layer port number pair) and
 having the same values for the Differentiated Services Code Point
 (DSCP) and the ECN field in the IP header are typically treated
 in the same way along the path. This method is the only one
 specified in this document: SBD MAY consider all flows that use
 the same five-tuple, DSCP and ECN field value to belong to the
 same FG. This classification applies to certain tunnels, or RTP
 flows that are multiplexed over one transport (cf.
 [transport-multiplex]). Such multiplexing is also a recommended
 usage of RTP in rtcweb [rtcweb-rtp-usage].

 2. Via configuration: e.g. by assuming that a common wireless uplink
 is also a shared bottleneck.

 3. From measurements: e.g. by considering correlations among
 measured delay and loss as an indication of a shared bottleneck.

 The methods above have some essential trade-offs: e.g., multiplexing
 is a completely reliable measure, however it is limited in scope to
 two end points (i.e., it cannot be applied to couple congestion
 controllers of one sender talking to multiple receivers). A
 measurement-based SBD mechanism is described in [RFC8382].
 Measurements can never be 100% reliable, in particular because they
 are based on the past but applying coupled congestion control means
 to make an assumption about the future; it is therefore recommended
 to implement cautionary measures, e.g. by disabling coupled
 congestion control if enabling it causes a significant increase in
 delay and/or packet loss. Measurements also take time, which entails
 a certain delay for turning on coupling (refer to [RFC8382] for
 details). Using system configuration to decide about shared
 bottlenecks can be more efficient (faster to obtain) than using
 measurements, but it relies on assumptions about the network
 environment.

5.2. FSE

 The FSE contains a list of all flows that have registered with it.
 For each flow, it stores the following:

 o a unique flow number f to identify the flow.

 o the FGI of the FG that it belongs to (based on the definitions in
 this document, a flow has only one bottleneck, and can therefore
 be in only one FG).

 o a priority P(f), which is a positive number, greater than zero.

 o The rate used by the flow in bits per second, FSE_R(f).

https://datatracker.ietf.org/doc/html/rfc8382
https://datatracker.ietf.org/doc/html/rfc8382

Islam, et al. Expires February 23, 2020 [Page 7]

Internet-Draft Coupled congestion control for RTP media August 2019

 o The desired rate DR(f) of flow f. This can be smaller than
 FSE_R(f) if the application feeding into the flow has less data to
 send than FSE_R(f) would allow, or if a maximum value is imposed
 on the rate. In the absence of such limits DR(f) must be set to
 the sending rate provided by the congestion control module of flow
 f.

 Note that the absolute range of priorities does not matter: the
 algorithm works with a flow's priority portion of the sum of all
 priority values. For example, if there are two flows, flow 1 with
 priority 1 and flow 2 with priority 2, the sum of the priorities is
 3. Then, flow 1 will be assigned 1/3 of the aggregate sending rate
 and flow 2 will be assigned 2/3 of the aggregate sending rate.
 Priorities can be mapped to the "very-low", "low", "medium" or "high"
 priority levels described in [I-D.ietf-rtcweb-transports] by simply
 using the values 1, 2, 4 and 8, respectively.

 In the FSE, each FG contains one static variable S_CR which is the
 sum of the calculated rates of all flows in the same FG. This value
 is used to calculate the sending rate.

 The information listed here is enough to implement the sample flow
 algorithm given below. FSE implementations could easily be extended
 to store, e.g., a flow's current sending rate for statistics
 gathering or future potential optimizations.

5.3. Flows

 Flows register themselves with SBD and FSE when they start,
 deregister from the FSE when they stop, and carry out an UPDATE
 function call every time their congestion controller calculates a new
 sending rate. Via UPDATE, they provide the newly calculated rate and
 optionally (if the algorithm supports it) the desired rate. The
 desired rate is less than the calculated rate in case of application-
 limited flows; otherwise, it is the same as the calculated rate.

 Below, two example algorithms are described. While other algorithms
 could be used instead, the same algorithm must be applied to all
 flows. Names of variables used in the algorithms are explained
 below.

 o CC_R(f) - The rate received from the congestion controller of flow
 f when it calls UPDATE.

 o FSE_R(f) - The rate calculated by the FSE for flow f.

 o DR(f) - The desired rate of flow f.

Islam, et al. Expires February 23, 2020 [Page 8]

Internet-Draft Coupled congestion control for RTP media August 2019

 o S_CR - The sum of the calculated rates of all flows in the same
 FG; this value is used to calculate the sending rate.

 o FG - A group of flows having the same FGI, and hence sharing the
 same bottleneck.

 o P(f) - The priority of flow f which is received from the flow's
 congestion controller; the FSE uses this variable for calculating
 FSE_R(f).

 o S_P - The sum of all the priorities.

 o TLO - The total leftover rate: the sum of rates that could not be
 assigned to flows that were limited by their desired rate.

 o AR - The aggregate rate that is assigned to flows that are not
 limited by their desired rate.

5.3.1. Example algorithm 1 - Active FSE

 This algorithm was designed to be the simplest possible method to
 assign rates according to the priorities of flows. Simulations
 results in [fse] indicate that it does however not significantly
 reduce queuing delay and packet loss.

 (1) When a flow f starts, it registers itself with SBD and the FSE.
 FSE_R(f) is initialized with the congestion controller's initial
 rate. SBD will assign the correct FGI. When a flow is assigned
 an FGI, it adds its FSE_R(f) to S_CR.

 (2) When a flow f stops or pauses, its entry is removed from the
 list.

 (3) Every time the congestion controller of the flow f determines a
 new sending rate CC_R(f), the flow calls UPDATE, which carries
 out the tasks listed below to derive the new sending rates for
 all the flows in the FG. A flow's UPDATE function uses three
 local (i.e. per-flow) temporary variables: S_P, TLO and AR.

 (a) It updates S_CR.

 S_CR = S_CR + CC_R(f) - FSE_R(f)

 (b) It calculates the sum of all the priorities, S_P, and
 initializes FSE_R.

Islam, et al. Expires February 23, 2020 [Page 9]

Internet-Draft Coupled congestion control for RTP media August 2019

 S_P = 0
 for all flows i in FG do
 S_P = S_P + P(i)
 FSE_R(i) = 0
 end for

 (c) It distributes S_CR among all flows, ensuring that each
 flow's desired rate is not exceeded.

 TLO = S_CR
 while(TLO-AR>0 and S_P>0)
 AR = 0
 for all flows i in FG do
 if FSE_R[i] < DR[i] then
 if TLO * P[i] / S_P >= DR[i] then
 TLO = TLO - DR[i]
 FSE_R[i] = DR[i]
 S_P = S_P - P[i]
 else
 FSE_R[i] = TLO * P[i] / S_P
 AR = AR + TLO * P[i] / S_P
 end if
 end if
 end for
 end while

 (d) It distributes FSE_R to all the flows.

 for all flows i in FG do
 send FSE_R(i) to the flow i
 end for

5.3.2. Example algorithm 2 - Conservative Active FSE

 This algorithm changes algorithm 1 to conservatively emulate the
 behavior of a single flow by proportionally reducing the aggregate
 rate on congestion. Simulations results in [fse] indicate that it
 can significantly reduce queuing delay and packet loss.

 Step (a) of the UPDATE function is changed as described below. This
 also introduces a local variable DELTA, which is used to calculate
 the difference between CC_R(f) and the previously stored FSE_R(f).
 To prevent flows from either ignoring congestion or overreacting, a
 timer keeps them from changing their rates immediately after the
 common rate reduction that follows a congestion event. This timer is
 set to 2 RTTs of the flow that experienced congestion because it is

Islam, et al. Expires February 23, 2020 [Page 10]

Internet-Draft Coupled congestion control for RTP media August 2019

 assumed that a congestion event can persist for up to one RTT of that
 flow, with another RTT added to compensate for fluctuations in the
 measured RTT value.

 (a) It updates S_CR based on DELTA.

 if Timer has expired or was not set then
 DELTA = CC_R(f) - FSE_R(f)
 if DELTA < 0 then // Reduce S_CR proportionally
 S_CR = S_CR * CC_R(f) / FSE_R(f)
 Set Timer for 2 RTTs
 else
 S_CR = S_CR + DELTA
 end if
 end if

6. Application

 This section specifies how the FSE can be applied to specific
 congestion control mechanisms and makes general recommendations that
 facilitate applying the FSE to future congestion controls.

6.1. NADA

 Network-Assisted Dynamic Adapation (NADA) [I-D.ietf-rmcat-nada] is a
 congestion control scheme for rtcweb. It calculates a reference rate
 r_ref upon receiving an acknowledgment, and then, based on the
 reference rate, it calculates a video target rate r_vin and a sending
 rate for the flows, r_send.

 When applying the FSE to NADA, the UPDATE function call described in
Section 5.3 gives the FSE NADA's reference rate r_ref. The

 recommended algorithm for NADA is the Active FSE in Section 5.3.1.
 In step 3 (c), when the FSE_R(i) is "sent" to the flow i, this means
 updating r_ref(r_vin and r_send) of flow i with the value of
 FSE_R(i).

6.2. General recommendations

 This section provides general advice for applying the FSE to
 congestion control mechanisms.

 Receiver-side calculations:
 When receiver-side calculations make assumptions about the rate
 of the sender, the calculations need to be synchronized or the
 receiver needs to be updated accordingly. This applies to TFRC
 [RFC5348], for example, where simulations showed somewhat less

https://datatracker.ietf.org/doc/html/rfc5348

Islam, et al. Expires February 23, 2020 [Page 11]

Internet-Draft Coupled congestion control for RTP media August 2019

 favorable results when using the FSE without a receiver-side
 change [fse].

 Stateful algorithms:
 When a congestion control algorithm is stateful (e.g., TCP,
 with Slow Start, Congestion Avoidance and Fast Recovery), these
 states should be carefully considered such that the overall
 state of the aggregate flow is correct. This may require
 sharing more information in the UPDATE call.

 Rate jumps:
 The FSE-based coupling algorithms can let a flow quickly
 increase its rate to its fair share, e.g. when a new flow joins
 or after a quiescent period. In case of window-based
 congestion controls, this may produce a burst which should be
 mitigated in some way. An example of how this could be done
 without using a timer is presented in [anrw2016], using TCP as
 an example.

7. Expected feedback from experiments

 The algorithm described in this memo has so far been evaluated using
 simulations covering all the tests for more than one flow from
 [I-D.ietf-rmcat-eval-test] (see [IETF-93], [IETF-94]). Experiments
 should confirm these results using at least the NADA congestion
 control algorithm with real-life code (e.g., browsers communicating
 over an emulated network covering the conditions in
 [I-D.ietf-rmcat-eval-test]. The tests with real-life code should be
 repeated afterwards in real network environments and monitored.
 Experiments should investigate cases where the media coder's output
 rate is below the rate that is calculated by the coupling algorithm
 (FSE_R(i) in algorithms 1 and 2, section 5.3). Implementers and
 testers are invited to document their findings in an Internet draft.

8. Acknowledgements

 This document has benefitted from discussions with and feedback from
 Andreas Petlund, Anna Brunstrom, Colin Perkins, David Hayes, David
 Ros (who also gave the FSE its name), Ingemar Johansson, Karen
 Nielsen, Kristian Hiorth, Mirja Kuehlewind, Martin Stiemerling,
 Spencer Dawkins, Varun Singh, Xiaoqing Zhu, and Zaheduzzaman Sarker.
 The authors would like to especially thank Xiaoqing Zhu and Stefan
 Holmer for helping with NADA and GCC, and Anna Brunstrom as well as
 Julius Flohr for helping us correct the active algorithm for the case
 of application-limited flows.

Islam, et al. Expires February 23, 2020 [Page 12]

Internet-Draft Coupled congestion control for RTP media August 2019

 This work was partially funded by the European Community under its
 Seventh Framework Programme through the Reducing Internet Transport
 Latency (RITE) project (ICT-317700).

9. IANA Considerations

 This memo includes no request to IANA.

10. Security Considerations

 In scenarios where the architecture described in this document is
 applied across applications, various cheating possibilities arise:
 e.g., supporting wrong values for the calculated rate, the desired
 rate, or the priority of a flow. In the worst case, such cheating
 could either prevent other flows from sending or make them send at a
 rate that is unreasonably large. The end result would be unfair
 behavior at the network bottleneck, akin to what could be achieved
 with any UDP based application. Hence, since this is no worse than
 UDP in general, there seems to be no significant harm in using this
 in the absence of UDP rate limiters.

 In the case of a single-user system, it should also be in the
 interest of any application programmer to give the user the best
 possible experience by using reasonable flow priorities or even
 letting the user choose them. In a multi-user system, this interest
 may not be given, and one could imagine the worst case of an "arms
 race" situation, where applications end up setting their priorities
 to the maximum value. If all applications do this, the end result is
 a fair allocation in which the priority mechanism is implicitly
 eliminated, and no major harm is done.

 Implementers should also be aware of the Security Considerations
 sections of [RFC3124], [RFC5348], and [RFC7478].

11. References

11.1. Normative References

 [I-D.ietf-rmcat-nada]
 Zhu, X., *, R., Ramalho, M., Cruz, S., Jones, P., Fu, J.,
 and S. D'Aronco, "NADA: A Unified Congestion Control
 Scheme for Real-Time Media", draft-ietf-rmcat-nada-11
 (work in progress), July 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc7478
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-nada-11
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Islam, et al. Expires February 23, 2020 [Page 13]

Internet-Draft Coupled congestion control for RTP media August 2019

 [RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion Manager",
RFC 3124, DOI 10.17487/RFC3124, June 2001,

 <https://www.rfc-editor.org/info/rfc3124>.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, DOI 10.17487/RFC5348, September 2008,
 <https://www.rfc-editor.org/info/rfc5348>.

11.2. Informative References

 [anrw2016]
 Islam, S. and M. Welzl, "Start Me Up:Determining and
 Sharing TCP's Initial Congestion Window", ACM, IRTF, ISOC
 Applied Networking Research Workshop 2016 (ANRW 2016) ,
 2016.

 [fse] Islam, S., Welzl, M., Gjessing, S., and N. Khademi,
 "Coupled Congestion Control for RTP Media", ACM SIGCOMM
 Capacity Sharing Workshop (CSWS 2014) and ACM SIGCOMM CCR
 44(4) 2014; extended version available as a technical
 report from

http://safiquli.at.ifi.uio.no/paper/fse-tech-report.pdf ,
 2014.

 [fse-noms]
 Islam, S., Welzl, M., Hayes, D., and S. Gjessing,
 "Managing Real-Time Media Flows through a Flow State
 Exchange", IEEE NOMS 2016, Istanbul, Turkey , 2016.

 [I-D.ietf-rmcat-eval-test]
 Sarker, Z., Singh, V., Zhu, X., and M. Ramalho, "Test
 Cases for Evaluating RMCAT Proposals", draft-ietf-rmcat-

eval-test-10 (work in progress), May 2019.

 [I-D.ietf-rmcat-gcc]
 Holmer, S., Lundin, H., Carlucci, G., Cicco, L., and S.
 Mascolo, "A Google Congestion Control Algorithm for Real-
 Time Communication", draft-ietf-rmcat-gcc-02 (work in
 progress), July 2016.

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", draft-ietf-rtcweb-overview-19
 (work in progress), November 2017.

https://datatracker.ietf.org/doc/html/rfc3124
https://www.rfc-editor.org/info/rfc3124
https://datatracker.ietf.org/doc/html/rfc5348
https://www.rfc-editor.org/info/rfc5348
http://safiquli.at.ifi.uio.no/paper/fse-tech-report.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-eval-test-10
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-eval-test-10
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-overview-19

Islam, et al. Expires February 23, 2020 [Page 14]

Internet-Draft Coupled congestion control for RTP media August 2019

 [I-D.ietf-rtcweb-transports]
 Alvestrand, H., "Transports for WebRTC", Internet-draft

draft-ietf-rtcweb-transports-17.txt, October 2016.

 [IETF-93] Islam, S., Welzl, M., and S. Gjessing, "Updates on Coupled
 Congestion Control for RTP Media", July 2015,
 <https://www.ietf.org/proceedings/93/rmcat.html>.

 [IETF-94] Islam, S., Welzl, M., and S. Gjessing, "Updates on Coupled
 Congestion Control for RTP Media", November 2015,
 <https://www.ietf.org/proceedings/94/rmcat.html>.

 [RFC7478] Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use Cases and Requirements", RFC 7478,
 DOI 10.17487/RFC7478, March 2015,
 <https://www.rfc-editor.org/info/rfc7478>.

 [RFC7656] Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G., and
 B. Burman, Ed., "A Taxonomy of Semantics and Mechanisms
 for Real-Time Transport Protocol (RTP) Sources", RFC 7656,
 DOI 10.17487/RFC7656, November 2015,
 <https://www.rfc-editor.org/info/rfc7656>.

 [RFC8087] Fairhurst, G. and M. Welzl, "The Benefits of Using
 Explicit Congestion Notification (ECN)", RFC 8087,
 DOI 10.17487/RFC8087, March 2017,
 <https://www.rfc-editor.org/info/rfc8087>.

 [RFC8382] Hayes, D., Ed., Ferlin, S., Welzl, M., and K. Hiorth,
 "Shared Bottleneck Detection for Coupled Congestion
 Control for RTP Media", RFC 8382, DOI 10.17487/RFC8382,
 June 2018, <https://www.rfc-editor.org/info/rfc8382>.

 [rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",
 Internet-draft draft-ietf-rtcweb-rtp-usage-26.txt, March
 2016.

 [transport-multiplex]
 Westerlund, M. and C. Perkins, "Multiple RTP Sessions on a
 Single Lower-Layer Transport", Internet-draft draft-

westerlund-avtcore-transport-multiplexing-07.txt, October
 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-transports-17.txt
https://www.ietf.org/proceedings/93/rmcat.html
https://www.ietf.org/proceedings/94/rmcat.html
https://datatracker.ietf.org/doc/html/rfc7478
https://www.rfc-editor.org/info/rfc7478
https://datatracker.ietf.org/doc/html/rfc7656
https://www.rfc-editor.org/info/rfc7656
https://datatracker.ietf.org/doc/html/rfc8087
https://www.rfc-editor.org/info/rfc8087
https://datatracker.ietf.org/doc/html/rfc8382
https://www.rfc-editor.org/info/rfc8382
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-26.txt
https://datatracker.ietf.org/doc/html/draft-westerlund-avtcore-transport-multiplexing-07.txt
https://datatracker.ietf.org/doc/html/draft-westerlund-avtcore-transport-multiplexing-07.txt

Islam, et al. Expires February 23, 2020 [Page 15]

Internet-Draft Coupled congestion control for RTP media August 2019

Appendix A. Application to GCC

 Google Congestion Control (GCC) [I-D.ietf-rmcat-gcc] is another
 congestion control scheme for RTP flows that is under development.
 GCC is not yet finalised, but at the time of this writing, the rate
 control of GCC employs two parts: controlling the bandwidth estimate
 based on delay, and controlling the bandwidth estimate based on loss.
 Both are designed to estimate the available bandwidth, A_hat.

 When applying the FSE to GCC, the UPDATE function call described in
Section 5.3 gives the FSE GCC's estimate of available bandwidth

 A_hat. The recommended algorithm for GCC is the Active FSE in
Section 5.3.1. In step 3 (c), when the FSE_R(i) is "sent" to the

 flow i, this means updating A_hat of flow i with the value of
 FSE_R(i).

Appendix B. Scheduling

 When flows originate from the same host, it would be possible to use
 only one single sender-side congestion controller which determines
 the overall allowed sending rate, and then use a local scheduler to
 assign a proportion of this rate to each RTP session. This way,
 priorities could also be implemented as a function of the scheduler.
 The Congestion Manager (CM) [RFC3124] also uses such a scheduling
 function.

Appendix C. Example algorithm - Passive FSE

 Active algorithms calculate the rates for all the flows in the FG and
 actively distribute them. In a passive algorithm, UPDATE returns a
 rate that should be used instead of the rate that the congestion
 controller has determined. This can make a passive algorithm easier
 to implement; however, when round-trip times of flows are unequal,
 shorter-RTT flows may (depending on the congestion control algorithm)
 update and react to the overall FSE state more often than longer-RTT
 flows, which can produce unwanted side effects. This problem is more
 significant when the congestion control convergence depends on the
 RTT. While the passive algorithm works better for congestion
 controls with RTT-independent convergence, it can still produce
 oscillations on short time scales. The algorithm described below is
 therefore considered as highly experimental and not safe to deploy
 outside of testbed environments. Results of a simplified passive FSE
 algorithm with both NADA and GCC can be found in [fse-noms].

 In the passive version of the FSE, TLO (the Total Leftover Rate) is a
 static variable per FG which is initialized to 0. Additionally, S_CR
 is limited to increase or decrease as conservatively as a flow's
 congestion controller decides in order to prohibit sudden rate jumps.

https://datatracker.ietf.org/doc/html/rfc3124

Islam, et al. Expires February 23, 2020 [Page 16]

Internet-Draft Coupled congestion control for RTP media August 2019

 (1) When a flow f starts, it registers itself with SBD and the FSE.
 FSE_R(f) and DR(f) are initialized with the congestion
 controller's initial rate. SBD will assign the correct FGI.
 When a flow is assigned an FGI, it adds its FSE_R(f) to S_CR.

 (2) When a flow f stops or pauses, it sets its DR(f) to 0 and sets
 P(f) to -1.

 (3) Every time the congestion controller of the flow f determines a
 new sending rate CC_R(f), assuming the flow's new desired rate
 new_DR(f) to be "infinity" in case of a bulk data transfer with
 an unknown maximum rate, the flow calls UPDATE, which carries
 out the tasks listed below to derive the flow's new sending
 rate, Rate(f). A flow's UPDATE function uses a few local (i.e.
 per-flow) temporary variables, which are all initialized to 0:
 DELTA, new_S_CR and S_P.

 (a) For all the flows in its FG (including itself), it
 calculates the sum of all the calculated rates, new_S_CR.
 Then it calculates DELTA: the difference between FSE_R(f)
 and CC_R(f).

 for all flows i in FG do
 new_S_CR = new_S_CR + FSE_R(i)
 end for
 DELTA = CC_R(f) - FSE_R(f)

 (b) It updates S_CR, FSE_R(f) and DR(f).

 FSE_R(f) = CC_R(f)
 if DELTA > 0 then // the flow's rate has increased
 S_CR = S_CR + DELTA
 else if DELTA < 0 then
 S_CR = new_S_CR + DELTA
 end if
 DR(f) = min(new_DR(f),FSE_R(f))

 (c) It calculates the leftover rate TLO, removes the terminated
 flows from the FSE and calculates the sum of all the
 priorities, S_P.

Islam, et al. Expires February 23, 2020 [Page 17]

Internet-Draft Coupled congestion control for RTP media August 2019

 for all flows i in FG do
 if P(i)<0 then
 delete flow
 else
 S_P = S_P + P(i)
 end if
 end for
 if DR(f) < FSE_R(f) then
 TLO = TLO + (P(f)/S_P) * S_CR - DR(f))
 end if

 (d) It calculates the sending rate, Rate(f).

 Rate(f) = min(new_DR(f), (P(f)*S_CR)/S_P + TLO)

 if Rate(f) != new_DR(f) and TLO > 0 then
 TLO = 0 // f has 'taken' TLO
 end if

 (e) It updates DR(f) and FSE_R(f) with Rate(f).

 if Rate(f) > DR(f) then
 DR(f) = Rate(f)
 end if
 FSE_R(f) = Rate(f)

 The goals of the flow algorithm are to achieve prioritization,
 improve network utilization in the face of application-limited flows,
 and impose limits on the increase behavior such that the negative
 impact of multiple flows trying to increase their rate together is
 minimized. It does that by assigning a flow a sending rate that may
 not be what the flow's congestion controller expected. It therefore
 builds on the assumption that no significant inefficiencies arise
 from temporary application-limited behavior or from quickly jumping
 to a rate that is higher than the congestion controller intended.
 How problematic these issues really are depends on the controllers in
 use and requires careful per-controller experimentation. The coupled
 congestion control mechanism described here also does not require all
 controllers to be equal; effects of heterogeneous controllers, or
 homogeneous controllers being in different states, are also subject
 to experimentation.

 This algorithm gives all the leftover rate of application-limited
 flows to the first flow that updates its sending rate, provided that
 this flow needs it all (otherwise, its own leftover rate can be taken
 by the next flow that updates its rate). Other policies could be

Islam, et al. Expires February 23, 2020 [Page 18]

Internet-Draft Coupled congestion control for RTP media August 2019

 applied, e.g. to divide the leftover rate of a flow equally among all
 other flows in the FGI.

C.1. Example operation (passive)

 In order to illustrate the operation of the passive coupled
 congestion control algorithm, this section presents a toy example of
 two flows that use it. Let us assume that both flows traverse a
 common 10 Mbit/s bottleneck and use a simplistic congestion
 controller that starts out with 1 Mbit/s, increases its rate by 1
 Mbit/s in the absence of congestion and decreases it by 2 Mbit/s in
 the presence of congestion. For simplicity, flows are assumed to
 always operate in a round-robin fashion. Rate numbers below without
 units are assumed to be in Mbit/s. For illustration purposes, the
 actual sending rate is also shown for every flow in FSE diagrams even
 though it is not really stored in the FSE.

 Flow #1 begins. It is a bulk data transfer and considers itself to
 have top priority. This is the FSE after the flow algorithm's step
 1:

 --
#	FGI	P	FSE_R	DR	Rate
1	1	1	1	1	1
 --
 S_CR = 1, TLO = 0

 Its congestion controller gradually increases its rate. Eventually,
 at some point, the FSE should look like this:

#	FGI	P	FSE_R	DR	Rate
1	1	1	10	10	10

 S_CR = 10, TLO = 0

 Now another flow joins. It is also a bulk data transfer, and has a
 lower priority (0.5):

Islam, et al. Expires February 23, 2020 [Page 19]

Internet-Draft Coupled congestion control for RTP media August 2019

 --
#	FGI	P	FSE_R	DR	Rate
1	1	1	10	10	10
2	1	0.5	1	1	1
 --
 S_CR = 11, TLO = 0

 Now assume that the first flow updates its rate to 8, because the
 total sending rate of 11 exceeds the total capacity. Let us take a
 closer look at what happens in step 3 of the flow algorithm.

 CC_R(1) = 8. new_DR(1) = infinity.
 3 a) new_S_CR = 11; DELTA = 8 - 10 = -2.
 3 b) FSE_R(1) = 8. DELTA is negative, hence S_CR = 9;
 DR(1) = 8.
 3 c) S_P = 1.5.
 3 d) new sending rate Rate(1) = min(infinity, 1/1.5 * 9 + 0) = 6.
 3 e) FSE_R(1) = 6.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	6	8	6
2	1	0.5	1	1	1

 S_CR = 9, TLO = 0

 The effect is that flow #1 is sending with 6 Mbit/s instead of the 8
 Mbit/s that the congestion controller derived. Let us now assume
 that flow #2 updates its rate. Its congestion controller detects
 that the network is not fully saturated (the actual total sending
 rate is 6+1=7) and increases its rate.

Islam, et al. Expires February 23, 2020 [Page 20]

Internet-Draft Coupled congestion control for RTP media August 2019

 CC_R(2) = 2. new_DR(2) = infinity.
 3 a) new_S_CR = 7; DELTA = 2 - 1 = 1.
 3 b) FSE_R(2) = 2. DELTA is positive, hence S_CR = 9 + 1 = 10;
 DR(2) = 2.
 3 c) S_P = 1.5.
 3 d) Rate(2) = min(infinity, 0.5/1.5 * 10 + 0) = 3.33.
 3 e) DR(2) = FSE_R(2) = 3.33.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	6	8	6
2	1	0.5	3.33	3.33	3.33

 S_CR = 10, TLO = 0

 The effect is that flow #2 is now sending with 3.33 Mbit/s, which is
 close to half of the rate of flow #1 and leads to a total utilization
 of 6(#1) + 3.33(#2) = 9.33 Mbit/s. Flow #2's congestion controller
 has increased its rate faster than the controller actually expected.
 Now, flow #1 updates its rate. Its congestion controller detects
 that the network is not fully saturated and increases its rate.
 Additionally, the application feeding into flow #1 limits the flow's
 sending rate to at most 2 Mbit/s.

 CC_R(1) = 7. new_DR(1) = 2.
 3 a) new_S_CR = 9.33; DELTA = 1.
 3 b) FSE_R(1) = 7, DELTA is positive, hence S_CR = 10 + 1 = 11;
 DR(1) = min(2, 7) = 2.
 3 c) S_P = 1.5; DR(1) < FSE_R(1), hence TLO = 1/1.5 * 11 - 2 = 5.33.
 3 d) Rate(1) = min(2, 1/1.5 * 11 + 5.33) = 2.
 3 e) FSE_R(1) = 2.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	2	2	2
2	1	0.5	3.33	3.33	3.33

 S_CR = 11, TLO = 5.33

Islam, et al. Expires February 23, 2020 [Page 21]

Internet-Draft Coupled congestion control for RTP media August 2019

 Now, the total rate of the two flows is 2 + 3.33 = 5.33 Mbit/s, i.e.
 the network is significantly underutilized due to the limitation of
 flow #1. Flow #2 updates its rate. Its congestion controller
 detects that the network is not fully saturated and increases its
 rate.

 CC_R(2) = 4.33. new_DR(2) = infinity.
 3 a) new_S_CR = 5.33; DELTA = 1.
 3 b) FSE_R(2) = 4.33. DELTA is positive, hence S_CR = 12;
 DR(2) = 4.33.
 3 c) S_P = 1.5.
 3 d) Rate(2) = min(infinity, 0.5/1.5 * 12 + 5.33) = 9.33.
 3 e) FSE_R(2) = 9.33, DR(2) = 9.33.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	2	2	2
2	1	0.5	9.33	9.33	9.33

 S_CR = 12, TLO = 0

 Now, the total rate of the two flows is 2 + 9.33 = 11.33 Mbit/s.
 Finally, flow #1 terminates. It sets P(1) to -1 and DR(1) to 0. Let
 us assume that it terminated late enough for flow #2 to still
 experience the network in a congested state, i.e. flow #2 decreases
 its rate in the next iteration.

Islam, et al. Expires February 23, 2020 [Page 22]

Internet-Draft Coupled congestion control for RTP media August 2019

 CC_R(2) = 7.33. new_DR(2) = infinity.
 3 a) new_S_CR = 11.33; DELTA = -2.
 3 b) FSE_R(2) = 7.33. DELTA is negative, hence S_CR = 9.33;
 DR(2) = 7.33.
 3 c) Flow 1 has P(1) = -1, hence it is deleted from the FSE.
 S_P = 0.5.
 3 d) Rate(2) = min(infinity, 0.5/0.5*9.33 + 0) = 9.33.
 3 e) FSE_R(2) = DR(2) = 9.33.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
2	1	0.5	9.33	9.33	9.33

 S_CR = 9.33, TLO = 0

Appendix D. Change log

D.1. draft-welzl-rmcat-coupled-cc

D.1.1. Changes from -00 to -01

 o Added change log.

 o Updated the example algorithm and its operation.

D.1.2. Changes from -01 to -02

 o Included an active version of the algorithm which is simpler.

 o Replaced "greedy flow" with "bulk data transfer" and "non-greedy"
 with "application-limited".

 o Updated new_CR to CC_R, and CR to FSE_R for better understanding.

D.1.3. Changes from -02 to -03

 o Included an active conservative version of the algorithm which
 reduces queue growth and packet loss; added a reference to a
 technical report that shows these benefits with simulations.

 o Moved the passive variant of the algorithm to appendix.

https://datatracker.ietf.org/doc/html/draft-welzl-rmcat-coupled-cc

Islam, et al. Expires February 23, 2020 [Page 23]

Internet-Draft Coupled congestion control for RTP media August 2019

D.1.4. Changes from -03 to -04

 o Extended SBD section.

 o Added a note about window-based controllers.

D.1.5. Changes from -04 to -05

 o Added a section about applying the FSE to specific congestion
 control algorithms, with a subsection specifying its use with
 NADA.

D.2. draft-ietf-rmcat-coupled-cc

D.2.1. Changes from draft-welzl-rmcat-coupled-cc-05

 o Moved scheduling section to the appendix.

D.2.2. Changes from -00 to -01

 o Included how to apply the algorithm to GCC.

 o Updated variable names of NADA to be in line with the latest
 version.

 o Added a reference to [I-D.ietf-rtcweb-transports] to make a
 connection to the prioritization text there.

D.2.3. Changes from -01 to -02

 o Minor changes.

 o Moved references of NADA and GCC from informative to normative.

 o Added a reference for the passive variant of the algorithm.

D.2.4. Changes from -02 to -03

 o Minor changes.

 o Added a section about expected feedback from experiments.

D.2.5. Changes from -03 to -04

 o Described the names of variables used in the algorithms.

 o Added a diagram to illustrate the interaction between flows and
 the FSE.

https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-coupled-cc
https://datatracker.ietf.org/doc/html/draft-welzl-rmcat-coupled-cc-05

Islam, et al. Expires February 23, 2020 [Page 24]

Internet-Draft Coupled congestion control for RTP media August 2019

 o Added text on the trade-off of using the configuration based
 approach.

 o Minor changes to enhance the readability.

D.2.6. Changes from -04 to -05

 o Changed several occurrences of "NADA and GCC" to "NADA", including
 the abstract.

 o Moved the application to GCC to an appendix, and made the GCC
 reference informative.

 o Provided a few more general recommendations on applying the
 coupling algorithm.

D.2.7. Changes from -05 to -06

 o Incorporated comments by Colin Perkins.

D.2.8. Changes from -06 to -07

 o Addressed OPSDIR, SECDIR, GENART, AD and IESG comments.

D.2.9. Changes from -07 to -08

 o Updated the algorithms in section 5 to support application-limited
 flows. Moved definition of Desired Rate from appendix to section

5. Updated references.

D.2.10. Changes from -08 to -09

 o Minor improvement of the algorithms in section 5.

Authors' Addresses

 Safiqul Islam
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 84 08 37
 Email: safiquli@ifi.uio.no

Islam, et al. Expires February 23, 2020 [Page 25]

Internet-Draft Coupled congestion control for RTP media August 2019

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: steing@ifi.uio.no

Islam, et al. Expires February 23, 2020 [Page 26]

