
RMCAT WG I. Johansson
Internet-Draft Z. Sarker
Intended status: Experimental Ericsson AB
Expires: December 29, 2016 June 27, 2016

Self-Clocked Rate Adaptation for Multimedia
draft-ietf-rmcat-scream-cc-05

Abstract

 This memo describes a rate adaptation algorithm for conversational
 media services such as video. The solution conforms to the packet
 conservation principle and uses a hybrid loss and delay based
 congestion control algorithm. The algorithm is evaluated over both
 simulated Internet bottleneck scenarios as well as in a LTE (Long
 Term Evolution) system simulator and is shown to achieve both low
 latency and high video throughput in these scenarios.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 29, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Johansson & Sarker Expires December 29, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SCReAM June 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Wireless (LTE) access properties 3
1.2. Why is it a self-clocked algorithm? 4

2. Terminology . 4
3. Overview of SCReAM Algorithm 4
3.1. Network Congestion Control 7
3.2. Sender Transmission Control 7
3.3. Media Rate Control 7

4. Detailed Description of SCReAM 8
4.1. SCReAM Sender . 8
4.1.1. Constants and Parameter values 9
4.1.1.1. Constants . 9
4.1.1.2. State variables 10

4.1.2. Network congestion control 12
4.1.2.1. Congestion window update 15
4.1.2.2. Competing flows compensation 17
4.1.2.3. Lost packets detection 19
4.1.2.4. Send window calculation 19
4.1.2.5. Resuming fast increase 20

4.1.3. Media rate control 20
4.1.3.1. FEC and packet overhead considerations 24

4.2. SCReAM Receiver . 24
5. Discussion . 24
6. Implementation status . 25
6.1. OpenWebRTC . 25
6.2. A C++ Implementation of SCReAM 26

7. Acknowledgements . 26
8. IANA Considerations . 26
9. Security Considerations 27
10. Change history . 27
11. References . 28
11.1. Normative References 28
11.2. Informative References 28

Appendix A. Additional information 30
A.1. Stream prioritization 30
A.2. Computation of autocorrelation function 31
A.3. Sender transmission control and packet pacing 31
A.4. RTCP feedback considerations 31
A.4.1. Requirements on feedback elements 31
A.4.2. Requirements on feedback intensity 33

A.5. Q-bit semantics (source quench) 34
 Authors' Addresses . 35

Johansson & Sarker Expires December 29, 2016 [Page 2]

Internet-Draft SCReAM June 2016

1. Introduction

 Congestion in the Internet occurs when the transmitted bitrate is
 higher than the available bandwidth over a given transmission path.
 Applications that are deployed in the Internet must have congestion
 control schemes in place not only for the robustness of the service
 that it provides but also to ensure the function of the currently
 deployed Internet. Interactive realtime communication imposes a lot
 of requirements on the transport, therefore a robust, efficient rate
 adaptation for all access types is an important part of interactive
 realtime communications as the transmission channel bandwidth may
 vary over time. Wireless access such as LTE, which is an integral
 part of the current Internet, increases the importance of rate
 adaptation as the channel bandwidth of a default LTE bearer
 [QoS-3GPP] can change considerably in a very short time frame. Thus
 a rate adaptation solution for interactive realtime media, such as
 WebRTC, must be both quick and be able to operate over a large span
 in available channel bandwidth. This memo describes a solution,named
 SCReAM (Self-Clocked Rate Adaptation for Multimedia), that is based
 on the self-clocking principle of TCP and uses techniques similar to
 what is used in a new delay based rate adaptation algorithm, LEDBAT
 [RFC6817].

1.1. Wireless (LTE) access properties

 [I-D.ietf-rmcat-wireless-tests] describes the complications that can
 be observed in wireless environments. Wireless access such as LTE
 can typically not guarantee a given bandwidth, this is true
 especially for default bearers. The network throughput may vary
 considerably for instance in cases where the wireless terminal is
 moving around. Even though LTE can support bitrates well above
 100Mbps, there are cases when the available bitrate can be much
 lower, examples are situations with high network load and poor
 coverage.

 Unlike wireline bottlenecks with large statistical multiplexing it is
 not possible to try to maintain a given bitrate when congestion is
 detected with the hope that other flows will yield, this is because
 there are generally few other flows competing for the same
 bottleneck. Each user gets its own variable throughput bottleneck,
 where the throughput depends on factors like channel quality, network
 load and historical throughput. The bottom line is, if the
 throughput drops, the sender has no other option than to reduce the
 bitrate. Once the radio scheduler has reduced the resource
 allocation for a bearer, an RMCAT flow in that bearer needs to reduce
 the sending rate quite quickly (in one RTT) in order to avoid
 excessive queuing delay or packet loss.

https://datatracker.ietf.org/doc/html/rfc6817

Johansson & Sarker Expires December 29, 2016 [Page 3]

Internet-Draft SCReAM June 2016

1.2. Why is it a self-clocked algorithm?

 Self-clocked congestion control algorithm provides with a benefit
 over the rate based counterparts in that the former consists of two
 parts; the congestion window computation that evolves over a longer
 timescale (several RTTs) especially when the congestion window
 evolution is dictated by estimated delay (to minimize vulnerability
 to e.g. short term delay variations) and; the fine grained congestion
 control given by the self-clocking which operates on a shorter time
 scale (1 RTT). The benefits of self-clocking are also elaborated
 upon in [TFWC].

 A rate based congestion control typically adjusts the rate based on
 delay and loss. The congestion detection needs to be done with a
 certain time lag to avoid over-reaction to spurious congestion events
 such as delay spikes. Despite the fact that there are two or more
 congestion indications, the outcome is still that there is only one
 mechanism to adjust the sending rate. This makes it difficult to
 reach the goals of high throughput and prompt reaction to congestion.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [RFC2119]

3. Overview of SCReAM Algorithm

 The core SCReAM algorithm has similarities to the concepts of self-
 clocking used in TFWC [TFWC] and follows the packet conservation
 principle. The packet conservation principle is described as an
 important key-factor behind the protection of networks from
 congestion [PACKET_CONSERVATION].

 In SCReAM, the receiver of the media echoes a list of received RTP
 packets and the timestamp of the RTP packet with the highest sequence
 number back to the sender in feedback packets, the sender keeps a
 list of transmitted packets, their respective sizes and the time they
 were transmitted. This information is used to determine the amount
 of bytes that can be transmitted at any given time instant. A
 congestion window puts an upper limit on how many bytes can be in
 flight, i.e transmitted but not yet acknowledged. All this
 implements a congestion control that follows the packet conservation
 principle. The fact that SCReAM follows the packet conservation
 principle, makes it as safe to deploy as a congestion control
 algorithm for the Internet as TCP and its most commonly used
 congestion control algorithms are. No additional circuit breaker
 mechanisms are necessary with SCReAM as the ACK-clocking

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Johansson & Sarker Expires December 29, 2016 [Page 4]

Internet-Draft SCReAM June 2016

 automatically falls back to a very low transmission rate (1 RTP
 packet/200ms) when the acknowledgements no longer arrive at the
 sender. Furthermore, high packet loss rates reduces the congestion
 value to very low values and thus a low transmission rate.

 The congestion window is determined in a way similar to LEDBAT
 [RFC6817].

 LEDBAT is a congestion control algorithm that uses send and receive
 timestamps to estimate the queuing delay along the transmission path.
 This information is used to adjust the congestion window. The use of
 LEDBAT ensures that the end-to-end latency is kept low. The basic
 functionality is quite simple, there are however a few steps to take
 to make the concept work with conversational media. In a few words
 they are:

 o Congestion window validation techniques. These are similar in
 action as the method described in [RFC7661]. Congestion window
 validation ensures that the congestion window is limited by the
 amount of actual bytes in flight, this is important especially in
 the context of rate limited sources such as video. Lack of
 congestion window validation would lead to a slow reaction to
 congestion as the congestion window does not properly reflect the
 congestion state in the network. The allowed idle period in this
 memo is shorter than in [RFC7661], this to avoid excessive delays
 in the cases where e.g. wireless throughput has decreased during a
 period where the output bitrate from the media coder has been low,
 for instance due to inactivity. Furthermore, this memo allows for
 more relaxed rules for when the congestion window is allowed to
 grow, this is necessary as the variable output bitrate generally
 means that the congestion window is often under-utilized.

 o Fast increase for quicker bitrate increase. It makes the media
 bitrate ramp-up within 5 to 10 seconds. The behavior is similar
 to TCP slowstart. The fast increase is exited when congestion is
 detected. The fast increase state can however resume if the
 congestion level is low, this to enable a reasonably quick rate
 increase in case link throughput increases.

 o A delay trend is computed for earlier detection of incipient
 congestion and as a result it reduces jitter.

 o Addition of a media rate control function.

 o Use of inflection points in the media rate calculation to achieve
 reduced jitter.

https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc7661
https://datatracker.ietf.org/doc/html/rfc7661

Johansson & Sarker Expires December 29, 2016 [Page 5]

Internet-Draft SCReAM June 2016

 o Adjustment of delay target for better performance when competing
 with other loss based congestion controlled flows.

 The above mentioned features will be described in more detail in
 sections Section 3.1 to Section 3.3.

 +---------------------------+
 | Media encoder |
 +---------------------------+
 ^ |
 (3)| (1)|
 | RTP
 | V
 | +-----------+
 +---------+ | |
 | Media | (2) | Queue |
 | rate |<------| |
 | control | |RTP packets|
 +---------+ | |
 +-----------+
 |
 |
 (4)|
 RTP
 |
 v
 +------------+ +--------------+
 | Network | (7) | Sender |
 +-->| congestion |------>| Transmission |
 | | control | | Control |
 | +------------+ +--------------+
 | |
 | (6) |(5)
 |-------------RTCP----------| RTP
 | |
 | v
 +------------+
 | UDP |
 | socket |
 +------------+

 Figure 1: SCReAM sender functional view

 The SCReAM algorithm constitutes mainly three parts: network
 congestion control, sender transmission control and media rate
 control. All these three parts reside at the sender side. Figure 1
 shows the functional overview of a SCReAM sender. The receiver side

Johansson & Sarker Expires December 29, 2016 [Page 6]

Internet-Draft SCReAM June 2016

 algorithm is very simple in comparison as it only generates feedback
 containing acknowledgements of received RTP packets and an ECN count.

3.1. Network Congestion Control

 The network congestion control sets an upper limit on how much data
 can be in the network (bytes in flight); this limit is called CWND
 (congestion window) and is used in the sender transmission control.

 The SCReAM congestion control method, uses techniques similar to
 LEDBAT [RFC6817] to measure the queuing delay, also termed qdelay in
 this memo for brevity. Similar to LEDBAT, it is not necessary to use
 synchronized clocks in sender and receiver in order to compute the
 queuing delay. It is however necessary that they use the same clock
 frequency, or that the clock frequency at the receiver can be
 inferred reliably by the sender.

 The SCReAM sender calculates the congestion window based on the
 feedback from the SCReAM receiver. The congestion window is allowed
 to increase if the qdelay is below a predefined qdelay target,
 otherwise the congestion window decreases. The qdelay delay target
 is typically set to 50-100ms. This ensures that the queuing delay is
 kept low. The reaction to loss or ECN events leads to an instant
 reduction of CWND. Note that the source rate limited nature of real
 time media such as video, typically means that the queuing delay will
 mostly be below the given delay target, this is contrary to the case
 where large files are transmitted using LEDBAT congestion control, in
 which case the queuing delay will stay close to the delay target.

3.2. Sender Transmission Control

 The sender transmission control limits the output of data, given by
 the relation between the number of bytes in flight and the congestion
 window. Packet pacing is used to mitigate issues with ACK
 compression that may cause increased jitter and/or packet loss in the
 media traffic. Packet pacing limits the packet transmission rate,
 given by the estimated link throughput, this has the effect that even
 if the send window allows for the transmission of a number of
 packets, these packets are not transmitted immediately, but rather
 they are transmitted in intervals given by the packet size and the
 link throughput.

3.3. Media Rate Control

 The media rate control serves to adjust the media bitrate to ramp up
 quickly enough to get a fair share of the system resources when link
 throughput increases.

https://datatracker.ietf.org/doc/html/rfc6817

Johansson & Sarker Expires December 29, 2016 [Page 7]

Internet-Draft SCReAM June 2016

 The reaction to reduced throughput must be prompt in order to avoid
 getting too much data queued up in the RTP packet queue(s) in the
 sender. The media bitrate is decreased if the RTP queue size exceeds
 a threshold.

 In cases where the sender frame queues increase rapidly such as the
 case of a RAT (Radio Access Type) handover it may be necessary to
 implement additional actions, such as discarding of encoded media
 frames or frame skipping in order to ensure that the RTP queues are
 drained quickly or simply that stale RTP packets are removed from the
 queue. Frame skipping means that the frame rate is temporarily
 reduced. Which method to use is a design consideration and outside
 the scope of this algorithm description.

4. Detailed Description of SCReAM

4.1. SCReAM Sender

 This section describes the sender side algorithm in more detail. It
 is a split between the network congestion control, sender
 transmission control and the media rate control.

 A SCReAM sender implements media rate control and a queue for each
 media type or source, where RTP packets containing encoded media
 frames are temporarily stored for transmission. Figure 1 shows the
 details when a single media source (a.k.a stream) is used. Multiple
 media sources are also supported in the design, in that case the
 sender transmission control will include a transmission scheduler.
 The transmission scheduler can then enforce the priorities for the
 different streams and then act like a coupled congestion controller
 for multiple flows.

 Media frames are encoded and forwarded to the RTP queue (1) in
 Figure 1. The media rate adaptation adapts to the size of the RTP
 queue (2) and controls the media bitrate (3). The RTP packets are
 picked from the RTP queue (for multiple flows from each RTP queue
 based on some defined priority order or simply in a round robin
 fashion) (4) by the sender transmission controller. The sender
 transmission controller (in case of multiple flows a transmission
 scheduler) takes care of the transmission of RTP packets, to be
 written to the UDP socket (5). In the general case all media must go
 through the sender transmission controller and is allowed to be
 transmitted if the number of bytes in flight is less than the
 congestion window. RTCP packets are received (6) and the information
 about bytes in flight and congestion window is exchanged between the
 network congestion control and the sender transmission control (7).

Johansson & Sarker Expires December 29, 2016 [Page 8]

Internet-Draft SCReAM June 2016

4.1.1. Constants and Parameter values

 Constants and state variables are listed in this section. Temporary
 variables are not listed, instead they are appended with '_t' in the
 pseudo code to indicate their local scope.

4.1.1.1. Constants

 The recommended values for the constants are deduced from
 experiments.

 QDELAY_TARGET_LO (0.1s)
 Target value for the minimum qdelay.

 QDELAY_TARGET_HI (0.4s)
 Target value for the maximum qdelay.

 QDELAY_WEIGHT (0.1)
 Averaging factor for qdelay_fraction_avg.

 MAX_BYTES_IN_FLIGHT_HEAD_ROOM (1.1)
 Headroom for the limitation of CWND.

 GAIN (1.0)
 Gain factor for congestion window adjustment.

 BETA_LOSS (0.6)
 CWND scale factor due to loss event.

 BETA_ECN (0.8)
 CWND scale factor due to ECN event.

 BETA_R (0.9)
 Target rate scale factor due to loss event.

 MSS (1000 byte)
 Maximum segment size = Max RTP packet size.

 RATE_ADJUST_INTERVAL (0.2s)
 Interval between media bitrate adjustments.

 TARGET_BITRATE_MIN
 Min target bitrate [bps].

 TARGET_BITRATE_MAX
 Max target bitrate [bps].

 RAMP_UP_SPEED (200000bps/s)

Johansson & Sarker Expires December 29, 2016 [Page 9]

Internet-Draft SCReAM June 2016

 Maximum allowed rate increase speed.

 PRE_CONGESTION_GUARD (0.0..1.0)
 Guard factor against early congestion onset. A higher value gives
 less jitter, possibly at the expense of a lower link utilization.
 This value may be subject to tuning depending on e.g media coder
 characteristics, experiments with H264 and VP8 have however given
 that 0.1 is a suitable value.

 TX_QUEUE_SIZE_FACTOR (0.0..2.0)
 Guard factor against RTP queue buildup. This value may be subject
 to tuning depending on e.g media coder characteristics, experiments
 with H264 and VP8 have however given that 1.0 is a suitable value.

 RTP_QDELAY_TH (0.02s) RTP queue delay threshold for a target rate
 reduction.

 TARGET_RATE_SCALE_RTP_QDELAY (0.95) Target rate scale when RTP queue
 delay threshold exceeded.

 QDELAY_TREND_LO (0.2) Threshold value for qdelay_trend.

 T_RESUME_FAST_INCREASE Time span until fast increase can be resumed,
 given that the qdelay_trend is below QDELAY_TREND_LO.

4.1.1.2. State variables

 qdelay_target (QDELAY_TARGET_LO)
 qdelay target, a variable qdelay target is introduced to manage
 cases where e.g. FTP competes for the bandwidth over the same
 bottleneck, a fixed qdelay target would otherwise starve the RMCAT
 flow under such circumstances. The qdelay target is allowed to
 vary between QDELAY_TARGET_LO and QDELAY_TARGET_HI.

 qdelay_fraction_avg (0.0)
 EWMA filtered fractional qdelay.

 qdelay_fraction_hist[20] ({0,..,0})
 Vector of the last 20 fractional qdelay samples.

 qdelay_trend (0.0)
 qdelay trend, indicates incipient congestion.

 qdelay_trend_mem (0.0)
 Low pass filtered version of qdelay_trend.

 qdelay_norm_hist[100] ({0,..,0})
 Vector of the last 100 normalized qdelay samples.

Johansson & Sarker Expires December 29, 2016 [Page 10]

Internet-Draft SCReAM June 2016

 min_cwnd (2*MSS)
 Minimum congestion window.

 in_fast_increase (true)
 True if in fast increase state.

 cwnd (min_cwnd)
 Congestion window.

 bytes_newly_acked (0)
 The number of bytes that was acknowledged with the last received
 acknowledgement i.e bytes acknowledged since the last CWND update.

 send_wnd (0)
 Upper limit to how many bytes that can currently be transmitted.
 Updated when cwnd is updated and when RTP packet is transmitted.

 target_bitrate (0 bps)
 Media target bitrate.

 target_bitrate_last_max (1 bps)
 Media target bitrate inflection point i.e the last known highest
 target_bitrate. Used to limit bitrate increase speed close to the
 last known congestion point.

 rate_transmit (0.0 bps)
 Measured transmit bitrate.

 rate_ack (0.0 bps)
 Measured throughput based on received acknowledgements.

 rate_media (0.0 bps)
 Measured bitrate from the media encoder.

 rate_media_median (0.0 bps)
 Median value of rate_media, computed over more than 10s.

 s_rtt (0.0s)
 Smoothed RTT [s], computed similar to method depicted in [RFC6298]

 rtp_queue_size (0 bits)
 Size of RTP packets in queue.

 rtp_size (0 byte)
 Size of the last transmitted RTP packet.

 loss_event_rate (0.0)
 The estimated fraction of RTTs with lost packets detected.

https://datatracker.ietf.org/doc/html/rfc6298

Johansson & Sarker Expires December 29, 2016 [Page 11]

Internet-Draft SCReAM June 2016

4.1.2. Network congestion control

 This section explains the network congestion control, it contains two
 main functions

 o Computation of congestion window at the sender: Gives an upper
 limit to the number of bytes in flight i.e how many bytes that
 have been transmitted but not yet acknowledged.

 o Calculation of send window at the sender: RTP packets are
 transmitted if allowed by the relation between the number of bytes
 in flight and the congestion window. This is controlled by the
 send window.

 Unlike TCP, SCReAM is not a byte oriented protocol, rather it is an
 RTP packet oriented protocol. Thus a list of transmitted RTP packets
 and their respective transmission times (wall-clock time) is kept for
 further calculation. The congestion control is however based on
 transmitted and acknowledged bytes.

 SCReAM uses the terminology "Bytes in flight" (bytes_in_flight) which
 is computed as the sum of the sizes of the RTP packets ranging from
 the RTP packet most recently transmitted down to but not including
 the acknowledged packet with the highest sequence number. This can
 be translated to the difference between the highest transmitted byte
 sequence number and the highest acknowledged byte sequence number.
 As an example: If RTP packet with sequence number SN is transmitted
 and the last acknowledgement indicates SN-5 as the highest received
 sequence number then bytes in flight is computed as the sum of the
 size of RTP packets with sequence number SN-4, SN-3, SN-2, SN-1 and
 SN, it does not matter if for instance packet with sequence number
 SN-3 was lost, the size of RTP packet with sequence number SN-3 will
 still be considered in the computation of bytes_in_flight.

 Furthermore, a variable bytes_newly_acked is incremented with a value
 corresponding to how much the highest sequence number has increased
 since the last feedback. As an example: If the previous
 acknowledgement indicated the highest sequence number N and the new
 acknowledgement indicated N+3, then bytes_newly_acked is incremented
 by a value equal to the sum of the sizes of RTP packets with sequence
 number N+1, N+2 and N+3. Packets that are lost are also included,
 which means that even though e.g packet N+2 was lost, its size is
 still included in the update of bytes_newly_acked. The
 bytes_newly_acked is reset after a CWND update.

 The feedback from the receiver is assumed to consist of the following
 elements. More details are found in Appendix A.4.

Johansson & Sarker Expires December 29, 2016 [Page 12]

Internet-Draft SCReAM June 2016

 o A list of received RTP packets.

 o The wall clock timestamp corresponding to the received RTP packet
 with the highest sequence number.

 o Accumulated number of ECN-CE marked packets (n_ECN).

 When the sender receives RTCP feedback, the qdelay is calculated as
 outlined in [RFC6817]. A qdelay sample is obtained for each received
 acknowledgement. No smoothing of the qdelay samples occur, however
 some smoothing occurs anyway as the computation of the CWND is in
 itself a low pass filter function. A number of variables are updated
 as illustrated by the pseudo code below, temporary variables are
 appended with '_t'. Note that the pseudo code does not show all
 details for reasons of readability, the reader is referred to the C++
 code in [SCReAM-Cplusplus_Implementation] for the details.

 update_variables(qdelay):
 qdelay_fraction_t = qdelay/qdelay_target
 #calculate moving average
 qdelay_fraction_avg = (1-QDELAY_WEIGHT)*qdelay_fraction_avg+
 QDELAY_WEIGHT*qdelay_fraction_t
 update_qdelay_fraction_hist(qdelay_fraction_t)
 # R is an autocorrelation function of qdelay_fraction_hist
 # at lag K
 a = R(qdelay_fraction_hist,1)/R(qdelay_fraction_hist,0)
 #calculate qdelay trend
 qdelay_trend = min(1.0,max(0.0,a*qdelay_fraction_avg))
 #calculate a 'peak-hold' qdelay_trend, this gives a memory
 # of congestion in the past
 qdelay_trend_mem = max(0.99*qdelay_trend_mem, qdelay_trend)

 The qdelay fraction is sampled every 50ms and the last 20 samples are
 stored in a vector (qdelay_fraction_hist). This vector is used in
 the computation of an qdelay trend that gives a value between 0.0 and
 1.0 depending on the estimated congestion level. The prediction
 coefficient 'a' has positive values if qdelay shows an increasing
 trend, thus an indication of congestion is obtained before the qdelay
 target is reached. The autocorrelation function 'R' is defined in

Appendix A.2. The prediction coefficient is further multiplied with
 qdelay_fraction_avg to reduce sensitivity to increasing qdelay when
 it is very small. The 50ms sampling is a simplification and may have
 the effect that the same qdelay is sampled several times, this is
 however not a big issue as the vector is only used for the
 computation of qdelay_trend. The qdelay_trend is utilized in the
 media rate control to indicate incipient congestion and to determine
 when to exit from fast increase mode. qdelay_trend_mem is used to
 enforce a less aggressive rate increase after congestion events. The

https://datatracker.ietf.org/doc/html/rfc6817

Johansson & Sarker Expires December 29, 2016 [Page 13]

Internet-Draft SCReAM June 2016

 function update_qdelay_fraction_hist(..) removes the oldest element
 and adds the latest qdelay_fraction element to the
 qdelay_fraction_hist vector.

 A loss event is indicated if one or more RTP packets are declared
 missing. The loss detection is described in Section 4.1.2.3. Once a
 loss event is detected, further detected lost RTP packets are ignored
 for a full smoothed round trip time, the intention of this is to
 limit the congestion window decrease to at most once per round trip.
 The congestion window backoff due to loss events is deliberately a
 bit less than is the case with e.g. TCP Reno. The reason is that
 TCP is generally used to transmit whole files, which can be
 translated to an infinite source bitrate. SCReAM on the other hand
 has a source which rate is limited to a value close to the available
 transmit rate and often below said value, the effect of this is that
 SCReAM has less opportunity to grab free capacity than a TCP based
 file transfer. To compensate for this it is necessary to let SCReAM
 reduce the congestion window slightly less than what is the case with
 TCP when loss events occur.

 An ECN event is detected if the n_ECN counter in the feedback report
 has increased since the previous received feedback. Once an ECN
 event is detected, the n_ECN counter is ignored for a full smoothed
 round trip time, the intention of this is to limit the congestion
 window decrease to at most once per round trip. The congestion
 window backoff due to an ECN event is deliberately smaller than if a
 loss event occurs. This is in line with the idea outlined in
 [Khademi_alternative_backoff_ECN] to enable ECN marking thresholds
 lower than the corresponding packet drop thresholds.

 The update of the congestion window depends on whether loss or ECN-
 marking or neither occurs. The pseudo code below describes actions
 taken in case of the different events.

Johansson & Sarker Expires December 29, 2016 [Page 14]

Internet-Draft SCReAM June 2016

 on congestion event(qdelay):
 # Either loss or ECN mark is detected
 in_fast_increase = false
 if (is loss)
 # loss is detected
 cwnd = max(min_cwnd,cwnd*BETA_LOSS)
 else
 # No loss, so it is then an ECN mark
 cwnd = max(min_cwnd,cwnd*BETA_ECN)
 end
 adjust_qdelay_target(qdelay) #compensating for competing flows
 calculate_send_window(qdelay,qdelay_target)

 # when no congestion event
 on acknowledgement(qdelay):
 update_bytes_newly_acked()
 update_cwnd(bytes_newly_acked)
 adjust_qdelay_target(qdelay) #compensating for competing flows
 calculate_send_window(qdelay, qdelay_target)
 check_to_resume_fast_increase()

 The methods are further described in detail below.

4.1.2.1. Congestion window update

 The congestion window update is based on qdelay, except for the
 occurrence of loss events (one or more lost RTP packets in one RTT),
 or ECN events, which was described earlier.

 Pseudo code for the update of the congestion window is found below.

Johansson & Sarker Expires December 29, 2016 [Page 15]

Internet-Draft SCReAM June 2016

 update_cwnd(bytes_newly_acked):

 # in fast increase ?
 if (in_fast_increase)
 if (qdelay_trend >= 0.2)
 # incipient congestion detected, exit fast increase
 in_fast_increase = false
 else
 # no congestion yet, increase cwnd if it
 # is sufficiently used
 if (bytes_in_flight*1.5 > cwnd)
 cwnd = cwnd+bytes_newly_acked
 end
 return
 end
 end

 # not in fast increase phase
 # off_target calculated as with LEDBAT
 off_target_t = (qdelay_target - qdelay) / qdelay_target

 gain_t = GAIN
 # adjust congestion window
 cwnd_delta_t =
 gain_t * off_target_t * bytes_newly_acked * MSS / cwnd
 if (off_target_t > 0 && bytes_in_flight*1.25 <= cwnd)
 # no cwnd increase if window is underutilized
 cwnd_delta_t = 0;
 end

 # apply delta
 cwnd += cwnd_delta_t
 # limit cwnd to the maximum number of bytes in flight
 cwnd = min(cwnd, max_bytes_in_flight*MAX_BYTES_IN_FLIGHT_HEAD_ROOM)
 cwnd = max(cwnd, MIN_CWND)

 CWND is updated differently depending on whether the congestion
 control is in fast increase state or not, as controlled by the
 variable in_fast_increase.

 When in fast increase state, the congestion window is increased with
 the number of newly acknowledged bytes as long as the window is
 sufficiently used.

Johansson & Sarker Expires December 29, 2016 [Page 16]

Internet-Draft SCReAM June 2016

 The congestion window growth when in_fast_increase is false is
 dictated by the relation between qdelay and qdelay_target, congestion
 window growth is limited if the window is not used sufficiently.

 SCReAM calculates the GAIN in a similar way to what is specified in
 [RFC6817]. There are however a few differences.

 o [RFC6817] specifies a constant GAIN, this specification however
 limits the gain when CWND is increased dependent on near
 congestion state and the relation to the last known max CWND
 value.

 o [RFC6817] specifies that the CWND increase is limited by an
 additional function controlled by a constant ALLOWED_INCREASE.
 This additional limitation is removed in this specification.

 Further the CWND is limited by max_bytes_in_flight and min_cwnd. The
 limitation of the congestion window by the maximum number of bytes in
 flight over the last 5 seconds (max_bytes_in_flight) avoids possible
 over-estimation of the throughput after for example, idle periods.
 An additional MAX_BYTES_IN_FLIGHT_HEAD_ROOM allows for a slack, to
 allow for a certain amount of media coder output rate variability.

4.1.2.2. Competing flows compensation

 It is likely that a flow using SCReAM algorithm will have to share
 congested bottlenecks with other flows that use a more aggressive
 congestion control algorithm. SCReAM takes care of such situations
 by adjusting the qdelay_target.

https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc6817

Johansson & Sarker Expires December 29, 2016 [Page 17]

Internet-Draft SCReAM June 2016

 adjust_qdelay_target(qdelay)
 qdelay_norm_t = qdelay / QDELAY_TARGET_LOW
 update_qdelay_norm_history(qdelay_norm_t)
 # Compute variance
 qdelay_norm_var_t = VARIANCE(qdelay_norm_history(200))
 # Compensation for competing traffic
 # Compute average
 qdelay_norm_avg_t = AVERAGE(qdelay_norm_history(50))
 # Compute upper limit to target delay
 oh_t = qdelay_norm_avg_t + sqrt(qdelay_norm_var_t)
 oh_t *= QDELAY_TARGET_LO
 if (loss_event_rate > 0.002)
 # Packet losses detected
 qdelay_target = 1.5*oh_t
 else
 if (qdelay_norm_var_t < 0.2)
 # Reasonably safe to set target qdelay
 qdelay_target = oh_t
 else
 # Check if target delay can be reduced, this helps to avoid
 # that the target delay is locked to high values for ever
 if (oh_t < QDELAY_TARGET_LO)
 # Decrease target delay quickly as measured queueing
 # delay is lower than target
 qdelay_target = max(qdelay_target*0.5,oh_t)
 else
 # Decrease target delay slowly
 qdelay_target *= 0.9
 end
 end
 end

 # Apply limits
 qdelay_target = min(QDELAY_TARGET_HI, qdelay_target)
 qdelay_target = max(QDELAY_TARGET_LO, qdelay_target)

 The qdelay_target is adjusted differently, depending on if
 qdelay_norm_var_t is above or below a given value.
 A low qdelay_norm_avg_t value indicates that the qdelay does not
 change rapidly. It is desired avoid the case that the qdelay target
 is increased due to self-congestion, indicated by a changing qdelay
 and consequently an increased qdelay_norm_var_t. Still it should be
 possible to increase the qdelay target if the qdelay continues to be
 high. This is a simple function with a certain risk of both false
 positives and negatives but it manages competing FTP flows reasonably
 well at the same time as it has proven to avoid accidental increased
 qdelay target relatively well in simulated LTE test cases.

Johansson & Sarker Expires December 29, 2016 [Page 18]

Internet-Draft SCReAM June 2016

4.1.2.3. Lost packets detection

 Lost packets detection is based on the received sequence number list.
 A reordering window should be applied to avoid that packet reordering
 triggers loss events.
 The reordering window is specified as a time unit, similar to the
 ideas behind RACK (Recent ACKnowledgement) [RACK]. The computation
 of the reordering window is made possible by means of a lost flag in
 the list of transmitted RTP packets. This flag is set if the
 received sequence number list indicates that the given RTP packet is
 missing. If a later feedback indicates that a previously lost marked
 packet was indeed received, then the reordering window is updated to
 reflect the reordering delay. The reordering window is given by the
 difference in time between the event that the packet was marked as
 lost and the event that it was indicated as successfully received.
 Loss is detected if a given RTP packet is not acknowledged within a
 time window (indicated by the reordering window) after an RTP packet
 with higher sequence number was acknowledged.

4.1.2.4. Send window calculation

 The basic design principle behind packet transmission in SCReAM is to
 allow transmission only if the number of bytes in flight is less than
 the congestion window. There are however two reasons why this strict
 rule will not work optimally:

 o Bitrate variations: The media frame size is always varying to a
 larger or smaller extent. A strict rule as the one given above
 will have the effect that the media bitrate will have difficulties
 to increase as the congestion window puts a too hard restriction
 on the media frame size variation. This can lead to occasional
 queuing of RTP packets in the RTP packet queue that will further
 prevent bitrate increase.

 o Reverse (feedback) path congestion: Especially in transport over
 buffer-bloated networks, the one way delay in the reverse
 direction may jump due to congestion. The effect of this is that
 the acknowledgements are delayed with the result that the self-
 clocking is temporarily halted, even though the forward path is
 not congested.

 The send window is adjusted depending on qdelay and its relation to
 the qdelay target and the relation between the congestion window and
 the number of bytes in flight. A strict rule is applied when qdelay
 is higher than qdelay_target, to avoid further queue buildup in the
 network. For cases when qdelay is lower than the qdelay_target, a
 more relaxed rule is applied. This allows the bitrate to increase

Johansson & Sarker Expires December 29, 2016 [Page 19]

Internet-Draft SCReAM June 2016

 fast when no congestion is detected while still being able to give a
 stable behavior in congested situations.

 The send window is given by the relation between the adjusted
 congestion window and the amount of bytes in flight according to the
 pseudo code below.

 calculate_send_window(qdelay, qdelay_target)
 # send window is computed differently depending on congestion level
 if (qdelay <= qdelay_target)
 send_wnd = cwnd+MSS-bytes_in_flight
 else
 send_wnd = cwnd-bytes_in_flight
 end

 The send window is updated whenever an RTP packet is transmitted or
 an RTCP feedback messaged is received. More details around sender
 transmission control and packet pacing is found in Appendix A.3.

4.1.2.5. Resuming fast increase

 Fast increase can resume in order to speed up the bitrate increase in
 case congestion abates. The condition to resume fast increase
 (in_fast_increase = true) is that qdelay_trend is less than
 QDELAY_TREND_LO for T_RESUME_FAST_INCREASE seconds or more.

4.1.3. Media rate control

 The media rate control algorithm is executed at regular intervals
 RATE_ADJUSTMENT_INTERVAL, with the exception of a prompt reaction to
 loss events. The media rate control operates based on the size of
 the RTP packet send queue and observed loss events. In addition,
 qdelay_trend is also considered in the media rate control, this to
 reduce the amount of induced network jitter.

 The role of the media rate control is to strike a reasonable balance
 between a low amount of queuing in the RTP queue(s) and a sufficient
 amount of data to send in order to keep the data path busy. A too
 cautious setting leads to possible under-utilization of network
 capacity and that the flow is starved out by other, more
 opportunistic traffic, on the other hand a too aggressive setting
 leads to extra jitter.

 The target_bitrate is adjusted depending on the congestion state.
 The target bitrate can vary between a minimum value
 (TARGET_BITRATE_MIN) and a maximum value (TARGET_BITRATE_MAX).
 TARGET_BITRATE_MIN should be chosen to a low enough value to avoid
 that RTP packets are queued up when the network throughput becomes

Johansson & Sarker Expires December 29, 2016 [Page 20]

Internet-Draft SCReAM June 2016

 low. The sender should also be equipped with a mechanism that
 discards RTP packets in cases the network throughput becomes very low
 and RTP packets are excessively delayed.

 For the overall bitrate adjustment, two network throughput estimates
 are computed :

 o rate_transmit: The measured transmit bitrate.

 o rate_ack: The ACKed bitrate, i.e the volume of ACKed bits per time
 unit.

 Both estimates are updated every 200ms.

 The current throughput, current_rate, is computed as the maximum
 value of rate_transmit and rate_ack. The rationale behind the use of
 rate_ack in addition to rate_transmit is that rate_transmit is
 affected also by the amount of data that is available to transmit,
 thus a lack of data to transmit can be seen as reduced throughput
 that may itself cause an unnecessary rate reduction. To overcome
 this shortcoming; rate_ack is used as well. This gives a more stable
 throughput estimate.

 The rate change behavior depends on whether a loss event has occurred
 and if the congestion control is in fast increase or not.

Johansson & Sarker Expires December 29, 2016 [Page 21]

Internet-Draft SCReAM June 2016

 # The target_bitrate is updated at a regular interval according
 # to RATE_ADJUST_INTERVAL

 on loss:
 target_bitrate = max(BETA_R* target_bitrate, TARGET_BITRATE_MIN)
 exit

 ramp_up_speed_t = min(RAMP_UP_SPEED, target_bitrate/2.0)
 scale_t = (target_bitrate - target_bitrate_last_max)/
 target_bitrate_last_max
 scale_t = max(0.2, min(1.0, (scale_t*4)^2))
 # min scale_t value 0.2 as the bitrate should be allowed to
 # increase at least slowly --> avoid locking the rate to
 # target_bitrate_last_max
 if (in_fast_increase = true)
 increment_t = ramp_up_speed_t*RATE_ADJUST_INTERVAL
 increment_t *= scale_t
 target_bitrate += increment_t
 else
 current_rate_t = max(rate_transmit, rate_ack)
 # compute a bitrate change
 delta_rate_t = current_rate_t*(1.0-PRE_CONGESTION_GUARD*
 queue_delay_trend)-TX_QUEUE_SIZE_FACTOR *rtp_queue_size
 # limit a positive increase if close to target_bitrate_last_max
 if (delta_rate_t > 0)
 delta_rate_t *= scale_t
 delta_rate_t =
 min(delta_rate_t,ramp_up_speed_t*RATE_ADJUST_INTERVAL)
 end
 target_bitrate += delta_rate_t
 # force a slight reduction in bitrate if RTP queue
 # builds up
 rtp_queue_delay_t = rtp_queue_size/current_rate_t
 if (rtp_queue_delay_t > 0.02)
 target_bitrate *= 0.95
 end
 end

 rate_media_limit_t = max(current_rate_t, max(rate_media,rtp_rate_median))
 rate_media_limit_t *= (2.0-1.0*qdelay_trend_mem)
 target_bitrate = min(target_bitrate, rate_media_limit_t)
 target_bitrate = min(TARGET_BITRATE_MAX,
 max(TARGET_BITRATE_MIN,target_bitrate))

 In case of a loss event the target_bitrate is updated and the rate
 change procedure is exited. Otherwise the rate change procedure
 continues. The rationale behind the rate reduction due to loss is

Johansson & Sarker Expires December 29, 2016 [Page 22]

Internet-Draft SCReAM June 2016

 that a congestion window reduction will take effect, a rate reduction
 pro actively avoids that RTP packets are queued up when the transmit
 rate decreases due to the reduced congestion window. An ECN event
 does not cause any action, the reason to this is that the congestion
 window is reduced less due to ECN events than loss events, the effect
 is thus that the expected additional RTP queuing delay due to ECN
 events is so small that an additional decrease in media rate is not
 warranted.

 The rate update frequency is limited by RATE_ADJUST_INTERVAL, unless
 a loss event occurs. The value is based on experimentation with real
 life limitations in video coders taken into account. A too short
 interval has shown to make the video coder internal rate control loop
 more unstable, a too long interval makes the overall congestion
 control sluggish.

 When in fast increase state (in_fast_increase=true), the bitrate
 increase is given by the desired ramp-up speed (RAMP_UP_SPEED) . The
 ramp-up speed is limited when the target bitrate is low to avoid rate
 oscillation at low bottleneck bitrates. The setting of RAMP_UP_SPEED
 depends on preferences, a high setting such as 1000kbps/s makes it
 possible to quickly get high quality media, this is however at the
 expense of a higher risk of jitter, which can manifest itself as e.g.
 choppy video rendering.

 When in_fast_increase is false, the bitrate increase is given by the
 current bitrate and is also controlled by the estimated RTP queue and
 the qdelay trend, thus it is sufficient that an increased congestion
 level is sensed by the network congestion control to limit the
 bitrate. The target_bitrate_last_max is updated when congestion is
 detected.

 In cases where input stimuli to the media encoder is static, for
 instance in "talking head" scenarios, the target bitrate is not
 always fully utilized. This may cause undesirable oscillations in
 the target bitrate in the cases where the link throughput is limited
 and the media coder input stimuli changes between static and varying.
 To overcome this issue, the target bitrate is capped to be less than
 a given multiplier of a median value of the history of media coder
 output bitrates, rate_media_limit. A multiplier is applied to
 rate_media_limit, depending on congestion history. The
 target_bitrate is then limited by this rate_media_limit.

 Finally the target_bitrate is enforced to be within the defined min
 and max values.

 The aware reader may notice the dependency on the qdelay in the
 computation of the target bitrate, this manifests itself in the use

Johansson & Sarker Expires December 29, 2016 [Page 23]

Internet-Draft SCReAM June 2016

 of the qdelay_trend. As these parameters are used also in the
 network congestion control one may suspect some odd interaction
 between the media rate control and the network congestion control,
 this is in fact the case if the parameter PRE_CONGESTION_GUARD is set
 to a high value. The use of qdelay_trend in the media rate control
 is solely to reduce jitter, the dependency can be removed by setting
 PRE_CONGESTION_GUARD=0, the effect is a somewhat faster rate increase
 after congestion, at the expense of more jitter.

4.1.3.1. FEC and packet overhead considerations

 The target bitrate given by SCReAM depicts the bitrate including RTP
 and FEC overhead. Therefore it is necessary that the media encoder
 takes this overhead into account when the media bitrate is set. This
 means that the media coder bitrate should be computed as

 media_rate = target_bitrate - rtp_plus_fec_overhead_bitrate

 It is not strictly necessary to make a 100% perfect compensation for
 the overhead as the SCReAM algorithm will inherently compensate
 moderate errors. Under-compensation of the overhead has the effect
 that the jitter will increase somewhat while overcompensation will
 have the effect that the bottleneck link becomes under-utilized.

4.2. SCReAM Receiver

 The simple task of the SCReAM receiver is to feedback
 acknowledgements of received packets and total ECN count to the
 SCReAM sender, in addition, the receive time of the RTP packet with
 the highest sequence number is echoed back. Upon reception of each
 RTP packet the receiver will simply maintain enough information to
 send the aforementioned values to the SCReAM sender via RTCP
 transport layer feedback message. The frequency of the feedback
 message depends on the available RTCP bandwidth. More details of the
 feedback and the frequency is found in Appendix A.4.

5. Discussion

 This section covers a few discussion points

 o Clock drift: SCReAM can suffer from the same issues with clock
 drift as is the case with LEDBAT [RFC6817]. Section A.2 in said
 RFC however describes ways to mitigate issues with clock drift.

https://datatracker.ietf.org/doc/html/rfc6817

Johansson & Sarker Expires December 29, 2016 [Page 24]

Internet-Draft SCReAM June 2016

6. Implementation status

 [Editor's note: Please remove the whole section before publication,
 as well reference to RFC 6982]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC6982].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC6982], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see it".

6.1. OpenWebRTC

 The SCReAM algorithm has been implemented in the OpenWebRTC project
 [OpenWebRTC], an open source WebRTC implementation from Ericsson
 Research. This SCReAM implementation is usable with any WebRTC
 endpoint using OpenWebRTC.

 o Organization : Ericsson Research, Ericsson.

 o Name : OpenWebRTC gst plug-in.

 o Implementation link : The GStreamer plug-in code for SCReAM can be
 found at github repository [SCReAM-Implementation] The wiki
 (https://github.com/EricssonResearch/openwebrtc/wiki) contains
 required information for building and using OpenWebRTC.

 o Coverage : The code implements [I-D.ietf-rmcat-scream-cc]. The
 current implementation has been tuned and tested to adapt a video
 stream and does not adapt the audio streams.

 o Implementation experience : The implementation of the algorithm in
 the OpenWebRTC has given great insight into the algorithm itself
 and its interaction with other involved modules such as encoder,

https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/rfc6982
https://github.com/EricssonResearch/openwebrtc/wiki

Johansson & Sarker Expires December 29, 2016 [Page 25]

Internet-Draft SCReAM June 2016

 RTP queue etc. In fact it proves the usability of a self-clocked
 rate adaptation algorithm in the real WebRTC system. The
 implementation experience has led to various algorithm
 improvements both in terms of stability and design. The current
 implementation use an n_loss counter for lost packets indication,
 this is subject to change in later versions to a list of received
 RTP packets.

 o Contact : irc://chat.freenode.net/openwebrtc

6.2. A C++ Implementation of SCReAM

 o Organization : Ericsson Research, Ericsson.

 o Name : SCReAM.

 o Implementation link : A C++ implementation of SCReAM is also
 available [SCReAM-Cplusplus_Implementation]The code includes full
 support for congestion control, rate control and multi stream
 handling, it can be integrated in web clients given the addition
 of extra code to implement the RTCP feedback and RTP queue(s).
 The code also includes a rudimentary implementation of a
 simulator.

 o Coverage : The code implements [I-D.ietf-rmcat-scream-cc]

 o Contact : ingemar.s.johansson@ericsson.com

7. Acknowledgements

 We would like to thank the following persons for their comments,
 questions and support during the work that led to this memo: Markus
 Andersson, Bo Burman, Tomas Frankkila, Frederic Gabin, Laurits Hamm,
 Hans Hannu, Nikolas Hermanns, Stefan Haakansson, Erlendur Karlsson,
 Daniel Lindstroem, Mats Nordberg, Jonathan Samuelsson, Rickard
 Sjoeberg, Robert Swain, Magnus Westerlund, Stefan Aalund. Many
 additional thanks to RMCAT chairs Karen and Mirja for patiently
 reading, suggesting improvements and also for asking all the
 difficult but necessary questions. Thanks to Stefan Holmer and
 Xiaoqing Zhu for the review. Thanks to Ralf Globisch for taking time
 to try out SCReAM in his challenging low bitrate use cases.

8. IANA Considerations

 A new RFC4585 transport layer feedback message needs to be
 standardized.

https://datatracker.ietf.org/doc/html/rfc4585

Johansson & Sarker Expires December 29, 2016 [Page 26]

Internet-Draft SCReAM June 2016

9. Security Considerations

 The feedback can be vulnerable to attacks similar to those that can
 affect TCP. It is therefore recommended that the RTCP feedback is at
 least integrity protected. Furthermore, as SCReAM is self-clocked, a
 malicious middlebox can drop RTCP feedback packets and thus cause the
 self-clocking in SCReAM to stall.

10. Change history

 A list of changes:

 o WG-04 to WG-05: Congestion control and rate control simplified
 somewhat

 o WG-03 to WG-04: Editorial fixes

 o WG-02 to WG-03: Review comments from Stefan Holmer and Xiaoqing
 Zhu addressed, owd changed to qdelay for clarity. Added appendix
 section with RTCP feedback requirements, including a suggested
 basic feedback format based Loss RLE report block and the Packet
 Receipt Times blocks in [RFC3611]. Loss detection added as a
 section. Transmission scheduling and packet pacing explained in
 appendix. Source quench semantics added to appendix.

 o WG-01 to WG-02: Complete restructuring of the document. Moved
 feedback message to a separate draft.

 o WG-00 to WG-01 : Changed the Source code section to Implementation
 status section.

 o -05 to WG-00 : First version of WG doc, moved additional features
 section to Appendix. Added description of prioritization in
 SCReAM. Added description of additional cap on target bitrate

 o -04 to -05 : ACK vector is replaced by a loss counter, PT is
 removed from feedback, references to source code added

 o -03 to -04 : Extensive changes due to review comments, code
 somewhat modified, frame skipping made optional

 o -02 to -03 : Added algorithm description with equations, removed
 pseudo code and simulation results

 o -01 to -02 : Updated GCC simulation results

 o -00 to -01 : Fixed a few bugs in example code

https://datatracker.ietf.org/doc/html/rfc3611

Johansson & Sarker Expires December 29, 2016 [Page 27]

Internet-Draft SCReAM June 2016

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
 DOI 10.17487/RFC4585, July 2006,
 <http://www.rfc-editor.org/info/rfc4585>.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, DOI 10.17487/RFC5506, April
 2009, <http://www.rfc-editor.org/info/rfc5506>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <http://www.rfc-editor.org/info/rfc6298>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <http://www.rfc-editor.org/info/rfc6817>.

11.2. Informative References

 [I-D.ietf-rmcat-app-interaction]
 Zanaty, M., Singh, V., Nandakumar, S., and Z. Sarker, "RTP
 Application Interaction with Congestion Control", draft-

ietf-rmcat-app-interaction-01 (work in progress), October
 2014.

 [I-D.ietf-rmcat-cc-codec-interactions]
 Zanaty, M., Singh, V., Nandakumar, S., and Z. Sarker,
 "Congestion Control and Codec interactions in RTP
 Applications", draft-ietf-rmcat-cc-codec-interactions-02
 (work in progress), March 2016.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3550
http://www.rfc-editor.org/info/rfc3550
https://datatracker.ietf.org/doc/html/rfc4585
http://www.rfc-editor.org/info/rfc4585
https://datatracker.ietf.org/doc/html/rfc5506
http://www.rfc-editor.org/info/rfc5506
https://datatracker.ietf.org/doc/html/rfc6298
http://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc6817
http://www.rfc-editor.org/info/rfc6817
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-app-interaction-01
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-app-interaction-01
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-cc-codec-interactions-02

Johansson & Sarker Expires December 29, 2016 [Page 28]

Internet-Draft SCReAM June 2016

 [I-D.ietf-rmcat-coupled-cc]
 Islam, S., Welzl, M., and S. Gjessing, "Coupled congestion
 control for RTP media", draft-ietf-rmcat-coupled-cc-02
 (work in progress), April 2016.

 [I-D.ietf-rmcat-scream-cc]
 Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
 for Multimedia", draft-ietf-rmcat-scream-cc-04 (work in
 progress), June 2016.

 [I-D.ietf-rmcat-wireless-tests]
 Sarker, Z., Johansson, I., Zhu, X., Fu, J., Tan, W., and
 M. Ramalho, "Evaluation Test Cases for Interactive Real-
 Time Media over Wireless Networks", draft-ietf-rmcat-

wireless-tests-02 (work in progress), May 2016.

 [Khademi_alternative_backoff_ECN]
 "TCP Alternative Backoff with ECN (ABE)",
 <https://tools.ietf.org/html/draft-khademi-

alternativebackoff-ecn-00>.

 [OpenWebRTC]
 "Open WebRTC project.", <http://www.openwebrtc.io/>.

 [PACKET_CONSERVATION]
 "Congestion Avoidance and Control", 1988.

 [QoS-3GPP]
 TS 23.203, 3GPP., "Policy and charging control
 architecture", June 2011, <http://www.3gpp.org/ftp/specs/

archive/23_series/23.203/23203-990.zip>.

 [RACK] "RACK: a time-based fast loss detection algorithm for
 TCP", <https://http://tools.ietf.org/id/

draft-cheng-tcpm-rack-00.txt>.

 [RFC3611] Friedman, T., Ed., Caceres, R., Ed., and A. Clark, Ed.,
 "RTP Control Protocol Extended Reports (RTCP XR)",

RFC 3611, DOI 10.17487/RFC3611, November 2003,
 <http://www.rfc-editor.org/info/rfc3611>.

 [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
 and K. Carlberg, "Explicit Congestion Notification (ECN)
 for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August
 2012, <http://www.rfc-editor.org/info/rfc6679>.

https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-coupled-cc-02
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-scream-cc-04
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-wireless-tests-02
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-wireless-tests-02
https://tools.ietf.org/html/draft-khademi-alternativebackoff-ecn-00
https://tools.ietf.org/html/draft-khademi-alternativebackoff-ecn-00
http://www.openwebrtc.io/
http://www.3gpp.org/ftp/specs/archive/23_series/23.203/23203-990.zip
http://www.3gpp.org/ftp/specs/archive/23_series/23.203/23203-990.zip
https://http://tools.ietf.org/id/draft-cheng-tcpm-rack-00.txt
https://http://tools.ietf.org/id/draft-cheng-tcpm-rack-00.txt
https://datatracker.ietf.org/doc/html/rfc3611
http://www.rfc-editor.org/info/rfc3611
https://datatracker.ietf.org/doc/html/rfc6679
http://www.rfc-editor.org/info/rfc6679

Johansson & Sarker Expires December 29, 2016 [Page 29]

Internet-Draft SCReAM June 2016

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982,
 DOI 10.17487/RFC6982, July 2013,
 <http://www.rfc-editor.org/info/rfc6982>.

 [RFC7661] Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating
 TCP to Support Rate-Limited Traffic", RFC 7661,
 DOI 10.17487/RFC7661, October 2015,
 <http://www.rfc-editor.org/info/rfc7661>.

 [SCReAM-Cplusplus_Implementation]
 "C++ Implementation of SCReAM",
 <https://github.com/EricssonResearch/scream>.

 [SCReAM-Implementation]
 "SCReAM Implementation",
 <https://github.com/EricssonResearch/openwebrtc-gst-

plugins>.

 [TFWC] University College London, "Fairer TCP-Friendly Congestion
 Control Protocol for Multimedia Streaming", December 2007,
 <http://www-dept.cs.ucl.ac.uk/staff/M.Handley/papers/

tfwc-conext.pdf>.

Appendix A. Additional information

A.1. Stream prioritization

 The SCReAM algorithm makes a good distinction between network
 congestion control and the media rate control, an RTP queue queues up
 RTP packets pending transmission. This is easily extended to many
 streams, in which case RTP packets from two or more RTP queues are
 scheduled at the rate permitted by the network congestion control.

 The scheduling can be done by means of a few different scheduling
 regimes. For example the method applied in
 [I-D.ietf-rmcat-coupled-cc] can be used. The implementation of
 SCReAM use something that is referred to as credit based scheduling.
 Credit based scheduling is for instance implemented in IEEE 802.17.
 The short description is that credit is accumulated by queues as they
 wait for service and are spent while the queues are being services.

 For instance, if one queue is allowed to transmit 1000bytes, then a
 credit of 1000bytes is allocated to the other unscheduled queues.
 This principle can be extended to weighted scheduling in which case
 the credit allocated to unscheduled queues depends on the weight
 allocation.

https://datatracker.ietf.org/doc/html/rfc6982
http://www.rfc-editor.org/info/rfc6982
https://datatracker.ietf.org/doc/html/rfc7661
http://www.rfc-editor.org/info/rfc7661
https://github.com/EricssonResearch/scream
https://github.com/EricssonResearch/openwebrtc-gst-plugins
https://github.com/EricssonResearch/openwebrtc-gst-plugins
http://www-dept.cs.ucl.ac.uk/staff/M.Handley/papers/tfwc-conext.pdf
http://www-dept.cs.ucl.ac.uk/staff/M.Handley/papers/tfwc-conext.pdf

Johansson & Sarker Expires December 29, 2016 [Page 30]

Internet-Draft SCReAM June 2016

A.2. Computation of autocorrelation function

 The autocorrelation function is computed over a vector of values.

 Let x be a vector constituting N values, the biased autocorrelation
 function for a given lag=k for the vector x is given by .

 n=N-k
 R(x,k) = SUM x(n)*x(n+k)
 n=1

A.3. Sender transmission control and packet pacing

 RTP packet transmission is allowed whenever the size of the next RTP
 packet in the sender queue is less than or equal to send window. As
 explained in Section 4.1.2.4 the send window is updated whenever an
 RTP packet is transmitted or RTCP feedback is received, the packet
 transmission rate is however restricted by means of packet pacing.

 Packet pacing is used in order to mitigate coalescing i.e that
 packets are transmitted in bursts, with the increased risk of more
 jitter and potentially increased packet loss. The time interval
 between consecutive packet transmissions enforced to equal or higher
 than t_pace where t_pace is given by the equations below :

 pace_bitrate = max (50000, cwnd* 8 / s_rtt)
 t_pace = rtp_size * 8 / pace_bitrate

 rtp_size is the size of the last transmitted RTP packet, s_rtt is the
 smoothed round trip time.

A.4. RTCP feedback considerations

 This section describes the requirements on the RTCP feedback to make
 SCReAM function well. Parts of this section may be moved to a
 separate draft. First is described the requirements on the feedback
 elements, second is described the requirements on the feedback
 intensity to keep SCReAM self-clocking and rate control loops
 function properly.

A.4.1. Requirements on feedback elements

 SCReAM requires the following elements for its basic functionality,
 i.e only including features that are strictly necessary in order to
 make SCReAM function. ECN is not included as basic functionality as
 it regarded as an additional feature that is not strictly necessary
 even though it can improve quality of experience quite considerably.

Johansson & Sarker Expires December 29, 2016 [Page 31]

Internet-Draft SCReAM June 2016

 o A list of received RTP packets. This list should be sufficiently
 long to cover all received RTP packets. This list can be realized
 with the Loss RLE report block in [RFC3611].

 o A wall clock timestamp corresponding to the received RTP packet
 with the highest sequence number is required in order to compute
 the queueing delay. This can be realized by means of the Packet
 Receipt Times Report Block in [RFC3611]. begin_seq should be set
 to the highest received (possibly wrapped around) sequence number,
 end_seq should be set to begin_seq+1 % 65536. The timestamp clock
 may be set according to the specification i.e equal to the RTP
 timestamp clock. Detailed individual packet receive times is not
 necessary as SCReAM does currently not describe how this can be
 used.

 The basic feedback needed for SCReAM involves the use of the Loss RLE
 report block and the Packet Receipt Times block defined in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|reserved | PT=XR=207 | length |
 +-+
 | SSRC |
 +-+
 | BT=2 | rsvd. | T=0 | block length |
 +-+
 | SSRC of source |
 +-+
 | begin_seq | end_seq |
 +-+
 | chunk 1 | chunk 2 |
 +-+
 : ... :
 +-+
 | chunk n-1 | chunk n |
 +-+
 | BT=3 | rsvd. | T=0 | block length |
 +-+
 | SSRC of source |
 +-+
 | begin_seq | end_seq |
 +-+
 | Receipt time of packet begin_seq |
 +-+

 Figure 2: Basic feedback message for SCReAM, based on RFC3611

https://datatracker.ietf.org/doc/html/rfc3611
https://datatracker.ietf.org/doc/html/rfc3611
https://datatracker.ietf.org/doc/html/rfc3611

Johansson & Sarker Expires December 29, 2016 [Page 32]

Internet-Draft SCReAM June 2016

 In a typical use case, no more than four Loss RLE chunks should be
 needed, thus the feedback message will be 44bytes. It is obvious
 from the figure that there is a lot of redundant information in the
 feedback message. A more optimized feedback format, including the
 additional feedback elements listed below, could reduce the feedback
 message size a bit.

 Additional feedback elements that can improve the performance of
 SCReAM are:

 o Accumulated number of ECN-CE marked packets (n_ECN). This can for
 instance be realized with the ECN Feedback Report Format in
 [RFC6679]. The given feedback report format is actually a slight
 overkill as SCReAM would do quite well with only a counter that
 increments by one for each received packet with the ECE-CE code
 point set. The more bulky format may be nevertheless be useful
 for e.g ECN black-hole detection.

 o Source quench bit (Q): Makes it possible to request the sender to
 reduce its congestion window. This is useful if WebRTC media is
 received from many hosts and it becomes necessary to balance the
 bitrates between the streams. This can currently not be realized
 with any standardized feedback format.

A.4.2. Requirements on feedback intensity

 SCReAM benefits from a relatively frequent feedback. Experiments
 have shown that a feedback rate roughly equal to the frame rate gives
 a stable self-clocking and robustness against loss of feedback. With
 a maximum bitrate of 1500kbps the RTCP feedback overhead is in the
 range 10-15kbps with reduced size RTCP [RFC5506], including IP and
 UDP framing and a reasonable compact RTCP feedback format. In other
 words the RTCP overhead is quite modest and should not pose a problem
 in the general case. Worth notice is that SCReAM can work with as
 low feedback rates as once every 200ms at low media rates (e.g
 50kbps) , a low feedback rate when media rate is high comes at the
 cost of a higher sensitivity to loss of feedback and also a potential
 reduction in throughput due to degraded ACK-clocking performance.

 SCReAM works with AVPF regular mode, immediate or early mode is not
 required by SCReAM but may nonetheless be useful for e.g RTCP
 messages not directly related to SCReAM, such as those specified in
 [RFC4585]. It is recommended to use reduced size RTCP [RFC5506]where
 regular full compound RTCP transmission is controlled by trr-int as
 described in [RFC4585].

https://datatracker.ietf.org/doc/html/rfc6679
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc4585

Johansson & Sarker Expires December 29, 2016 [Page 33]

Internet-Draft SCReAM June 2016

 The feedback interval depends on the media bitrate. At low bitrates
 it is sufficient with a feedback interval of 100 to 200ms, while at
 high bitrates a feedback interval of ~20ms is to prefer.

 This leads to a feedback rate according to the following equation:

 rate_fb = min(50,max(10,rate_media/20000))

 rate_media is the RTP media bitrate expressed in [bits/s], rate_fb is
 the feedback rate expressed in [packets/s]. Converted to feedback
 interval we get:

 fb_int = 1.0/min(50,max(10,rate_media/20000))

 The transmission interval is not critical, this means that in the
 case of multi-stream handling between two hosts, the feedback for two
 or more SSRCs can be bundled to save UDP/IP overhead, the final
 realized feedback interval should however not exceed 2*fb_int in such
 cases meaning that a scheduled feedback transmission event should not
 be delayed more that fb_int.

A.5. Q-bit semantics (source quench)

 The Q bit in the feedback is set by a receiver to signal that the
 sender should reduce the bitrate. The sender will in response to
 this reduce the congestion window with the consequence that the video
 bitrate decreases. A typical use case for source quench is when a
 receiver receives streams from sources located at different hosts and
 they all share a common bottleneck, typically it is difficult to
 apply any rate distribution signaling between the sending hosts. The
 solution is then that the receiver sets the Q bit in the feedback to
 the sender that should reduce its rate, if the streams share a common
 bottleneck then the released bandwidth due to the reduction of the
 congestion window for the flow that had the Q bit set in the feedback
 will be grabbed by the other flows that did not have the Q bit set.
 This is ensured by the opportunistic behavior of SCReAM's congestion
 control. The source quench will have no or little effect if the
 flows do not share the same bottleneck.

 The reduction in congestion window is proportional to the amount of
 SCReAM RTCP feedback with the Q bit set, the below steps outline how
 the sender should react to RTCP feedback with the Q bit set. The
 reduction is done once per RTT. Let :

 o n = Number of received RTCP feedback messages in one RTT

Johansson & Sarker Expires December 29, 2016 [Page 34]

Internet-Draft SCReAM June 2016

 o n_q = Number of received RTCP feedback messages in one RTT, with Q
 bit set.

 The new congestion window is then expressed as:

 cwnd = max(MIN_CWND, cwnd*(1.0-0.5* n_q /n))

 Note that CWND is adjusted at most once per RTT. Furthermore The
 CWND increase should be inhibited for one RTT if CWND has been
 decreased as a result of Q bits set in the feedback.

 The required intensity of the Q-bit set in the feedback in order to
 achieve a given rate distribution depends on many factors such as
 RTT, video source material etc. The receiver thus need to monitor
 the change in the received video bitrate on the different streams and
 adjust the intensity of the Q-bit accordingly.

Authors' Addresses

 Ingemar Johansson
 Ericsson AB
 Laboratoriegraend 11
 Luleaa 977 53
 Sweden

 Phone: +46 730783289
 Email: ingemar.s.johansson@ericsson.com

 Zaheduzzaman Sarker
 Ericsson AB
 Laboratoriegraend 11
 Luleaa 977 53
 Sweden

 Phone: +46 761153743
 Email: zaheduzzaman.sarker@ericsson.com

Johansson & Sarker Expires December 29, 2016 [Page 35]

