	RMT Working Group Brian		
Consultant	Internet Engineering Task Force	Dah Ming Chiu/Sun Miriam Kadansky/Sun	
Microsystems	Internet Draft		
Microsystems			
ETRI/KOREA	draft-leff-rmt-bb-tree-config-03.txt	Seok Joo Koh/	
Taskale/Tibco	<u>18</u> November, 2002	Gursel	
lovino/Ilmass	Expires 18 May, 2003	Brian Neil	
Configuration	Reliable Multicast Transport Building Block: Tree Auto- < <u>draft-ietf-rmt-bb-tree-config-03.txt</u> >		
	Status of this Memo		
	This document is an Internet-Draft	and is in full	
conformance with	all provisions of <u>Section 10 of RFC</u>	2 <u>026</u> .	
may be	Internet-Drafts are valid for a max	ximum of six months and	
time Tt	updated, replaced, or obsoleted by	other documents at any	
time. It	is inappropriate to use Internet-Drafts as reference		
material or to	cite them other than as a "work in	progress".	
accessed at	The list of current Internet-Drafts <u>http://www.ietf.org/ietf/1id-abstra</u>	can be accessed at acts.txt	
	The list of Internet-Draft Shadow D	Directories can be	
	<u>http://www.ietf.org/shadow.html</u> .		
	Abstract		
chartered	The Reliable Multicast Transport Wo	orking Group has been	
	to standardize multicast transport	services. This working	
group	expects to initially standardize th	ree protocol	
instantiations.	This draft is concerned with the re	equirements of the tree-	
based			

the	ACK protocol. In particular, it is concerned with defining		
tree	building block for auto-configuration of the logical ACK-		
	According to the charter, a building block is "a coarse-		
grained	modular component that is common to multiple protocols		
along with	abstract APTs that define a building block's access methods		
and			
Docian	their arguments." For more information, see the Reliable Multicast Transport Building Blocks and Reliable Multicast		
Destân	Space documents [<u>WLKHFL01</u>][HWKFV00].		
	Table of Contents		
	1. Introduction		
	1.2 Assumptions		
1	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>		
November 2002	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>		
	<pre>1.3 Requirements 1.4 Applicability Statement 2. Overview 3 Session Appouncement</pre>		
	4. Service Node Discovery and Selection		
	 4.1 Service Node Discovery Algorithms 4.1.1 Static 4.1.2 ERS 4.1.3 Mesh 4.2 Distance Metrics 4.4 The Man Count 		
	4.2.1 TTL Hop-Count 4.2.2 Number of Levels 4.2.3 Delay 4.2.4 Address 4.2.5 Static 4.2.6 GPA		
	 4.2.0 GNA 4.3 Service Node Selection 5. Tree Formation 6. Tree Maintenance 6.1 Monitoring Parents and Children 6.2 Optimizing the Tree 7. Messages 8. External Interfaces 8.1 Interfaces to the BB 		

8.1.1 start 8.1.2 end 8.1.3 incomingMessage 8.1.4 getStatistics 8.1.5 getSNs 8.1.6 setSN 8.1.7 acceptChild 8.1.8 removeChild 8.1.9 treeLevelUpdate 8.1.10 lostSN 8.1.11 setOptimization 8.1.12 recordSNs 8.2 Interfaces from the BB 8.2.1 outgoingMessage 8.2.2 SNlist 9. References Authors' Addresses

<u>1</u>. Introduction

The Reliable Multicast Transport (RMT) working group has
chartered to standardize IP multicast transport services.
draft is concerned with the requirements of the tree-based
protocol [WCPKI00]. In particular, this draft defines a
block for auto-configuration of a tree comprised of a
Conder Corvice Neder and Descivers into a tree (called a
Sender, Service Nodes, and Receivers into a tree (called a
INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>
INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>
Tree in this document). The design goals of this draft are
motivated by the needs of TRACK-based protocols, however
it constructs are useful for other services
It constructs are ascrar for other services.
This building block can be interfaced to any other BB or PI
features, the PI needs to includes the messages described
BB in its packets. An example of how to use this BB can be
in the TRACK PI[WCPKT01].

The process of session tree construction is difficult for IP multicast. The best session trees match the underlying multicast routing tree topology [LPG98], however the multicast service model [DEE89] does not provide explicit support for discovering routing tree topology.

Furthermore, deployed multicast architectures can vary; for example, hosts may be restricted to multicast reception and not transmission with Source-Specific multicast routing [HC00]; and routers may provide special extended routing services with Generic Router Assist [CST00]. The RMT charter does not restrict the use of any particular network service in constructing the tree. It only suggests preferred scenarios. Accordingly, there are several viable solutions for constructing a tree, depending on network conditions.

The optimality of a tree may also depend on other factors, such as the need for load balancing, and the need to minimize the depth when used for collecting feedback information. The goal of this building block is to specify a distributed procedure for automatically constructing a tree that is loop-free and as efficient as possible given the information available. This draft describes a unified solution for tree the presence of different multicast service models and

routing protocols. In particular, it specifies a single procedure which may be used with various techniques for service node discovery and distance measurements, several of which are specified within this document. The difference in these techniques primarily affects the optimality of the tree. The unified algorithm ensures that

loop-	different implementations can interoperate and construct a free tree.		
	In order to accommodate various multicast deployments, this document divides the tree building process into the		
following	major components:		
service nodes.	1. Several techniques for discovering neighboring		
Mesh.	In particular: Static, Expanding Ring Search, and		
session	Discovering neighboring service nodes is a necessary condition for getting connected, so each node in the		
3	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u> INTERNET DRAFT draft-ietf-rmt-bb-tree-config-03.txt		
November 2002	INTERNET DIVITI <u>arare icer ime bb croc contrig corexe</u>		
	must implement at least one of the above techniques.		
nodes.	2. Several algorithms for selecting neighboring service		
distance	and sender distance are described. These service		
node	selection algorithms help produce a good tree.		
	3. A single distributed procedure for construction and maintenance of loop-free Session Trees.		
	<u>1.1</u> Terminology		
"SHALL NOT"	The key words "MUST", "MUST NOT", "REQUIRED", "SHALL",		
"OPTIONAL" in	"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and		
<u>2119</u> .	this document are to be interpreted as described in <u>RFC</u>		
	Session		
address. A services	A session is used to distribute data over a multicast		
	Session Tree is used to provide reliability and feedback		
	for a session.		

Sender

The single sender of data on a multicast session. The Sender is the root of the Session Tree.

Receiver

A receiver receives data from the sender via the multicast session.

Session Identifier

A fixed-size number, chosen either by the application that creates the session or by the transport. Senders and Receivers use the Session Identifier to distinguish sessions. The size of this number is specified by the Protocol Instantiation (PI). Service Node (SN)

A node within the tree which receives and retransmits data, and aggregates and forwards control information toward the Sender. The Sender operates as the root Service Node in any session tree. Service Nodes MAY be dedicated servers within a network designed to participate in multiple Sessions and support multiple trees, or they MAY be Receivers participating in an individual session. SNs MAY limit the number of Children they choose to service, and MAY also make other restrictions on the characteristics of each Child (distance, location, etc.). An SN that has accepted Children for a session is called a Parent. In other documents, Service Node is sometimes referred to as Repair INTERNET DRAFT draft-ietf-rmt-bb-track-01.txt 4 INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u> November 2002

Head (RH).

Session Tree (ST)

The Session Tree is a tree spanning all receivers of a multicast more as leaf of modes. An ST is constructed for the forwarding of control information back to the Sender as well as for the resending of missed data to the Receivers. The ST for a particular session may change over the course of the session. Parent A Parent is an SN or Receiver's predecessor in the ST on

the path toward the Sender. Every SN or Receiver on the tree except the Sender itself has a parent. Each Parent communicates with its children using either an assigned multicast address or through unicast. If a multicast address is used, this may be the same address used by the session, or one specifically assigned to the Parent.

```
Children
```

is

The set of Receivers and SNs for which an SN or the Sender providing repair and feedback services.

Tree Level

A number indicating the number of "generations" a node is from the root. The sender is at TL=0. Those that use the sender as their parent are at TL=1 and so on. When a receiver is not connected to the tree yet, it has a tree level value greater or equal to 128. The reason for reserving part of the space (of tree levels) for indicating "off-tree" is so that special measures can be used to

range of	prevent forming loops. The largest value is 255, so the		
	off-tree levels are in the range 128 - 255. Initially, receivers have a TL value of 128. Once a Node joins th		
tree, its level.	Tree Level is updated to be one more than its Parent's		
	Distance Metric		
nadaa	There are several techniques to quantify distances between		
of	(Receivers, SNs, and the Sender) in a session. Each type		
Distance	quantification is called a distance metric. Several		
Distance	Metrics are described in this draft.		
	Sender Distance		
	The distance from a node to the Sender.		
5	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>		
November 2002	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>		
	Neighbor Distance		
	The distance from a node to a Neighbor.		
	Neighbor		
to the	A node's (Receiver or SN) Neighbors are SNs that are close		
	node, according to the Distance Metric(s) used by the node.		
	1.2 Assumptions		
following	This document describes how to build trees under the		
TOILOWING	conditions:		
	a. The multicast group has only a single sender. b. A single SN can serve multiple sessions. c. Sessions can take advantage of a pre-deployed		
infrastructure	of SNs (ones that are not necessarily aware of a		
session	before the receivers), or recruit Receivers to be SNs.		

Search[YGS95]	d. Generic Router Assist[CST00] and Expanding Ring		
	are not required of the network infrastructure, but if available they should be able to be utilized.		
	1.3 Requirements		
	The following are specifically required:		
from the independent of the tree.	a. While tree-building may take advantage of information		
	routing layer, the mechanisms described are		
	e routing protocol(s) used by the underlying multicast		
	 b. All trees constructed must be loop-free c. These mechanisms must support late joiners and tree optimization 		
	<pre>1.4 Applicability Statement</pre>		
	The authors recognize that automatic tree construction is a		
menuel	difficult problem. Nonetheless, complete reliance on		
manual well.	configuration is very user unfriendly and error prone as		
loon	This building block describes a procedure for constructing		
information	free trees when there is minimal manual configured		
Information	available.		
	This is analogous to providing a system with default		
configurations necessarily	that allow the system to work correctly, but not		
	optimally.		
BB does	There are many possible criteria for tree optimality. This		
6 November 2002	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>		
	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>		
daga it	not attempt to define a single optimality criterion, nor		
does it	try to produce an optimal tree. It is, however, the goal		

BB to construct better trees as more configuration and measurement data are introduced to the procedure.

of the

globally.

This BB describes only a subset of the possible parameters for and neighbor distance. There are many techniques for measuring these distances. Some of the techniques may not be applicable

Expanding ring search (ERS) is an effective technique in a local subnet or intranet (especially when the IP multicast routing protocol is dense-mode based). On the other hand, it is not practical in a multi-domain network; it is not effective when the significant control traffic overhead.

Generic Router Assist (GRA) can provide measurement hooks to determine SNs that are located along the path for multicast data distribution. However, such facilities may not be available in all networks.

The tree construction procedure does allow manual configuration and and and independently applied for different subgroups of receivers and SNs, to achieve incremental improvement to the quality of the tree. There are many other criteria for tree-building than what is load balancing and minimizing feedback latency.

2. Overview

builde	The tree building process described within this document		
bullus	logical trees which consist of:		
h	1. A root node (the Sender) 2. Intermediate nodes (Service Nodes or SNs) which may		
be the	either Receivers or nodes specifically allocated to		
	task of repair and aggregation 3. Leaf nodes which are Receivers only		
Socion	Session trees are spanning trees rooted at the Sender.		
(i.e.	trees can be used for the forwarding of control information		
renairs)	ACKs) towards the root, or for forwarding of data (i.e.		
(oparto)	towards the leaf nodes.		
to ioin	Session trees are constructed per Sender; each node wishing		
hest	the tree discovers its neighboring SNs and then selects its		
relative	parent based on locally available information, such as the		
_	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>		
7 November 2002	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>		
anaaifiaa	sender distances and neighbor distances. This document		
specifies	several techniques for measuring distances.		
	It is important to note that SNs may be actual Receivers		
(e.g.	Receivers willing and able to also function as SNs) or pre-		
deployed	"specialized" servers that are signaled to join the tree by Receivers. We use the term Service Node to refer to either		
a	Receiver or "server" which is participating as part of the		
logical	tree formation.		
	Tree construction, regardless of SN discovery and selection algorithm, proceeds generically as follows.		

	1. Session Announcement		
mechanisms	Receivers of a session use standard out-of-band		
	for discovery of a session's existence (e.g. Session Advertisement ([<u>HPW00</u>], URL, etc). In this way, a		
Receiver	discovers the multicast group address, the Sender's		
construction	and other information necessary for logical tree		
	Sessions may be announced in two parts, the first part containing generic information about the session, such		
as the	multicast address, and the second part, announced on		
the	multicast address, containing additional information.		
	2. Measurements to the Sender (optional)		
ontionally	All SNs and Receivers that know about the session		
optionally	determine their distance to the Sender.		
	3. Neighbor Discovery		
(candidate	Meanwhile, each Receiver discovers nearby SNs		
(oundidate)	parents) for the Session using the neighbor discovery algorithm(s).		
	4. Service Node Selection		
discovers a	Once a Receiver (or SN needing to join the tree)		
as well	nearby SN, it obtains the SN's distance to the Sender		
other	as the SN's distance to the Receiver, tree level, and		
complete,	suitability values, if available. After discovery is		
	the best SN is selected.		
	5. Binding to Service Node		
hind is	The Receiver or SN then binds to the chosen SN. If a		
nearby	unsuccessful, the Receiver or SN retries with another		
Once an	SN, or starts the discovery process all over again.		

SN receives a bind from a child, that SN must then

also join

0	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>	
November 2002	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>	
ite eur	the tree if it has not already, discovering an SN of	
ILS OWN,	possibly using a different method than leaf Receivers.	
	6. Optimization (optional) and Fault Recovery	
different	During a session, a Receiver or SN may change to a	
different	SN for a number of reasons described below, including	
fault	tolerance. The Session Tree is maintained and	
optimized over	time.	
	This building block provides mechanisms for maintaining and optimizing the tree, as well as tearing it down when the	
Sender 1s	done with it. In the rest of this document, the term	
'Node'	denotes a Receiver or SN.	
	++ 1. Session Advertisement	
	++	
paramators	Node receives tree-building	
parameters	V	
	2. Measurements	
	to the Sender	
I	(optional)	
I	+	
+		

V			
+	I	+	
	I	3. Neighbor	
	I	Discovery	
+		+	
1			
V		 +	
+	I	4. Service Node	
	I	. Selection	
	I		
+	I	+	
		I	
Neighbor	I	Node picks best	
V			
+	1	+	
	I	5. Binding to	
		Service Node 6. Optimization	
(optional)		and Fault	
Recovery		++	
0	INTERNET DRAFT	<u>draft-ietf-rmt-bb-track-01.txt</u>	
9	INTERNET DRAFT	<u>draft-ietf-rmt-bb-tree-config-03.txt</u>	
November 2002			
	<u>3</u> . Session Annou	ncement	
	The first step in the tree-building process is for a node		
to be	informed of the session's existence. This can be done		

using some out-of-band method, such as Session Advertisement [<u>HPW00</u>], URL, email, etc.

SNs do not necessarily receive these advertisements. If an SN is not a Receiver, it obtains the advertisement information once it is contacted by a Receiver.

The advertisement includes the multicast address being used, the Sender's address, the Session Identifier, any specific port numbers to be used, and any global information useful for tree construction. The advertisement may also contain information about one or more Service Node Discovery options (such as Static, ERS, and Mesh) that can possibly be used by Receivers in the session.

<u>4</u>. Service Node Discovery and Selection

	Discovery is the process by which a node determines a
suitable	
	Service Node. During the discovery process, suitable
neighbors are	
	found, Sender distances are optionally exchanged, and the
best SN	
	is selected.

4.1 Service Node Discovery Algorithms

Static,This draft describes three algorithms for discovering SNs:Static,Expanding Ring Search (ERS), and Mesh.ForMultiple algorithms may be used within a single session.Forexample, SNs may use the Mesh algorithm, while thereceivers usestatic configuration to discover the SNs; alternatively,someReceivers may use static configuration while otherReceivers dependon ERS (in an intranet where ERS is available). EachReceiver maypre-configure which algorithm to use before it starts.

from this	The transport protocols request the following information		
	BB using the getSNs interface.		
	Service Nodes:		
nodo to	1. ParentAddress:	the address and port of the parent	
node will	2. UDPListenPort:	which the node should connect the number of the port on which the	
		listen for its children's control	
messages	3. RepairAddr:	the multicast address, UDP port, and	
TTL on		which this node sends control	
messages to its		children.	
10	INTERNET DRAFT draft_i	<u>t-ietf-rmt-bb-track-01.txt</u>	
INTERNET DRAFT <u>draft-letf-rmt-bb-tree-config-03.tx</u> November 2002			
	Receivers: 1. ParentAddress. Senders: 1. UDPListenPort		
	2. RepairAddr		
config, the operations for	After the above information is obtained from auto-tree-		
	transport protocol may perform the necessary Bind		
	participating in the Session Tree.		
	<u>4.1.1</u> Static		
tree	Static algotirhm relies on a functional entity, named Tree Configurator (TC), which is pre-configured by Sender for		
implemented by	configuration in a static manner. TC may be simply		
It is	a program and thus installed at Sender or any other host.		
	not necessarily specialized infrastructure.		

Static scheme is a typical top-down tree configuration approach. TC is used to govern the tree building based on its own (sessionspecific) tree configuration and SN(s) selection rules for the new joiners.

If a TC is used for tree building, its address and port MUST be included with the session advertisement. Receivers and SNs will realize there is a TC for the session via Session Announcement, and they can contact with the TC to get a list of candidate SNs by sending a unicast Query message.

In response to a Query message, the TC replies with a Advertise message that contains a list of candidate SNs available to the new joiner. The rule of determining such candidate SNs may depend on the pre-configured mechanism taken by TC. For example, TC may determine the candidate SN list for a Node among the possible SNs (it contains at that time) by considering which SNs are in the same network domain with the Node (i.e., via comparing their network prefix), or by considering the load balancing for the tree topology it has configured until then. For this purpose, TC maintains a pool of active SNs for the session. The list of candidate SNs carried by Advertise message is ordered in decreasing levels of preference, in which a lower number represents a higher preference. When a Receiver Node receives the responding Advertise message from TC, the Node MAY proceed to try to bind to a candidate SN

and

11

INTERNET DRAFT draft-ietf-rmt-bb-track-01.txt INTERNET DRAFT draft-ietf-rmt-bb-tree-config-03.txt November 2002

following the given order by sending a BindRequestmessage,

or	then waits for the responding message such as BindConfirm					
	BindReject from TC. These binding steps will be done					
according to	the TRACK mechanism, as described in the TRACK PI [<u>WCMKT02</u>]					
	In the Static algorithm, SN discovery with a TC proceeds as follows:					
the	1. The node joins the multicast session and learns of					
	location of TC (from the session announcement).					
Sender	2. The node optionally discovers its distance from the					
Sender .	Any metric described in <u>Section 4.2</u> may be used.					
parant The	3. The node sends a Query message to the TC for a					
parent. me	request includes (optionally) the node's distance to					
the	sender and whether the node functions as an SN or					
not.						
for the	4. The TC chooses one or more candidate parents (SNs)					
configuration rule.	node from the active SNs by its own tree					
comparing	The selection of candidate parents may be done by					
information	the network prefix or by referring to any other					
etc.	such as the number of currently attached children,					
Advertise	5. The TC MUST responds to the Query message with an					
the	message, which include the candidate parent list. In					
	list, each entry contains the corresponding IP					
address and	port of an SN.					
the	All the entries in the list SHOULD be arranged in					
	decreasing order of preference levels.					
	In the rejection case, the Advertise message does					
not	include any candidate parent. In this case, the Node					

may	
	resort to the other mechanism such as ERS and Mesh.
	In the success case, the node will be enrolled as an
active	SN by the TC, if it functions as an SN in the
session. Each	active SN (functioning as a parent for the Session
Tree)	active on (renotioning as a parene for the occoston
a flag	SHOULD send the TC the periodic Query messages with
interval	indicating that it is active over a specific time
	Based on the Query messages, the TC updates a pool
of active	SNs in the session. In response to the Query
message, the TC	sends a Advertise with a flag simply indicating that
the	Senus a Auvertise with a riay simply indicating that
	Query message is received.
6. the TC	After receiving a successful Advertise message from
	the node will try to connect to its parent by
sending	BindRequest messages based on the candidate parent
list, as	described in Section 5.

10	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>					
12 November 2002	<pre>INTERNET DRAFT draft-ietf-rmt-bb-tree-config-03.txt</pre>					
	4.1.2 ERS					
which can	ERS is a typical bottom-up tree configuration approach,					
	be used only in the network environments where IP multicast transmissions are allowed by Receivers and SNs.					
follows:	In ERS algorithm, SN discovery with a TC proceeds as					
Query	1. The Nodes first look for Neighbors using a multicast					

message. The initial TTL value in the Query message,

TTLNeighborInit, is specified in the session

announcement

	and may be as large as the session TTL (TTLSession).					
MUST	An SN that is able to handle additional Children					
	respond to a Query message by multicasting an					
Advertise	message.					
response	If the SN is not yet a Parent, the TTL used in this					
is a	is the same TTL used in the Query message. If the SN					
and the	Parent, the TTL used is the greater of the Query TTL					
	Parent's current Advertise TTL.					
2. sending the	The Node listens for Advertise messages after					
them is	Query message. If one or more Advertise messages are received during a SolicitPeriod, the best SN among					
LITEM IS	selected as described in <u>section 4.3</u> .					
3.	If no Advertise messages are received, the Node					
	another multicast Query message with a TTL that is incremented by TTLIncrement. The process of sending					
the	multicast Query message with an increasing TTL value continues until a response is received.					
appaified	The TTL value is limited by a value, TTLMax, also					
volue	in the session announcement. TTLMax defaults to the					
Value	of TTLSession.					
Node is	If the TTL value required to reach the soliciting					
Advertise	greater than the TTL used to reach the SN, an					
Auvertuse	message may not reach the Node. However, if future					
overtually	messages have increased TTL values, the TTL may					
the Node	be large enough for the Advertise message to reach					
locate any	However, it is possible that the Node will not					
that a	SNs using Expanding Ring Search. It is advisable					

backup method, such as static, be available.

	4.	SNs	MUS	ST	sup	press	sen	ding	Adve	rtise	mes	ssages	in
response to													
		Que	ry n	nes	sage	es if	one	was	sent	with	at	least	the
Query's TTL													
		wit	nin	th	ne la	ast S	olic	itPe	riod.				

10	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>
November 2002	<pre>INTERNET DRAFT draft-ietf-rmt-bb-tree-config-03.txt</pre>
for an	After multicasting a Query message, a node MUST wait
message.	interval, BetweenQuery, before sending another Query
to	BetweenQuery seconds when they first start in order
	collect information from Advertise messages already solicited by other nodes.
Node	5. Getting a successful Advertise message via ERS, the
BindRequest	will try to connect to the parent by sending
	messages, which are described in <u>Section 5</u> .
Search	The following variables are used in the Expanding Ring
	algorithm.
by the	- TTLNeighborInit: This is the initial TTL value to be used
	ERS if no other TTL value is specified by the algorithm.
used in	- TTLIncrement: This is the periodic increment for the TTL
	ERS.
by	- TTLMax: This is a configured maximum TTL value to be used
	either Query or Advertise messages.
multicast	- TTLSession: This is the session TTL value for the
	session.
	- SolicitPeriod: Each receiver MUST not send more than one

QUERY message per SolicitPeriod. When SN's responds to QUERY messages, it also suppresses its ADVERTISE message if one has been sent less than SolicitPeriod ago. This parameter is used to control the amount of control traffic during tree construction if ERS is used.

- BetweenQuery: This is the time interval a node must wait before sending successive Query messages.

- MaxBindAttempts: This variable is an integer used to control how many times a receiver tries to bind to a SN before giving up and try another one.

- BindPeriod: In order to prevent loops, sometimes a SN must reject a BindRequest (for example, when the SN is not on the tree yet and has a BindRequest outstanding itself) from a receiver. In this case, if the receiver needs to retry binding to the same SN again (perhaps because the receiver does not discover any alternative SN's), then it must wait for BindPeriod

seconds.

4.1.3 Mesh

The mesh approach relies on a set of SN's already deployed as INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u> INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u> November 2002 infrastructure servers. These SN's are on-line, but are not necessarily aware of any particular session unless informed by the following mechanisms.

SN's in the mesh are configured to know who their neighbor

SN's are, and exchange reachability information with their neighbors in a way analogous to routers in a network. The actually protocol used by SN's to exchange such reachability information is outside the scope of this BB. (In principle, a routing protocol such as shortestpath-first, or a link-state-protocol can be adapted for this purpose). Instead, this BB specifies the following properties that the mesh of SN's MUST satisfy: a) Each SN knows a subset of SN's in the mesh as its immediate neighbors. b) Each SN has a "forwarding table", such that given any other (destination) SN in the mesh, the forwarding table gives a "next-hop" SN that can be used to reach the destination SN, plus the distance to the destination SN from the local SN. c) A given SN in the mesh can "broadcast" information to all other SN's in the mesh (in the sense of having a means of sending the same information to all other SN's, but not necessarily simultaneously). d) All potential sender and receivers of a multicast session can discover a "neighboring" SN in the mesh, using the neighbor discovery mechanisms described in Section 4.1. The reason for running a routing-like algorithm to maintain the forwarding tables in each SN is to provide fault tolerance when some SN's in the mesh fail. When that happens, the remaining SN's exchange information with each other to update the forwarding

tables. In steady state, the mesh of SN's must still satisfy the above 4 properties. In the simplest form, each SN in the mesh has a forwarding table that contains all other SN's in the mesh. This is called a fullyconnected mesh. As mentioned earlier, the Mesh scheme assumes that there is a predeployed infrastructures of SN servers. That is, the SN-SN bindings and Sender-SN (Sender's SNs) will be performed internally by the provider's own policy. The only thing done by Sender is to inform its SN's that a session starts. The relationships between Sender and its SN's (i.e., Sender-SN bindings) MUST also be preconfigured. For example, the internal bindings between Sender and SN's MAY be done as follows: INTERNET DRAFT draft-ietf-rmt-bb-track-01.txt 15 INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u> November 2002 1. The sender locates a neighbor SN in the mesh by a preconfigured mechanism. This SN is referred to as the sender's SN. 2. The sender sends the multicast session id, address and port (all these can be set as a abbreviated session announcement message) to the sender's SN. 3. The sender's SN in turn "broadcasts" the session information to all SN's in the mesh; since SN's can support multiple sessions simultaneously, they keep the information about

each session in an entry in a session table.

	4. After the Sender-SN bindings, Sender will multicasts					
its	session announcement to the multicast receivers.					
Then, the						
BindRequest	sender's SN binds to the sender by sending a					
	message.					
described	During the internal processings of Sender-SN binding					
	until now, any Query and Advertise messages are not used.					
Receivers will	When a session starts, the bindings between SN and					
	be done. The tree binding of SN-receiver is done with the					
The	Configurator (TC), which was used in the Static algorithm.					
	main difference between Static algorithm with TC and Mesh algorithm with TC is that the active SNs are considered as candidate SNs in the Static scheme, while the pre-deployed SNs are considered as candidates in the Mesh scheme. That					
ls, ln	the Mesh scheme, the TC is required to already get the					
information	on the locations of the pre-deployed SNs.					
	Then the tree buildings between receivers and SNs are done					
as	follows:					
mossago to	1. When a session starts, a receiver sends a Query					
message Lu	the TC. The receiver may optionally discovers its					
distance	from the Sender. Any metric described in <u>Section 4.2</u>					
may be	used.					
the	2. The TC chooses one or more candidate parents SNs for					
Lne	receiver from the pre-deployed SNs by its own tree configuration rule, as described in <u>Section 4.1.1</u> .					
	3. TC MUST respond to the Query message with an					
Advertise	message, which include the candidate parent list. In					
LIIC IISL,	each entry contains the corresponding IP address and					

port of

the parent.

4. Receiving a successful Advertise message from the TC, the Node will try to connect to its parent by sending BindRequest INTERNET DRAFT draft-ietf-rmt-bb-track-01.txt 16 INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u> November 2002 messages based on the candidate parent list, as described in <u>Section 5</u>. Once a receiver is connected to a parent SN, the SN-SN bindings will also be done internally by the pre-configured provider's policy. For example, each SN in the mesh tries to bind to its "next-hop" SN. If the "next-hop" SN is not reachable for some reason, an SN may also try to bind to any neighbor SN as a back-up alternative. These procedures will be devised to ensure that the loop freedom is guaranteed in <u>section 5</u>. 4.2. Distance Measurement Different techniques can be used to determine distances between nodes in a session. The distances of interest are: Sender distance - the distance from a SN to sender Neighbor distance - the distance from a receiver to a neighboring SN These distances can be used in selecting a Service Node ifseveral are discovered. These techniques quantify distance differently. Each specific way of quantifying distance is called a metric. Different Metrics are not necessarily comparable. For example, if distance

between A and B is X using metric m1, and distance between A and C is Υ using metric m2, then X > Y does not necessarily imply B is farther from A than C. Only distances of the same metric should be compared and ranked. Therefore, a receiver SHOULD only rank two SN's based on their respective sender distance if those distances are based on the same metric. On the other hand, it is not necessary for all receivers to use the same metric to select theirneighboring SN to connect to. Suppose receivers use neighbor distance as a selection criterion. One receiver may determine neighbor distances to SN's based on hop count, whereas another receiver may determine neighbor distances to its neighboring SN's based on delay. 4.2.1 TTL Hop-Count If this metric is used, a node periodically sends a Beacon message on the Session's multicast address. The Beacon message includes the original time-to-live value set by the node. The distance to the node is then calculated as INTERNET DRAFT draft-ietf-rmt-bb-track-01.txt 17 INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u> November 2002 Beacon's original TTL - Beacon's current TTL One node is closer than another if its distance is a lower number. Note that the TTL value may not be available in some implementation environments.

4.2.2 Number of Levels

One metric a receiver can use for SN selection is the number of levels the SN is from the sender. For example, given two SN's in close proximity to a receiver, if one SN is n levels from the sender and the other is m levels, where m<n, the receiver SHOULD select the SN with m levels. This is because a shallower tree allows faster propagation of feedback information to the sender. (Note, we assumed the choice is between two SN's equally close to the receiver. The receiver to SN distance is another consideration). The number of levels metric is not generally available, as the tree may be constructed bottom up. If the mesh approach is

however, the distance in the SN's forwarding tables can be implemented as an estimate of the number of levels from the

used,

sender.

4.2.3 Delay

Another metric is the delay from an SN to the sender. If the SN is directly connected to the sender, then the delay would simply be the time to send feedback from the SN to the sender. If the SN is several levels down from the sender, then the delay would be the sum of the delays for each level (with some jitter time added in each level). For example, given two SN's in close proximity to a receiver, the receiver SHOULD select the SN with a smaller delay to the sender. This is again for the purpose of minimizing the feedback time. If the tree is built bottom up, this metric cannot be used. If the mesh approach is used, this metric can be implemented, although it

requires the SN's in the mesh to exchange distance

information

based on the delay metric.

4.2.4 Address

	For IPv6 addresses[HOD98], distance can be approximately
determined	
	by the number of aggregation levels one address has in
common with	
	another. For this metric, one node is closer than another
if its	
	address has more aggregation levels in common with the
querying	
	node's address.

4.2.5 Static

	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>
18 November 2002	INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>
	The node's distance to other nodes may be made available in
some its	well-known location. One node's is closer than another if
	distance is a lower number.

4.2.6 GRA

The node's distance to the sender may be determined with help of a GRA message that lists the set of GRA routers on the path from the source.

<u>4.3</u> Service Node Selection

hast one	Once Neighbors have been discovered, a node selects the
best one	using whatever distance information is available.
boot SN	If there is no sender distance information to compare, the
loop	is simply the one that is closest to the node, without a
	being formed by binding the node to the SN.
	If sender distances are available, there are two cases:

Leaf nodes: For leaf nodes, the goal is to use the closest SN
possible.
SNs: For SNs joining the tree, it is important to pick an SN
that is closer to the sender; neighbor distance is a secondary factor.
Once an SN has been selected, the node tries to bind to it as described in <u>Section 5</u>. Loop prevention is done during the bind

process using only Tree Level information.

This algorithm is recommended because it assigns each node the closest SN, and does not require all nodes to measure their sender distance at the start of the session. Depending on the selected metric, multiple nodes measuring sender distance could cause message implosion, and delay tree construction. On the other hand, the SNs selected may actually be further from the Sender than their children are. However, it may be necessary to assign nodes to non-optimal SNs in order to get them on the tree, since it is possible that no SN closer to the Sender can accept any more children.

Alternatively, nodes may be required to measure sender distance before selecting an SN in order to ensure that each parent is closer to the Sender than its children. Presumably, this results in a tree in which parents detect message loss before their children, minimizing repair requests.

<u>5</u>. Tree Formation

10	INTERNET DRAFT	<u>draft-ietf-rmt-bb-track-01.txt</u>
19	INTERNET DRAFT	draft-ietf-rmt-bb-tree-config-03.txt
November 2002		

formation	The following is a detailed description of the tree							
	process. All tree construction follows this pattern. The							
	differences between instantiations of this building block							
TTG TU	how nodes discover and select neighbors.							
message	Once an SN has been selected, the Node sends a BindRequest							
another	to the SN. If the SN has an outstanding request to bind to							
would form	SN, it must refuse the incoming bind request in case it							
would form	a loop.							
selecting	Otherwise, it MAY accept the Node as a child as long as							
quaranteed	it would not cause a loop in the tree. Loop freedom is							
guaranceeu	by these two rules:							
can	1. If the requesting node does not have children, the SN							
outstanding	accept it as a child as long as the SN has no							
request.	bind requests. If it does have an outstanding bind							
less	the SN can accept the node as a child if its address is							
	than the child's address.							
it as	2. If the requesting node has children, the SN can accept							
	a child if							
tree not	a. the SN's level is 128, i.e., it is the top of a sub-							
	yet connected to the Sender, or							
to the	o. the SN's level is less than 128, i.e., it is connected							
	Sender.							
own	The second rule prevents a node from selecting one of its							
prevented from	children as its parent. Two nodes at level 128 are							
	selecting each other using tie-breaking criteria described							

above. If the SN accepts the Node as a Child, it returns a BindConfirm message. If it does not accept the Node, it sends a BindReject message. If the Node does not receive a response after MaxBindAttempts tries every BindPeriod seconds, it MAY select the next best Neighbor from its cached list, or else run the Service Node Discovery process again to determine an alternate SN to try. The BindReject message contains a reason code. If the code indicates that the node was rejected because the SN was not yet on the tree, the node MAY choose to retry that SN after BindPeriod seconds, or select a different available SN. The BindReject message may also include a list of alternative SNs for the node to try. INTERNET DRAFT draft-ietf-rmt-bb-track-01.txt 20

INTERNET DRAFT draft-ietf-rmt-bb-tree-config-03.txt

November 2002

The BindConfirm message MUST include the Parent's current Tree Level. The Node MUST set its Tree Level to one more than the Parent's level.

The BindConfirm message also MUST also indicate the starting sequence number of the message from which data reliability is assured. This information is included in the BindConfirm message to enable receivers to meet the PI's late join requirements. If nodes join the tree after the Sender has started to send data, it is possible that some of the data is no longer available within

step 1

repair	the tree. Nodes may need to have specific information about
	availability before selecting a Parent.
maximum	Service Nodes MAY limit the number of children they support depending on their capacity. Once an SN has accepted its
	number of children, it stops accepting new children until a
limit.	in membership causes its count of children to go below this
reserve	If an SN limits the number of children it supports, it MUST
arowth	at least one child slot for other SNs. This guarantees the
growen	of the repair tree.
<u>6</u> .	Tree Maintenance
Node.	Tree maintenance is an ongoing process active in every
as the	Because the tree is based on the operation of SNs, as well
changes Nodes	various underlying metrics that may change over time, it is important that these dependencies be monitored for
level and	MUST monitor Parents for liveness and changes in tree
must	SHOULD continue to run the Neighbor Discovery and Selection process in order to optimize their choice of SN. Parents
	also monitor Children for liveness.
<u>6</u> .	<u>1</u> Monitoring Parents and Children
responsible	The upper Building Block or Protocol Instantiation is
from	for monitoring parents and children. Monitoring messages
	parents to children MUST contain the Parent's current Tree
Parent's	Children MUST set their Tree Level to one more than their
Γαιζηί δ	level.
time. it	If a Child loses contact with its Parent for a period of
bind with	MUST report it using the lostSN interface, and attempt to

an alternate SN.

A Child that is leaving a session MUST send a unicast UnbindRequest message to its Parent. The Parent MUST respond with an UnbindConfirm message. A Parent that is leaving the session MUST send an EjectRequest draft-ietf-rmt-bb-track-01.txt INTERNET DRAFT 21 INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u> November 2002 message to its Children indicating that they need to bind with an alternate SN. If possible the EjectRequest message is multicasted, but the EjectRequest message can also be sent via unicast to each child individually. Upon receiving an EjectRequest message from its parent, a receiver sets its Tree Level to 128 again. Using the heartbeat mechanism, the Tree Level for all receivers in the affected subtree will be updated (to a value higher than 128). If a Parent does not hear from a Child for a period of time, or it

receives a UnbindRequest message from a Child, it removes that Child from its list of Children, and reports the loss using the removeChild interface.

6.2 Optimizing the Tree

Implementations of this building block SHOULD continue to run the Neighbor Discovery and Selection process in order to optimize the choice of SN. This continuous process also keeps the distance information for the current Parent up-to-date. Whenever the process returns a better SN than the current one, the Node MAY bind to the new SN. Once the new SN is bound to, the Node

MUST	send a Unbind	dRequest message to the original Parent. A		
	with no Child	dren MAY leave the session.		
:	7. Messages			
building	These messages are required for implementations of this block. The list below indicates which message contents are required by implementations. Implementations may also include other protocol-specific information in these messages. Note that			
these this BB.	messages are	parts of packets specified in PI's that use		
+	++	+		
I	Message Name m- or u-cast	Description		
Contents 	+	+		
distance	Query	A message used to discover Sender		
(optional),		is sent to TC; the multicast TTL (m-cast		
		is used in ERS.		
+	++ Advertise	A message used to advertise IP address,		
distance	both	an SN. The unicast is sent Sender from the TC; the multicast		
(optional)	 +	is sent by SNs themselves		
+ Level 	+ BindRequest unicast +	Request to SN to join tree Current Tree 		

INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u> 22 INTERNET DRAFT draft-ietf-rmt-bb-tree-config-03.txt November 2002 | BindConfirm | SN accepts BindRequest | Current Tree Level | | unicast | 1 +-----+----+ | BindReject | SN rejects BindRequest | Reject reason, | | unicast | | alternate SN list | +-----+----+ | UnbindRequest | Child leaving Parent(u-cast)| Unbind reason | unicast | Parent leaving tree (mcast)| +-----+----+ | UnbindConfirm | Acknowledgement of | unicast | UnbindRequest message +-----| EjectRequest | Parent refusing or leaving | Eject reason | both | service to Children +-----+----+ | EjectConfirm | Acknowledgement of | unicast | EjectRequest message ----+----+ +----+

8. External Interfaces

+----+

This section describes external interfaces for the building block.

<u>8.1</u> Interfaces to this BB.

These may be used by a PI, or by a higher-level BB.

8.1.1 start(boolean SN, advertisement)

start notifies the BB to begin operation. If the SN parameter is set to TRUE, the BB also starts SN operation.

8.1.2 end()

end notifies the BB to end operation.

8.1.3 incomingMessage(message)

This interface is used to pass an incoming message down

from the PI.

8.1.4 getStatistics

getStatistics returns current BB statistics to the upper BB

or PI.

<u>8.1.5</u> getSNs

getSNs instructs the BB to start the process of finding SN candidates for this node. getSNs may return immediately

with a

23

8.2.1)

list of

INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>

INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>

November 2002

candidate SN, or may use the SNlist interface (see <u>section</u>

to return the list at a later time.

8.1.6 setSN(SN)

setSN informs the BB that the PI or upper BB has successfully bound to an SN.

8.1.7 acceptChild(node)

acceptChild asks the BB to accept or reject the node as a member. The BB returns a boolean value in response.

8.1.8 removeChild(node)

longer	removeChild is called to inform the BB that the child is no	
	a member.	
	<pre>8.1.9 treeLevelUpdate(newLevel)</pre>	
nodolo troc	This interface is used to pass down any update to the	
node's tree replaces	level that the upper BB or the PI has learned. newLevel	
	the BB's current tree level.	
	<u>8.1.10</u> lostSN	
lost.	lostSN notifies the BB that the connection to the SN was	
	<pre>8.1.11 setOptimization(boolean)</pre>	
ontimization	setOptimization tells the BB to start or stop the tree	
optimization	process. The upper BB or PI may want to control when tree optimization takes place.	
	<pre>8.1.12 recordSNs(destination)</pre>	
list of	recordSNs tells the BB to record the current SN, plus the	
	alternates, to the indicated destination.	
	8.2 Interfaces from this BB to the PI or a higher-level BB.	
	<pre>8.2.1 outgoingMessage(message)</pre>	
	outgoingMessage instructs the PI to send the message.	
	8.2.2 SNlist(list)	
candidates The	SNlist returns to the upper PI or BB a list of SN	
such as	list may contain additional information for each candidate,	
ropair	details about the data packets that it has available for	
гератт		
24	INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>	

INTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>

November 2002

9. References

Multionsting" DEC	[DEE89] Deering, S., "Host Extensions for IP
Multicasting", <u>RFC</u>	<u>1112</u> .
IEC	[ECTP02] ITU-T Q.8/17 and ISO/IEC JTC1/SC6/WG7, "Enhanced Communication Transport Protocol: Specification of Simplex Multicast Transport," ITU-T Recommendation X.606 and ISO/
	14476-1, Feb., 2002.
тр "	[HC00] H. Holbrook, B. Cain, "Source-Specific Multicast for
2000.	Internet Draft, Internet Engineering Task Force, November
Aggrogotoblo	[HOD98] R. Hinden, M. O'Dell, S. Deering, "An IPv6
Aggregatable	Global Unicast Address Format," Request For Comments 2374,
JULY	1998.
Appouncement	[HPW00] M. Handley, C. Perkins, E. Whelan, "Session
March	Protocol", Internet Draft, Internet Engineering Task Force,
March	2000.
Vicicopo	[HWKFV00] M. Handley, B. Whetten, R. Kermode, S. Floyd, L.
Vicisano,	and M. Luby, "The Reliable Multicast Design Space for Bulk
Data	Transfer," <u>RFC 2887</u> , August 2000.
Multicoct	[K01] S. Koh, et. al., "Configuration of ACK Tress for
Multicast	Transport Protocols," ETRI Journal, Vol. 23, No. 3,
September 2001.	[10/00] D. Kormada, L. Visisana, "Author Ouidalines for DNT
Building	[KV02] R. Kermode, L. VICISano, "Author Guidelines for RMI
April 2002.	BLOCKS and Protocol Instantiation Documents," <u>RFC 3269</u> ,
	[LPG98] B.N. Levine, S. Paul, and J.J. Garcia-Luna-Aceves,
to	"Urganizing Multicast Receivers Deterministically According
Multimedia	PACKET-LOSS CORRELATION," PROC. SIXTH ACM International

1998.	Conference (ACM Multimedia 98), Bristol, UK, September
anvcasting	[PTM93] C. Partridge, T. Mendez, and W. Milliken. "Host
anyouocing	service." Request For Comments 1546, November 1993.
Taskale,	[WCMKT02] B. Whetten, D. Chiu, M. Kadansky, S. Koh, G.
Acknowledgement bas	"TRACK Protocol Instantiation over UDP: Tree
ronnowiedgement ba	Reliable Multicast," Internet Draft, November 2002.
Handley S	[WLKHFL01] B. Whetten, L. Vicisano, R. Kermode, M.
Blocks	Floyd, and M. Luby, "Reliable Multicast Transport Building
2001.	for One-to-Many Bulk-Data Transfer," <u>RFC 3048</u> , January
	[YGS95] R. Yavatkar, J. Griffioen and M. Sudan, "A Reliable Dissemination Protocol for Interactive Collaborative
Applications",	University of Kentucky, 1995.
IN	NTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>
I November 2002	NTERNET DRAFT <u>draft-ietf-rmt-bb-tree-config-03.txt</u>
Transport	[SV02] T. Speakman, and L. Vicisano, "Reliable Multicast
	Building Block: Generic Router Assist - Signalling Protocol Specification," Internet Draft, Internet Engineering Task
Force,	July 2002.
A	uthors' Addresses
	Brian Whetten brian@whetten.net 890 Sea Island Lane Foster City, CA 94404
	Dah Ming Chiu dahming.chiu@sun.com Miriam Kadansky miriam.kadansky@sun.com Sun Microsystems Laboratories 1 Network Drive

Burlington, MA 01803

Seok Joo Koh sjkoh@etri.re.kr ETRI/Korea 161 Kajong-dong Yusong-Gu, TAEJON, 305-350, KOREA

Gursel Taskale gursel@tibco.com

Brian Neil Levine brian@cs.umass.edu

Full Copyright Statement

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet languages other than English.

	The limited area	mining and the second
November 2002		arare reer time by croo contrig corexe
26	INTERNET DRAFT	draft-jetf-rmt-bb-tree-config-03.txt
	INTERNET DRAFT	<u>draft-ietf-rmt-bb-track-01.txt</u>

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

	This document and the information contained herein is
provided on an	"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING	TASK FORCE DISCLATMS ALL WARRANTIES, EXPRESS OR IMPLIED.
INCLUDING	
	BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
	HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
UF	MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

INTERNET DRAFT <u>draft-ietf-rmt-bb-track-01.txt</u>

27