
RMT T. Paila
Internet-Draft Nokia
Expires: May 14, 2004 M. Luby
 Digital Fountain
 R. Lehtonen
 TeliaSonera
 V. Roca
 INRIA Rhone-Alpes
 R. Walsh
 Nokia
 November 14, 2003

FLUTE - File Delivery over Unidirectional Transport
draft-ietf-rmt-flute-06.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 14, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document defines FLUTE, a protocol for the unidirectional
 delivery of files over the Internet, which is particularly suited to
 multicast networks. The specification builds on Asynchronous Layered
 Coding, the base protocol designed for massively scalable multicast
 distribution.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Paila, et al. Expires May 14, 2004 [Page 1]

Internet-Draft FLUTE November 2003

Table of Contents

1. Introduction . 3
1.1 Applicability Statement 4
1.1.1 The Target Application Space 4
1.1.2 The Target Scale . 4
1.1.3 Intended Environments 4
1.1.4 Weaknesses . 5
2. Conventions used in this document 5
3. File delivery . 5
3.1 File delivery session 6
3.2 File Delivery Table . 7
3.3 Dynamics of FDT Instances within file delivery session . . . 9
3.4 Structure of FDT Instance 10
3.4.1 Format of FDT Instance Header 11
3.4.2 Syntax of FDT Instance Payload 12
3.4.3 Compression of FTD Instance Payload 14
3.5 Multiplexing of files within a file delivery session 15
4. Channels, congestion control and timing 15
5. Delivering FEC Object Transmission Information 16

 5.1 Use of EXT_FTI for delivery of FEC Object Transmission
 Information . 17

5.1.1 General EXT_FTI format 17
5.1.2 FEC Encoding ID specific formats for EXT_FTI 18

 5.2 Use of FDT for delivery of FEC Object Transmission
 Information . 22

6. Describing file delivery sessions 22
7. Security Considerations 23
8. IANA Considerations . 25
9. Acknowledgements . 26

 Normative references . 26
 Informative references 26
 Authors' Addresses . 27

A. Receiver operation (informative) 28
B. Example of FDT Instance Payload (informative) 29

 Intellectual Property and Copyright Statements 31

Paila, et al. Expires May 14, 2004 [Page 2]

Internet-Draft FLUTE November 2003

1. Introduction

 This document defines FLUTE version 1, a protocol for unidirectional
 delivery of files over the Internet. The specification builds on
 Asynchronous Layered Coding (ALC), version 1 [3], the base protocol
 designed for massively scalable multicast distribution. ALC defines
 transport of arbitrary binary objects. For file delivery applications
 mere transport of objects is not enough, however. The end systems
 need to know what do the objects actually represent. This document
 specifies a technique called FLUTE - a mechanism for signalling and
 mapping the properties of files to concepts of ALC in a way that
 allows receivers to assign those parameters for received objects.
 Consequently, throughout this document the term 'file' relates to an
 'object' as discussed in ALC. Although this specification frequently
 makes use of multicast addressing as an example, the techniques are
 similarly applicable for use with unicast addressing.

 This document defines a specific transport application of ALC, adding
 the following specifications:

 - Definition of a file delivery session built on top of ALC,
 including transport details and timing constraints.

 - In-band signalling of the transport parameters of the ALC session.

 - In-band signalling of the properties of delivered files.

 - Details associated with the multiplexing of multiple files within
 a session.

 This specification is structured as follows. Chapter 3 begins by
 defining the concept of the file delivery session. Following that it
 introduces the File Delivery Table that forms the core part of this
 specification. Further, it discusses multiplexing issues of transport
 objects within a file delivery session. Chapter 4 describes the use
 of congestion control and channels with FLUTE. Chapter 5 defines how
 the FEC Object Transmission Information is to be delivered within a
 file delivery session. Chapter 6 defines the required parameters for
 describing file delivery sessions in a general case. Chapter 7
 outlines security considerations regarding file delivery with FLUTE.
 Last, there are two informative appendixes. The first appendix gives
 an example of File Delivery Table. The second appendix describes an
 envisioned receiver operation for the receiver of the file delivery
 session.

Paila, et al. Expires May 14, 2004 [Page 3]

Internet-Draft FLUTE November 2003

 Statement of Intent

 This memo contains part of the definitions necessary to fully
 specify a Reliable Multicast Transport protocol in accordance with

RFC2357. As per RFC2357, the use of any reliable multicast
 protocol in the Internet requires an adequate congestion control
 scheme.

 While waiting for such a scheme to be available, or for an
 existing scheme to be proven adequate, the Reliable Multicast
 Transport working group (RMT) publishes this Request for Comments
 in the "Experimental" category.

 It is the intent of RMT to re-submit this specification as an IETF
 Proposed Standard as soon as the above condition is met.

1.1 Applicability Statement

1.1.1 The Target Application Space

 FLUTE is applicable to the delivery of large and small files to many
 hosts, using delivery sessions of several seconds or more. For
 instance, FLUTE could be used for the delivery of large software
 updates to many hosts simultaneously. It could also be used for
 continuous, but segmented, data such as time-lined text for
 subtitling - potentially leveraging its layering inheritance from ALC
 and LCT to scale the richness of the session to the congestion status
 of the network. It is also suitable for the basic transport of
 metadata, for example SDP files which enable user applications to
 access multimedia sessions.

1.1.2 The Target Scale

 Massive scalability is a primary design goal for FLUTE. IP multicast
 is inherently massively scalable, but the best effort service that it
 provides does not provide session management functionality,
 congestion control or reliability. FLUTE provides all of this using
 ALC and IP multicast without sacrificing any of the inherent
 scalability of IP multicast.

1.1.3 Intended Environments

 All of the environmental requirements and considerations that apply
 to the ALC building block [3] and to any additional building blocks
 that FLUTE uses also apply to FLUTE.

 FLUTE can be used with both multicast and unicast delivery, but it's

https://datatracker.ietf.org/doc/html/rfc2357
https://datatracker.ietf.org/doc/html/rfc2357

Paila, et al. Expires May 14, 2004 [Page 4]

Internet-Draft FLUTE November 2003

 primary application is for unidirectional multicast delivery. FLUTE
 requires connectivity between a sender and receivers but does not
 require connectivity from receivers to a sender. FLUTE inherently
 works with all types of networks, including LANs, WANs, Intranets,
 the Internet, asymmetric networks, wireless networks, and satellite
 networks. Thus, the inherent raw scalability of FLUTE is unlimited.

 FLUTE is compatible with both IPv4 or IPv6 as no part of the packet
 is IP version specific. FLUTE works with both multicast models:
 Any-Source Multicast (ASM) [13] and the Source-Specific Multicast
 (SSM) [15].

 FLUTE is applicable for both Internet use, with a suitable congestion
 control building block, and provisioned/controlled systems, such as
 delivery over wireless broadcast radio systems.

1.1.4 Weaknesses

 Some networks are not amenable to some congestion control protocols
 that could be used with FLUTE. In particular, for a satellite or
 wireless network, there may be no mechanism for receivers to
 effectively reduce their reception rate since there may be a fixed
 transmission rate allocated to the session.

 FLUTE provides reliability using the FEC building block. This will
 reduce the error rate as seen by applications. However, FLUTE does
 not provide a method for senders to verify the reception success of
 receivers, and the specification of such a method is outside the
 scope of this document.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

 The terms "object" and "transport object" are consistent with the
 definitions in ALC [3] and LCT [4]. The terms "file" and "source
 object" are pseudonyms for "object".

3. File delivery

 Asynchronous Layered Coding [3] is a protocol designed for delivery
 of arbitrary binary objects. It is especially suitable for massively
 scalable, unidirectional, multicast distribution. ALC provides the
 basic transport for FLUTE, and thus FLUTE inherits the requirements
 of ALC.

https://datatracker.ietf.org/doc/html/rfc2119

Paila, et al. Expires May 14, 2004 [Page 5]

Internet-Draft FLUTE November 2003

 This specification is designed for the delivery of files. The core of
 this specification is to define how the properties of the files are
 carried in-band together with the delivered files.

 As an example, let us consider a 5200 byte file referred to by
 "www.ex.com/docs/file.txt". Using the example, the following
 properties describe the properties that need to be conveyed by the
 file delivery protocol.

 * Location of the file, expressed as either absolute or relative
 URI. In the above example: "www.ex.com/docs/file.txt"

 * File name (usually, this can be concluded from the URI). In the
 above example: "file.txt"

 * File type, expressed as MIME media type (usually, this can also be
 concluded from the extension of the file name). In the above
 example: "text/plain"

 * File size, expressed in bytes. In the above example: "5200"

 * Content encoding of the file, within transport. In the above
 example, the file could be encoded using ZLIB [11]. In this case
 the size of the transport object carrying the file would probably
 differ from the file size.

 * Security properties of the file such as digital signatures,
 message digestives, etc.

3.1 File delivery session

 ALC is a protocol instantiation of Layered Coding Transport building
 block (LCT) [4]. Thus ALC inherits the session concept of LCT. In
 this document we will use the concept ALC/LCT session to collectively
 denote the interchangeable terms ALC session and LCT session.

 An ALC/LCT session consists of a set of logically grouped ALC/LCT
 channels associated with a single sender sending packets with ALC/LCT
 headers for one or more objects. An ALC/LCT channel is defined by the
 combination of a sender and an address associated with the channel by
 the sender. A receiver joins a channel to start receiving the data
 packets sent to the channel by the sender, and a receiver leaves a
 channel to stop receiving data packets from the channel.

 One of the fields carried in the ALC/LCT header is the Transport
 Session Identifier (TSI). The TSI is scoped by the source IP address,
 and the (source IP address, TSI) pair uniquely identifies a session,

Paila, et al. Expires May 14, 2004 [Page 6]

Internet-Draft FLUTE November 2003

 i.e., the receiver uses this pair carried in each packet to uniquely
 identify from which session the packet was received. In case multiple
 objects are carried within a session another field within the ALC/LCT
 header, the Transport Object Identifier (TOI), identifies from which
 object within the session the data in the packet was generated. Note
 that each object is associated with a unique TOI within the scope of
 a session.

 When FLUTE is used for file delivery over ALC the following rules
 apply:

 * The ALC/LCT session is called file delivery session.

 * The ALC/LCT concept of 'object' denotes either a 'file' or a 'File
 Delivery Table Instance' (section 3.2)

 * The TOI field MUST be included in ALC packets sent within a FLUTE
 session, with the exception that ALC packets sent in a FLUTE
 session with the Close session (A) flag set to 1 (signaling the
 end of the session) and containing no payload MAY not include the
 TOI. See Section 5.1 of RFC 3451 [4] for the LCT definition of the
 Close session flag, and see Section 4.2 of RFC 3450 [3] for an
 example of its use within an ALC packet.

 * The TOI value '0' is reserved for delivery of File Delivery Table
 Instances.

 * Each file in a file delivery session MUST be associated with a TOI
 (>0) in the scope of that session.

3.2 File Delivery Table

 The File Delivery Table (FDT) provides a means to describe various
 attributes associated with files that are to be delivered within the
 file delivery session. The following lists are examples of such
 attributes, and are not intended to be mutually exclusive.

 Attributes related to the delivery of file:

 - TOI value that represents the file

 - FEC Instance ID

 - FEC Object Transmission Information

https://datatracker.ietf.org/doc/html/rfc3451#section-5.1
https://datatracker.ietf.org/doc/html/rfc3450#section-4.2

Paila, et al. Expires May 14, 2004 [Page 7]

Internet-Draft FLUTE November 2003

 - Size of the transport object carrying the file

 - Aggregate rate of sending packets to all channels

 Attributes related to the file itself:

 - Name, Identification and Location of file (specified by the URI)

 - MIME media type of file

 - Size of file

 - Encoding of file

 - Message digest of file

 Some of these attributes MUST be included in the file description
 entry for a file, others are optional, as defined in section 3.4.2.

 Logically, the FDT is a set of file description entries for files to
 be delivered in the session. Each file description entry MUST include
 the TOI for the file that it describes and the URI indicating the
 location of the file. The TOI is included in each ALC/LCT data packet
 during the delivery of the file, and thus the TOI carried in the file
 description entry is how the receiver determines which ALC/LCT data
 packets contain information about which file. Each file description
 entry may also contain one or more descriptors that map the
 above-mentioned attributes to the file.

 Each file delivery session MUST have an FDT that is local to the
 given session. The FDT MUST provide a file description entry mapped
 to a TOI for each file appearing within the session. An object that
 is delivered within the ALC session, but not described in the FDT, is
 not considered a 'file' belonging to the file delivery session.
 Handling of these unmapped TOIs (TOIs that are not resolved by the
 FDT) is out of scope of this specification.

 Within the file delivery session the FDT is delivered as FDT
 Instances. An FDT Instance contains one or more file description
 entries of the FDT. Any FDT Instance can be equal to, a subset of, a
 superset of, or complement any other FDT Instance. A certain FDT
 Instance may be repeated several times during a session, even after
 subsequent FDT Instances (with higher FDT Instance ID numbers) have
 been transmitted. In minimum the FDT Instance contains a single file
 description entry. In maximum the FDT Instance contains the complete
 FDT of the file delivery session.

 A receiver of the file delivery session keeps an FDT database for

Paila, et al. Expires May 14, 2004 [Page 8]

Internet-Draft FLUTE November 2003

 received file description entries. The receiver maintains the
 database, for example, upon reception of FDT Instances. Thus, at any
 given time the contents of the FDT database represent the receiver's
 current view of the FDT of the file delivery session. Since each
 receiver behaves independently of other receivers, it SHOULD NOT be
 assumed that the contents of the FDT database are the same for all
 the receivers of a given file delivery session.

 Since FDT database is an abstract concept, the structure and the
 maintaining of the FDT database are left to individual
 implementations and are thus out of scope of this specification.

3.3 Dynamics of FDT Instances within file delivery session

 The following rules define the dynamics of the FDT Instances within a
 file delivery session:

 * For every file delivered within a file delivery session there MUST
 be a file description entry included in at least one FDT Instance
 sent within the session. In minimum, a file description entry
 contains the mapping to TOI and the URI.

 * An FDT Instance MAY appear in any part of the file delivery
 session and even multiplexed with other files or other FDT
 Instances.

 * The TOI value of '0' MUST be reserved for delivery of FDT
 Instances. The use of other TOI values for FDT Instances is
 outside the scope of this specification.

 * FDT Instance is identified by the use of a new fixed length LCT
 Header Extension EXT_FDT (defined later in this chapter). Each FDT
 Instance is uniquely identified within the file delivery session
 by its FDT Instance ID. Any ALC/LCT packet carrying FDT Instance
 (indicated by TOI = 0) MUST include EXT_FDT.

 * It is RECOMMENDED that FDT Instance that contains the file
 description entry for a file is sent prior to the sending of the
 described file within a file delivery session.

 * Within a file delivery session, any TOI MAY be described more than
 once. An example: previous FDT Instance 0 describes TOI of value
 '3'. Now, subsequent FDT Instances can either keep TOI '3'
 unmodified on the table, not to include it or complement the
 description. However, subsequent FDT Instances MUST NOT change the
 parameters already described for a specific TOI.

Paila, et al. Expires May 14, 2004 [Page 9]

Internet-Draft FLUTE November 2003

 * An FDT Instance is valid until its expiration time. The expiration
 time is expressed within the FDT Instance payload as a 32 bit data
 field. The value of the data field represents the 32 most
 significant bits of a 64 bit Network Time Protocol (NTP) [6] time
 value. Wrap-around of the 32 bit time is to be handled according
 to NTP.

 * The receiver behaviour upon expiration of the FDT Instance is out
 of scope of this specification.

 * A sender MUST use an expiry time in the future upon creation of an
 FDT Instance.

 * Any FEC Encoding ID MAY be used for the sending of FDT Instances.
 The default is to use FEC Encoding ID 0 for the sending of FDT
 Instances. (Note that since FEC Encoding ID 0 is the default for
 FLUTE, this implies that Source Block Number and Encoding Symbol
 ID lengths both default to 16 bytes each.)

 Generally, a receiver needs to receive an FDT Instance describing a
 file before it is able to recover the file itself. In this sense FDT
 Instances are of higher priority than files. Thus, it is RECOMMENDED
 that FTD Instances describing a file be sent with at least as much
 reliability within a session (more often or with more FEC protection)
 as the files they describe. In particular, if FDT Instances are
 generally longer than one encoding symbol in length it is RECOMMENDED
 that an FEC code that can provide protection against loss be used for
 delivering FDT Instances, i.e., in this case it is RECOMMENDED not to
 use FEC Encoding ID 0. How often the description of a file is sent in
 an FDT Instance or how much FEC protection is provided for each FDT
 Instance (if the FDT Instance is longer than one encoding symbol) is
 dependent on the particular application and outside the scope of this
 document.

3.4 Structure of FDT Instance

 The FDT Instance consists of two parts: FDT Instance Header and FDT
 Instance Payload. The FDT Instance Header is a new fixed length LCT
 Header extension (EXT_FDT). It contains the FDT Instance ID that
 uniquely identifies FDT instances within a file delivery session. The
 FDT Instance Header is placed in the same way as any other LCT
 extension header. There MAY be other LCT extension headers in use.

 The LCT extension headers are followed by the FEC Payload ID, and
 finally the Encoding Symbols for the FDT Instance Payload which
 contains one or more file description entries. The FDT Instance
 Payload MAY span over several ALC packets - the number of ALC packets
 is a function of the FEC Object Transmission Information associated

Paila, et al. Expires May 14, 2004 [Page 10]

Internet-Draft FLUTE November 2003

 to this FDT Instance. The FDT Instance Header is carried in each ALC
 packet carrying FDT Instance. The FDT Instance Header is identical
 for all the ALC/LCT packets carrying parts of a particular FDT
 Instance.

 The overall format of ALC/LCT packets carrying FDT Instance is
 depicted in the Figure 1 below. As defined in [3], all ALC/LCT
 packets are sent using UDP.

 +-+
 | UDP header |
 | |
 +=+
 | Default LCT header (with TOI = 0) |
 | |
 +-+
 | LCT header extensions (EXT_FDT, EXT_FTI, etc.) |
 | |
 +-+
 | FEC Payload ID |
 | |
 +-+
 | Encoding Symbol(s) of FDT Instance Payload |
 | ... |
 +-+

 Figure 1 - Overall FDT Packet

3.4.1 Format of FDT Instance Header

 FDT Instance Header (EXT_FDT) is a new fixed length, ALC PI specific
 LCT header extension [4]. The Header Extension Type (HET) for the
 extension is 192. Its format is defined below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 192 | V | FDT Instance ID |
 +-+

 Version of FLUTE (V), 4 bits:

 This document specifies FLUTE version 1. Hence in any ALC packet that

Paila, et al. Expires May 14, 2004 [Page 11]

Internet-Draft FLUTE November 2003

 carries FDT Instance and that belongs to the file delivery session as
 specified in this specification MUST set this field to '1'.

 FDT Instance ID, 20 bits:

 For each file delivery session the numbering of FDT Instances starts
 from '0' and is incremented by exactly one for each subsequent FDT
 Instance. After reaching the maximum value (2^20-1), the numbering
 starts again from '0'. When wraparound from 2^20-1 to 0 occurs, 0 is
 considered higher than 2^20-1. Receiver handling of wraparound and
 other special situations (for example, missing FDT Instance IDs
 resulting in longer increments than one) is left out of this
 specification to individual implementations of FLUTE.

3.4.2 Syntax of FDT Instance Payload

 The FDT Instance Payload contains file description entries that
 provide the mapping functionality described in 3.2 above.

 The FDT Instance Payload is an XML structure that has a single root
 element "FDT-Payload". The "FDT-Payload" element MUST contain
 "Expires" attribute, which tells the expiry time of the FDT Instance
 Payload. In addition, the "FDT-Payload" element MAY contain
 "Complete" attribute (boolean), which MAY be used to signal that the
 given FDT Instance is the last FDT Instance to be expected on this
 file delivery session. For each file to be declared in the given FDT
 Instance there is a single file description entry in the FDT Instance
 Payload. Each entry is represented by element "File" which is a child
 element of the FDT Payload structure.

 The attributes of "File" element in the XML structure represent the
 attributes given to the file that is delivered in the file delivery
 session. Each "File" element MUST contain at least two attributes
 "TOI" and "Content-Location". "TOI" MUST be assigned a valid TOI
 value as described in section 3.3 above. "Content-Location" MUST be
 assigned a valid URI as defined in [7].

 In addition to mandatory attributes, the "File" entity MAY contain
 other attributes of which the following are specifically pointed out.

 * If the MIME type of the file is described, attribute
 "Content-Type" MUST be used for the purpose as defined in [7].

 * If the length of the file is described, attribute "Content-Length"
 MUST be used for the purpose as defined in [7]. If the length of
 the file is different than the length of the transport object that
 carries it (the file was content encoded before transport),
 another attribute "Transfer-Length" MAY be used. The attribute

Paila, et al. Expires May 14, 2004 [Page 12]

Internet-Draft FLUTE November 2003

 "Transfer-Length" specifies the size of the transport object in
 bytes.

 * If the content encoding scheme of the file is described, attribute
 "Content-Encoding" MUST be used for the purpose as defined in [7].

 * If the MD5 message digest of the file is described, attribute
 "Content-MD5" MUST be used for the purpose as defined in [7].

 * The FEC Object Transmission Information attributes as described in
section 5.2.

 The following specifies the XML Schema [9][10] for FDT Instance
 Payload:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
 xmlns:fl="http://www.example.com/flute"
 elementFormDefault:xs="qualified"
 targetNamespace:xs="http://www.example.com/flute">
 <xs:element name="FDT-Payload">
 <xs:complexType>
 <xs:attribute name="Expires" type="xs:string" use="required"/>
 <xs:attribute name="Complete" type="xs:boolean" use="optional"/>
 <xs:sequence>
 <xs:element name="File" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Content-Location"
 type="xs:anyURI" use="required"/>
 <xs:attribute name="TOI"
 type="xs:positiveInteger" use="required"/>
 <xs:attribute name="Content-Length"
 type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="Transfer-Length"
 type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string" use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string" use="optional"/>
 <xs:attribute name="Content-MD5"
 type="xs:base64Binary" use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong" use="optional"/>

Paila, et al. Expires May 14, 2004 [Page 13]

Internet-Draft FLUTE November 2003

 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong" use="optional"/>
 <xs:anyAttribute processContents="skip" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 Any XML document that conforms with the above XML Schema is a valid
 FDT. This way FDT provides extensibility to support private
 attributes within the file description entries. Those could be, for
 example, the attributes related to the delivery of the file (timing,
 packet transmission rate, etc.).

 In case the basic FDT XML Schema is extended in terms of new
 descriptors, those MUST be placed within the attributes of the
 element "File". It is RECOMMENDED that the new descriptors applied in
 the FDT are in the format of MIME fields and are either defined in
 HTTP/1.1 specification [7] or otherwise well-known specification.

3.4.3 Compression of FTD Instance Payload

 The FDT Instance Payload MAY be compressed. This specification
 defines FDT Instance Compression Header (EXT_COMP). EXT_COMP is a new
 fixed length, ALC PI specific LCT header extension [4]. The Header
 Extension Type (HET) for the extension is 193. If the FDT Instance
 Payload is compressed, the EXT_COMP MUST be used to signal the
 compression type. In that case, EXT_COMP header extension MUST be
 used in all ALC packets carrying the same FDT Instance ID.
 Consequently, when EXT_COMP header is used, it MUST be used together
 with a proper FDT Instance Header (EXT_FDT). Within a file delivery
 session, both uncompressed and compressed FDT Instances MAY appear.
 If compression is not used for a given FDT Instance, the EXT_COMP
 MUST NOT be used in any packet carrying the FDT Instance. The format
 of EXT_COMP is defined below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 193 | Comp | Reserved |
 +-+

 Compression algoritm (Comp), 8 bits:

Paila, et al. Expires May 14, 2004 [Page 14]

Internet-Draft FLUTE November 2003

 This field signals the compression algrorithm used in the FDT
 Instance payload. The definition of this field is outside the scope
 of this specification. Applicable compression algorithms include, for
 example, ZLIB [11], DEFLATE [16] and GZIP [17].

 Reserved, 16 bits:

 This field MUST be set to all '0'.

3.5 Multiplexing of files within a file delivery session

 The delivered files are carried as transport objects (identified with
 TOIs) in the file delivery session. All these objects, including the
 FDT Instances, MAY be multiplexed in any order and in parallel with
 each other.

 Especially multiple FDT Instances MAY be delivered during the session
 in a particular TOI. In this case, it is RECOMMENDED that the sending
 of a previous FDT Instance SHOULD end before the sending of the next
 FDT Instance starts. However, due to unexpected network conditions
 the FDT Instances MAY be multiplexed packetwise. In that case, the
 FDT Instances are uniquely identified by their FDT Instance ID
 carried in the EXT_FDT headers.

4. Channels, congestion control and timing

 ALC/LCT has a concept of channels and congestion control. There are
 four scenarios FLUTE is envisioned to be applied.

 (a) Use a single channel and a single-rate congestion control
 protocol.

 (b) Use multiple channels and a multiple-rate congestion control
 protocol. In this case the FDT Instances MAY be delivered on more
 than one channel.

 (c) Use a single channel without congestion control supplied by ALC,
 but only when in a controlled network environment where flow/
 congestion control is being provided by other means.

 (d) Use multiple channels without congestion control supplied by ALC,
 but only when in a controlled network environment where flow/
 congestion control is being provided by other means. In this case
 the FDT Instances MAY be delivered on more than one channel.

 When using just one channel for a file delivery session, as in (a)
 and (c), the notion of 'prior' and 'after' are intuitively defined
 for the delivery of objects with respect to their delivery times.

Paila, et al. Expires May 14, 2004 [Page 15]

Internet-Draft FLUTE November 2003

 However, if multiple channels are used, as in (b) and (d), it is not
 straightforward to state that an object was delivered 'prior' to the
 other. An object may begin to be delivered on one or more of those
 channels before the delivery of a second object begins. However, the
 use of multiple channels/layers may complete the delivery of the
 second object before the first. This is not a problem when objects
 are delivered sequentially using a single channel. Thus, if the
 application of FLUTE has a mandatory or critical requirement that the
 first transport object must complete 'prior' to the second one, it is
 RECOMMENDED that only a single channel is used for the file delivery
 session.

 Furthermore, if multiple channels are used then a receiver joined to
 the session at a low reception rate will only be joined to the lower
 layers of the session. Thus, since FDTs are of higher priority to
 receive than files (because the reception of files depends on the
 reception of an FDT Instance describing it), the following is
 RECOMMENDED:

 1. The layers to which packets for FDT Instances are sent SHOULD NOT
 be biased towards those layers to which lower rate receivers are
 not joined. For example, it is ok to put all the packets for an
 FDT instance into the lowest layer (if this layer carries enough
 packets to deliver the FDT to higher rate receivers in a
 reasonable amount of time), but it is not ok to put all the
 packets for an FDT instance into the higher layers that only high
 rate receivers will receive.

 2. If FDT Instances are generally longer than one encoding symbol in
 length and some packets for FDT Instances are sent to layers that
 lower rate receivers do not receive, an FEC Encoding other than
 FEC Encoding ID 0 SHOULD be used to deliver FDT Instances. This
 is because in this case, even when there is no packet loss in the
 network, a lower rate receiver will not receive all packets sent
 for an FDT Instance.

5. Delivering FEC Object Transmission Information

 FLUTE inherits the use of FEC building block [5] from ALC. When using
 FLUTE for file delivery over ALC the FEC Object Transmission
 Information MUST be delivered in-band within the file delivery
 session. In this chapter, two methods are specified for FLUTE for
 this purpose: the use of ALC specific LCT extension header EXT_FTI
 [3], and, the use of FDT.

 The receiver of file delivery session MUST support delivery of FEC
 Object Transmission Information using the EXT_FTI for the FDT

Paila, et al. Expires May 14, 2004 [Page 16]

Internet-Draft FLUTE November 2003

 Instances carried using TOI value 0. For the TOI values other than 0
 the receiver MUST support both methods: the use of EXT_FTI and the
 use of FDT.

 The FEC Object Transmission Information that needs to be delivered to
 receivers MUST be exactly the same whether it is delivered using
 EXT_FTI or using FDT (or both). Section 5.1 describes the required
 FEC Object Transmission Information that MUST be delivered to
 receivers for various FEC Encoding IDs. In addition, it describes the
 delivery using EXT_FTI. Section 5.2 describes the delivery using FDT.
 Delivery of FEC Object Transmission Information using out-of-band
 signaling is outside the scope of this specification.

 The FEC Object Transmission Information regarding a given TOI may be
 available from several sources. In this case, it is RECOMMENDED that
 the receiver of the file delivery session prioritizes the sources in
 the following way (in the order of decreasing priority).

 1. FEC Object Transmission Information that is available in EXT_FTI.

 2. FEC Object Transmission Information that is available in the FDT.

 3. FEC Object Transmission Information that is available out of band.

5.1 Use of EXT_FTI for delivery of FEC Object Transmission Information

 As specified in [3], the EXT_FTI header extension is intended to
 carry in band the FEC Object Transmission Information for an object.
 It is left up to individual implementations to decide how frequently
 and in which ALC packets the EXT_FTI header extension is included. In
 environments with higher packet loss rate, the EXT_FTI might need to
 be included more frequently in ALC packets than in environments with
 low error probability. The EXT_FTI MUST be included in at least one
 sent ALC packet belonging to TOI 0.

 The ALC specification does not define the format or the processing of
 the EXT_FTI header extension. The following sections specify EXT_FTI
 when used in FLUTE.

 In FLUTE, the FEC Encoding ID (8 bits) is carried in the Codepoint
 field of the ALC/LCT header.

5.1.1 General EXT_FTI format

 The general EXT_FTI format specifies the structure and those
 attributes of FEC Object Transmission Information that are applicable
 to any FEC Encoding ID.

Paila, et al. Expires May 14, 2004 [Page 17]

Internet-Draft FLUTE November 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 64 | HEL | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | Transfer Length |
 +-+
 | FEC Instance ID | FEC Enc. ID Specific Format |
 +-+

 Header Extension Type (HET), 8 bits:

 64 as defined in [3]

 Header Extension Length (HEL), 8 bits:

 The length of the whole Header Extension field, expressed in
 multiples of 32-bit words. This length includes the FEC Encoding ID
 specific format part.

 Transfer Length, 48 bits:

 The length of the transport object that carries the file in bytes.
 (This is the same as the file length if the file is not content
 encoded.)

 FEC Instance ID, optional, 16 bits:

 This field is used for FEC Instance ID. It is only present if the
 value of FEC Encoding ID is in the range of 128-255. When the value
 of FEC Encoding ID is in the range of 0-127, this field is set to 0.

 FEC Encoding ID Specific Format:

 Different FEC encoding schemes will need different sets of encoding
 parameters. Thus, the structure and length of this field depends on
 FEC Encoding ID. The next sections specify structure of this field
 for FEC Encoding ID numbers 0, 128, 129 and 130.

5.1.2 FEC Encoding ID specific formats for EXT_FTI

5.1.2.1 FEC Encoding IDs 0, 128, and 130

 FEC Encoding ID 0 is 'Compact No-Code FEC' (Fully-Specified) [8]. FEC
 Encoding ID 128 is 'Small Block, Large Block and Expandable FEC'
 (Under-Specified) [5]. FEC Encoding ID 130 is 'Compact FEC'
 (Under-Specified) [8]. For these FEC Encoding IDs, the FEC Encoding
 ID specific format of EXT_FTI is defined as follows.

Paila, et al. Expires May 14, 2004 [Page 18]

Internet-Draft FLUTE November 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 General EXT_FTI format | Encoding Symbol Length |
 +-+
 | Maximum Source Block Length |
 +-+

 Encoding Symbol Length, 16 bits:

 Length of encoding symbol in bytes.

 All encoding symbols of a transport object MUST be equal to this
 length, with the optional exception of the last source symbol of the
 last source block (so that redundant padding is not mandatory in this
 last symbol). This last source symbol MUST be logically padded out
 with zeroes when another encoding symbol is computed based on this
 source symbol to ensure the same interpretation of this encoding
 symbol value by the sender and receiver. However, this padding need
 not be actually sent with the data of the last source symbol.

 Maximum Source Block Length, 32 bits

 The maximum number of source symbols per source block.

 This EXT_FTI specification requires that an algorithm is known to
 both sender and receivers for determining the size of all source
 blocks of the transport object that carries the file identified by
 the TOI (or within the FDT Instance identified by the TOI and the FDT
 Instance ID). The algorithm SHOULD be the same for all files using
 the same FEC Encoding ID within a session.

Section 5.1.2.3 describes an algorithm that is RECOMMENDED for this
 use.

 For the FEC Encoding IDs 0, 128 and 130, this algorithm is the only
 well known way the receiver can determine the length of each source
 block. Thus, the algorithm does two things: (a) it tells the receiver
 the length of each particular source block as it is receiving packets
 for that source block - this is essential to all of these FEC
 schemes; and, (b) it provides the source block structure immediately
 to the receiver so that the receiver can determine where to save
 recovered source blocks at the beginning - this is an optimization
 which is essential for some implementations.

5.1.2.2 FEC Encoding ID 129

 Small Block Systematic FEC (Under-Specified). The FEC Encoding ID

Paila, et al. Expires May 14, 2004 [Page 19]

Internet-Draft FLUTE November 2003

 specific format of EXT_FTI is defined as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 General EXT_FTI format | Encoding Symbol Length |
 +-+
 | Maximum Source Block Length | Max. Num. of Encoding Symbols |
 +-+

 Encoding Symbol Length, 16 bits:

 Length of encoding symbol in bytes.

 Maximum Source Block Length, 16 bits:

 The maximum number of source symbols per source block.

 Maximum Number of Encoding Symbols, 16 bits:

 Maximum number of encoding symbols that can be generated for a source
 block.

 All encoding symbols of a transport object MUST be equal to this
 length, with the optional exception of the last source symbol of the
 last source block (so that redundant padding is not mandatory in this
 last symbol). This last source symbol MUST be logically padded out
 with zeroes when another encoding symbol is computed based on this
 source symbol to ensure the same interpretation of this encoding
 symbol value by the sender and receiver. However, this padding need
 not be actually sent with the data of the last source symbol.

 This EXT_FTI specification requires that an algorithm is known to
 both sender and receivers for determining the size of all source
 blocks of the transport object that carries the file identified by
 the TOI (or within the FDT Instance identified by the TOI and the FDT
 Instance ID). The algorithm SHOULD be the same for all files using
 the same FEC Encoding ID within a session.

Section 5.1.2.3 describes an algorithm that is RECOMMENDED for this
 use. For FEC Encoding ID 129 the FEC Payload ID in each data packet
 already contains the source block length for the source block
 corresponding to the encoding symbol carried in the data packet.
 Thus, the algorithm for computing source blocks for FEC Encoding ID
 129 could be to just use the source block lengths carried in data
 packets within the FEC Payload ID. However, the algorithm described
 in Section 5.1.2.3 is useful for the receiver to compute the source
 block structure at the beginning of the reception of data packets for

Paila, et al. Expires May 14, 2004 [Page 20]

Internet-Draft FLUTE November 2003

 the file. If the algorithm described in Section 5.1.2.3 is used then
 it MUST be the case that the source block lengths that appear in data
 packets agree with the source block lengths calculated by the
 algorithm.

5.1.2.3 Algorithm for Computing Source Block Structure

 This algorithm computes a source block structure so that all source
 blocks are as close to being equal length as possible. A first number
 of source blocks are of the same larger length, and the remaining
 second number of source blocks are sent of the same smaller length.
 The total number of source blocks (N), the first number of source
 blocks (I), the second number of source blocks (N-I), the larger
 length (A_large) and the smaller length (A_small) are calculated
 thus,

 Inputs:
 B -- Maximum Source Block length, i.e., the maximum number of
 source symbols per source block
 L -- Transfer length in bytes
 E -- Encoding Symbol Length in bytes

 Output:
 N -- The number of source blocks into which the transport
 object is partitioned. The number and lengths of source
 symbols in each of the N source blocks.

 Algorithm:
 (a) The number of source symbols in the transport object is
 computed as T = L/E rounded up to the nearest integer.
 (b) The transport object is partitioned into N source blocks,
 where N = T/B rounded up to the nearest integer
 (c) The average length of a source block, A = T/N
 (this may be non-integer)
 (d) A_large = A rounded up to the nearest integer
 (it will always be the case that the value of A_large is at
 most B)
 (e) A_small = A rounded down to the nearest integer
 (if A is an integer A_small = A_large,
 and otherwise A_small = A_large - 1)
 (f) The fractional part of A, A_fraction = A - A_small
 (g) I = A_fraction * N
 (I is an integer between 0 and N-1)
 (h) Each of the first I source blocks consists of A_large source
 symbols, each source symbol is E bytes in length. Each of the
 remaining N-I source blocks consist of A_small source symbols,
 each source symbol is E bytes in length except that the last
 source symbol of the last source block is L-(((L-1)/E) rounded

Paila, et al. Expires May 14, 2004 [Page 21]

Internet-Draft FLUTE November 2003

 down to the nearest integer)*E bytes in length.

5.2 Use of FDT for delivery of FEC Object Transmission Information

 The FDT delivers FEC Object Transmission Information for each file
 using an appropriate attribute within the "File" element of the FDT
 structure. For future FEC Encoding IDs, if the attributes listed
 below do not fulfil the needs of describing the FEC Object
 Transmission Information then additional new attributes MAY be used.

 * "Transfer-Length" is semantically equivalent with the field
 "Transfer Length" of EXT_FTI.

 * "FEC-OTI-FEC-Instance-ID" is semantically equivalent with the
 field "FEC Instance ID" of EXT_FTI.

 * "FEC-OTI-Maximum-Source-Block-Length" is semantically equivalent
 with the field "Maximum Source Block Length" of EXT_FTI for FEC
 Encoding IDs 0, 128 and 130, and semantically equivalent with the
 field "Maximum Source Block Length" of EXT_FTI for FEC Encoding ID
 129.

 * "FEC-OTI-Encoding-Symbol-Length" is semantically equivalent with
 the field "Encoding Symbol Length" of EXT_FTI for FEC Encoding IDs
 0, 128, 129 and 130.

 * "FEC-OTI-Max-Number-of-Encoding-Symbols" is semantically
 equivalent with the field "Maximum Number of Encoding Symbols" of
 EXT_FTI for FEC Encoding ID 129.

6. Describing file delivery sessions

 To start receiving a file delivery session, the receiver needs to
 know transport parameters associated with the session. Interpreting
 these parameters and starting the reception therefore represents the
 entry point from which thereafter the receiver operation falls into
 the scope of this specification. According to [3], the transport
 parameters of an ALC/LCT session that the receiver needs to know are:

 * The sender IP address;

 * The number of channels in the session;

 * The destination IP address and port number for each channel in the
 session;

Paila, et al. Expires May 14, 2004 [Page 22]

Internet-Draft FLUTE November 2003

 * The Transport Session Identifier (TSI) of the session;

 * An indication of whether or not the session carries packets for
 more than one object;

 Optionally, the following parameters MAY be associated with the
 session (Note, the list is not exhaustive):

 * The start time and end time of the session;

 * FEC Encoding ID and FEC Instance ID when the default FEC Encoding
 ID 0 is not used for the delivery of FDT;

 * Compression format if optional compression of FDT Instance Payload
 is used;

 * The FEC Object Transmission Information when this information is
 neither available in the EXT_FTI nor FDT as described in section

5.

 * Some information that tells receiver, in the first place, that the
 session contains files that are of interest

 How the receiver acquires the above-mentioned parameters is out of
 scope of this document. The specification, in particular, does not
 mandate or exclude any mechanism. The description can be conveyed to
 the receiver via techniques such as Session Announcement Protocol
 [12], email, accessing URL, manual configuration, etc. Similarly the
 format of this session description is out of the scope of this
 document.

7. Security Considerations

 The same security consideration that apply to ALC and to the LCT, FEC
 and the congestion control building block used in conjunction with
 FLUTE also apply to FLUTE.

 Because of the use of FEC, FLUTE is especially vulnerable to
 denial-of-service attacks by attackers that try to send forged
 packets to the session which would prevent successful reconstruction
 or cause inaccurate reconstruction of large portions of the FDT or
 file by receivers. Like ALC, FLUTE is particularly affected by such
 an attack because many receivers may receive the same forged packet.
 A malicious attacker may spoof file packets and cause incorrect
 recovery of a file.

 Even more damaging, a malicious forger may spoof FDT Instance
 packets, for example sending packets with erroneous FDT-Payload

Paila, et al. Expires May 14, 2004 [Page 23]

Internet-Draft FLUTE November 2003

 fields. Many attacks can follow this approach. For instance a
 malicious attacker may alter the Content-Location field of TOI 'n',
 to make it point to a system file or a user configuration file.
 Then, TOI 'n' can carry a Trojan horse or some other type of virus.
 It is thus RECOMMENDED that the FLUTE delivery service at the
 receiver does not have write access to the system files or
 directories, or any other critical areas. Another example is
 generating a bad Content-MD5 sum, leading receivers to reject the
 associated file that will be declared corrupted. The Content-Encoding
 can also be modified, which also prevents the receivers to correctly
 handle the associated file. These examples show that the FDT
 information is critical to the FLUTE delivery service.

 At the application level, it is RECOMMENDED that an integrity check
 on the entire received object be done once the object is
 reconstructed to ensure it is the same as the sent object, especially
 for objects that are FDT Instances. Moreover, in order to obtain
 strong cryptographic integrity protection a digital signature
 verifiable by the receiver SHOULD be used to provide this application
 level integrity check. However, if even one corrupted or forged
 packet is used to reconstruct the object, it is likely that the
 received object will be reconstructed incorrectly. This will
 appropriately cause the integrity check to fail and in this case the
 inaccurately reconstructed object SHOULD be discarded. Thus, the
 acceptance of a single forged packet can be an effective denial of
 service attack for distributing objects, but an object integrity
 check at least prevents inadvertent use of inaccurately reconstructed
 objects. The specification of an application level integrity check
 of the received object is outside the scope of this document.

 At the packet level, it is RECOMMENDED that a packet level
 authentication be used to ensure that each received packet is an
 authentic and uncorrupted packet containing FEC data for the object
 arriving from the specified sender. Packet level authentication has
 the advantage that corrupt or forged packets can be discarded
 individually and the received authenticated packets can be used to
 accurately reconstruct the object. Thus, the effect of a denial of
 service attack that injects forged packets is proportional only to
 the number of forged packets, and not to the object size. Although
 there is currently no IETF standard that specifies how to do
 multicast packet level authentication, TESLA [14] is a known
 multicast packet authentication scheme that would work.

 In addition to providing protection against reconstruction of
 inaccurate objects, packet level authentication can also provide some
 protection against denial of service attacks on the multiple rate
 congestion control. Attackers can try to inject forged packets with
 incorrect congestion control information into the multicast stream,

Paila, et al. Expires May 14, 2004 [Page 24]

Internet-Draft FLUTE November 2003

 thereby potentially adversely affecting network elements and
 receivers downstream of the attack, and much less significantly the
 rest of the network and other receivers. Thus, it is also
 RECOMMENDED that packet level authentication be used to protect
 against such attacks. TESLA [14] can also be used to some extent to
 limit the damage caused by such attacks. However, with TESLA a
 receiver can only determine if a packet is authentic several seconds
 after it is received, and thus an attack against the congestion
 control protocol can be effective for several seconds before the
 receiver can react to slow down the session reception rate.

 Reverse Path Forwarding checks SHOULD be enabled in all network
 routers and switches along the path from the sender to receivers to
 limit the possibility of a bad agent injecting forged packets into
 the multicast tree data path.

 A receiver with an incorrect or corrupted implementation of the
 multiple rate congestion control building block may affect health of
 the network in the path between the sender and the receiver, and may
 also affect the reception rates of other receivers joined to the
 session. It is therefore RECOMMENDED that receivers be required to
 identify themselves as legitimate before they receive the Session
 Description needed to join the session. How receivers identify
 themselves as legitimate is outside the scope of this document.

 Another vulnerability of FLUTE is the potential of receivers
 obtaining an incorrect Session Description for the session. The
 consequences of this could be that legitimate receivers with the
 wrong Session Description are unable to correctly receive the session
 content, or that receivers inadvertently try to receive at a much
 higher rate than they are capable of, thereby disrupting traffic in
 portions of the network. To avoid these problems, it is RECOMMENDED
 that measures be taken to prevent receivers from accepting incorrect
 Session Descriptions, e.g., by using source authentication to ensure
 that receivers only accept legitimate Session Descriptions from
 authorized senders. How this is done is outside the scope of this
 document.

8. IANA Considerations

 No information in this specification is directly subject to IANA
 registration. However, building blocks components used by ALC may
 introduce additional IANA considerations. In particular, the FEC
 building block used by FLUTE does require IANA registration of the
 FEC codecs used.

Paila, et al. Expires May 14, 2004 [Page 25]

Internet-Draft FLUTE November 2003

9. Acknowledgements

 The following persons have contributed to this specification: Brian
 Adamson, Mark Handley, Esa Jalonen, Roger Kermode, Juha-Pekka Luoma,
 Jani Peltotalo, Sami Peltotalo, Topi Pohjolainen and Lorenzo
 Vicisano. The authors would like to thank all the contributors for
 their valuable work in reviewing and providing feedback regarding
 this specification.

Normative references

 [1] Bradner, S., "The Internet Standards Process -- Revision 3",
RFC 2026, BCP 9, October 1996.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, BCP 14, March 1997.

 [3] Luby, M., Gemmel, J., Vicisano, L., Rizzo, L. and J. Crowcroft,
 "Asynchronous Layered Coding (ALC) Protocol Instantiation", RFC

3450, December 2002.

 [4] Luby, M., Gemmel, J., Vicisano, L., Rizzo, L., Handley, M. and
 J. Crowcroft, "Layered Coding Transport (LCT) Building Block",

RFC 3451, December 2002.

 [5] Luby, M., Gemmel, J., Vicisano, L., Rizzo, L., Handley, M. and
 J. Crowcroft, "Forward Error Correction (FEC) Building Block",

RFC 3452, December 2002.

 [6] Mills, D., "Network Time Protocol (Version 3), Specification,
 Implementation and Analysis", RFC 1305, March 1992.

 [7] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [8] Luby, M. and L. Vicisano, "Compact Forward Error Correction
 (FEC) Schemes", draft-ietf-rmt-bb-fec-supp-compact-01 (work in
 progress), May 2003.

 [9] Thompson, H., Beech, D., Maloney, M. and N. Mendelsohn, "XML
 Schema Part 1: Structures", W3C Recommendation, May 2001.

 [10] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes", W3C
 Recommendation, May 2001.

Informative references

https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc3450
https://datatracker.ietf.org/doc/html/rfc3450
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc3452
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-rmt-bb-fec-supp-compact-01

Paila, et al. Expires May 14, 2004 [Page 26]

Internet-Draft FLUTE November 2003

 [11] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 [12] Handley, M., Perkins, C. and E. Whelan, "Session Announcement
 Protocol", RFC 2974, October 2000.

 [13] Deering, S., "Host Extensions for IP Multicasting", RFC 1112,
 STD 5, August 1989.

 [14] Perrig, A., Canetti, R., Song, D. and J. Tygar, "Efficient and
 Secure Source Authentication for Multicast, Network and
 Distributed System Security Symposium, NDSS 2001, pp. 35-46.",
 February 2001.

 [15] Holbrook, H., "A Channel Model for Multicast, Ph.D.
 Dissertation, Stanford University, Department of Computer
 Science, Stanford, California", August 2001.

 [16] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [17] Deutsch, P., "GZIP file format specification version 4.3", RFC
1952, May 1996.

Authors' Addresses

 Toni Paila
 Nokia
 Itamerenkatu 11-13
 Helsinki FIN-00180
 Finland

 EMail: toni.paila@nokia.com

 Michael Luby
 Digital Fountain
 39141 Civic Center Dr.
 Suite 300
 Fremont, CA 94538
 USA

 EMail: luby@digitalfountain.com

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc2974
https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952

Paila, et al. Expires May 14, 2004 [Page 27]

Internet-Draft FLUTE November 2003

 Rami Lehtonen
 TeliaSonera
 Hatanpaan valtatie 18
 Tampere FIN-33100
 Finland

 EMail: rami.lehtonen@teliasonera.com

 Vincent Roca
 INRIA Rhone-Alpes
 655, av. de l'Europe
 Montbonnot
 St Ismier cedex 38334
 France

 EMail: vincent.roca@inrialpes.fr

 Rod Walsh
 Nokia
 Visiokatu 1
 Tampere FIN-33720
 Finland

 EMail: rod.walsh@nokia.com

Appendix A. Receiver operation (informative)

 This chapter gives an example how the receiver of the file delivery
 session may operate. Instead of a detailed state-by-state
 specification the following should be interpreted as a rough sequence
 of an envisioned file delivery receiver.

 1. The receiver obtains the description of the file delivery session
 identified by the pair: (source IP address, Transport Session
 Identifier). The receiver also obtains the destination IP
 addresses and respective ports associated with the file delivery
 session.

 2. The receiver joins the channels in order to receive packets
 associated with the file delivery session. The receiver may
 schedule this join operation utilizing the timing information
 contained in a possible description of the file delivery session.

 3. The receiver receives ALC/LCT packets associated with the file
 delivery session. The receiver checks that the packets match the
 declared Transport Session Identifier. If not, packets are

Paila, et al. Expires May 14, 2004 [Page 28]

Internet-Draft FLUTE November 2003

 silently discarded.

 4. While receiving, the receiver demultiplexes packets based on their
 TOI and stores the relevant packet information in an appropriate
 area for recovery of the corresponding file. Multiple files can be
 reconstructed concurrently.

 5. Receiver recovers an object. An object can be recovered when an
 appropriate set of packets containing encoding symbols for the
 transport object have been received. An appropriate set of packets
 is dependent on the properties of the FEC Encoding ID and FEC
 Instance ID, and on other information contained in the FEC Object
 Transmission Information.

 6. If the recovered object was an FDT instance with FDT Instance ID
 'N', the receiver parses the payload of the instance 'N' of FDT
 and updates its FDT database accordingly. The receiver identifies
 FDT instances within a file delivery session by the EXT_FDT header
 extension. Any object that is delivered using EXT_FDT header
 extension is an FDT instance, uniquely identified by the FDT
 Instance ID. Note that TOI '0' is exclusively reserved for FDT
 delivery.

 7. If the object recovered is not an FDT Instance but a file, the
 receiver looks up its FDT database to get the properties described
 in the database, and assigns file with the given properties. The
 receiver also checks that received content length matches with the
 description in the database. Optionally, if MD5 checksum has been
 used, the receiver checks that calculated MD5 matches with the
 description in the FDT database.

 8. The actions the receiver takes with imperfectly received files
 (missing data, mismatching digestive, etc.) is outside the scope
 of this specification. When a file is recovered before the
 associated file description entry is available, a possible
 behavior is to wait until an FDT Instance is received that
 includes the missing properties.

 9. If the file delivery session end time has not been reached go back
 to 3. Otherwise end.

Appendix B. Example of FDT Instance Payload (informative)

 <?xml version="1.0" encoding="UTF-8"?>
 <FDT-Payload xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:fl="http://www.example.com/flute"

Paila, et al. Expires May 14, 2004 [Page 29]

Internet-Draft FLUTE November 2003

 xsi:schemaLocation="http://www.example.com/flute fdt-6a.xsd"
 Expires="2890842807">
 <File
 Content-Location="www.example.com/menu/tracklist.html"
 TOI="1"
 Content-Type="text/html"/>
 <File
 Content-Location="www.example.com/tracks/track1.mp3"
 TOI="2"
 Content-Length="6100"
 Content-Type="audio/mp3"
 Content-Encoding="gzip"
 Content-MD5="Eth76GlkJU45sghK"
 Some-Private-Extension-Tag="abc123"/>
 </FDT-Payload>

Paila, et al. Expires May 14, 2004 [Page 30]

Internet-Draft FLUTE November 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Paila, et al. Expires May 14, 2004 [Page 31]

Internet-Draft FLUTE November 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Paila, et al. Expires May 14, 2004 [Page 32]

