
Reliable Multicast Transport (RMT) T. Paila
Internet-Draft R. Walsh
Obsoletes: 3926 (if approved) Nokia
Intended status: Standards Track M. Luby
Expires: July 16, 2012 Qualcomm, Inc.
 V. Roca
 INRIA
 R. Lehtonen
 TeliaSonera
 January 13, 2012

FLUTE - File Delivery over Unidirectional Transport
draft-ietf-rmt-flute-revised-13

Abstract

 This document defines FLUTE, a protocol for the unidirectional
 delivery of files over the Internet, which is particularly suited to
 multicast networks. The specification builds on Asynchronous Layered
 Coding, the base protocol designed for massively scalable multicast
 distribution. This document obsoletes RFC3926.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 16, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Paila, et al. Expires July 16, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft FLUTE January 2012

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Paila, et al. Expires July 16, 2012 [Page 2]

Internet-Draft FLUTE January 2012

Table of Contents

1. Introduction . 5
1.1. Applicability Statement 6
1.1.1. The Target Application Space 6
1.1.2. The Target Scale 6
1.1.3. Intended Environments 7
1.1.4. Weaknesses . 7

2. Conventions used in this Document 8
3. File delivery . 8
3.1. File delivery session 9
3.2. File Delivery Table 11
3.3. Dynamics of FDT Instances within file delivery session . . 13
3.4. Structure of FDT Instance packets 16
3.4.1. Format of FDT Instance Header 17
3.4.2. Syntax of FDT Instance 18
3.4.3. Content Encoding of FDT Instance 22

3.5. Multiplexing of files within a file delivery session . . . 23
4. Channels, congestion control and timing 23
5. Delivering FEC Object Transmission Information 25
6. Describing file delivery sessions 26
7. Security Considerations 27
7.1. Problem Statement . 27
7.2. Attacks against the data flow 28
7.2.1. Access to confidential files 28
7.2.2. File corruption 29

 7.3. Attacks against the session control parameters and
 associated Building Blocks 30

7.3.1. Attacks against the Session Description 31
7.3.2. Attacks against the FDT Instances 31
7.3.3. Attacks against the ALC/LCT parameters 32
7.3.4. Attacks against the associated Building Blocks 32

7.4. Other Security Considerations 33
7.5. Minimum Security Recommendations 33

8. IANA Considerations . 33
8.1. Registration Request for XML Schema of FDT Instance . . . 34

 8.2. Media-Type Registration Request for application/fdt+xml . 34
8.3. Content Encoding Algorithm Registration Request 35
8.3.1. Explicit IANA Assignment Guidelines 35

8.4. Registration of EXT_FDT LCT Header Extension Type 35
8.5. Registration of EXT_CENC LCT Header Extension Type 36

9. Acknowledgements . 36
10. Contributors . 36
11. Change Log . 37
11.1. RFC3926 to draft-ietf-rmt-flute-revised-12 37

12. References . 39
12.1. Normative references 39
12.2. Informative references 41

https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/draft-ietf-rmt-flute-revised-12

Paila, et al. Expires July 16, 2012 [Page 3]

Internet-Draft FLUTE January 2012

Appendix A. Receiver operation (informative) 42
Appendix B. Example of FDT Instance (informative) 44

 Authors' Addresses . 44

Paila, et al. Expires July 16, 2012 [Page 4]

Internet-Draft FLUTE January 2012

1. Introduction

 This document defines FLUTE version 2, a protocol for unidirectional
 delivery of files over the Internet. This specification is not
 backwards compatible with the previous experimental version defined
 in [RFC3926] (see Section 11 for details). The specification builds
 on Asynchronous Layered Coding (ALC), version 1 [RFC5775], the base
 protocol designed for massively scalable multicast distribution. ALC
 defines transport of arbitrary binary objects. For file delivery
 applications mere transport of objects is not enough, however. The
 end systems need to know what the objects actually represent. This
 document specifies a technique called FLUTE - a mechanism for
 signaling and mapping the properties of files to concepts of ALC in a
 way that allows receivers to assign those parameters for received
 objects. Consequently, throughout this document the term 'file'
 relates to an 'object' as discussed in ALC. Although this
 specification frequently makes use of multicast addressing as an
 example, the techniques are similarly applicable for use with unicast
 addressing.

 This document defines a specific transport application of ALC, adding
 the following specifications:

 - Definition of a file delivery session built on top of ALC,
 including transport details and timing constraints.

 - In-band signaling of the transport parameters of the ALC session.

 - In-band signaling of the properties of delivered files.

 - Details associated with the multiplexing of multiple files within
 a session.

 This specification is structured as follows. Section 3 begins by
 defining the concept of the file delivery session. Following that it
 introduces the File Delivery Table that forms the core part of this
 specification. Further, it discusses multiplexing issues of
 transmission objects within a file delivery session. Section 4
 describes the use of congestion control and channels with FLUTE.

Section 5 defines how the Forward Error Correction (FEC) Object
 Transmission Information is to be delivered within a file delivery
 session. Section 6 defines the required parameters for describing
 file delivery sessions in a general case. Section 7 outlines
 security considerations regarding file delivery with FLUTE. Last,
 there are two informative appendices. Appendix A describes an
 envisioned receiver operation for the receiver of the file delivery
 session. Readers who want to see a simple example of FLUTE in
 operation should refer to Appendix A right away. Appendix B gives an

https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc5775

Paila, et al. Expires July 16, 2012 [Page 5]

Internet-Draft FLUTE January 2012

 example of a File Delivery Table.

 This specification contains part of the definitions necessary to
 fully specify a Reliable Multicast Transport protocol in accordance
 with RFC2357.

 This document obsoletes [RFC3926] which contained a previous version
 of this specification and was published in the "Experimental"
 category. This Proposed Standard specification is thus based on
 [RFC3926] updated according to accumulated experience and growing
 protocol maturity since the publication of [RFC3926]. Said
 experience applies both to this specification itself and to
 congestion control strategies related to the use of this
 specification.

 The differences between [RFC3926] and this document are listed in
Section 11.

 This document updates ALC [RFC5775] and Layered Coding Transport
 (LCT) [RFC5651] in the sense it defines two new header extensions,
 EXT_FDT and EXT_CENC.

1.1. Applicability Statement

1.1.1. The Target Application Space

 FLUTE is applicable to the delivery of large and small files to many
 hosts, using delivery sessions of several seconds or more. For
 instance, FLUTE could be used for the delivery of large software
 updates to many hosts simultaneously. It could also be used for
 continuous, but segmented, data such as time-lined text for
 subtitling - potentially leveraging its layering inheritance from ALC
 and LCT to scale the richness of the session to the congestion status
 of the network. It is also suitable for the basic transport of
 metadata, for example SDP [RFC4566] files which enable user
 applications to access multimedia sessions.

1.1.2. The Target Scale

 Massive scalability is a primary design goal for FLUTE. IP multicast
 is inherently massively scalable, but the best effort service that it
 provides does not provide session management functionality,
 congestion control or reliability. FLUTE provides all of this using
 ALC and IP multicast without sacrificing any of the inherent
 scalability of IP multicast.

https://datatracker.ietf.org/doc/html/rfc2357
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc4566

Paila, et al. Expires July 16, 2012 [Page 6]

Internet-Draft FLUTE January 2012

1.1.3. Intended Environments

 All of the environmental requirements and considerations that apply
 to the RMT Building Blocks used by FLUTE shall also apply to FLUTE.
 These are the ALC protocol instantiation [RFC5775], the Layered
 Coding Transport (LCT) Building Block [RFC5651] and the FEC Building
 Block [RFC5052].

 FLUTE can be used with both multicast and unicast delivery, but it's
 primary application is for unidirectional multicast file delivery.
 FLUTE requires connectivity between a sender and receivers but does
 not require connectivity from receivers to a sender. FLUTE
 inherently works with all types of networks, including LANs, WANs,
 Intranets, the Internet, asymmetric networks, wireless networks, and
 satellite networks.

 FLUTE is compatible with both IPv4 or IPv6 as no part of the packet
 is IP version specific. FLUTE works with both multicast models: Any-
 Source Multicast (ASM) [RFC1112] and the Source-Specific Multicast
 (SSM) [PAPER.SSM].

 FLUTE is applicable for both Internet use, with a suitable congestion
 control building block, and provisioned/controlled systems, such as
 delivery over wireless broadcast radio systems.

1.1.4. Weaknesses

 FLUTE congestion control protocols depend on the ability of a
 receiver to change multicast subscriptions between multicast groups
 supporting different rates and/or layered codings. If the network
 does not support this, then the FLUTE congestion control protocols
 may not be amenable to these networks.

 FLUTE can also be used for point-to-point (unicast) communications.
 At a minimum, implementations of ALC MUST support the Wave and
 Equation Based Rate Control (WEBRC) [RFC3738] multiple rate
 congestion control scheme [RFC5775]. However, since WEBRC has been
 designed for massively scalable multicast flows, it is not clear how
 appropriate it is to the particular case of unicast flows. Using a
 separate point-to-point congestion control scheme is another
 alternative. How to do that is outside the scope of the present
 document.

 FLUTE provides reliability using the FEC building block. This will
 reduce the error rate as seen by applications. However, FLUTE does
 not provide a method for senders to verify the reception success of
 receivers, and the specification of such a method is outside the
 scope of this document.

https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc3738
https://datatracker.ietf.org/doc/html/rfc5775

Paila, et al. Expires July 16, 2012 [Page 7]

Internet-Draft FLUTE January 2012

2. Conventions used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The terms "object" and "transmission object" are consistent with the
 definitions in ALC [RFC5775] and LCT [RFC5651]. The terms "file" and
 "source object" are pseudonyms for "object".

3. File delivery

 Asynchronous Layered Coding [RFC5775] is a protocol designed for
 delivery of arbitrary binary objects. It is especially suitable for
 massively scalable, unidirectional, multicast distribution. ALC
 provides the basic transport for FLUTE, and thus FLUTE inherits the
 requirements of ALC.

 This specification is designed for the delivery of files. The core
 of this specification is to define how the properties of the files
 are carried in-band together with the delivered files.

 As an example, let us consider a 5200 byte file referred to by
 "http://www.example.com/docs/file.txt". Using the example, the
 following properties describe the properties that need to be conveyed
 by the file delivery protocol.

 * Identifier of the file, expressed as a URI. The identifier MAY
 provide a location for the file. In the above example:
 "http://www.example.com/docs/file.txt".

 * File name (usually, this can be concluded from the URI). In the
 above example: "file.txt".

 * File type, expressed as MIME media type. In the above example:
 "text/plain".

 * File size, expressed in octets. In the above example: "5200". If
 the file is content encoded then this is the file size before
 content encoding.

 * Content encoding of the file, within transport. In the above
 example, the file could be encoded using ZLIB [RFC1950]. In this
 case the size of the transmission object carrying the file would
 probably differ from the file size. The transmission object size
 is delivered to receivers as part of the FLUTE protocol.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc1950

Paila, et al. Expires July 16, 2012 [Page 8]

Internet-Draft FLUTE January 2012

 * Security properties of the file such as digital signatures,
 message digests, etc. For example, one could use S/MIME [RFC5751]
 as the content encoding type for files with this authentication
 wrapper, and one could use XML-DSIG [RFC3275] to digitally sign
 the file. XML-DSIG can also be used to provide tamper prevention
 e.g. on the Content-Location field. Content encoding is applied
 to file data before FEC protection.

 For each unique file, FLUTE encodes the attributes listed above and
 other attributes as children of an XML file element. A table of XML
 file elements is transmitted as a special file called a 'File
 Delivery Table' (FDT) which is further described in the next
 subsection and in section 3.2

3.1. File delivery session

 ALC is a protocol instantiation of Layered Coding Transport building
 block (LCT) [RFC5651]. Thus ALC inherits the session concept of LCT.
 In this document we will use the concept ALC/LCT session to
 collectively denote the interchangeable terms ALC session and LCT
 session.

 An ALC/LCT session consists of a set of logically grouped ALC/LCT
 channels associated with a single sender sending ALC/LCT packets for
 one or more objects. An ALC/LCT channel is defined by the
 combination of a sender and an address associated with the channel by
 the sender. A receiver joins a channel to start receiving the data
 packets sent to the channel by the sender, and a receiver leaves a
 channel to stop receiving data packets from the channel.

 One of the fields carried in the ALC/LCT header is the Transport
 Session Identifier (TSI). The (source IP address, TSI) pair uniquely
 identifies a session. Note that the TSI is scoped by the IP address,
 so the same TSI may be used by several source IP addresses at once.
 Thus, the receiver uses the (source IP address, TSI) pair from each
 packet to uniquely identify the session sending each packet. When a
 session carries multiple objects, the Transmission Object Identifier
 (TOI) field within the ALC/LCT header names the object used to
 generate each packet. Note that each object is associated with a
 unique TOI within the scope of a session.

 A FLUTE session consistent with this specification MUST use FLUTE
 version 2 as specified in this document. Thus, all sessions
 consistent with this specification MUST set the FLUTE version to 2.
 The FLUTE version is carried within the EXT_FDT extension header
 (defined in section 3.4.1) in the ALC/LCT layer. A FLUTE session
 consistent with this specification MUST use ALC version 1 as
 specified in [RFC5775], and LCT version 1 as specified in [RFC5651].

https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5651

Paila, et al. Expires July 16, 2012 [Page 9]

Internet-Draft FLUTE January 2012

 If multiple FLUTE sessions are sent to a channel then receivers MUST
 determine the FLUTE protocol version, based on version fields and the
 (source IP address, TSI) carried in the ALC/LCT header of the packet.
 Note that when a receiver first begins receiving packets, it might
 not know the FLUTE protocol version, as not every LCT packet carries
 the EXT_FDT header (containing the FLUTE protocol version.) A new
 receiver MAY keep an open binding in the LCT protocol layer between
 the TSI and the FLUTE protocol version, until the EXT_FDT header
 arrives. Alternately, a new receiver MAY discover a binding between
 TSI and FLUTE protocol version via a session discovery protocol that
 is out of scope in this document.

 If the sender is not assigned a permanent IP address accessible to
 receivers, then packets that can be received by receivers contain a
 temporary IP address. In this case the TSI is scoped by this
 temporary IP address of the sender for the duration of the session.
 As an example, the sender may be behind a Network Address Translation
 (NAT) device that temporarily assigns an IP address for the sender.
 In this case the TSI is scoped by the temporary IP address assigned
 by the NAT. As another example, the sender may send its original
 packets using IPv6, but some portions of the network may not be IPv6
 capable. Thus, there may be an IPv6 to IPv4 translator that changes
 the IP address of the packets to a different IPv4 address. In this
 case, receivers in the IPv4 portion of the network will receive
 packets containing the IPv4 address, and thus the TSI for them is
 scoped by the IPv4 address. How the IP address of the sender to be
 used to scope the session by receivers is delivered to receivers,
 whether it is a permanent IP address or a temporary IP address, is
 outside the scope of this document.

 When FLUTE is used for file delivery over ALC the following rules
 apply:

 * The ALC/LCT session is called a file delivery session.

 * The ALC/LCT concept of 'object' denotes either a 'file' or a 'File
 Delivery Table Instance' (section 3.2)

 * The TOI field MUST be included in ALC packets sent within a FLUTE
 session, with the exception that ALC packets sent in a FLUTE
 session with the Close Session (A) flag set to 1 (signaling the
 end of the session) and that contain no payload (carrying no
 information for any file or FDT) SHALL NOT carry the TOI. See

section 5.1 of [RFC5651] for the LCT definition of the Close
 Session flag, and see section 4.2 of [RFC5775] for an example of
 the use of a TOI within an ALC packet.

https://datatracker.ietf.org/doc/html/rfc5651#section-5.1
https://datatracker.ietf.org/doc/html/rfc5775#section-4.2

Paila, et al. Expires July 16, 2012 [Page 10]

Internet-Draft FLUTE January 2012

 * The TOI value '0' is reserved for delivery of File Delivery Table
 Instances. Each non expired File Delivery Table Instance is
 uniquely identified by an FDT Instance ID within the EXT_FDT
 header defined in section 3.4.1.

 * Each file in a file delivery session MUST be associated with a TOI
 (>0) in the scope of that session.

 * Information carried in the headers and the payload of a packet is
 scoped by the source IP address and the TSI. Information
 particular to the object carried in the headers and the payload of
 a packet is further scoped by the TOI for file objects, and is
 further scoped by both the TOI and the FDT Instance ID for FDT
 Instance objects.

3.2. File Delivery Table

 The File Delivery Table (FDT) provides a means to describe various
 attributes associated with files that are to be delivered within the
 file delivery session. The following lists are examples of such
 attributes, and are not intended to be mutually exclusive nor
 exhaustive.

 Attributes related to the delivery of file:

 - TOI value that represents the file

 - FEC Object Transmission Information (including the FEC Encoding ID
 and, if relevant, the FEC Instance ID)

 - Size of the transmission object carrying the file

 - Aggregate rate of sending packets to all channels

 Attributes related to the file itself:

 - Name, Identification and Location of file (specified by the URI)

 - MIME media type of file

 - Size of file

 - Encoding of file

 - Message digest of file

 Some of these attributes MUST be included in the file description
 entry for a file, others are optional, as defined in section 3.4.2.

Paila, et al. Expires July 16, 2012 [Page 11]

Internet-Draft FLUTE January 2012

 Logically, the FDT is a set of file description entries for files to
 be delivered in the session. Each file description entry MUST
 include the TOI for the file that it describes and the URI
 identifying the file. The TOI carried in each file description entry
 is how FLUTE names the ALC/LCT data packets used for delivery of the
 file. Each file description entry may also contain one or more
 descriptors that map the above-mentioned attributes to the file.

 Each file delivery session MUST have an FDT that is local to the
 given session. The FDT MUST provide a file description entry mapped
 to a TOI for each file appearing within the session. An object that
 is delivered within the ALC session, but not described in the FDT,
 other than the FDT itself, is not considered a 'file' belonging to
 the file delivery session. This object received with an unmapped TOI
 (Non-zero TOI that is not resolved by the FDT) SHOULD in general be
 ignored by a FLUTE receiver. The details of how to do that is out of
 scope of this specification.

 Note that a client that joins an active file delivery session MAY
 receive data packets for a TOI > 0 before receiving any FDT Instance
 (see Section 3.3 for recommendations on how to limit the probability
 this occurs). Even if the TOI is not mapped to any file description
 entry, this is hopefully a transient situation. When this happens,
 system performance might be improved by caching such packets within a
 reasonable time window and storage size. Such optimizations are use-
 case and implementation specific and further details are beyond the
 scope of this document.

 Within the file delivery session the FDT is delivered as FDT
 Instances. An FDT Instance contains one or more file description
 entries of the FDT. Any FDT Instance can be equal to, a subset of, a
 superset of, overlap with or complement any other FDT Instance. A
 certain FDT Instance may be repeated multiple times during a session,
 even after subsequent FDT Instances (with higher FDT Instance ID
 numbers) have been transmitted. Each FDT Instance contains at least
 a single file description entry and at most the exhaustive set of
 file description entries of the files being delivered in the file
 delivery session.

 A receiver of the file delivery session keeps an FDT database for
 received file description entries. The receiver maintains the
 database, for example, upon reception of FDT Instances. Thus, at any
 given time the contents of the FDT database represent the receiver's
 current view of the FDT of the file delivery session. Since each
 receiver behaves independently of other receivers, it SHOULD NOT be
 assumed that the contents of the FDT database are the same for all
 the receivers of a given file delivery session.

Paila, et al. Expires July 16, 2012 [Page 12]

Internet-Draft FLUTE January 2012

 Since the FDT database is an abstract concept, the structure and the
 maintenance of the FDT database are left to individual
 implementations and are thus out of scope of this specification.

3.3. Dynamics of FDT Instances within file delivery session

 The following rules define the dynamics of the FDT Instances within a
 file delivery session:

 * For every file delivered within a file delivery session there MUST
 be a file description entry included in at least one FDT Instance
 sent within the session. A file description entry contains at a
 minimum the mapping between the TOI and the URI.

 * An FDT Instance MAY appear in any part of the file delivery
 session and packets for an FDT Instance MAY be interleaved with
 packets for other files or other FDT Instances within a session.

 * The TOI value of '0' MUST be reserved for delivery of FDT
 Instances. The use of other TOI values (i.e., an integer > 0) for
 FDT Instances is outside the scope of this specification.

 * The FDT Instance is identified by the use of a new fixed length
 LCT Header Extension EXT_FDT (defined later in this section.)
 Each non expired FDT Instance is uniquely identified within the
 file delivery session by its FDT Instance ID, carried by the
 EXT_FDT Header Extension. Any ALC/LCT packet carrying an FDT
 Instance MUST include EXT_FDT.

 * It is RECOMMENDED that an FDT Instance that contains the file
 description entry for a file is sent at least once before sending
 the described file within a file delivery session. This
 recommendation is intended to minimize the amount of file data
 which may be received by receivers in advance of the FDT Instance
 containing the entry for a file (such data must either be
 speculatively buffered or discarded). Note that this possibility
 cannot be completely eliminated since the first transmission of
 FDT data might be lost.

 * Within a file delivery session, any TOI > 0 MAY be described more
 than once. An example: previous FDT Instance 0 describes TOI of
 value '3'. Now, subsequent FDT Instances can either keep TOI '3'
 unmodified on the table, not include it, or augment the
 description. However, subsequent FDT Instances MUST NOT change
 the parameters already described for a specific TOI.

Paila, et al. Expires July 16, 2012 [Page 13]

Internet-Draft FLUTE January 2012

 * An FDT Instance is valid until its expiration time. The
 expiration time is expressed within the FDT Instance payload as an
 UTF-8 decimal representation of a 32 bit unsigned integer. The
 value of this integer represents the 32 most significant bits of a
 64 bit Network Time Protocol (NTP) [RFC5905] time value. These 32
 bits provide an unsigned integer representing the time in seconds
 relative to 0 hours 1 January 1900 in case of the prime epoch (era
 0) [RFC5905]. The handling of time wraparound (to happen in 2036)
 requires to consider the associated epoch. In any case, both a
 sender and a receiver can determine to which (136 year) epoch the
 FDT Instance expiration time value pertains to by choosing the
 epoch for which the expiration time is closest in time to the
 current time.

 Here is an example. Let us imagine a new FLUTE session is started
 on February 7th, 2036, 0h, i.e., at NTP time 4,294,944,000, a few
 hours before the end of epoch 0. In order to define an FDT
 Instance valid for the next 48 hours, The FLUTE sender sets an
 expiry time of 149,504. This FDT Instance will expire exactly on
 February 9th, 2036, 0h. A client that receives this FDT Instance
 on the 7th, 0h, just after it has been sent, immediately
 understands this value corresponds to epoch 1. A client that
 joins the session on February 8th, 0h, i.e., at NTP time 63,104,
 epoch 1, immediately understands that the 149,504 NTP timestamp
 corresponds to epoch 1.

 * The space of FDT Instance IDs is limited by the associated field
 size (i.e., 20 bits) in the EXT_FDT header extension
 (Section 3.4.1). Therefore senders should take care to always
 have a large enough supply of available FDT Instance IDs when
 specifying FDT expiration times.

 * The receiver MUST NOT use a received FDT Instance to interpret
 packets received beyond the expiration time of the FDT Instance.

 * A sender MUST use an expiration time in the future upon creation
 of an FDT Instance relative to its Sender Current Time (SCT).

 * Any FEC Encoding ID MAY be used for the sending of FDT Instances.
 The default is to use the Compact No-code FEC Encoding ID 0
 [RFC5445] for the sending of FDT Instances. (Note that since FEC
 Encoding ID 0 is the default for FLUTE, this implies that Source
 Block Number and Encoding Symbol ID lengths both default to 16
 bits each.)

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5445

Paila, et al. Expires July 16, 2012 [Page 14]

Internet-Draft FLUTE January 2012

 * If the receiver does not understand the FEC Encoding ID in a FDT
 Instance, the receiver MUST NOT decode the associated FDT.

 * It is RECOMMENDED that the mechanisms used for file attribute
 delivery SHOULD achieve a delivery probability that is higher than
 the file recovery probability and the file attributes SHOULD be
 delivered at this higher priority before the delivery of the
 associated files begins.

 Generally, a receiver needs to receive an FDT Instance describing a
 file before it is able to recover the file itself. In this sense FDT
 Instances are of higher priority than files. Additionally, a FLUTE
 sender SHOULD assume receivers will not receive all packets
 pertaining to FDT Instances. The way FDT Instances are transmitted
 has a large impact on satisfying the recommendation above. When
 there is a single file transmitted in the session, one way to satisfy
 the recommendation above is to repeatedly transmit on a regular
 enough basis FDT Instances describing the file while the file is
 being transmitted. If an FDT Instance is longer than one packet
 payload in length, it is RECOMMENDED that an FEC code that provides
 protection against loss be used for delivering this FDT Instance.
 When there are multiple files in a session concurrently being
 transmitted to receivers, the way the FDT Instances are structured
 and transmitted also has a large impact. As an example, a way to
 satisfy the recommendation above is to transmit an FDT Instance that
 describes all files currently being transmitted, and to transmit this
 FDT Instance reliably, using the same techniques as explained for the
 case when there is a single file transmitted in a session. If
 instead the concurrently transmitted files are described in separate
 FDT Instances, another way to satisfy this recommendation is to
 transmit all the relevant FDT Instances reliably, using the same
 techniques as explained for the case when there is a single file
 transmitted in a session.

 In any case, how often the description of a file is sent in an FDT
 Instance, how often an FDT Instance is sent, and how much FEC
 protection is provided for an FDT Instance (if longer than one packet
 payload) are dependent on the particular application and are outside
 the scope of this document.

 Sometimes the various attributes associated with files that are to be
 delivered within the file delivery session are sent out-of-band
 (rather than in-band, within one or several FDT Instances). The
 details of how this is done are out of the scope of this document.
 However, it is still RECOMMENDED that any out-of-band transmission be
 managed in such a way that a receiver will be able to recover the
 attributes associated with a file with as much or greater reliability
 as the receiver is able to receive enough packets containing encoding

Paila, et al. Expires July 16, 2012 [Page 15]

Internet-Draft FLUTE January 2012

 symbols to recover the file. For example, the probability of a
 randomly chosen receiver being able to recover a given file can often
 be estimated based on a statistical model of reception conditions,
 the amount of data transmitted and the properties of any Forward
 Error Correction in use. The recommendation above suggests that
 mechanisms used for file attribute delivery should achieve higher a
 delivery probability than the file recovery probability.

3.4. Structure of FDT Instance packets

 FDT Instances are carried in ALC packets with TOI = 0 and with an
 additional REQUIRED LCT Header extension called the FDT Instance
 Header. The FDT Instance Header (EXT_FDT) contains the FDT Instance
 ID that uniquely identifies FDT Instances within a file delivery
 session. The FDT Instance Header is placed in the same way as any
 other LCT extension header. There MAY be other LCT extension headers
 in use.

 The FDT Instance is encoded for transmission, like any other object,
 using an FEC Scheme (which MAY be the Compact No-Code FEC Scheme) The
 LCT extension headers are followed by the FEC Payload ID, and finally
 the Encoding Symbols for the FDT Instance which contains one or more
 file description entries. A FDT Instance MAY span several ALC
 packets - the number of ALC packets is a function of the file
 attributes associated with the FDT Instance. The FDT Instance Header
 is carried in each ALC packet carrying the FDT Instance. The FDT
 Instance Header is identical for all ALC/LCT packets for a particular
 FDT Instance.

 The overall format of ALC/LCT packets carrying an FDT Instance is
 depicted in the Figure 1 below. All integer fields are carried in
 "big-endian" or "network order" format, that is, most significant
 byte (octet) first. As defined in [RFC5775], all ALC/LCT packets are
 sent using UDP.

https://datatracker.ietf.org/doc/html/rfc5775

Paila, et al. Expires July 16, 2012 [Page 16]

Internet-Draft FLUTE January 2012

 +-+
 | UDP header |
 | |
 +-+
 | Default LCT header (with TOI = 0) |
 | |
 +-+
 | LCT header extensions (EXT_FDT, EXT_FTI, etc.) |
 | |
 +-+
 | FEC Payload ID |
 | |
 +-+
 FLUTE Payload: Encoding Symbol(s)
 ~ (for FDT Instance in a FDT packet) ~

 +-+

 Figure 1: Overall FDT Packet

3.4.1. Format of FDT Instance Header

 The FDT Instance Header (EXT_FDT) is a new fixed length, ALC PI
 specific LCT header extension [RFC5651]. The Header Extension Type
 (HET) for the extension is 192. Its format is defined below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 192 | V | FDT Instance ID |
 +-+

 Figure 2

 Version of FLUTE (V), 4 bits:

 This document specifies FLUTE version 2. Hence in any ALC packet
 that carries FDT Instance and that belongs to the file delivery
 session as specified in this specification MUST set this field to
 '2'.

 FDT Instance ID, 20 bits:

 For each file delivery session the numbering of FDT Instances starts
 from '0' and is incremented by one for each subsequent FDT Instance.
 After reaching the maximum value (2^20-1), the numbering starts from
 the smallest FDT Instance value assigned to an expired FDT Instance.
 When wraparound from a greater FDT Instance ID value to a smaller FDT

https://datatracker.ietf.org/doc/html/rfc5651

Paila, et al. Expires July 16, 2012 [Page 17]

Internet-Draft FLUTE January 2012

 Instance ID value occurs, the smaller FDT Instance ID value is
 considered logically higher than the greater FDT Instance ID value.
 Senders MUST NOT re-use an FDT Instance ID value that is already in
 use for a non-expired FDT Instance. Sender behavior when all the FDT
 Instance IDs are used by non expired FEC Instances is outside the
 scope of this specification and left to individual implementations of
 FLUTE. Receipt of an FDT Instance that reuses an FDT Instance ID
 value that is currently used by a non expired FDT Instance SHOULD be
 considered as an error case. Receiver behavior in this case is
 outside the scope of this specification and left to individual
 implementations of FLUTE. Receivers MUST be ready to handle FDT
 Instance ID wraparound and situations where missing FDT Instance IDs
 result in increments larger than one.

3.4.2. Syntax of FDT Instance

 The FDT Instance contains file description entries that provide the
 mapping functionality described in 3.2 above.

 The FDT Instance is an XML structure that has a single root element
 "FDT-Instance". The "FDT-Instance" element MUST contain "Expires"
 attribute, which tells the expiration time of the FDT Instance. In
 addition, the "FDT-Instance" element MAY contain the "Complete"
 attribute (boolean), which, when TRUE, signals that this "FDT
 Instance" includes the set of "File" entries that exhausts both the
 set of files delivered so far and also the set of files to be
 delivered in the session. This implies that no new data will be
 provided in future FDT Instances within this session (i.e., that
 either FDT Instances with higher ID numbers will not be used or if
 they are used, will only provide identical file parameters to those
 already given in this and previous FDT Instances). The "Complete"
 attribute is therefore used to provide a complete list of files in an
 entire FLUTE session (a "complete FDT").

 The "FDT-Instance" element MAY contain attributes that give common
 parameters for all files of an FDT Instance. These attributes MAY
 also be provided for individual files in the "File" element. Where
 the same attribute appears in both the "FDT-Instance" and the "File"
 elements, the value of the attribute provided in the "File" element
 takes precedence.

 For each file to be declared in the given FDT Instance there is a
 single file description entry in the FDT Instance. Each entry is
 represented by element "File" which is a child element of the FDT
 Instance structure.

 The attributes of "File" element in the XML structure represent the
 attributes given to the file that is delivered in the file delivery

Paila, et al. Expires July 16, 2012 [Page 18]

Internet-Draft FLUTE January 2012

 session. The value of the XML attribute name corresponds to MIME
 field name and the XML attribute value corresponds to the value of
 the MIME field body. Each "File" element MUST contain at least two
 attributes "TOI" and "Content-Location". "TOI" MUST be assigned a
 valid TOI value as described in section 3.3 above. "Content-
 Location" MUST be assigned a valid URI as defined in [RFC2616] which
 identifies the object to be delivered, for example a URI with the
 "http" or "file" URI scheme. The semantics for any two "File"
 elements declaring the same "Content-Location" but differing "TOI" is
 that the element appearing in the FDT Instance with the greater FDT
 Instance ID is considered to declare newer instance (e.g. version) of
 the same "File".

 In addition to mandatory attributes, the "FDT-Instance" element and
 the "File" element MAY contain other attributes of which the
 following are specifically pointed out.

 * The attribute "Content-Type" SHOULD be included and, when present,
 MUST be used for the purpose defined in [RFC2616].

 * Where the length is described, the attribute "Content-Length" MUST
 be used for the purpose as defined in [RFC2616]. The transfer
 length is defined to be the length of the object transported in
 octets. It is often important to convey the transfer length to
 receivers, because the source block structure needs to be known
 for the FEC decoder to be applied to recover source blocks of the
 file, and the transfer length is often needed to properly
 determine the source block structure of the file. There generally
 will be a difference between the length of the original file and
 the transfer length if content encoding is applied to the file
 before transport, and thus the "Content-Encoding" attribute is
 used. If the file is not content encoded before transport (and
 thus the "Content-Encoding" attribute is not used) then the
 transfer length is the length of the original file, and in this
 case the "Content-Length" is also the transfer length. However,
 if the file is content encoded before transport (and thus the
 "Content-Encoding" attribute is used), e.g., if compression is
 applied before transport to reduce the number of octets that need
 to be transferred, then the transfer length is generally different
 than the length of the original file, and in this case the
 attribute "Transfer-Length" MAY be used to carry the transfer
 length.

 * Whenever content encoding is applied the attribute "Content-
 Encoding" MUST be included. Whenever the attribute "Content-
 Encoding" is included it MUST be used as described in [RFC2616].

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Paila, et al. Expires July 16, 2012 [Page 19]

Internet-Draft FLUTE January 2012

 * Where the MD5 message digest is described, the attribute "Content-
 MD5" MUST be used for the purpose as defined in [RFC2616].

 * The FEC Object Transmission Information attributes as described in
section 5.2.

 The following specifies the XML Schema
 [XML-Schema-Part-1][XML-Schema-Part-2] for FDT Instance:

 BEGIN
 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns="urn:ietf:params:xml:ns:fdt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:fdt"
 elementFormDefault="qualified">
 <xs:element name="FDT-Instance" type="FDT-InstanceType"/>
 <xs:complexType name="FDT-InstanceType">
 <xs:sequence>
 <xs:element name="File" type="FileType" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Expires"
 type="xs:string"
 use="required"/>
 <xs:attribute name="Complete"
 type="xs:boolean"
 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
 type="xs:unsignedByte"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong"

https://datatracker.ietf.org/doc/html/rfc2616

Paila, et al. Expires July 16, 2012 [Page 20]

Internet-Draft FLUTE January 2012

 use="optional"/>
 <xs:attribute name="FEC-OTI-Scheme-Specific-Info"
 type="xs:base64Binary"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="FileType">
 <xs:sequence>
 <xs:any namespace="##other" processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Content-Location"
 type="xs:anyURI"
 use="required"/>
 <xs:attribute name="TOI"
 type="xs:positiveInteger"
 use="required"/>
 <xs:attribute name="Content-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Transfer-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-MD5"
 type="xs:base64Binary"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
 type="xs:unsignedByte"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Scheme-Specific-Info"

Paila, et al. Expires July 16, 2012 [Page 21]

Internet-Draft FLUTE January 2012

 type="xs:base64Binary"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:schema>
 END

 Figure 3

 Any valid FDT Instance MUST use the above XML Schema. This way FDT
 provides extensibility to support private attributes within the file
 description entries. Those could be, for example, the attributes
 related to the delivery of the file (timing, packet transmission
 rate, etc.).

 In case the basic FDT XML Schema is extended in terms of new
 descriptors (attributes or elements), for descriptors applying to a
 single file, those MUST be placed within the element "File". For
 descriptors applying to all files described by the current FDT
 Instance, those MUST be placed within the element "FDT-Instance". It
 is RECOMMENDED that the new attributes applied in the FDT are in the
 format of MIME fields and are either defined in the HTTP/1.1
 specification [RFC2616] or another well-known specification.

3.4.3. Content Encoding of FDT Instance

 The FDT Instance itself MAY be content encoded, for example
 compressed. This specification defines FDT Instance Content Encoding
 Header (EXT_CENC). EXT_CENC is a new fixed length LCT header
 extension [RFC5651]. The Header Extension Type (HET) for the
 extension is 193. If the FDT Instance is content encoded, the
 EXT_CENC MUST be used to signal the content encoding type. In that
 case, EXT_CENC header extension MUST be used in all ALC packets
 carrying the same FDT Instance ID. Consequently, when EXT_CENC
 header is used, it MUST be used together with a proper FDT Instance
 Header (EXT_FDT). Within a file delivery session, FDT Instances that
 are not content encoded and FDT Instances that are content encoded
 MAY both appear. If content encoding is not used for a given FDT
 Instance, the EXT_CENC MUST NOT be used in any packet carrying the
 FDT Instance. The format of EXT_CENC is defined below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 193 | CENC | Reserved |
 +-+

 Figure 4

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5651

Paila, et al. Expires July 16, 2012 [Page 22]

Internet-Draft FLUTE January 2012

 Content Encoding Algorithm (CENC), 8 bits:

 This field signals the content encoding algorithm used in the FDT
 Instance payload. This subsection reserves the Content Encoding
 Algorithm values 0, 1, 2 and 3 for null, ZLIB [RFC1950], DEFLATE
 [RFC1951] and GZIP [RFC1952] respectively.

 Reserved, 16 bits:

 This field MUST be set to all '0'. This field MUST be ignored on
 reception.

3.5. Multiplexing of files within a file delivery session

 The delivered files are carried as transmission objects (identified
 with TOIs) in the file delivery session. All these objects,
 including the FDT Instances, MAY be multiplexed in any order and in
 parallel with each other within a session, i.e., packets for one file
 may be interleaved with packets for other files or other FDT
 Instances within a session.

 Multiple FDT Instances MAY be delivered in a single session using TOI
 = 0. In this case, it is RECOMMENDED that the sending of a previous
 FDT Instance SHOULD end before the sending of the next FDT Instance
 starts. However, due to unexpected network conditions, packets for
 the FDT Instances MAY be interleaved. A receiver can determine which
 FDT Instance a packet contains information about since the FDT
 Instances are uniquely identified by their FDT Instance ID carried in
 the EXT_FDT headers.

4. Channels, congestion control and timing

 ALC/LCT has a concept of channels and congestion control. There are
 four scenarios in which FLUTE is envisioned to be applied.

 (a) Use of a single channel and a single-rate congestion control
 protocol.

 (b) Use of multiple channels and a multiple-rate congestion control
 protocol. In this case the FDT Instances MAY be delivered on more
 than one channel.

 (c) Use of a single channel without congestion control supplied by
 ALC, but only when in a controlled network environment where flow/
 congestion control is being provided by other means.

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1952

Paila, et al. Expires July 16, 2012 [Page 23]

Internet-Draft FLUTE January 2012

 (d) Use of multiple channels without congestion control supplied by
 ALC, but only when in a controlled network environment where flow/
 congestion control is being provided by other means. In this case
 the FDT Instances MAY be delivered on more than one channel.

 When using just one channel for a file delivery session, as in (a)
 and (c), the notion of 'prior' and 'after' are intuitively defined
 for the delivery of objects with respect to their delivery times.

 However, if multiple channels are used, as in (b) and (d), it is not
 straightforward to state that an object was delivered 'prior' to the
 other. An object may begin to be delivered on one or more of those
 channels before the delivery of a second object begins. However, the
 use of multiple channels/layers may complete the delivery of the
 second object before the first. This is not a problem when objects
 are delivered sequentially using a single channel. Thus, if the
 application of FLUTE has a mandatory or critical requirement that the
 first transmission object must complete 'prior' to the second one, it
 is RECOMMENDED that only a single channel is used for the file
 delivery session.

 Furthermore, if multiple channels are used then a receiver joined to
 the session at a low reception rate will only be joined to the lower
 layers of the session. Thus, since the reception of FDT Instances is
 of higher priority than the reception of files (because the reception
 of files depends on the reception of an FDT Instance describing it),
 the following is RECOMMENDED:

 1. The layers to which packets for FDT Instances are sent SHOULD NOT
 be biased towards those layers to which lower rate receivers are
 not joined. For example, it is okay to put all the packets for an
 FDT Instance into the lowest layer (if this layer carries enough
 packets to deliver the FDT to higher rate receivers in a
 reasonable amount of time), but it is not okay to put all the
 packets for an FDT Instance into the higher layers that only high
 rate receivers will receive.

 2. If FDT Instances are generally longer than one Encoding Symbol in
 length and some packets for FDT Instances are sent to layers that
 lower rate receivers do not receive, an FEC Encoding other than
 Compact No-code FEC Encoding ID 0 [RFC5445] SHOULD be used to
 deliver FDT Instances. This is because in this case, even when
 there is no packet loss in the network, a lower rate receiver will
 not receive all packets sent for an FDT Instance.

https://datatracker.ietf.org/doc/html/rfc5445

Paila, et al. Expires July 16, 2012 [Page 24]

Internet-Draft FLUTE January 2012

5. Delivering FEC Object Transmission Information

 FLUTE inherits the use of FEC building block [RFC5052] from ALC.
 When using FLUTE for file delivery over ALC the FEC Object
 Transmission Information MUST be delivered in-band within the file
 delivery session. There are two methods to achieve this: the use of
 ALC specific LCT extension header EXT_FTI [RFC5775] and the use of
 FDT. The latter method is specified in this section. The use of
 EXT_FTI requires repetition of the FEC Object Transmission
 Information to ensure reception (though not necessarily in every
 packet) and thus may entail higher overhead than the use of the FDT,
 but may also provide more timely delivery of the FEC Object
 Transmission Information.

 The receiver of file delivery session MUST support delivery of FEC
 Object Transmission Information using the EXT_FTI for the FDT
 Instances carried using TOI value 0. For the TOI values other than 0
 the receiver MUST support both methods: the use of EXT_FTI and the
 use of FDT.

 The FEC Object Transmission Information that needs to be delivered to
 receivers MUST be exactly the same whether it is delivered using
 EXT_FTI or using FDT (or both). The FEC Object Transmission
 Information that MUST be delivered to receivers is defined by the FEC
 Scheme. This section describes the delivery using FDT.

 The FEC Object Transmission Information regarding a given TOI may be
 available from several sources. In this case, it is RECOMMENDED that
 the receiver of the file delivery session prioritize the sources in
 the following way (in the order of decreasing priority).

 1. FEC Object Transmission Information that is available in EXT_FTI.

 2. FEC Object Transmission Information that is available in the FDT.

 The FDT delivers FEC Object Transmission Information for each file
 using an appropriate attribute within the "FDT-Instance" or the
 "File" element of the FDT structure.

 * "Transfer-Length" carries the Transfer-Length Object Transmission
 Information element defined in [RFC5052].

 * "FEC-OTI-FEC-Encoding-ID" carries the "FEC Encoding ID" Object
 Transmission Information element defined in [RFC5052], as carried
 in the Codepoint field of the ALC/LCT header.

https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052

Paila, et al. Expires July 16, 2012 [Page 25]

Internet-Draft FLUTE January 2012

 * "FEC-OTI-FEC-Instance-ID" carries the "FEC Instance ID" Object
 Transmission Information element defined in [RFC5052] for Under-
 specified FEC Schemes.

 * "FEC-OTI-Maximum-Source-Block-Length" carries the "Maximum Source
 Block Length" Object Transmission Information element defined in
 [RFC5052], if required by the FEC Scheme.

 * "FEC-OTI-Encoding-Symbol-Length" carries the "Encoding Symbol
 Length" Object Transmission Information element defined in
 [RFC5052], if required by the FEC Scheme.

 * "FEC-OTI-Max-Number-of-Encoding-Symbols" carries the "Maximum
 Number of Encoding Symbols" Object Transmission Information
 element defined in [RFC5052], if required by the FEC Scheme.

 * "FEC-OTI-Scheme-specific-information" carries the "encoded scheme-
 specific FEC Object Transmission Information" as defined in
 [RFC5052], if required by the FEC Scheme.

 In FLUTE, the FEC Encoding ID (8 bits) for a given TOI MUST be
 carried in the Codepoint field of the ALC/LCT header. When the FEC
 Object Transmission Information for this TOI is delivered through the
 FDT, then the associated "FEC-OTI-FEC-Encoding-ID" attribute and the
 Codepoint field of all packets for this TOI MUST be the same.

6. Describing file delivery sessions

 To start receiving a file delivery session, the receiver needs to
 know transport parameters associated with the session. Interpreting
 these parameters and starting the reception therefore represents the
 entry point from which thereafter the receiver operation falls into
 the scope of this specification. According to [RFC5775], the
 transport parameters of an ALC/LCT session that the receiver needs to
 know are:

 * The source IP address;

 * The number of channels in the session;

 * The destination IP address and port number for each channel in the
 session;

 * The Transport Session Identifier (TSI) of the session;

https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5775

Paila, et al. Expires July 16, 2012 [Page 26]

Internet-Draft FLUTE January 2012

 * An indication that the session is a FLUTE session. The need to
 demultiplex objects upon reception is implicit in any use of
 FLUTE, and this fulfills the ALC requirement of an indication of
 whether or not a session carries packets for more than one object
 (all FLUTE sessions carry packets for more than one object).

 Optionally, the following parameters MAY be associated with the
 session (Note, the list is not exhaustive):

 * The start time and end time of the session;

 * FEC Encoding ID and FEC Instance ID when the default FEC Encoding
 ID 0 is not used for the delivery of FDT;

 * Content Encoding format if optional content encoding of FDT
 Instance is used, e.g., compression;

 * Some information that tells receiver, in the first place, that the
 session contains files that are of interest;

 * Definition and configuration of congestion control mechanism for
 the session ;

 * Security parameters relevant for the session.

 * FLUTE version number.

 It is envisioned that these parameters would be described according
 to some session description syntax (such as SDP [RFC4566] or XML
 based) and held in a file which would be acquired by the receiver
 before the FLUTE session begins by means of some transport protocol
 (such as Session Announcement Protocol (SAP) [RFC2974], email, HTTP
 [RFC2616], SIP [RFC3261], manual pre-configuration, etc.) However,
 the way in which the receiver discovers the above-mentioned
 parameters is out of scope of this document, as it is for LCT and
 ALC. In particular, this specification does not mandate or exclude
 any mechanism.

7. Security Considerations

7.1. Problem Statement

 A content delivery system is potentially subject to attacks. Attacks
 may target:

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc2974
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3261

Paila, et al. Expires July 16, 2012 [Page 27]

Internet-Draft FLUTE January 2012

 * the network (to compromise the routing infrastructure, e.g., by
 creating congestion),

 * the Content Delivery Protocol (CDP) (e.g., to compromise the
 normal behavior of FLUTE), or

 * the content itself (e.g., to corrupt the files being transmitted).

 These attacks can be launched either:

 * against the data flow itself (e.g., by sending forged packets),

 * against the session control parameters (e.g., by corrupting the
 session description, the FDT Instances, or the ALC/LCT control
 parameters) that are sent either in-band or out-of-band, or

 * against some associated building blocks (e.g., the congestion
 control component).

 In the following sections we provide more details on these possible
 attacks and sketch some possible counter-measures. We provide
 recommendations in Section 7.5.

7.2. Attacks against the data flow

 Let us consider attacks against the data flow first. At least, the
 following types of attacks exist:

 * attacks that are meant to give access to a confidential file
 (e.g., in case of a non-free content) and

 * attacks that try to corrupt the file being transmitted (e.g., to
 inject malicious code within a file, or to prevent a receiver from
 using a file, which is a kind of Denial of Service, DoS).

7.2.1. Access to confidential files

 Access control to the file being transmitted is typically provided by
 means of encryption. This encryption can be done over the whole file
 i.e. before applying FEC protection (e.g., by the content provider,
 before submitting the file to FLUTE), or be done on a packet per
 packet basis (e.g., when IPsec/ESP is used [RFC4303], see

Section 7.5). If confidentiality is a concern, it is RECOMMENDED
 that one of these solutions be used.

https://datatracker.ietf.org/doc/html/rfc4303

Paila, et al. Expires July 16, 2012 [Page 28]

Internet-Draft FLUTE January 2012

7.2.2. File corruption

 Protection against corruptions (e.g., if an attacker sends forged
 packets) is achieved by means of a content integrity verification/
 sender authentication scheme. This service can be provided at the
 file level i.e. before applying content encoding and forward error
 correction encoding. In that case a receiver has no way to identify
 which symbol(s) is(are) corrupted if the file is detected as
 corrupted. This service can also be provided at the packet level
 i.e. after applying content encoding and forward error correction
 encoding, on a packet by packet basis. In this case, after removing
 all corrupted packets, the file may be in some cases recovered from
 the remaining correct packets.

 Integrity protection applied at the file level has the advantage of
 lower overhead since only relatively few bits are added to provide
 the integrity protection compared to the file size. However it has
 the disadvantage that it cannot distinguish between correct packets
 and corrupt packets and therefore correct packets, which may form the
 majority of packets received, may be unusable. Integrity protection
 applied at the packet level has the advantage that it can distinguish
 between correct and corrupt packets at the cost of additional per
 packet overhead.

 Several techniques can provide this source authentication/content
 integrity service:

 * at the file level, the file MAY be digitally signed, for instance
 by using RSASSA-PKCS1-v1_5 [RFC3447]. This signature enables a
 receiver to check the file integrity, once this latter has been
 fully decoded. Even if digital signatures are computationally
 expensive, this calculation occurs only once per file, which is
 usually acceptable;

 * at the packet level, each packet can be digitally signed
 [RMT-SIMPLE-AUTH]. A major limitation is the high computational
 and transmission overheads that this solution requires. To avoid
 this problem, the signature may span a set of symbols (instead of
 a single one) in order to amortize the signature calculation, but
 if a single symbol is missing, the integrity of the whole set
 cannot be checked;

 * at the packet level, a Group Message Authentication Code (MAC)
 [RFC2104][RMT-SIMPLE-AUTH] scheme can be used, for instance by
 using HMAC-SHA-256 with a secret key shared by all the group
 members, senders and receivers. This technique creates a
 cryptographically secured digest of a packet that is sent along
 with the packet. The Group MAC scheme does not create prohibitive

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc2104

Paila, et al. Expires July 16, 2012 [Page 29]

Internet-Draft FLUTE January 2012

 processing load nor transmission overhead, but it has a major
 limitation: it only provides a group authentication/integrity
 service since all group members share the same secret group key,
 which means that each member can send a forged packet. It is
 therefore restricted to situations where group members are fully
 trusted (or in association with another technique as a pre-check);

 * at the packet level, TESLA [RFC4082][RFC5776] is an attractive
 solution that is robust to losses, provides a true authentication/
 integrity service, and does not create any prohibitive processing
 load or transmission overhead. Yet checking a packet requires a
 small delay (a second or more) after its reception;

 * at the packet level, IPsec/ESP [RFC4303] can be used to check the
 integrity and authenticate the sender of all the packets being
 exchanged in a session (see Section 7.5).

 Techniques relying on public key cryptography (digital signatures and
 TESLA during the bootstrap process, when used) require that public
 keys be securely associated to the entities. This can be achieved by
 a Public Key Infrastructure (PKI), or by a PGP Web of Trust, or by
 pre-distributing the public keys of each group member.

 Techniques relying on symmetric key cryptography (Group MAC) require
 that a secret key be shared by all group members. This can be
 achieved by means of a group key management protocol, or simply by
 pre-distributing the secret key (but this manual solution has many
 limitations).

 It is up to the developer and deployer, who know the security
 requirements and features of the target application area, to define
 which solution is the most appropriate. Nonetheless, in case there
 is any concern of the threat of file corruption, it is RECOMMENDED
 that at least one of these techniques be used.

7.3. Attacks against the session control parameters and associated
 Building Blocks

 Let us now consider attacks against the session control parameters
 and the associated building blocks. The attacker has at least the
 following opportunities to launch an attack:

 * the attack can target the session description,

 * the attack can target the FDT Instances,

https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4303

Paila, et al. Expires July 16, 2012 [Page 30]

Internet-Draft FLUTE January 2012

 * the attack can target the ALC/LCT parameters, carried within the
 LCT header or

 * the attack can target the FLUTE associated building blocks, for
 instance the multiple rate congestion control protocol.

 The consequences of these attacks are potentially serious, since they
 might compromise the behavior of content delivery system itself.

7.3.1. Attacks against the Session Description

 A FLUTE receiver may potentially obtain an incorrect Session
 Description for the session. The consequence of this is that
 legitimate receivers with the wrong Session Description are unable to
 correctly receive the session content, or that receivers
 inadvertently try to receive at a much higher rate than they are
 capable of, thereby possibly disrupting other traffic in the network.

 To avoid these problems, it is RECOMMENDED that measures be taken to
 prevent receivers from accepting incorrect Session Descriptions. One
 such measure is source authentication to ensure that receivers only
 accept legitimate Session Descriptions from authorized senders. How
 these measures are achieved is outside the scope of this document
 since this session description is usually carried out-of-band.

7.3.2. Attacks against the FDT Instances

 Corrupting the FDT Instances is one way to create a Denial of Service
 attack. For example, the attacker changes the MD5 sum associated to
 a file. This possibly leads a receiver to reject the files received,
 no matter whether the files have been correctly received or not.

 Corrupting the FDT Instances is also a way to make the reception
 process more costly than it should be. This can be achieved by
 changing the FEC Object Transmission Information when the FEC Object
 Transmission Information is included in the FDT Instance. For
 example, an attacker may corrupt the FDT Instance in such a way that
 Reed-Solomon over GF(2^^16) be used instead of GF(2^^8) with FEC
 Encoding ID 2. This may significantly increase the processing load
 while compromising FEC decoding.

 It is therefore RECOMMENDED that measures be taken to guarantee the
 integrity and to check the sender's identity of the FDT Instances.
 To that purpose, one of the counter-measures mentioned above
 (Section 7.2.2) SHOULD be used. These measures will either be
 applied on a packet level, or globally over the whole FDT Instance
 object. Additionally, XML digital signatures [RFC3275] are a way to
 protect the FDT Instance by digitally signing it. When there is no

https://datatracker.ietf.org/doc/html/rfc3275

Paila, et al. Expires July 16, 2012 [Page 31]

Internet-Draft FLUTE January 2012

 packet level integrity verification scheme, it is RECOMMENDED to rely
 on XML digital signatures of the FDT Instances.

7.3.3. Attacks against the ALC/LCT parameters

 By corrupting the ALC/LCT header (or header extensions) one can
 execute attacks on underlying ALC/LCT implementation. For example,
 sending forged ALC packets with the Close Session flag (A) set to one
 can lead the receiver to prematurely close the session. Similarly,
 sending forged ALC packets with the Close Object flag (B) set to one
 can lead the receiver to prematurely give up the reception of an
 object.

 It is therefore RECOMMENDED that measures be taken to guarantee the
 integrity and to check the sender's identity of the ALC packets
 received. To that purpose, one of the counter-measures mentioned
 above (Section 7.2.2) SHOULD be used.

7.3.4. Attacks against the associated Building Blocks

 Let us first focus on the congestion control building block, that may
 be used in the ALC session. A receiver with an incorrect or
 corrupted implementation of the multiple rate congestion control
 building block may affect the health of the network in the path
 between the sender and the receiver. That may also affect the
 reception rates of other receivers who joined the session.

 When congestion control building block is applied with FLUTE, it is
 therefore RECOMMENDED that receivers be required to identify
 themselves as legitimate before they receive the Session Description
 needed to join the session. How receivers identify themselves as
 legitimate is outside the scope of this document. If authenticating
 a receiver does not prevent this latter to launch an attack, it will
 enable the network operator to identify him and to take counter-
 measures.

 When congestion control building block is applied with FLUTE, it is
 also RECOMMENDED that a packet level authentication scheme be used,
 as explained in Section 7.2.2. Some of them, like TESLA, only
 provide a delayed authentication service, whereas congestion control
 requires a rapid reaction. It is therefore RECOMMENDED [RFC5775]
 that a receiver using TESLA quickly reduces its subscription level
 when the receiver believes that a congestion did occur, even if the
 packet has not yet been authenticated. Therefore TESLA will not
 prevent DoS attacks where an attacker makes the receiver believe that
 a congestion occurred. This is an issue for the receiver, but this
 will not compromise the network. Other authentication methods that
 do not feature this delayed authentication could be preferred, or a

https://datatracker.ietf.org/doc/html/rfc5775

Paila, et al. Expires July 16, 2012 [Page 32]

Internet-Draft FLUTE January 2012

 group MAC scheme could be used in parallel to TESLA to prevent
 attacks launched from outside of the group.

7.4. Other Security Considerations

 Lastly, we note that the security considerations that apply to, and
 are described in, ALC [RFC5775], LCT [RFC5651] and FEC [RFC5052] also
 apply to FLUTE as FLUTE builds on those specifications. In addition,
 any security considerations that apply to any congestion control
 building block used in conjunction with FLUTE also apply to FLUTE.

7.5. Minimum Security Recommendations

 We now introduce a mandatory to implement but not necessarily to use
 security configuration, in the sense of [RFC3365]. Since FLUTE
 relies on ALC/LCT, it inherits the "baseline secure ALC operation" of
 [RFC5775]. More precisely, security is achieved by means of IPsec/
 ESP in transport mode. [RFC4303] explains that ESP can be used to
 potentially provide confidentiality, data origin authentication,
 content integrity, anti-replay and (limited) traffic flow
 confidentiality. [RFC5775] specifies that the data origin
 authentication, content integrity and anti-replay services SHALL be
 supported, and that the confidentiality service is RECOMMENDED. If a
 short lived session MAY rely on manual keying, it is also RECOMMENDED
 that an automated key management scheme be used, especially in case
 of long lived sessions.

 Therefore, the RECOMMENDED solution for FLUTE provides per-packet
 security, with data origin authentication, integrity verification and
 anti-replay. This is sufficient to prevent most of the in-band
 attacks listed above. If confidentiality is required, a per-packet
 encryption SHOULD also be used.

8. IANA Considerations

 This specification contains five separate items for IANA
 Considerations:

 1. Registration Request for XML Schema of FDT Instance.

 2. Media-Type Registration Request for application/fdt+xml.

 3. Content Encoding Algorithm Registration Request.

https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc3365
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc5775

Paila, et al. Expires July 16, 2012 [Page 33]

Internet-Draft FLUTE January 2012

 4. Registration of the EXT_FDT LCT Header Extension Type

 5. Registration of the EXT_CENC LCT Header Extension Type

8.1. Registration Request for XML Schema of FDT Instance

 Document [RFC3688] defines an IANA maintained registry of XML
 documents used within IETF protocols. The following is the
 registration request for the FDT XML schema.

 Registrant Contact: Toni Paila (toni.paila (at) nokia.com)

 XML: The XML Schema specified in Section 3.4.2

8.2. Media-Type Registration Request for application/fdt+xml

 This section provides the registration request, as per [RFC4288],
 [RFC4289] and [RFC3023], to be submitted to IANA following IESG
 approval.

 Type name: application

 Subtype name: fdt+xml

 Required parameters: none

 Optional parameters: none

 Encoding considerations: The fdt+xml type consists of UTF-8 ASCII
 characters [RFC3629] and must be well-formed XML.

 Additional content and transfer encodings may be used with fdt+xml
 files, with the appropriate encoding for any specific file being
 entirely dependent upon the deployed application.

 Restrictions on usage: Only for usage with FDT Instances which are
 valid according to the XML schema of section 3.4.2.

 Security considerations: fdt+xml data is passive, and does not
 generally represent a unique or new security threat. However, there
 is some risk in sharing any kind of data, in that unintentional
 information may be exposed, and that risk applies to fdt+xml data as
 well.

 Interoperability considerations: None

 Published specification: The present document including section
3.4.2. The specified FDT Instance functions as an actual media

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc4289
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3629

Paila, et al. Expires July 16, 2012 [Page 34]

Internet-Draft FLUTE January 2012

 format of use to the general Internet community and thus media type
 registration under the Standards Tree is appropriate to maximize
 interoperability.

 Applications which use this media type: Not restricted to any
 particular application

 Additional information:

 Magic number(s): none
 File extension(s): An FDT Instance may use the extension ".fdt"
 but this is not required.
 Macintosh File Type Code(s): none

 Person and email address to contact for further information: Toni
 Paila (toni.paila (at) nokia.com)

 Intended usage: Common

 Author/Change controller: IETF

8.3. Content Encoding Algorithm Registration Request

 Values of Content Encoding Algorithms are subject to IANA
 registration. The value of Content Encoding Algorithm is a numeric
 non-negative index. In this document, the range of values for
 Content Encoding Algorithms is 0 to 255. This specification already
 assigns the values 0, 1, 2 and 3 as described in section 3.4.3.

8.3.1. Explicit IANA Assignment Guidelines

 This document defines a name-space called "Content Encoding
 Algorithms".

 IANA has established and manages the new registry for the "FLUTE
 Content Encoding Algorithm" name-space. The values that can be
 assigned within this name-space are numeric indexes in the range [0,
 255], boundaries included. Assignment requests are granted on a
 "Specification Required" basis as defined in [RFC5226]. Note that
 the values 0, 1, 2 and 3 of this registry are already assigned by
 this document as described in section 3.4.3.

8.4. Registration of EXT_FDT LCT Header Extension Type

 This document registers value 192 for the EXT_FDT LCT Header
 Extension defined in Section 3.4.1.

https://datatracker.ietf.org/doc/html/rfc5226

Paila, et al. Expires July 16, 2012 [Page 35]

Internet-Draft FLUTE January 2012

8.5. Registration of EXT_CENC LCT Header Extension Type

 This document registers value 193 for the EXT_CENC LCT Header
 Extension defined in Section 3.4.3.

9. Acknowledgements

 The following persons have contributed to this specification: Brian
 Adamson, Mark Handley, Esa Jalonen, Roger Kermode, Juha-Pekka Luoma,
 Topi Pohjolainen, Lorenzo Vicisano, and Mark Watson. The authors
 would like to thank all the contributors for their valuable work in
 reviewing and providing feedback regarding this specification, and in
 particular .

10. Contributors

 Jani Peltotalo
 Tampere University of Technology
 P.O. Box 553 (Korkeakoulunkatu 1)
 Tampere FIN-33101
 Finland
 Email: jani.peltotalo (at) tut.fi

 Sami Peltotalo
 Tampere University of Technology
 P.O. Box 553 (Korkeakoulunkatu 1)
 Tampere FIN-33101
 Finland
 Email: sami.peltotalo (at) tut.fi

 Magnus Westerlund
 Ericsson Research
 Ericsson AB
 SE-164 80 Stockholm
 Sweden
 EMail: magnus.westerlund (at) ericsson.com

 Thorsten Lohmar
 Ericsson Research (EDD)
 Ericsson Allee 1
 52134 Herzogenrath, Germany
 EMail: thorsten.lohmar (at) ericsson.com

Paila, et al. Expires July 16, 2012 [Page 36]

Internet-Draft FLUTE January 2012

11. Change Log

11.1. RFC3926 to draft-ietf-rmt-flute-revised-12

 Incremented FLUTE protocol version from 1 to 2, due to concerns about
 backwards compatibility. For instance, the LCT header changed
 between RFC 3451 and [RFC5651]. In RFC 3451, the T and R fields of
 the LCT header respectively indicate the presence of Sender Current
 Time and Expected Residual Time. In [RFC5651], these fields MUST be
 set to zero and MUST be ignored by receivers (instead the EXT_TIME
 extension headers can convey this information if needed). Thus,
 [RFC5651] is not backwards compatible with RFC 3451, even though both
 have the same LCT version 1. FLUTE version 1 as specified in
 [RFC3926] MUST use RFC 3451. FLUTE version 2 as specified in this
 document MUST use [RFC5651]. Therefore an implementation that relies
 on [RFC3926] and RFC 3451 will not be backwards compatible with FLUTE
 as specified in this document.

 Updated dependencies to other RFCs to revised versions, e.g., changed
 ALC reference from RFC 3450 to [RFC5775], changed LCT reference from

RFC 3451 to [RFC5651], etc.

 Two additional items are added in the IANA considerations section,
 specifically the registration of two values in the LCT Header
 Extension Types registry (192 for EXT_FDT and 193 for EXT_CENC).

 Added clarification for the use of FLUTE for unicast communications
 in Section 1.1.4.

 Clarified how to reliably deliver the FDT in Section 3.3 and the
 possibility of using an out-of-band delivery of FDT information.

 Clarified how to address FDT Instance expiration time wraparound with
 the notion of "epoch" of NTPv4 in Section 3.3.

 Clarified what should be considered as erroneous situations in
Section 3.4.1 (definition of FDT Instance ID). In particular a

 receiver MUST be ready to handle FDT Instance ID wraparounds and
 missing FDT Instances.

 Updated the security section to define IPsec/ESP as a mandatory to
 implement security solution in Section 7.5.

 Removed the 'Statement of Intent' from the Section 1. The statement
 of intent was meant to clarify the "Experimental" status of
 [RFC3926]. It does not apply to this draft that is intended for
 "Standard Track" submission.

https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/draft-ietf-rmt-flute-revised-12
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc3450
https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc3926

Paila, et al. Expires July 16, 2012 [Page 37]

Internet-Draft FLUTE January 2012

 Added clarification on XML-DSIG in the end of Section 3.

 Revised the use of word "complete" in the Section 3.2.

 Clarified Figure 1 WRT "Encoding Symbol(s) for FDT Instance".

 Clarified the FDT Instance ID wrap-around in the end of
Section 3.4.1.

 Clarification for "Complete FDT" in the Section 3.4.2.

 Added semantics for the case two TOIs refer to same Content-Location.
 Now it is in line how 3GPP and DVB interpret the case.

 In the Section 3.4.2 XML Schema of FDT instance is modified to
 various advices. For example, extension by element was missing but
 is now supported. Also namespace definition is changed to URN
 format.

 Clarified FDT-schema extensibility in the end of Section 3.4.2.

 The CENC value allocation is added in the end of Section 3.4.3.

Section 5 is modified so that EXT_FTI and the FEC issues are replaced
 by a reference to LCT specification. We count on revised LCT
 specification to specify the EXT_FTI.

 Added a clarifying paragraph on the use of Codepoint in the very end
 of Section 5.

 Reworked Section 8 - IANA Considerations. Now it contains three IANA
 registration requests:

 * Registration Request for XML Schema of FDT Instance
 (urn:ietf:params:xml:schema:fdt)

 * Media-Type Registration Request for application/fdt+xml

 * Content Encoding Algorithm Registration Request (ietf:rmt:cenc)

 Added Section 10 - Contributors.

 Revised list of both Normative as well as Informative references.

 Added a clarification that receiver should ignore reserved bits of
 Header Extension type 193 upon reception.

 Minor changes to remove forward references (use before definition) or

Paila, et al. Expires July 16, 2012 [Page 38]

Internet-Draft FLUTE January 2012

 refer to forward reference sections.

 Elaborate on just what kind of networks cannot support FLUTE
 congestion control (1.1.4)

 In Section 3.2 revise "several" (meaning 3-n vs. "couple" = 2) to
 "multiple" (meaning 2-n)

 Move Section 3.3 requirement to send FDT more reliably than files, to
 a bulleted RECOMMENDED requirement, making check-off easier for
 testers.

 Sharpen Section 3.3 definition that future FDT file instances can
 "augment" (meaning enhance) rather than "complement" (sometimes
 meaning negate, which is not allowed) the file parameters.

 Elaborate in Section 3.3 and Section 4 that FEC Encoding ID = 0 is
 Compact No-code FEC, so that the reader doesn't have to search other
 RFCs to understand these protocol constants used by FLUTE.

 Require in Section 3.3 that FLUTE receivers SHALL NOT attempt to
 decode FDTs if they do not understand the FEC Encoding ID

 Remove restriction of Section 3.3 in bullet #4 that TOI=0 for the
 FDT, to be consistent with Appendix, bullet 6, and elsewhere. An FDT
 is signaled by an FDT Instance ID, NOT only by TOI = 0.

 Standardize on the term "expiration time" and avoid using the
 redundant but possibly confusing term "expiry time".

 To interwork with experimental flute, stipulate in Section 3.1 that
 only 1 instantiation of all 3 protocols FLUTE, ALC, and LCT, can be
 associated with a session (source IP-Address, TSI) and mention in

Section 6 that you may (optionally) derive the FLUTE version from the
 file delivery session description.

 Use a software writing tool to lower reading grade level and simplify
Section 3.1.

12. References

12.1. Normative references

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC5775] Luby, M., Watson, M., and L. Vicisano, "Asynchronous

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14

Paila, et al. Expires July 16, 2012 [Page 39]

Internet-Draft FLUTE January 2012

 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 April 2010.

 [RFC5651] Luby, M., Watson, M., and L. Vicisano, "Layered Coding
 Transport (LCT) Building Block", RFC 5651, October 2009.

 [RFC5052] Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [XML-Schema-Part-1]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures", W3C Recommendation,
 May 2001.

 [XML-Schema-Part-2]
 Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes",
 W3C Recommendation, May 2001.

 [RFC3023] Murata, M., St.Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 3629, November 2003.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226, May 2008.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
RFC 1952, May 1996.

 [RFC3738] Luby, M. and V. Goyal, "Wave and Equation Based Rate

https://datatracker.ietf.org/doc/html/rfc5775
https://datatracker.ietf.org/doc/html/rfc5651
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1952

Paila, et al. Expires July 16, 2012 [Page 40]

Internet-Draft FLUTE January 2012

 Control (WEBRC) Building Block", RFC 3738, April 2004.

 [RFC4303] Kent, S., "Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

12.2. Informative references

 [RFC3926] Paila, T., Luby, M., Lehtonen, R., Roca, V., and R. Walsh,
 "FLUTE - File Delivery over Unidirectional Transport",

RFC 3926, October 2004.

 [RFC2974] Handley, M., Perkins, C., and E. Whelan, "Session
 Announcement Protocol", RFC 2974, October 2000.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "Session
 Description Protocol", RFC 4566, July 2006.

 [RFC1112] Deering, S., "Host Extensions for IP Multicasting",
RFC 1112, STD 5, August 1989.

 [PAPER.SSM]
 Holbrook, H., "A Channel Model for Multicast, Ph.D.
 Dissertation, Stanford University, Department of Computer
 Science, Stanford, California", August 2001.

 [RFC3365] Schiller, J., "Strong Security Requirements for Internet
 Engineering Task Force Standard Protocols", BCP 61,

RFC 3365, August 2002.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [RFC3275] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275,
 March 2002.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", RFC 4288, December 2005.

 [RFC4289] Freed, N. and J. Klensin, "Multipurpose Internet Mail
 Extensions (MIME) Part Four: Registration Procedures",

RFC 4289, December 2005.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: session initiation protocol", RFC 3261,
 June 2002.

https://datatracker.ietf.org/doc/html/rfc3738
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc3926
https://datatracker.ietf.org/doc/html/rfc2974
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/bcp61
https://datatracker.ietf.org/doc/html/rfc3365
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc4289
https://datatracker.ietf.org/doc/html/rfc3261

Paila, et al. Expires July 16, 2012 [Page 41]

Internet-Draft FLUTE January 2012

 [RFC3688] Mealling, M., "The IETF XML Registry", RFC 3688,
 January 2004.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC4082] Perrig, A., Canetti, R., Tygar, J D., and B. Briscoe,
 "Timed Efficient Stream Loss-Tolerant Authentication
 (TESLA): Multicast Source Authentication Transform
 Introduction", RFC 4082, June 2005.

 [RFC5776] Roca, V., Francillon, A., and S. Faurite, "Use of Timed
 Efficient Stream Loss-Tolerant Authentication (TESLA) in
 the Asynchronous Layered Coding (ALC) and NACK-Oriented
 Reliable Multicast (NORM) Protocols", RFC 5776,
 April 2010.

 [RMT-SIMPLE-AUTH]
 Roca, V., "Simple Authentication Schemes for the ALC and
 NORM Protocols",

draft-ietf-rmt-simple-auth-for-alc-norm-06.txt (work in
 progress), December 2011.

Appendix A. Receiver operation (informative)

 This section gives an example how the receiver of the file delivery
 session may operate. Instead of a detailed state-by-state
 specification the following should be interpreted as a rough sequence
 of an envisioned file delivery receiver.

 1. The receiver obtains the description of the file delivery session
 identified by the pair: (source IP address, Transport Session
 Identifier). The receiver also obtains the destination IP
 addresses and respective ports associated with the file delivery
 session.

 2. The receiver joins the channels in order to receive packets
 associated with the file delivery session. The receiver may
 schedule this join operation utilizing the timing information
 contained in a possible description of the file delivery session.

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc5776
https://datatracker.ietf.org/doc/html/draft-ietf-rmt-simple-auth-for-alc-norm-06.txt

Paila, et al. Expires July 16, 2012 [Page 42]

Internet-Draft FLUTE January 2012

 3. The receiver receives ALC/LCT packets associated with the file
 delivery session. The receiver checks that the packets match the
 declared Transport Session Identifier. If not, packets are
 silently discarded.

 4. While receiving, the receiver demultiplexes packets based on
 their TOI and stores the relevant packet information in an
 appropriate area for recovery of the corresponding file.
 Multiple files can be reconstructed concurrently.

 5. Receiver recovers an object. An object can be recovered when an
 appropriate set of packets containing Encoding Symbols for the
 transmission object have been received. An appropriate set of
 packets is dependent on the properties of the FEC Encoding ID and
 FEC Instance ID, and on other information contained in the FEC
 Object Transmission Information.

 6. Objects with TOI = 0 are reserved for FDT Instances. All FDT
 Instances are signaled by including an EXT_FDT header extension
 in the LCT header. The EXT_FDT header contains an FDT Instance
 ID (i.e. an FDT version number.) If the object has an FDT
 Instance ID 'N', the receiver parses the payload of the instance
 'N' of FDT and updates its FDT database accordingly.

 7. If the object recovered is not an FDT Instance but a file, the
 receiver looks up its FDT database to get the properties
 described in the database, and assigns the file the given
 properties. The receiver also checks that the received content
 length matches with the description in the database. Optionally,
 if MD5 checksum has been used, the receiver checks that the
 calculated MD5 matches the description in the FDT database.

 8. The actions the receiver takes with imperfectly received files
 (missing data, mismatching digestive, etc.) is outside the scope
 of this specification. When a file is recovered before the
 associated file description entry is available, a possible
 behavior is to wait until an FDT Instance is received that
 includes the missing properties.

 9. If the file delivery session end time has not been reached go
 back to 3. Otherwise end.

Paila, et al. Expires July 16, 2012 [Page 43]

Internet-Draft FLUTE January 2012

Appendix B. Example of FDT Instance (informative)

 <?xml version="1.0" encoding="UTF-8"?>
 <FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ietf:params:xml:ns:fdt
 ietf-flute-fdt.xsd"
 Expires="2890842807">
 <File
 Content-Location="http://www.example.com/menu/tracklist.html"
 TOI="1"
 Content-Type="text/html"/>
 <File
 Content-Location="http://www.example.com/tracks/track1.mp3"
 TOI="2"
 Content-Length="6100"
 Content-Type="audio/mp3"
 Content-Encoding="gzip"
 Content-MD5="+VP5IrWploFkZWc11iLDdA=="
 Some-Private-Extension-Tag="abc123"/>
 </FDT-Instance>

Authors' Addresses

 Toni Paila
 Nokia
 Itamerenkatu 11-13
 Helsinki 00180
 Finland

 Email: toni.paila@nokia.com

 Rod Walsh
 Nokia
 Visiokatu 1
 Tampere FIN-33720
 Finland

 Email: rod.walsh@nokia.com

Paila, et al. Expires July 16, 2012 [Page 44]

Internet-Draft FLUTE January 2012

 Michael Luby
 Qualcomm, Inc.
 3165 Kifer Rd.
 Santa Clara, CA 95051
 US

 Email: luby@qualcomm.com

 Vincent Roca
 INRIA
 655, av. de l'Europe
 Inovallee; Montbonnot
 ST ISMIER cedex 38334
 France

 Email: vincent.roca@inria.fr

 Rami Lehtonen
 TeliaSonera
 Hatanpaan valtatie 18
 Tampere FIN-33100
 Finland

 Email: rami.lehtonen@teliasonera.com

Paila, et al. Expires July 16, 2012 [Page 45]

