
Network Working Group Richard Price, Siemens/Roke Manor
INTERNET-DRAFT Jonathan Rosenberg, dynamicsoft
Expires: May 2002 Abigail Surtees, Siemens/Roke Manor
 Mark A West, Siemens/Roke Manor
 Lawrence Conroy, Siemens/Roke Manor

 14 November, 2001

Universal Decompression Algorithm
<draft-ietf-rohc-sigcomp-algorithm-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC-2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This document is a submission to the IETF ROHC WG. Comments should be
 directed to the mailing list of ROHC, rohc@cdt.luth.se.

Abstract

 This specification defines a "universal decompressor" capable of
 interoperating with a wide range of compression algorithms. Using the
 basic techniques of Huffman compression and LZ77-style string
 substitution, the decompressor can be configured to understand the
 output of many well-known compressors including [DEFLATE] and [LZW].

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-sigcomp-algorithm-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Price et al. [PAGE 1]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

Revision history

 Changes from <draft-ietf-rohc-sigcomp-01.txt>

 New COPY-LITERAL and COPY-OFFSET tokens added to reduce complexity
 for LZ77-based algorithms.

 COMPARE token modified to allow it to be used without a SWITCH
 token.

 HUFFMAN token modified to require fewer parameters.

 Support added for literal parameters (see Section 4.3).

 Example token sets added for decompression of LZ77, [DEFLATE] and
 [LZW] compressed messages.

Table of contents

1. Introduction...3
2. Terminology..3
3. Requirements on underlying transport protocol................3
4. Description of the universal decompressor....................4
4.1. Structure of universal decompressor dictionary.............5
4.2. Important entries in the byte buffer.......................5
4.3. Token parameters...5
4.4. Decompressor actions upon receiving a compressed message...6
4.5. Decompression failure......................................7
5. Library of tokens..8
5.1. COPY...9
5.2. ADD / SUBTRACT...10
5.3. LSHIFT / RSHIFT..10
5.4. COMPARE..11
5.5. SWITCH...11
5.6. CALL / RETURN..11
5.7. HUFFMAN..12
6. Security considerations......................................14
7. References...15
8. Authors' addresses...15
A. Example sets of tokens.......................................16
A.1. Mnemonic language..16
A.2. Example token set for simple LZ77 decompression............17
A.3. Example token set for DEFLATE decompression................17
A.4. Example token set for LZW decompression....................20

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-sigcomp-01.txt

Price et al. [PAGE 2]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

1. Introduction

 This draft introduces the concept of a "universal decompressor".

 The goal of the document is to standardize a decompressor capable of
 interoperating with a wide range of compression algorithms.
 Consequently this draft describes the decompressor operation only,
 i.e. the actions which the decompressor takes upon receiving a
 certain instruction from the compressor.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

 Byte buffer

 The universal decompressor maintains a byte buffer containing any
 previously received text strings that might be useful for future
 compression.

 Token

 A token is an instruction transmitted from the compressor to the
 decompressor.

3. Requirements on underlying transport protocol

 The universal decompressor takes as its input a sequence of
 compressed messages, which are processed and then outputted as a
 sequence of uncompressed messages. This chapter lists the
 requirements on the transport protocol used to carry compressed
 messages to the universal decompressor.

 Note that the universal decompressor outputs an uncompressed message
 when it encounters an explicit end-of-message character.
 Consequently there is no need for one uncompressed message to
 correspond to exactly one compressed message. Two or more compressed
 messages can be sent to reconstruct a single uncompressed message,
 which is very useful for segmenting compressed messages that are
 larger than the MTU of the transport protocol.

 Conversely, one compressed message can be sent to reconstruct
 several uncompressed messages. In particular, messages can be
 successfully decompressed even when the transport protocol provides
 data as a byte stream with no framing.

 Note however that the universal decompressor can make use of

https://datatracker.ietf.org/doc/html/rfc2119

 previously received messages to improve the overall compression
 ratio (see [V-J] for an example of a compression algorithm which
 uses previously received messages in this manner).

Price et al. [PAGE 3]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 Consequently, the main requirement on the underlying protocol is
 that it MUST ensure that the contents of the decompressor byte
 buffer are as expected by the next message to be decompressed.

 This requirement can be supported in a number of ways. If the
 underlying transport protocol is reliable (for example TCP or
 [SCTP]) then the compressed messages are provided to the universal
 decompressor in the correct order and free from bit errors. In this
 case the byte buffer is automatically updated correctly between
 messages.

 If the underlying transport protocol is unreliable (for example UDP)
 then the byte buffer MUST be reset to a known state between
 compressed messages. This ensures that messages are not compressed
 relative to text that has not yet been received by the universal
 decompressor.

 The "known state" of the byte buffer can be negotiated a-priori: for
 example a set of tokens can be downloaded from the compressor to the
 decompressor when the universal decompressor is being set up. All
 messages are then compressed relative to these tokens. Alternatively
 the transport protocol can indicate to the decompressor how the byte
 buffer should be set up before each message is decompressed.

4. Description of the universal decompressor

 An important feature of the universal decompressor is that it can
 interoperate with a wide range of compression algorithms. The
 precise method for compression is left as an implementation
 decision, and in fact the standard decompressor can interoperate
 with any of the following classes of algorithm:

 * Generic text compressor (for example [DEFLATE] or a similar
 algorithm).

 * Protocol-aware compressor offering excellent performance for
 one type of text message (for example the text messages
 generated by [SIP]).

 * Hybrid compressor with similar performance to [DEFLATE] for
 generic text strings and superior performance for certain types
 of text message.

 The choice of which tokens to send to the decompressor is left as a
 local implementation decision at the compressor. The only
 requirement is that of transparency, i.e. the compressor MUST NOT
 send tokens which cause the decompressor to incorrectly decompress a
 given message.

 Note however that it is perfectly acceptable for the compressor to

 send tokens which update the byte buffer at the decompressor, but
 which cause no decompressed message to be outputted. Indeed, this is
 a useful technique for pre-populating the dictionary with well-known
 text strings.

Price et al. [PAGE 4]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

4.1. Structure of universal decompressor dictionary

 The universal decompressor dictionary consists of a simple byte
 buffer designed to hold the current uncompressed message, the
 current compressed message, and any other previously received text
 strings that might be useful for future compression.

 The size buffer_size of the byte buffer can be negotiated by an
 externally defined mechanism (e.g. by the underlying protocol used
 to transport the compressed messages). Entries in the byte buffer
 are referred to as buffer[n] where 0 =< n < buffer_size.

 As all of the tokens currently use 2-byte indices into the byte
 buffer, the maximum size of the buffer is 64K.

4.2. Important entries in the byte buffer

 The first few bytes in the byte buffer are used to store some
 important 2-byte integers. These integers are given the following
 names:

 Position in buffer: Name:

 0 - 1 first_token
 2 - 3 uncompressed_start
 4 - 5 uncompressed_end
 6 - 7 circular_buffer
 8 - 9 compressed_start
 10 - 11 compressed_end
 12 - 13 compressed_pointer
 14 - 15 stack_free
 16 - 17 stack[0]
 18 - 19 stack[1]
 20 - 21 stack[2]
 : :

 The MSBs of the integer are always stored before the LSBs. So, for
 example, the MSBs of first_token are stored in buffer[0] whilst the
 LSBs are stored in buffer[1].

 The use of each integer is described in the following sections of
 the draft.

4.3. Token parameters

 Each of the tokens is followed by 0 or more bytes containing the
 parameters required by the token. At present all parameters are
 stored as 2-byte integers with MSBs stored in the byte preceding the
 LSBs in the byte buffer.

 The most significant bit of the 2-byte integer has a special
 meaning: it is used to determine whether the parameter is a literal
 value or an index pointing to a literal value.

Price et al. [PAGE 5]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 If the most significant bit is 0 then the 2-byte integer is
 interpreted as a literal value from 0 to 32767.

 If the most significant bit is 1 then the 2-byte integer is
 interpreted as an index from 0 to 32767 (the most significant bit
 itself is ignored). This index points to the location in the buffer
 containing the literal value of the parameter (MSBs stored in
 buffer[index] and LSBs stored in buffer[index + 1]). If the index
 references a location beyond the size of the byte buffer then a bad
 compressed message has been received and decompression failure
 occurs (see Section 4.5.).

4.4. Decompressor actions upon receiving a compressed message

 When the universal decompressor is initialized all entries in the
 byte buffer are set to 0. Upon receiving a compressed message, the
 decompressor strips off the underlying protocol header and then
 performs the following actions:

 1.) The message is copied directly into the byte buffer beginning
 at the byte specified in compressed_start.

 The underlying protocol MUST NOT pass a compressed message of more
 than 1460 bytes to the universal decompressor. If a larger
 compressed message is received, the underlying protocol passes only
 the first 1460 bytes to the decompressor, and provides additional
 working memory to store the bytes that are not currently being
 decompressed. The remainder of the compressed message is passed to
 the decompressor in blocks of 1460 bytes (or less if it is the last
 block in the compressed message).

 The decompressor MUST NOT concatenate two messages to form a single
 compressed message. This is because compressed messages are
 typically padded with trailing zero bits so that they are a whole
 number of bytes long. Concatenating two messages would cause these
 padding bits to be incorrectly interpreted as compressed data.

 Note that the buffer is circular, so once a byte is copied into
 buffer[buffer_size - 1], the next byte is copied into
 buffer[circular_buffer]. The parameter circular_buffer (see Section

4.2) can be set to prevent the first part of the buffer from being
 overwritten by new messages. Typically this area of the buffer is
 used to hold important tokens and text strings that should be kept
 from one compressed message to the next. If circular_buffer lies
 beyond the size of the byte buffer then decompression failure occurs
 (see Section 4.5).

 After the message has been copied into the byte buffer, the position
 of the last byte in the compressed message is copied into

 compressed_end. Also, the value in compressed_start is copied into
 compressed_pointer.

 2.) Next, the tokens contained within the byte buffer are executed
 beginning at the byte specified in first_token. The tokens are

Price et al. [PAGE 6]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 executed consecutively unless indicated explicitly (for example when
 the decompressor encounters a SWITCH token). If the next token to be
 executed lies outside the byte buffer then decompression failure
 occurs (see Section 4.5).

 3.) The decompressor stops token execution when it reaches
 buffer[0] or buffer[1]. Depending on which buffer entry is reached,
 the following actions are then taken:

 If the decompressor reaches buffer[0], instead of executing the
 token contained within buffer[0] it stops token execution and
 outputs the uncompressed message. The location of the uncompressed
 message is from uncompressed_start up to, but not including
 uncompressed_end. After the uncompressed message has been outputted,
 the value in uncompressed_end is then copied into
 uncompressed_start. If uncompressed_start = uncompressed_end then no
 uncompressed message is outputted.

 As stated before the buffer is circular, so once a byte is copied
 from buffer[buffer_size - 1], the next byte is copied from
 buffer[circular_buffer]. If either uncompressed_start or
 uncompressed_end lie outside the circular buffer then decompression
 failure occurs.

 If buffer[1] is reached then token execution stops but no
 uncompressed message is outputted.

 When the next compressed message becomes available, the universal
 decompressor continues at Step 1.) above. Note that if the
 underlying transport protocol does not provide reliable, in-order
 message delivery then the contents of the byte buffer MUST be reset
 to the state expected by the next compressed message. This state can
 be negotiated a-priori, or the transport protocol can indicate to
 the decompressor how the byte buffer should be set up before the
 next message is decompressed.

4.5. Decompression failure

 If the compressed messages received by the decompressor are
 corrupted (either accidentally or maliciously) then one of three
 possibilities might occur:

 * A decompressed message is outputted that is incorrect.

 * A token is encountered that cannot be processed successfully by
 the decompressor (for example a RETURN token when no CALL token
 has previously been encountered).

 * The decompressor never finishes decompressing a message.

 To counter the first possibility the underlying protocol SHOULD
 include a checksum to verify either the compressed message or the
 uncompressed message. If a message fails the checksum then
 "decompression failure" has occurred. The decompressor does not

Price et al. [PAGE 7]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 output an uncompressed message, and ignores any future compressed
 message until the byte buffer is reset.

 If a token is encountered that cannot be successfully processed then
 decompression failure occurs automatically.

 To counter the third possibility, decompression failure SHOULD also
 occur after a certain number of tokens have been processed for a
 given compressed message. The maximum number of tokens to process is
 currently left as an implementation decision (but might in future be
 negotiated).

5. Library of tokens

 The universal decompressor currently understands twelve types of
 token, chosen to support the widest possible range of compression
 algorithms with the minimum possible overhead.

 All tokens are stored as a single byte to indicate the token type,
 followed by 0 or more bytes containing the parameters required by
 the token. At present all parameters are 2-byte integers with MSBs
 stored before LSBs. For example, the COPY token is followed by three
 parameters as shown below:

 COPY (position, length, destination)

 In the byte buffer a COPY token is stored as the following 7 bytes:

 +-+
 |0 0 0 0 0 0 0 0| Position MSB | Position LSB | Length MSB |
 +-+

 +-+
 | Length LSB |Destination MSB|Destination LSB|
 +-+

 Twelve token types are currently available to the universal
 decompressor. The following table lists the different token types
 and the byte values used to transmit the tokens to the decompressor:

 Token type: Corresponding byte value:

 COPY 0
 COPY-LITERAL 1
 COPY-OFFSET 2
 ADD 3
 SUBTRACT 4
 LSHIFT 5
 RSHIFT 6
 COMPARE 7

 SWITCH 8
 CALL 9
 RETURN 10
 HUFFMAN 11

Price et al. [PAGE 8]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 Each token is explained in more detail below:

5.1. COPY

 The COPY token instructs the decompressor to copy a string of bytes
 from one part of the byte buffer to another.

 A COPY token is stored in the byte buffer as 7 consecutive bytes as
 follows:

 COPY (position, length, destination)

 As with all tokens currently defined, the COPY token translates into
 a single byte for the token type followed by 2 bytes for each of the
 parameters.

 The meaning of the three parameters is explained below:

 Position: 2-byte integer indicating the location of the first
 byte in the string to be copied.

 Length: 2-byte integer indicating the number of bytes to be
 copied.

 Destination: 2-byte integer indicating the location to which the
 first byte in the string will be copied.

 Note that the copying function is performed on a byte-by-byte basis,
 with the position parameter indicating the first byte to be copied.
 In particular, some of the later bytes to be copied may themselves
 have been written into the byte buffer by the COPY token currently
 being executed.

 Equally, it is possible for a COPY token to overwrite itself or its
 parameters. If this occurs then the COPY token MUST continue to
 execute as if the parameters were still in place in the byte buffer.

 If the source or destination of the next byte to be copied is larger
 than (buffer_size - 1) then sufficient multiples of (buffer_size -
 circular_buffer) are subtracted until it is not. So for example,
 once a byte is copied into buffer[buffer_size - 1] the next byte is
 copied into buffer[circular_buffer]. If circular_buffer equals or
 exceeds buffer_size then a bad compressed message has been received
 and decompression failure occurs (see Section 4.5).

 A modified version of the COPY token is given below:

 COPY-LITERAL (position, length, destination)

 The COPY-LITERAL token is identical to COPY except that after

 copying, the destination parameter is replaced with the value
 (destination + length). If the destination parameter is a literal
 value then it is updated directly. If the destination parameter is
 an index then the literal value it references is updated instead.

Price et al. [PAGE 9]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 As above, if (destination + length) is larger than (buffer_size - 1)
 then sufficient multiples of (buffer_size - circular_buffer) are
 subtracted until it is not.

 A further version of the COPY-LITERAL token is given below:

 COPY-OFFSET (offset, length, destination)

 The COPY-OFFSET token is identical to COPY-LITERAL except that an
 offset parameter is given instead of a position parameter. The two
 parameters are related by position = (destination - offset).

 If (destination - offset) does not lie between circular_buffer and
 (buffer_size - 1) inclusive then sufficient multiples of
 (buffer_size - circular_buffer) are added or subtracted until it
 does.

5.2. ADD / SUBTRACT

 The ADD token instructs the decompressor to add two 2-byte integers
 (addition performed modulo 2^16) and to store the result in the
 location of the first parameter.

 The format of the ADD token is given below:

 ADD (parameter_1, parameter_2)

 Note that as per Section 4.3, depending on how the MSB is set the
 parameters can be interpreted as literal values or indices to
 literal values. If parameter_1 is a literal value then it is
 overwritten with the result of the addition. If parameter_1 is an
 index to a literal value then the literal value is overwritten (not
 parameter_1 itself).

 The SUBTRACT token is the same as the ADD token except that the
 second integer is subtracted from the first (subtraction performed
 modulo 2^16):

 SUBTRACT (parameter_1, parameter_2)

5.3. LSHIFT / RSHIFT

 The LSHIFT token instructs the decompressor to left shift a 2-byte
 value by the specified number of bits:

 LSHIFT (parameter, no_of_bits)

 The value to be shifted is stored in parameter, and the number of
 bits to shift is stored in no_of_bits. As usual both can be stored
 either as a literal value or as an index to a literal value.

 If the value of no_of_bits does not lie between 0 and 15 inclusive
 then a bad compressed message has been received and decompression
 failure occurs.

Price et al. [PAGE 10]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 The RSHIFT token is the same as the LSHIFT token except that the
 bits are right shifted:

 RSHIFT (parameter, no_of_bits)

5.4. COMPARE

 The COMPARE token instructs the decompressor to compare two 2-byte
 values and then to jump to one of three specified indices depending
 on the result.

 COMPARE (parameter_1, parameter_2, index_1, index_2, index_3)

 If the parameter_1 < parameter_2 then the decompressor continues
 token execution at the byte position specified by index 1. If
 parameter_1 = parameter_2 then it jumps to index_2. If parameter_1 >
 parameter_2 then it jumps to index_3.

 If an index is specified which is beyond the size of the byte
 buffer, a bad compressed message has been received and decompression
 failure occurs.

5.5. SWITCH

 The SWITCH token performs a conditional jump based on the value of
 its first parameter.

 SWITCH (j, index_0, index_1, ... , index_n-1)

 When a SWITCH token is encountered the decompressor reads the value
 of j. It then continues token execution at the byte position
 specified by index j.

 If j specifies an index which is beyond the size of the byte buffer,
 a bad compressed message has been received and decompression failure
 occurs.

5.6. CALL / RETURN

 The CALL and RETURN tokens provide support for compression
 algorithms with a nested structure.

 CALL (index)

 RETURN

 When the decompressor reaches a CALL token, it finds the byte
 position of the token immediately following the CALL token and
 copies this 2-byte integer into stack[stack_free] ready for later
 retrieval. It then increases stack_free by 1 and continues token

 execution at the byte position specified by index.

Price et al. [PAGE 11]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 When the decompressor reaches a RETURN token it decreases stack_free
 by 1, and then continues token execution at the byte position stored
 in stack[stack_free].

 If stack_free ever becomes more than buffer_size - 1 or less than 0
 then a bad compressed message has been received and decompression
 failure occurs (see Section 4.5).

5.7. HUFFMAN

 The HUFFMAN token maps a shorthand Huffman code onto its
 uncompressed equivalent.

 The format of a HUFFMAN token is as follows:

 HUFFMAN (position, bit_offset, destination, n, bits_1, uncomp_1,
 code_1, bits_2, uncomp_2, code_2, ... , bits_n-1, uncomp_n-1,
 code_n-1, bits_n, uncomp_n)

 The HUFFMAN token is followed by four mandatory parameters plus n
 additional sets of parameters. Every set contains three parameters
 except the nth set, which contains two. The nth set of parameters
 omits the parameter code_n, as the decompressor can always work out
 what the correct value of code_n should be.

 The meaning of the four mandatory parameters is explained below:

 Position: Indicates the byte location of the Huffman code to be
 decompressed.

 Bit Offset: Indicates the bit offset at which the Huffman code
 begins within the byte specified above.

 Destination: Indicates the location to which the uncompressed value
 will be copied.

 n: Indicates the number of additional sets of parameters
 that follow. If n = 0 then the HUFFMAN token is ignored
 by the decompressor.

 The remaining parameters specify the actual Huffman codes and their
 uncompressed equivalents. Each set of 3 parameters specifies a block
 of Huffman codes with the same length and (when treated as integers)
 with values that increase by 1 for each additional Huffman code. The
 precise meaning of the parameters is given below:

 bits_j: Indicates the additional length in bits of the Huffman
 codes in block j, compared to the Huffman codes in
 block j-1. Note that the total length of the Huffman
 codes in set j is (bits_1 + bits_2 + ... + bits_j).

 uncomp_j: Indicates the uncompressed value of the first Huffman
 code in set j.

Price et al. [PAGE 12]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 code_j: Indicates the compressed value (when read as an
 integer) of the last Huffman code in set j.

 Note that the compressed value of the first Huffman code in set j is
 not specified explicitly, but instead is taken to be 0 when j = 1 or
 (2^bits_j) x (1 + code_j-1) when j > 1. This simply means that the
 Huffman code is 1 greater than the largest Huffman code in set j-1,
 but padded with enough zeroes to give it the correct length in bits.

 For example, suppose that bits_1 = 2, uncomp_1 = 15 and code_1 = 1.
 This defines a set of 2 Huffman codes (00 and 01) with corresponding
 values 15 and 16.

 Suppose also that bits_2 = 1, uncomp_2 = 4 and code_2 = 7. This
 defines an additional set of 4 Huffman codes (100, 101, 110 and 111)
 with corresponding values 4, 5, 6 and 7.

 Huffman code: Uncompressed value:

 00 15
 01 16
 100 4
 101 5
 110 6
 111 7

 The motivation for downloading Huffman codes to the decompressor in
 this form is that it is very easy to convert a compressed Huffman
 code into its uncompressed equivalent. This can be achieved by
 taking the following steps:

 1.) Set j = 1, set code_0 = 65535 and set code_n = 65535.

 2.) Read a total of (bits_1 + bits_2 + ... + bits_j) bits starting
 from the specified position and bit_offset. Interpret these bits as
 an integer H, with the first bit to be read as the MSB and the last
 bit to be read as the LSB.

 3.) If (H > code_j) then set j = j + 1 and goto 2.

 4.) Output (H + uncomp_j - (2^bits_j) x (1 + code_j-1)), with the
 arithmetic operations calculated modulo 2^16.

 Note that as the HUFFMAN token reads individual bits from within a
 byte, to avoid ambiguity it is necessary to define the order in
 which these bits are read. This draft specifies that a bit offset of
 0 indicates the least significant bit of a byte, whilst a bit offset
 of 7 indicates the most significant bit.

 For example, suppose that an 8-bit Huffman code begins at byte

 position 0 and bit offset 2. In this case the 8 bits of the Huffman
 code can be found in the following locations (Bit 0 is the first bit
 in the Huffman code and Bit 7 is the last bit):

Price et al. [PAGE 13]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 MSB LSB MSB LSB

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |5 4 3 2 1 0 | 7 6|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Byte 0 Byte 1

 If the parameter bit offset does not take a value between 0 and 7
 inclusive then a bad compressed message has been received and
 decompression failure occurs (see Section 4.5.). Decompression
 failure also occurs if a total of more than 16 bits are read from
 the specified position and bit offset.

6. Security considerations

 Note that this initial version raises the issues, without detailing
 a specific solution to resolve them.

 Introduction:

 In effect, a compressed message is a program; the tokens are
 instructions that are executed by the decompressor. This presents
 particular risks to the operation of the node on which the
 decompressor is running. This is the case for any compression
 algorithm, and so affects the operation of a node using this one.

 Transport Mechanism Requirements:

 The algorithm itself has no security issues, but does place
 requirements on any transport mechanism used to deliver the
 messages.

 If such requirements are not met, then the operation of the system
 can be exposed to attack ranging from indirect reduction in service,
 direct denial of service, and modification of subsequent messages.

 An initial list of requirements on the transport mechanism is:

 - messages should be delivered reliably to avoid corruption - for
 some uses of this algorithm, this corruption may have longer lasting
 effects.

 - messages should be not be duplicated - to ensure that operations
 implied by those messages are executed once only.

 - potentially, the message source should be identified and/or
 validated - to restrict possible insinuation of "attack" messages by
 third parties and to allow "blacklisting" of individual sources that

 "behave badly".

Price et al. [PAGE 14]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

7. References

 [DEFLATE] "DEFLATE Compressed Data Format Specification version
 1.3", RFC 1951, P. Deutsch, May 1996

 [V-J] "Compressing TCP/IP Headers for Low-Speed Serial
 Links", V. Jacobson, Internet Engineering Task Force,
 February 1990

 [LZW] "LZW Data Compression", Mark Nelson, Dr. Dobb's
 Journal, October 1989

 [SCTP] "Stream Control Transmission Protocol", Stewart et al,
RFC 2960, Internet Engineering Task Force, October 2000

 [SIP] "SIP: Session Initiation Protocol", Handley et al,
RFC 2543, Internet Engineering Task Force, March 1999

8. Authors' addresses

 Richard Price Tel: +44 1794 833681
 Email: richard.price@roke.co.uk

 Abigail Surtees Tel: +44 1794 833131
 Email: abigail.surtees@roke.co.uk

 Mark A West Tel: +44 1794 833311
 Email: mark.a.west@roke.co.uk

 Lawrence Conroy Tel: +44 1794 833666
 Email: lwc@roke.co.uk

 Roke Manor Research Ltd
 Romsey, Hants, SO51 0ZN
 United Kingdom

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 Email: jdrosen@dynamicsoft.com

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2543

Price et al. [PAGE 15]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

Appendix A. Example sets of tokens

 This appendix gives three example sets of tokens which can be
 downloaded to the universal decompressor. The first set of tokens
 can be used to decompress a very simple variant of LZ77, which
 illustrates how the different token types are intended to be used.

 The next two examples show how the universal decompressor can be
 configured to understand the output of existing compression
 algorthms. One set of tokens allows the decompressor to understand
 [DEFLATE] compressed messages, whilst the other set allows the
 decompressor to understand [LZW] compressed messages.

A.1. Mnemonic language

 Presenting the example set of tokens as a set of bytes would not be
 very informative, so they are written instead using a simple
 mnemonic language. Most importantly, the language allows the
 parameters of a token to be specified as text references rather than
 as 2-byte integers.

 The mnemonic language is translated into bytes as follows:

 Tokens: Token names are given in capitals. Replace each
 name with the corresponding 1-byte value as per
 Chapter 5.

 Labels: Label names are given as a colon followed by lowercase
 text. They are deleted when converting the mnemonics to
 bytes.

 References: These are indicated by a label name without the
 colon. Replace each reference with a 2-byte value
 specifying the location of the byte immediately
 following the label. Moreover if the reference is
 preceded by a "$" symbol then it is interpreted as an
 pointer rather than a literal value, and hence the MSB
 of the 2-byte value is set to 1.

 .short: Each decimal number following ".short" is interpreted as
 a 2-byte integer with MSBs preceding LSBs. Unless
 otherwise specified, this is the default.

 .byte: Each decimal number following ".byte" is interpreted as
 a single byte.

 Whitespace: All whitespace, brackets and commas just delimit the
 tokens. Delete.

 Comments: These are indicated by a semicolon and continue

 to the end of the line. Delete.

Price et al. [PAGE 16]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

A.2. Example token set for simple LZ77 decompression

 The first example gives the tokens required to support a very simple
 LZ77-based algorithm. The decompressor is instructed to interpret a
 compressed message as a set of 4-byte characters, where each
 character contains a 2-byte position integer followed by a 2-byte
 length integer. Taken together these integers point to a previously
 received text string in the byte buffer, which is then copied to the
 end of the uncompressed message.

 Since the compressor can only send references to strings already
 present in the byte buffer, before the first message is decompressed
 the buffer must be initialized with a static dictionary containing
 the 256 ASCII characters.

 :first_token unpack_static_dictionary
 :uncompressed_start 1792
 :uncompressed_end 2048
 :circular_buffer 2048
 :compressed_start compressed_message_start
 :compressed_end 0
 :compressed_pointer 0

 :bit_offset 0
 :position 0
 :length 0
 :token_start next_character

 :unpack_static_dictionary

 COPY-LITERAL (17, 1, $uncompressed_start)
 ADD ($position, 1)
 COMPARE ($position, 256, unpack_static_dictionary, continue, 0)

 ; The above tokens are used to initialize the static dictionary.

 :continue

 COPY (token_start, 2, first_token)

 :next_character

 HUFFMAN ($compressed_pointer, $bit_offset, position, 1, 16, 0)
 HUFFMAN ($compressed_pointer, $bit_offset, length, 1, 16, 0)
 COPY-LITERAL ($position, $length, $uncompressed_end)
 COMPARE ($compressed_pointer, $compressed_end, next_character, 0, 0)

 :compressed_message_start

A.3. Example token set for DEFLATE decompression

 This example gives the tokens required to understand [DEFLATE]
 compressed messages as defined in RFC 1951. Note that the example

Price et al. [PAGE 17]

https://datatracker.ietf.org/doc/html/rfc1951

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 only covers static Huffman codes (Block Type 01); dynamic Huffman
 codes will be added in a future version.

 Note also that the order in which the HUFFMAN token decompresses
 bits within a byte differs from that specified in RFC 1951. An
 alternative version of the HUFFMAN token may be introduced to
 support the exact bit order of [DEFLATE] in future (although this is
 not an urgent issue, as the order in which bits are decompressed
 does not affect the overall compression ratio).

 :first_token next_character
 :uncompressed_start 2048
 :uncompressed_end 2048
 :circular_buffer 2048
 :compressed_start compressed_message_start
 :compressed_end 0
 :compressed_pointer 0

 :bit_offset 0
 :index 0
 :extra_length_bits 0
 :length_value 0
 :extra_distance_bits 0
 :distance_value 0

 :next_character

 HUFFMAN ($compressed_pointer, $bit_offset, index, 4, 7, 16428, 23,
 1, 0, 191, 0, 16452, 199, 1, 144)

 ; The above HUFFMAN token decompresses a Huffman code from the
 ; length/literal alphabet.

 COMPARE ($index, 16428, literal, 0, length)

 ; The COMPARE token is used to determine whether the decoded
 ; character should be interpreted as a length value, a literal value
 ; or an end-of-block character. In the latter case the decompressor
 ; stops and outputs the uncompressed message.

 :literal

 COPY-LITERAL (17, 1, $uncompressed_end)
 COMPARE ($compressed_pointer, $compressed_end, next_character, 1, 1)

 ; If the decoded character is to be interpreted as a literal value
 ; then it is copied directly to the uncompressed message. The
 ; decompressor then checks whether more compressed characters are
 ; available. If it has run out then it pauses and waits for some
 ; more.

https://datatracker.ietf.org/doc/html/rfc1951

 :length

 LSHIFT ($index, 2)

Price et al. [PAGE 18]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 COPY ($index, 4, extra_length_bits)

 ; If the decoded character is to be interpreted as a length value
 ; then as specified in [DEFLATE], the decompressor must first add a
 ; certain number of additional bits from the compressed message to
 ; this length value.

 HUFFMAN ($compressed_pointer, $bit_offset, extra_length_bits, 1,
 $extra_length_bits, 0)

 ; The above HUFFMAN token obtains the correct number of additional
 ; length bits from the compressed message.

 ADD ($length_value, $extra_length_bits)

 :distance

 HUFFMAN ($compressed_pointer, $bit_offset, index, 1, 5, 74)

 ; In [DEFLATE] a length code is always followed by a distance code.
 ; The above HUFFMAN token decompresses this character.

 LSHIFT ($index, 2)
 COPY ($index, 4, extra_distance_bits)
 HUFFMAN ($compressed_pointer, $bit_offset, extra_distance_bits, 1,
 $extra_distance_bits, 0)

 ; The above HUFFMAN token obtains the correct number of additional
 ; distance bits from the compressed message.

 ADD ($distance_value, $extra_distance_bits)
 COPY-OFFSET ($distance_value, $length_value, $uncompressed_end)

 ; The text string specified by the length and distance codes is then
 ; copied to the end of the uncompressed message.

 COMPARE ($compressed_pointer, $compressed_end, next_character, 1, 1)

 .byte 0 0 0 .short ; 3 bytes worth of padding

 :length_table

 0 3 0 4 0 5
 0 6 0 7 0 8
 0 9 0 10 1 11
 1 13 1 15 1 17
 2 19 2 23 2 27
 2 31 3 35 3 43
 3 51 3 59 4 67
 4 83 4 99 4 115

 5 131 5 163 5 195
 5 227 0 258

 ; This is the length table from Page 11 of [DEFLATE].

Price et al. [PAGE 19]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 :distance_table

 0 1 0 2 0 3
 0 4 1 5 1 7
 2 9 2 13 3 17
 3 25 4 33 4 49
 5 65 5 97 6 129
 6 193 7 257 7 385
 8 513 8 767 9 1025
 9 1537 10 2049 10 3073
 11 4097 11 6145 12 8193
 12 12289 13 16385 13 24577

 ; This is the distance table from Page 11 of [DEFLATE].

 :compressed_message_start

 ; The compressed messages are stored in the byte buffer following
 ; the above set of tokens.

A.4. Example token set for LZW decompression

 This example gives the tokens required to understand [LZW]
 compressed messages. This particular variant of LZW uses a codebook
 containing up to 1024 entries, and so each compressed character is a
 10-bit value referencing one of the entries in the codebook.

 :first_token unpack_static_dictionary
 :uncompressed_start 5888
 :uncompressed_end 1
 :circular_buffer 6144
 :compressed_start compressed_message_start
 :compressed_end 0
 :compressed_pointer 0

 :bit_offset 0
 :index 0
 :position_value 0
 :length_value 0
 :codebook_next 2048
 :token_start next_character

 :unpack_static_dictionary

 COPY-LITERAL (uncompressed_start, 4, $codebook_next)
 COPY-LITERAL (17, 1, $uncompressed_start)
 ADD ($index, 1)
 COMPARE ($index, 256, unpack_static_dictionary, continue, 0)

 ; The above tokens are used to initialize the first 256 entries in

 ; the LZW codebook with single ASCII characters.

 :continue

Price et al. [PAGE 20]

INTERNET-DRAFT Universal Decompressor 14 November, 2001

 COPY (circular_buffer, 2, uncompressed_end)
 COPY (token_start, 2, first_token)

 :next_character

 HUFFMAN ($compressed_pointer, $bit_offset, index, 1, 10, 512)

 ; The above HUFFMAN token extracts 10 bits from the compressed
 ; message.

 LSHIFT ($index, 2)
 COPY ($index, 4, position_value)

 ; The contents of the corresponding codebook entry is retrieved by
 ; the above COPY token.

 COPY-LITERAL (uncompressed_end, 2, $codebook_next)
 COPY-LITERAL ($position_value, $length_value, $uncompressed_end)

 ; The above COPY-LITERAL token appends the selected text string to
 ; the end of the uncompressed message.

 ADD ($length_value, 1)
 COPY-LITERAL (length_value, 2, $codebook_next)

 ; As per the LZW algorithm, a new entry is added to the codebook
 ; containing the text string copied to the end of the uncompressed
 ; message, plus the next character in the uncompressed message.

 COMPARE ($compressed_pointer, $compressed_end, next_character, 0, 0)

 :compressed_message_start

Price et al. [PAGE 21]

