
Network Working Group Richard Price, Siemens/Roke Manor
INTERNET-DRAFT Jonathan Rosenberg, dynamicsoft
Expires: July 2002 Carsten Bormann, TZI/Uni Bremen
 H. Hannu, Ericsson
 Z. Liu, Nokia

 28 January, 2002

Universal Decompressor Virtual Machine (UDVM)
<draft-ietf-rohc-sigcomp-udvm-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC-2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This document is a submission to the IETF ROHC WG. Comments should be
 directed to the mailing list of ROHC, rohc@cdt.luth.se.

Abstract

 This draft defines a "Universal Decompressor Virtual Machine"
 optimized for the task of running decompression algorithms. The UDVM
 can be configured to understand the output of many well-known
 compressors such as [DEFLATE].

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-sigcomp-udvm-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Price et al. [PAGE 1]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

Revision history

 Changes from <draft-ietf-rohc-sigcomp-algorithm-00.txt>

 State creation mechanism modified to use MD5 hash for improved
 security

 Support added for streaming compressed data over TCP

 Memory format modified to allow compilation of UDVM code

 Additional instructions added for bit manipulation etc.

 Feedback mechanism added for bidirectional UDVM operation

Table of contents

1. Introduction...3
2. Terminology..3
3. Description of the UDVM architecture.........................5
3.1. UDVM architecture..5
3.2. Requirements on application................................7
3.3. Requirements on transport mechanism........................9
3.4. Requirements on compressor.................................10
3.5. Application-defined parameters.............................11
4. Overview of the UDVM...14
4.1. UDVM memory allocation.....................................14
4.2. Well-known variables.......................................15
4.3. Instruction parameters.....................................15
4.4. Byte copying...16
5. Decompressing a compressed message...........................17
5.1. Invoking the UDVM..17
5.2. Successful decompression...................................19
5.3. Decompression failure......................................20
6. UDVM instruction set...21
6.1. Bit manipulation instructions..............................22
6.2. Arithmetic instructions....................................23
6.3. Memory management instructions.............................23
6.4. Program flow instructions..................................25
6.5. I/O instructions...27
7. Feedback information...31
7.1. UDVM version...33
7.2. Memory size and CPU cycles.................................33
7.3. State identifiers..34
8. Security considerations......................................34
9. Acknowledgements...36
10. References...36
11. Authors' addresses...36
Appendix A. Mnemonic language...................................38

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-sigcomp-algorithm-00.txt

Appendix B. Example application-defined parameters..............40
Appendix C. Example decompression algorithms....................42

Price et al. [PAGE 2]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

1. Introduction

 This draft defines a "Universal Decompressor Virtual Machine" (UDVM).
 The UDVM is a virtual machine much like the Java Virtual Machine but
 with a key difference: it is designed solely for the purpose of
 running decompression algorithms.

 The motivation for creating the UDVM is to provide unlimited
 flexibility when choosing how to compress a given item of data.
 Rather than picking one of a small number of pre-negotiated
 compression algorithms, the implementer has the freedom to select an
 algorithm of their choice. The compressed data is then combined with
 a set of UDVM instructions that allow the original data to be
 extracted, and the result is outputted as UDVM bytecode.

 Since the UDVM is optimized specifically for running decompression
 algorithms, the code size of a typical algorithm is small (often sub
 100 bytes). Moreover the UDVM approach does not add significant extra
 processing or memory requirements compared to running a fixed pre-
 programmed decompression algorithm.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

 Virtual machine

 A machine architecture designed to be implemented in software
 (although silicon implementations are of course possible).

 Universal Decompressor Virtual Machine (UDVM)

 The virtual machine described in this draft. The UDVM is designed
 specifically for the task of running decompression algorithms.

 Bytecode

 Machine code that can be executed by a virtual machine. UDVM
 bytecode is a combination of UDVM instructions and compressed data.

 Application

 Entity which invokes the UDVM. The application is also responsible
 for supplying the compressed data to the UDVM and making use of the
 uncompressed data.

 Transport mechanism

https://datatracker.ietf.org/doc/html/rfc2119

 Mechanism for passing data between two instances of an application.
 The UDVM is designed to work in conjunction with a wide range of
 transport mechanisms including TCP, UDP and [SCTP].

Price et al. [PAGE 3]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Message-oriented transport mechanism

 A transport mechanism that carries data as a set of distinct,
 bounded messages.

 Stream-oriented transport mechanism

 A transport mechanism that carries data as a continuous stream
 with no message boundaries. In this case, the UDVM reserves a
 specific character to delimit messages in the compressed stream.

 Compressor

 Entity which converts application data into compressed data that
 can be reconstructed by the UDVM.

 Application-defined parameters

 Parameters that must be agreed upon by the application invoking the
 compressor and the application invoking the UDVM. Depending on the
 application these parameters might be fixed a-priori or negotiated.

 Per-message compression

 Compression that does not reference data from previous messages.
 The UDVM can decompress a message of this type using only the
 application-defined parameters and the data in the message itself.

 Dynamic compression

 Compression relative to messages sent prior to the current
 compressed message. The UDVM stores and retrieves this data using
 the secure state reference mechanism.

 State

 Information which is saved by the UDVM and retrieved for the
 decompression of subsequent messages. For security reasons, state
 can only be saved with the permission of the application and can
 only be retrieved using an [MD5] hash of the state.

 State identifier

 A 16-byte value used to access an item of stored state information.
 (for security it is the first n bytes of an [MD5] hash of the state
 to be accessed). The minimum acceptable value of n is fixed for
 security purposes, but implementers can choose higher values of n.

 CPU cycles

 A measure of the amount of "CPU power" required to execute a UDVM
 instruction (the simplest UDVM instructions require a single CPU
 cycle). An upper limit is placed on the number of cycles that can
 be used to decompress each bit in a compressed message.

Price et al. [PAGE 4]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

3. Description of the UDVM architecture

 This chapter describes the overall UDVM architecture including the
 interfaces between the UDVM and its environment. The requirements on
 the entities external to the UDVM are also given.

 In the architecture the UDVM is considered to provide a decompression
 service for a certain application. The application invokes the UDVM,
 and is responsible for supplying compressed data to the UDVM and
 making use of the corresponding uncompressed data.

 In general the UDVM can offer a decompression service to a wide range
 of applications. The principal motivation for developing the UDVM has
 been the compression of application-layer protocols, in particular
 text-based signaling protocols such as [SIP]. The UDVM architecture
 is designed to operate securely and to provide a high compression
 ratio for this case.

 Note however that the UDVM can be used in any situation provided that
 the requirements detailed in this chapter are satisfied by the
 application and the transport mechanism.

 The following sections describe the overall UDVM architecture and the
 requirements on entities external to the UDVM such as the transport
 mechanism and the compressor.

3.1. UDVM architecture

 The UDVM architecture includes the following basic entities, each of
 which is defined in subsequent sections of the document:

 UDVM
 Application (including state)
 Transport mechanism
 Compressor

 Two variants of the architecture are available, depending on whether
 the transport mechanism offers unidirectional or bidirectional data
 transport. The unidirectional architecture can be considered to be a
 special case of the bidirectional version.

 Note that the UDVM itself does not need to know which architecture
 has been chosen, because its operation is identical for both cases.

 If bidirectional data transport is unavailable or undesirable for any
 other reason, then the UDVM architecture is illustrated in Figure 1.

Price et al. [PAGE 5]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 +--------------------+ +--------------------+
 | Compressor | | UDVM |
 +--------------------+ +--------------------+
 ^ Appl. ^ | ^ | Appl. ^
 | data | | | v data |
 +----|-------------|-+ +-|-------------|----+
 | | | | | | [X] |
 | | Appl. 1 v | Compressed data | | Appl. 2 | |
 | v +---------->----------+ v |
 | +-------+ | | +-------+ | | | | |
 | | State | | Data transport | | State | |
 | +-------+ | | +-------+ |
 | | | |
 | | | |
 | | | |
 +--------------------+ +--------------------+

 Figure 1: UDVM architecture for unidirectional data transport

 In the unidirectional case the UDVM has two 2-way interfaces to the
 application. The first interface passes compressed data from the
 application to the UDVM, and provides the corresponding uncompressed
 data in return. The second interface allows the UDVM to request the
 creation of state (information that may improve the compression ratio
 of subsequent messages), and to access previously stored state.

 Note that both of these interfaces can be provided as extensions to
 an existing application (e.g. a SIP client) or as a "shim" layer
 between a compression-unaware client and the UDVM. In the latter
 case, the term "application" refers to the combined client and shim
 layer.

 The [X] symbol denotes that the application has a veto over the
 corresponding interface. In this case the application has veto over
 the state interface and can refuse state creation requests if it
 considers them to be inappropriate. See Section 3.2.2 for further
 details.

 Note that although the UDVM architecture only shows one compression
 entity, it is possible for the UDVM to decompress messages from
 multiple compressors at different physical locations in a network.
 The UDVM architecture is designed to prevent data from one compressor
 interfering with data from a different compressor. A consequence of
 this design choice is that it is difficult for a malicious user to
 disrupt UDVM operation by inserting false compressed messages on the
 transport mechanism.

 If the transport mechanism exchanges data in both directions then the
 architecture of Figure 2 can also be used. In this case, two

 instances of the application communicate using a bidirectional
 transport mechanism. Both instances of the application invoke a
 compressor to compress their data, and a UDVM to retrieve the
 uncompressed data sent by the remote application.

Price et al. [PAGE 6]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 +--------------------+ +--------------------+
 | Compressor 1 | | UDVM 2 |
 +--------------------+ +--------------------+
 ^ ^ Appl. ^ | ^ | Appl. ^ |
 | | data | | | v data | v
 +-|--|-------------|-+ +-|-------------|--|-+
 | | | | | Compressed data | | [X][X]| |
 | | | Appl. 1 v | plus acks | | Appl. 2 | | |
 | | v +---------->----------+ v | |
 | A +-------+ | | +-------+ A |
 | c | State | | Data transport | | State | c |
 | k +-------+ | | +-------+ k |
 | s ^ +----------<----------+ ^ s |
 | | | | | Compressed data | ^ | | |
 |[X][X] | | plus acks | | | | |
 +-|--|-------------|-+ +-|-------------|--|-+
 ^ | Appl. ^ | | | Appl. | |
 | v data | v | v data v v
 +--------------------+ +--------------------+
 | UDVM 1 | | Compressor 2 |
 +--------------------+ +--------------------+

 Figure 2: UDVM architecture for bidirectional data transport

 For a bidirectional transport mechanism an additional interface is
 provided from the UDVM, via the application, to the compressor on the
 reverse transport channel. This interface can be used to send
 feedback information from an application to the remote compressor.
 The path taken by feedback data between Application 2 and Compressor
 1 is as follows:

 Appl. 2 --> Compressor 2 --> UDVM 1 --> Appl. 1 --> Compressor 1

 This feedback information monitors the behavior of the UDVM,
 including whether data has been successfully decompressed, the amount
 of available memory etc. The compressor can make use of this
 information to improve the overall compression ratio.

 Note that it is an implementation decision whether to use the
 feedback channel or not, and compressors must operate successfully
 even if no feedback information is received.

3.2. Requirements on application

 The application is the entity responsible for invoking the UDVM,
 supplying the UDVM with compressed data, and making use of the
 corresponding uncompressed data.

 Note that in order to use the UDVM decompression service an

 application (e.g. a SIP client) will require interfaces to the UDVM.
 These interfaces can be provided by extending the original client, or
 by providing a "shim" layer between a compression-unaware client and
 the UDVM.

Price et al. [PAGE 7]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 In addition, two instances of an application MUST agree on how to
 invoke the UDVM decompression service, and MUST fix or negotiate a
 common set of application-defined parameters (e.g.
 maximum_compressed_size) as per Section 3.5.

 Certain application-defined parameters can be modified on the fly
 using the state creation mechanism and the feedback mechanism. The
 application SHOULD additionally provide some external means of
 resetting or renegotiating these parameters (possibly by terminating
 the decompression service offered by the UDVM).

 The UDVM has a total of three interfaces to the environment: a two-
 way interface for exchanging compressed and uncompressed data, a two-
 way interface for storing and receiving state, and a one-way
 interface for forwarding feedback data. To protect against the
 malicious establishment of false state or false feedback data all of
 the UDVM interfaces pass through the application, and requests for
 state creation and feedback can be rejected if they are not
 accompanied by a valid uncompressed message.

 Each of the three interfaces is described in greater detail below:

3.2.1. Compressed and uncompressed data

 The first interface supplies compressed data to the UDVM and
 retrieves the corresponding uncompressed data. Note that when the
 UDVM is invoked it does not receive any compressed data by default,
 but instead requests new data explicitly using a specific
 instruction. This means that the first part of a message can be
 decompressed without waiting for the entire message to arrive, which
 is especially useful over a stream-oriented transport such as TCP.

 Uncompressed data is also passed to the application using a specific
 instruction. It is an application decision whether to make use of the
 data immediately or to buffer and wait for a complete message to be
 successfully decompressed.

3.2.2. Storing and retrieving state

 To provide security against the malicious insertion of false
 compressed data, the contents of the UDVM memory are reinitialized
 after each compressed message. This ensures that damaged compressed
 messages do not prevent the successful decompression of subsequent
 valid messages.

 Note however that the overall compression ratio is often
 significantly higher if messages can be compressed relative to the
 information stored in previous messages. For this reason it is
 possible for the UDVM to create "state" information for access when a
 later message is being decompressed.

 Both the creation and access of state are designed to be secure
 against malicious tampering with the compressed data. State can only
 be created when a complete message has been successfully

Price et al. [PAGE 8]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 decompressed, and the application can veto a state creation request
 based on the contents of the decompressed message. This is especially
 useful if the application has an authentication mechanism that can be
 applied to determine whether the uncompressed data is legitimate.

 Furthermore, the UDVM can only access previously created state
 information by providing an [MD5] hash of the state to be accessed.
 The advantage of using a secure hash to access state information is
 that it is very difficult to guess the correct hash value without
 complete knowledge of the state being accessed.

 Also note that state is not deleted when it is accessed. So even if a
 malicious user manages to access state information, subsequent
 messages compressed relative to this state can still be successfully
 decompressed. Instead, the application is responsible for deleting
 state information once it determines that the state will no longer be
 needed.

3.2.3. Feedback information

 The final interface is only used when the transport mechanism is
 bidirectional. It provides feedback information from the UDVM to the
 compressor on the reverse channel, and can be used to improve the
 overall compression ratio.

 Note that the feedback information is forwarded via the application.
 Just as for the state interface above, the application can veto
 feedback information if it considers the corresponding decompressed
 message to be invalid.

 If the transport mechanism only provides one-way data transport then
 the feedback interface is considered to be null: any feedback
 information sent across the interface is simply discarded by the
 application.

3.3. Requirements on transport mechanism

 The transport mechanism is the entity that passes data between two
 instances of an application. Since the motivation for developing the
 UDVM has been the compression of signaling protocols such as [SIP],
 the UDVM is designed to operate successfully over both stream-
 oriented protocols such as TCP and message-oriented protocols such as
 UDP.

 Note that the UDVM is not given direct access to the underlying
 transport mechanism; instead the compressed data is considered to
 first pass through the application. It is an application decision
 whether to pass all data from the transport mechanism directly to the
 UDVM or whether to mix compressed and uncompressed data (e.g. by
 restricting compressed data to a certain port).

 If the transport mechanism is message-oriented then the UDVM converts
 each compressed message into a corresponding uncompressed message. It

Price et al. [PAGE 9]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 is not possible for one compressed message to reconstruct multiple
 uncompressed messages.

 If the transport mechanism is stream-oriented then the UDVM simply
 converts a stream of compressed data into a stream of uncompressed
 data. However, when running over a stream-oriented transport such as
 TCP, applications often insert their own internal message delimiters
 into the data stream. As the message is compressed, it will not be
 possible to detect these delimiters in the compressed data stream.
 Therefore the UDVM provides a similar character that can be inserted
 into the compressed data stream to delimit messages (see Section 3.4
 for further details).

 No assumption is made about the reliability of the transport
 mechanism. The UDVM can operate successfully over unreliable
 transport mechanisms such as UDP as well as reliable transport
 mechanisms such as TCP.

 No assumption is made about the security of the transport mechanism.
 It may be possible for a malicious user to insert or modify data on
 the path between the compressor and the UDVM. In this case, the
 design goal of the UDVM is to avoid presenting additional security
 risks compared to simply transporting the application data
 uncompressed.

3.4. Requirements on compressor

 An important feature of the UDVM is that it can decompress data
 generated by arbitrary compression algorithms. In particular this
 means that it is not necessary to standardize a compression algorithm
 for use with the UDVM; instead the choice can be left to the
 implementer.

 The overall requirement placed on the compressor is that of
 transparency, i.e. the compressor MUST NOT send instructions which
 cause the UDVM to incorrectly decompress a given message.

 The following more specific requirements are also placed on the
 compressor (they can be considered particular instances of the
 transparency requirement):

 * Since feedback information is purely optional, the compressor
 MUST be able to operate successfully even if it receives no
 feedback data.

 * It is RECOMMENDED that the compressor supply a CRC over the
 uncompressed message to ensure that successful decompression has
 occurred. A UDVM instruction is provided to verify this CRC.

 * If the transport mechanism is message-oriented then the

 compressor MUST preserve the boundaries between messages.

 * If the transport mechanism is stream-oriented but the
 application defines its own internal message boundaries, then

Price et al. [PAGE 10]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 the compressor SHOULD preserve the boundaries between messages
 by using the "end-of-message" character 0xFFFF reserved in UDVM
 bytecode.

 The reason for preserving the message boundaries over a stream-
 oriented transport is that damage to one compressed message does not
 affect the decompression of subsequent messages. Moreover, the
 application typically vetoes state creation and feedback requests on
 a per-message basis.

 Note that the UDVM also reserves the character 0xFF00 over a stream-
 oriented transport mechanism, and replaces every instance of 0xFF00
 with 0xFF before decompressing the data. This ensures that arbitrary
 compression algorithms can be used over a stream-oriented transport,
 provided that every instance of 0xFF in the compressed data stream is
 identified and replaced with 0xFF00. This "byte-stuffing" scheme
 prevents the compression algorithm from inserting a message delimiter
 into the data stream where one is not required.

3.4.1. Types of compression algorithm

 Any of the following classes of compression algorithm may be useful
 depending on the type of application:

 * Generic compressor (for example [DEFLATE] or a similar
 algorithm).

 * Protocol-aware compressor offering excellent performance for
 one particular type of data (for example the text messages
 generated by [SIP]).

 * Hybrid compressor with similar performance to [DEFLATE] for
 generic data and superior performance for certain types of data.

 Provided that the uncompressed data can be reconstructed at the UDVM
 using the available memory and CPU cycles, implementers have freedom
 to use a compression algorithm of their choice.

 Note that when using an "off-the-shelf" compression algorithm,
 bytecode for the corresponding decompressor will need to be made
 available at the UDVM. In general the decompressor bytecode is placed
 at the front of the first compressed message, unless the application
 offers the ability to download UDVM bytecode offline (in which case
 the UDVM memory will be initialized already containing a copy of the
 decompression algorithm).

3.5. Application-defined parameters

 When an application invokes an instance of the UDVM, a number of
 parameters are provided by the application to control the UDVM memory

 size, maximum number of CPU cycles etc. The application invoking the
 UDVM and the application invoking the compressor MUST initially agree
 on a common set of values for these parameters.

Price et al. [PAGE 11]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Note that if the transport mechanism is bidirectional then the
 application invoking the UDVM can use the reverse channel to indicate
 that additional memory or CPU cycles are available (compared to the
 values initially agreed by the application invoking the compressor).
 The compressor can then make use of these extra resources to improve
 the compression ratio.

 The feedback mechanism can also advertise that an upgraded version of
 the UDVM is available (e.g. offering additional UDVM instructions),
 provided that the upgraded version is backwards compatible with the
 basic version described in this document. See Chapter 7 for further
 details.

 Each parameter is described in greater detail below; example values
 for the parameters are listed in Appendix B.

 UDVM_version

 The UDVM_version parameter specifies the level of functionality
 available at the UDVM. The basic version of the UDVM (Version 0)
 is defined in this document.

 maximum_compressed_size

 The maximum_compressed_size parameter limits the size of one
 compressed message. Decompression failure occurs if a message
 larger than the specified value is provided.

 maximum_uncompressed_size

 The maximum_uncompressed_size parameter limits the size of one
 uncompressed message. Decompression failure occurs if a message
 larger than the specified value is provided.

 minimum_hash_size

 The minimum_hash_size parameter specifies the minimum size of the
 state identifier that can be used to reference state. This value
 needs to be sufficiently large to prevent malicious users from
 guessing a state identifier by brute force.

 overall_memory_size

 The overall_memory_size parameter specifies the total number of
 bytes in the UDVM memory.

 working_memory_start

 The working_memory_start parameter specifies the start of the UDVM
 memory area that can be modified. Memory addresses below this

 value are considered read-only by the UDVM.

Price et al. [PAGE 12]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 working_memory_end

 The working_memory_end parameter specifies the end of the UDVM
 memory area that can be modified. Memory addresses above this
 value are considered read-only by the UDVM.

 cycles_per_bit

 The cycles_per_bit parameter specifies the number of "CPU cycles"
 that can be used to decompress a single bit of data. One CPU cycle
 typically corresponds to a single UDVM instruction, although some
 of the high-level instructions may require additional cycles.

 cycles_per_message

 The cycles_per_message parameter specifies the number of additional
 CPU cycles made available at the start of a compressed message.
 These cycles can be useful when decompressing algorithms that
 download additional data on a per-message basis, for example a new
 set of Huffman codes as with [DEFLATE].

 The total number of "CPU cycles" available for each compressed
 message is specified by the following formula:

 total_cycles = message_size * cycles_per_bit + cycles_per_message

 first_instruction

 The first_instruction parameter specifies the memory address of the
 first instruction to be executed when the UDVM is initialized.

 Initial memory contents

 For each new compressed message the UDVM memory is reinitialized
 with contents defined by the application. For example, the
 application may be able to download UDVM bytecode for a
 decompression algorithm before the first compressed message
 arrives. In this case, for each new compressed message the UDVM
 memory is initialized already containing a copy of the
 decompression algorithm.

 Initial state

 As well as deciding the initial contents of the UDVM memory, the
 application can also store useful information in the form of state.
 This predefined state will typically contain optional data that can
 be used to improve the overall compression ratio, for example a
 well-known decompression algorithm or a dictionary of commonly used
 [SIP] phrases. Note that unlike state created on the fly by the
 UDVM, there is no need for the application-defined state to use an

 [MD5] hash as the state identifier.

Price et al. [PAGE 13]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

4. Overview of the UDVM

 This chapter describes some basic features of the UDVM, including the
 memory allocation, well-known variables and instruction parameters.

4.1. UDVM memory allocation

 The memory available to the UDVM is partitioned into a number of
 sections, providing space for program code, variables and
 miscellaneous data:

 <----- working_memory_size ------>

 | Fixed values | Variables | Miscellaneous data | Program code |
 +--------------+-----------+--------------------+--------------+

 <--------------------- overall_memory_size -------------------->

 Figure 3: Memory allocation in the UDVM

 Recall that the amount of memory available to the UDVM is defined by
 the application-specific parameters overall_memory_size,
 working_memory_start and working_memory_end. Note that all of these
 parameters are initialized by the application, but can be
 renegotiated on the fly using the feedback mechanism of Chapter 7.

 The memory area from Address (working_memory_start) to Address
 (working_memory_end) inclusive can be used to store arbitrary data
 (variables, program code, Huffman codes etc.). UDVM instructions are
 allowed to read from or write to any address in this memory area.

 The first part of this memory area is typically used to store a
 number of 2-byte variables. UDVM instructions can reference these
 variables using a special instruction parameter as described in

Section 4.3.

 The memory area from Address 0 to Address (working_memory_start - 1)
 and from Address (working_memory_end + 1) to Address
 (overall_memory_size - 1) inclusive is write-protected, so UDVM
 instructions can read from this memory area but cannot write to it.
 This memory area is intended for storing UDVM bytecode that can be
 compiled.

 Any attempt to read memory addresses beyond the overall memory size
 or to write to memory addresses outside the working memory area MUST
 cause a decompression failure (see Section 5.3).

 The first part of the write-protected UDVM memory is intended for
 storing variables whose values no longer need to be modified. The
 second part of the write-protected memory is intended for storing

 program code including UDVM instructions and their associated
 parameters. Note that if an instruction references a variable that
 has been write-protected, the compiled version of the instruction

Price et al. [PAGE 14]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 will typically run faster than if the referenced variable lies in the
 working memory area.

4.2. Well-known variables

 The first few variables in the UDVM memory have special tasks, for
 example specifying the location of the stack used by the CALL and
 RETURN instructions. Each of these well-known variables is a 2-byte
 integer.

 The following list gives the name of each well-known variable and the
 memory address at which the variable can be found:

 Name: Starting memory address:

 byte_copy_left 0
 byte_copy_right 2
 stack_location 4

 The MSBs of each variable are always stored before the LSBs. So, for
 example, the MSBs of stack_location are stored at Address 4 whilst
 the LSBs are stored at Address 5.

 The use of each well-known variable is described in the following
 sections of the draft.

4.3. Instruction parameters

 Each of the UDVM instructions is followed by 0 or more bytes
 containing the parameters required by the instruction.

 To reduce the code size of a typical UDVM program, each parameter for
 a UDVM instruction is compressed using variable-length encoding. The
 aim is to store more common parameter values using fewer bits than
 rarely occurring values.

 Three different types of parameter are available: the literal, the
 reference and the multitype. The parameter types that follow each
 UDVM instruction are specified in Chapter 6.

 The UDVM bytecode for each parameter type is illustrated in Figure 4
 to Figure 6, together with the integer values represented by the
 bytecode.

 Note that the MSBs in the bytecode are illustrated as preceding the
 LSBs. Also, any string of bits marked with k consecutive "n"s is to
 be interpreted as an integer N from 0 to 2^k - 1 inclusive (with the
 MSBs of n illustrated as preceding the LSBs).

 The decoded integer value of the bytecode can be interpreted in two

 ways. In some cases it is taken to be the actual value of the
 parameter. In other cases it is taken to be a memory address at which
 the 2-byte parameter value can be found (MSBs found at the specified
 address, LSBs found at the following address). The latter case is

Price et al. [PAGE 15]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 denoted by memory[X] where X is the address and memory[X] is the 2-
 byte value starting at Address X.

 The simplest parameter type is the literal (#), which encodes a
 constant integer from 0 to 65535 inclusive. A literal parameter may
 require between 1 and 3 bytes depending on its value.

 Bytecode: Parameter value: Range:

 0nnnnnnn N 0 - 127
 10nnnnnn nnnnnnnn N 0 - 16383
 11000000 nnnnnnnn nnnnnnnn N 0 - 65535

 Figure 4: Bytecode for a literal (#) parameter

 The second parameter type is the reference ($), which is always used
 to access a 2-byte value located elsewhere in the UDVM memory. The
 bytecode for a reference parameter is decoded to be a constant
 integer from 0 to 65535 inclusive, which is interpreted as the memory
 address containing the actual value of the parameter.

 Bytecode: Parameter value: Range:

 0nnnnnnn memory[2 * N] 0 - 254
 10nnnnnn nnnnnnnn memory[2 * N] 0 - 32766
 11000000 nnnnnnnn nnnnnnnn memory[N] 0 - 65535

 Figure 5: Bytecode for a reference ($) parameter

 The third kind of parameter is the multitype (%), which can be used
 to encode both actual values and memory addresses. The multitype
 parameter also offers efficient encoding for small integer values
 (both positive and negative) and for powers of 2.

 Bytecode: Parameter value: Range:

 00nnnnnn N 0 - 63
 01nnnnnn memory[2 * N] 0 - 126
 1000011n 2 ^ (N + 6) 64 - 128
 10001nnn 2 ^ (N + 8) 256 - 32768
 111nnnnn N + 65504 65504 - 65535
 1001nnnn nnnnnnnn N + 61440 61440 - 65535
 101nnnnn nnnnnnnn N 0 - 8191
 110nnnnn nnnnnnnn memory[N] 0 - 8191
 10000000 nnnnnnnn nnnnnnnn N 0 - 65535
 10000001 nnnnnnnn nnnnnnnn memory[N] 0 - 65535

 Figure 6: Bytecode for a multitype (%) parameter

4.4. Byte copying

 A number of UDVM instructions require a string of bytes to be copied
 to and from areas of the UDVM memory. This section defines how the
 byte copying operation should be performed.

Price et al. [PAGE 16]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 In general, the string of bytes is copied in ascending order of
 memory address. So if a byte is copied from/to Address n then the
 next byte is copied from/to Address n + 1. As usual, if a byte is
 read from an address beyond the overall memory size or is written to
 an address outside the working memory area then decompression failure
 occurs.

 Note however that if a byte is copied from/to the memory address
 specified in byte_copy_right, the byte copy operation continues by
 copying the next byte from/to the memory address specified in
 byte_copy_left. This is useful for setting up a "circular buffer"
 within the UDVM memory.

 Note that the string of bytes is copied on a purely byte-by-byte
 basis. In particular, some of the later bytes to be copied may
 themselves have been written into the UDVM memory by the byte copying
 operation currently being performed.

 Equally, it is possible for a byte copying operation to overwrite the
 instruction that called the byte copy. If this occurs then the byte
 copying operation MUST be completed as if the original instruction
 were still in place in the UDVM memory (this also applies if
 byte_copy_left or byte_copy_right are overwritten).

5. Decompressing a compressed message

 This chapter lists the steps involved in the decompression of a
 single compressed message.

5.1. Invoking the UDVM

 Whenever the application receives a message to be decompressed, it
 invokes a new instance of the UDVM. The overall_memory_size and
 initial contents of the UDVM memory are initialized using the
 corresponding application-defined parameters. The following steps are
 then taken:

 1.) The number of remaining CPU cycles is set equal to the
 application-defined parameter cycles_per_message.

 Notes:

 The amount of compressed data available to the UDVM is exactly one
 compressed message. If the transport mechanism is stream-oriented
 then the UDVM uses the reserved byte string 0xFFFF to delimit the
 compressed messages: the UDVM takes the data between a pair of
 neighboring reserved byte strings to be a single compressed message.
 The reserved byte string itself is not considered to be part of the
 compressed message.

 For a stream-oriented transport, the UDVM parses the compressed data
 stream for instances of 0xFF and takes the following actions:

Price et al. [PAGE 17]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Occurs in data stream: Action:

 0xFFFF Delimit compressed message
 0xFF00 Replace with 0xFF
 0xFF01 - 0xFFFE Decompression failure

 The reserved character 0xFF00 is useful for byte stuffing (if a
 compression algorithm generates compressed data containing the
 character 0xFF then it should be replaced by the character 0xFF00 to
 avoid accidentally inserting a message delimiter into the compressed
 data stream).

 The compressed data is not provided to the UDVM by default. Instead,
 the UDVM requests compressed data using the INPUT instructions
 (useful when running over a stream-oriented transport since there is
 no need to wait for the entire compressed message before
 decompression can begin). Note that in particular, this means that
 the application MUST define the initial contents of the UDVM memory
 to contain at least one INPUT instruction. See Appendix B for an
 example of how the application might initialize the UDVM memory.

 The application MUST NOT make more than one compressed message
 available to a given instance of the UDVM. In particular, the
 application MUST NOT concatenate two messages to form a single
 compressed message. This is because compressed messages are typically
 padded with trailing zero bits so that they are a whole number of
 bytes long. Concatenating two messages would cause these padding bits
 to be incorrectly interpreted as compressed data.

 2.) Next, the instructions contained within the UDVM memory are
 executed beginning at the address specified in first_instruction.

 Notes:

 The instructions are executed consecutively unless otherwise
 indicated (for example when the UDVM encounters a JUMP instruction).

 If the next instruction to be executed lies outside the available
 memory then decompression failure occurs (see Section 5.3).

 3.) Each time an instruction is executed the number of available
 CPU cycles is decreased by the amount specified in Chapter 6.
 Additionally, if the UDVM requests n bits of compressed data (using
 one of the INPUT instructions) then the number of available CPU
 cycles is increased by n * cycles_per_bit.

 Notes:

 This means that the total number of CPU cycles available for
 processing a compressed message is given by the formula:

 total_cycles = cycles_per_message + message_size * cycles_per_bit

Price et al. [PAGE 18]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 The reason that this total is not allocated to the UDVM when it is
 invoked is that the UDVM can begin to decompress a message that has
 only been partially received. So the total message size may not be
 known when the UDVM is initialized.

 4.) The UDVM stops executing instructions when it encounters an
 END-MESSAGE instruction or if decompression failure occurs.

 Notes:

 The UDVM passes uncompressed data to the application using the OUTPUT
 instruction. The OUTPUT instruction can be used to output a partially
 decompressed message; it is an application decision whether to use
 the data immediately or whether to buffer and wait until the entire
 message has been decompressed.

 The UDVM passes state creation and feedback requests to the
 application using the END-MESSAGE instruction. This means that it is
 only possible to make a state creation and a feedback request once
 the message has been decompressed, which is necessary since the
 application typically checks the validity of these requests based on
 the contents of the decompressed message.

5.2. Successful decompression

 The END-MESSAGE instruction indicates that the compressed message has
 been successfully decompressed and passed to the application. Note
 that the actual uncompressed message is outputted beforehand using
 the OUTPUT instruction; this allows the UDVM to output each part of
 the message to the application as soon as it has been decompressed.

 The END-MESSAGE instruction provides two additional pieces of
 information to the application: the state creation request and the
 feedback data. The state creation request mechanism is discussed
 below; feedback information is discussed separately in Chapter 7.

 The UDVM may optionally save part of its memory for retrieval by
 later messages. However to prevent malicious storage of a large
 amount of unnecessary state information, the application MUST give
 permission before any state can be created. The application typically
 makes a decision on whether state can be created based on the
 contents of the decompressed message, particularly if the message
 contains authentication data that can verify whether or not the
 sender is legitimate.

 The END-MESSAGE instruction requests the creation of state using the
 parameters state start and state length, which together denote a byte
 string state_value. Provided that the application gives permission,
 state_value is byte copied from the UDVM memory (obeying the rules of

Section 4.4) and stored together with a 16-byte state identifier that

 can be used to access the state by a later compressed message.

 To provide security against malicious access, the identifier for any
 item of state created by the UDVM is derived from the [MD5] hash of

Price et al. [PAGE 19]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 the state_value to be stored. The state identifier is constructed by
 taking the 16-byte [MD5] hash and replacing all but the first
 hash_length most significant bytes with zeroes. Note that if
 hash_length is 16 then the unmodified [MD5] hash is the state
 identifier. Decompression failure occurs if hash_length is less than
 the application-defined parameter minimum_hash_size or greater than
 16.

 Each item of state stores the following information (accessed by the
 state_identifier):

 state_identifier
 state start
 state length
 state_value
 state_instruction

 Note that state_start, state_length and state_instruction are all
 parameters from the END-MESSAGE instruction, whereas state_identifier
 and state_value are created as specified above.

 If a state creation request is made with a state identifier that has
 been used by existing state, then the request fails automatically.

 This state can subsequently be accessed by using the STATE-REFERENCE
 and STATE-EXECUTE instructions (by providing the correct state
 identifier).

5.3. Decompression failure

 If a compressed message given to the UDVM is corrupted (either
 accidentally or maliciously) then the UDVM may terminate with a
 decompression failure.

 Reasons for decompression failure include the following:

 * A compressed or uncompressed message exceeds the maximum size
 defined by the application.

 * The UDVM exceeds the available CPU cycles for decompressing a
 message.

 * The UDVM attempts to read a memory address beyond the overall
 memory size, or to write into a memory address outside the
 working memory area.

 * An unknown instruction type is encountered.

 * An unknown parameter type is encountered.

 * An instruction is encountered that cannot be processed
 successfully by the UDVM (for example a RETURN instruction when
 no CALL instruction has previously been encountered).

Price et al. [PAGE 20]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 * The UDVM attempts to access non-existent state.

 * A manual decompression failure is triggered using the
 DECOMPRESSION-FAILURE instruction.

 If a decompression failure occurs when decompressing a message then
 the UDVM informs the application and takes no further action. It is
 the responsibility of the application to decide how to cope with the
 decompression failure. In general an application SHOULD discard the
 compressed message and any decompressed data that has been outputted.

6. UDVM instruction set

 The UDVM currently understands 28 instructions, chosen to support the
 widest possible range of compression algorithms with the minimum
 possible overhead.

 Figure 7 lists the different instructions and the bytecode values
 used to store the instructions at the UDVM. The cost of each
 instruction in CPU cycles is also given:

 Instruction: Bytecode value: Cost in CPU cycles:

 DECOMPRESSION-FAILURE 0 1
 AND 1 1
 OR 2 1
 NOT 3 1
 ADD 4 1
 SUBTRACT 5 1
 MULTIPLY 6 1
 DIVIDE 7 1
 LOAD 8 1
 MULTILOAD 9 1 + n
 WORKING-MEMORY 10 1
 COPY 11 1 + length
 COPY-LITERAL 12 1 + length
 COPY-OFFSET 13 1 + length + offset
 JUMP 14 1
 COMPARE 15 1
 CALL 16 1
 RETURN 17 1
 SWITCH 18 1 + n
 CRC 19 1 + length
 END-MESSAGE 20 1 + state length
 OUTPUT 21 1 + output_length
 NBO 22 1
 INPUT-BYTECODE 23 1 + length
 INPUT-FIXED 24 1
 INPUT-HUFFMAN 25 1 + n

 STATE-REFERENCE 26 1 + state_length
 STATE-EXECUTE 27 1 + state length

 Figure 7: UDVM instructions and corresponding bytecode values

Price et al. [PAGE 21]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Each UDVM instruction costs a minimum of 1 CPU cycle. Certain high-
 level instructions may cost additional cycles depending on the value
 of one of the instruction parameters.

 The only exception when calculating the number of CPU cycles is that
 the STATE-EXECUTE instruction takes (1 + state_length) cycles even
 though it does not have a state_length parameter; instead the value
 of state length is provided by the application as part of the state
 being accessed.

 All instructions are stored as a single byte to indicate the
 instruction type, followed by 0 or more bytes containing the
 parameters required by the instruction. The instruction specifies
 which of the three parameter types of Section 4.3 is used in each
 case. For example, the ADD instruction is followed by two parameters
 as shown below:

 ADD ($parameter_1, %parameter_2)

 When converted into bytecode the number of bytes required by the ADD
 instruction depends on the size of each parameter value, and whether
 the second (multitype) parameter contains the parameter value itself
 or a memory address where the actual value of the parameter can be
 found.

 The instruction set available for the UDVM offers a mix of low-level
 and high-level instructions. The high-level instructions can all be
 emulated using the low-level instructions provided, but given a
 choice it is generally preferable to use a single instruction rather
 than a large number of general-purpose instructions. The resulting
 bytecode will be more compact (leading to a higher overall
 compression ratio) and decompression will typically be faster because
 the implementation of the compression-specific instructions can be
 optimized for the UDVM.

 Each instruction is explained in more detail below:

6.1. Bit manipulation instructions

 The AND, OR and NOT instructions provide simple bit manipulation on
 2-byte words.

 AND ($parameter_1, %parameter_2)
 OR ($parameter_1, %parameter_2)
 NOT ($parameter_1)

 After the operation is complete, the value of the first parameter is
 overwritten with the result. Note that since this parameter is a
 reference, the memory address specified by the parameter is always
 overwritten and not the parameter itself.

Price et al. [PAGE 22]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

6.2. Arithmetic instructions

 The ADD, SUBTRACT, MULTIPLY and DIVIDE instructions perform
 arithmetic on 2-byte words.

 ADD ($parameter_1, %parameter_2)
 SUBTRACT ($parameter_1, %parameter_2)
 MULTIPLY ($parameter_1, %parameter_2)
 DIVIDE ($parameter_1, %parameter_2)

 After the operation is complete, the first parameter is overwritten
 with the result.

 Note that in all cases the arithmetic operation is performed modulo
 2^16. So for example, subtracting 1 from 0 gives the result 65535.

 For the SUBTRACT instruction the second parameter is subtracted from
 the first. Similarly, for the DIVIDE instruction the first parameter
 is divided by the second parameter. Note that if the second parameter
 does not divide exactly into the first parameter then the remainder
 is ignored.

6.3. Memory management instructions

 The following instructions are used to manipulate the UDVM memory.
 Bytes can be copied from one area of memory to another, and areas of
 memory can be write-protected to make it easier for UDVM code to be
 compiled.

6.3.1. LOAD

 The LOAD instruction sets a 2-byte variable to a certain specified
 value. The format of a LOAD instruction is as follows:

 LOAD (%address, %value)

 The first parameter specifies the starting address of the 2-byte
 variable, whilst the second parameter specifies the value to be
 loaded into this variable. As usual, MSBs are stored before LSBs in
 the UDVM memory.

6.3.2. MULTILOAD

 The MULTILOAD instruction sets a contiguous block of 2-byte variables
 to specified values.

 MULTILOAD (%address, #n, %value_0, ..., %value_n-1)

 The first parameter specifies the starting address of the contiguous
 variables, whilst the parameters value_0 through to value_n-1 specify

 the values to load into these variables (in the same order as they
 appear in the instruction).

Price et al. [PAGE 23]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

6.3.3. WORKING-MEMORY

 The WORKING-MEMORY instruction is used to prevent part of the UDVM
 memory from being modified. This can be very useful when offering
 UDVM code for compilation.
 WORKING-MEMORY (%memory_start, %memory_end)

 The parameters memory_start and memory_end specify the new working
 memory area for the UDVM. These parameters replace the application-
 defined parameters working_memory_start and working_memory_end, but
 only while the current message is being decompressed. When a new
 instance of the UDVM is invoked the working memory area is set by the
 original application-defined parameters.

 If memory_end < memory_start, or if the parameters reference a memory
 address beyond the overall UDVM memory size, then decompression
 failure occurs.

 After the WORKING-MEMORY instruction has been encountered, the only
 way to write into UDVM memory within the protected region is to
 cancel the protection using another WORKING-MEMORY instruction (or to
 invoke a new instance of the UDVM).

6.3.4. COPY

 The COPY instruction is used to copy a string of bytes from one part
 of the UDVM memory to another.

 COPY (%position, %length, %destination)

 The position parameter specifies the memory address of the first byte
 in the string to be copied, and the length parameter specifies the
 number of bytes to be copied.

 The destination parameter gives the address to which the first byte
 in the string will be copied.

 Note that byte copying is performed as per the rules of Section 4.4.

6.3.5. COPY-LITERAL

 A modified version of the COPY instruction is given below:

 COPY-LITERAL (%position, %length, $destination)

 The COPY-LITERAL instruction behaves as a COPY instruction except
 that after copying, the destination parameter is replaced with the
 memory address immediately following the address to which the final
 byte was copied. If the final byte was copied to the memory address
 specified in byte_copy_right, the destination parameter is set to the

 memory address specified in byte_copy_left.

Price et al. [PAGE 24]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

6.3.6. COPY-OFFSET

 A further version of the COPY-LITERAL instruction is given below:

 COPY-OFFSET (%offset, %length, $destination)

 The COPY-OFFSET instruction behaves as a COPY-LITERAL instruction
 except that an offset parameter is given instead of a position
 parameter.

 To derive a suitable position parameter, starting at the memory
 address specified by destination, the UDVM counts backwards a total
 of offset memory addresses. If the memory address specified in
 byte_copy_left is reached, the next memory address is taken to be
 byte_copy_right.

 The COPY-OFFSET instruction then behaves as a COPY-LITERAL
 instruction, taking the position parameter to be the last memory
 address reached in the above step.

6.4. Program flow instructions

 The following instructions alter the flow of UDVM code. Each
 instruction jumps to one of a number of memory addresses based on a
 certain specified criterion. Note that all of the instructions give
 the memory addresses in the form of deltas relative to the memory
 address of the instruction. The actual memory address is calculated
 as follows:

 memory_address = (memory_address_of_instruction + delta) modulo 2^16

 Note that certain I/O instructions (see Section 6.5) can also alter
 program flow.

6.4.1. JUMP

 The JUMP instruction moves program execution to the specified memory
 address.

 JUMP (%delta)

 Note that if the address (specified as a delta from the address of
 the JUMP instruction) lies beyond the overall UDVM memory size then
 decompression failure occurs.

6.4.2. COMPARE

 The COMPARE instruction compares two parameters and then jumps to one
 of three specified memory addresses depending on the result.

 COMPARE (%parameter_1, %parameter_2, %delta_1, %delta_2, %delta_3)

 If parameter_1 < parameter_2 then the UDVM continues instruction
 execution at the (relative) memory address specified by delta 1. If

Price et al. [PAGE 25]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 parameter_1 = parameter_2 then it jumps to the address specified by
 delta_2. If parameter_1 > parameter_2 then it jumps to the address
 specified by delta_3.

6.4.3. CALL and RETURN

 The CALL and RETURN instructions provide support for compression
 algorithms with a nested structure.

 CALL (%delta)

 RETURN

 The CALL and RETURN instructions make use of a stack of 2-byte
 variables stored at the memory address specified by the well-known
 variable stack_location. The stack contains the following variables:

 Name: Starting memory address:

 stack_free stack_location
 stack[0] stack_location + 2
 stack[1] stack_location + 4
 stack[2] stack_location + 6
 : :

 The MSBs of these variables are stored before the LSBs in the UDVM
 memory.

 When the UDVM reaches a CALL instruction, it finds the memory address
 of the instruction immediately following the CALL instruction and
 copies this 2-byte value into stack[stack_free] ready for later
 retrieval. It then increases stack_free by 1 and continues
 instruction execution at the (relative) memory address specified by
 the parameter.

 When the UDVM reaches a RETURN instruction it decreases stack_free by
 1, and then continues instruction execution at the byte position
 stored in stack[stack_free].

 If the variable stack_free is ever increased beyond 65535 or
 decreased below 0 then a bad compressed message has been received and
 decompression failure occurs (see Section 5.3).

 Decompression failure also occurs if one of the above instructions is
 encountered and the value of stack_location is smaller than 6 (this
 prevents the stack from overwriting the well-known variables).

6.4.4. SWITCH

 The SWITCH instruction performs a conditional jump based on the value

 of one of its parameters.

 SWITCH (#n, %j, %delta_0, %delta_1, ... , %delta_n-1)

Price et al. [PAGE 26]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 When a SWITCH instruction is encountered the UDVM reads the value of
 j. It then continues instruction execution at the (relative) address
 specified by delta j.

 If j specifies a value of n or more, a bad compressed message has
 been received and decompression failure occurs.

6.4.5. CRC

 The CRC instruction verifies a string of bytes using a 2-byte CRC.

 CRC (%value, %position, %length, %delta)

 The actual CRC calculation is performed using the generator
 polynomial x^16 + x^12 + x^5 + 1, which coincides with the 2-byte
 Frame Check Sequence (FCS) of [RFC-1662].

 The position and length parameters define the string of bytes over
 which the CRC is evaluated. Byte copying rules are enforced as per

Section 4.4.

 Important note: Since a CRC calculation is always performed over a
 bitstream, for interoperability it is necessary to define the order
 in which bits are supplied within each individual byte. In this case
 the MSBs of the byte MUST be supplied to the CRC calculation before
 the LSBs.

 The value parameter contains the expected integer value of the 2-byte
 CRC. If the calculated CRC matches the expected value then the UDVM
 continues at the following instruction. Otherwise the UDVM jumps to
 the (relative) memory address specified by delta.

6.5. I/O instructions

 The following instructions allow the UDVM to interface with its
 environment. Note that in the current UDVM architecture all of the
 interfaces pass through the application (which has a veto over any
 information supplied to or from the UDVM).

6.5.1. END-MESSAGE

 The END-MESSAGE instruction successfully terminates the UDVM and
 passes feedback and state information to the application.

 END-MESSAGE (%hash_length, %state_start, %state_length,
 %state_instruction, %feedback_location)

 The actions taken by the UDVM upon encountering the END-MESSAGE
 instruction are described in Section 5.2.

https://datatracker.ietf.org/doc/html/rfc1662

6.5.2. DECOMPRESSION-FAILURE

 The DECOMPRESSION-FAILURE instruction triggers a manual decompression
 failure. This is useful if the UDVM program discovers that it cannot

Price et al. [PAGE 27]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 successfully decompress the message (e.g. by using the CRC
 instruction).

 This instruction has no parameters.

6.5.3. OUTPUT

 The OUTPUT instruction provides successfully decompressed data to the
 application.

 OUTPUT (%output_start, %output_length)

 The parameters define the starting memory address and length of the
 byte string to be provided to the application. Note that the OUTPUT
 instruction can be used to output a partially decompressed message;
 each time the instruction is encountered it appends a byte string to
 the end of the data previously passed to the application via the
 OUTPUT instruction.

 The string of data is byte copied from the UDVM memory obeying the
 rules of Section 4.4.

 Decompression failure occurs if the cumulative number of bytes
 provided to the application exceeds the application-defined parameter
 maximum_uncompressed_size.

 Since there is technically a difference between outputting a 0-byte
 decompressed message, and not outputting a decompressed message at
 all, the OUTPUT instruction needs to distinguish between the two
 cases. Thus, if the UDVM terminates before encountering an OUTPUT
 instruction it is considered not to have outputted a decompressed
 message. If it encounters one or more OUTPUT instructions, each of
 which provides 0 bytes of data to the application, then it is
 considered to have outputted a 0-byte decompressed message.

6.5.4. NBO

 The NBO instruction modifies the order in which compressed bits are
 passed to the UDVM.

 As the INPUT-FIXED and INPUT-HUFFMAN instructions read individual
 bits from within a byte, to avoid ambiguity it is necessary to define
 the order in which these bits are read. The default operation is to
 read the MSBs before the LSBs, but if the NBO instruction is
 encountered then the LSBs are read before the MSBs. Both cases are
 illustrated below:

 MSB LSB MSB LSB MSB LSB MSB LSB

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |0 1 2 3 4 5 6 7|8 9 ... | |7 6 5 4 3 2 1 0| ... 9 8|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Byte 0 Byte 1 Byte 0 Byte 1

Price et al. [PAGE 28]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Default operation After NBO instruction

 The NBO instruction can only be used before bitwise compressed data
 is passed to the UDVM. Therefore, a decompression failure occurs if
 it is encountered after an INPUT-FIXED or an INPUT-HUFFMAN
 instruction has been used.

6.5.5. INPUT-BYTECODE

 The INPUT-BYTECODE instruction requests a certain number of bytes of
 compressed data from the application.

 INPUT-BYTECODE (%length, %destination, %delta)

 The length parameter indicates the requested number of bytes of
 compressed data, and the destination parameter specifies the starting
 memory address to which they should be copied. Byte copying is
 performed as per the rules of Section 4.4.

 If the instruction requests data that lies beyond the end of the
 compressed message, no data is returned. Instead the UDVM moves
 program execution to the memory address specified by the formula
 (memory_address_of_INPUT-BYTECODE_instruction + delta) modulo 2^16.

 The INPUT-BYTECODE instruction can only be used before bitwise
 compressed data is passed to the UDVM. Therefore, a decompression
 failure occurs if it is encountered after an INPUT-FIXED or an INPUT-
 HUFFMAN instruction has been used.

6.5.6. INPUT-FIXED

 The INPUT-FIXED instruction requests a certain number of bits of
 compressed data from the application.

 INPUT-FIXED (%length, %destination, %delta)

 The length parameter indicates the requested number of bits. If this
 parameter does not lie between 1 and 16 inclusive then a
 decompression failure occurs.

 The destination parameter specifies the memory address to which the
 compressed data should be copied. Note that the requested bits are
 interpreted as a 2-byte integer ranging from 0 to 2^length - 1. Under
 default operation the MSBs of this integer are provided first, but if
 an NBO instruction has been executed then the LSBs are provided
 first.

 If the instruction requests data that lies beyond the end of the
 compressed message, no data is returned. Instead the UDVM moves

 program execution to the memory address specified by the formula
 (memory_address_of_INPUT-FIXED_instruction + delta) modulo 2^16.

Price et al. [PAGE 29]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

6.5.7. INPUT-HUFFMAN

 The INPUT-HUFFMAN instruction requests a variable number of bits of
 compressed data from the application. The instruction initially
 requests a small number of bits and compares the result against a
 certain criterion; if the criterion is not met then additional bits
 are requested until the criterion is achieved.

 The INPUT-HUFFMAN instruction is followed by three mandatory
 parameters plus n additional sets of parameters. Every additional set
 contains four parameters as shown below:

 INPUT-HUFFMAN (%destination, %delta, #n, %bits_1, %lower_bound_1,
 %upper_bound_1, %uncompressed_1, ... , %bits_n, %lower_bound_n,
 %upper_bound_n, %uncompressed_n)

 Note that if n = 0 then the INPUT-HUFFMAN instruction is ignored by
 the UDVM. If bits_1 = 0 or (bits_1 + ... + bits_n) > 16 then
 decompression failure occurs.

 In all other cases, the behavior of the INPUT-HUFFMAN instruction is
 defined below:

 1.) Set j = 1.

 2.) Request an additional bits_j compressed bits. Interpret the
 total (bits_1 + ... + bits_j) bits of compressed data requested so
 far as an integer H, with the first bit to be supplied as the MSB and
 the last bit to be supplied as the LSB (note that this is always the
 case, independently of whether the NBO instruction has been used).

 3.) If data is requested that lies beyond the end of the compressed
 message, terminate the INPUT-HUFFMAN instruction and move program
 execution to the memory address specified by the formula
 (memory_address_of_INPUT-HUFFMAN_instruction + delta) modulo 2^16.

 4.) If (H < lower_bound_j) or (H > upper_bound_j) then set j = j +
 1. Then go back to Step 2, unless j > n in which case decompression
 failure occurs.

 5.) Copy (H + uncompressed_j - lower_bound_j) modulo 2^16 to the
 memory address specified by the destination parameter.

6.5.8. STATE-REFERENCE

 The STATE-REFERENCE instruction retrieves some previously stored
 state information.

 STATE-REFERENCE (%id_start, %id_length, %state_start, %state_length,
 %state_destination)

 The id_start and id_length parameters specify the location of the
 state identifier used to retrieve the state information. The state
 identifier is always 16 bytes long; if id_length is less than 16 then

Price et al. [PAGE 30]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 the remaining least significant bytes of the identifier are padded
 with zeroes.

 Decompression failure occurs if id_length is greater than 16.
 Decompression failure also occurs if no state information matching
 the state identifier can be found.

 Note that when accessing state information that has been previously
 created by the UDVM, the state identifier is always taken from an
 [MD5] hash of the state to be retrieved. However this is not
 necessarily the case for application-defined state as per Section

3.5.

 The state_start and state_length parameters define the starting byte
 and number of bytes to copy from the state_value contained in the
 identified item of state. If more state is requested than is actually
 available then decompression failure occurs.

 The state_destination parameter contains a UDVM memory address. The
 requested state is byte copied to this memory address using the rules
 of Section 4.4.

6.5.9. STATE-EXECUTE

 The STATE-EXECUTE instruction retrieves and runs some previously
 stored state information.

 STATE-EXECUTE (%id_start, %id_length)

 The id_start and id_length parameters function as per the STATE-
 REFERENCE instruction.

 STATE-EXECUTE is similar to STATE-REQUEST except that it does not
 require the amount of state being requested or the proposed
 destination for the state to be specified explicitly. Instead, it
 simply puts the state back into the UDVM memory using the original
 parameters from the END-MESSAGE instruction that created the state.

 The entire state_value (all state length bytes of it) is byte copied
 into the memory address specified by state start The UDVM then jumps
 to the (absolute) memory address specified by state_instruction.

 Note that state start, state length and state_instruction are all
 stored together with state_value as part of an item of state
 information.

7. Feedback information

 If the transport mechanism offers bidirectional data transport then
 the compression ratio can be improved by sending feedback

 information. Since feedback data is optional, compressors must be
 able to function correctly even if no feedback information is
 provided.

Price et al. [PAGE 31]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 In the bidirectional UDVM architecture, suppose that Application 2
 wishes to send feedback information to Compressor 1. The path taken
 by the feedback information is as follows:

 Appl. 2 --> Compressor 2 --> UDVM 1 --> Appl. 1 --> Compressor 1

 The first hop along the path is between Application 2 and Compressor
 2. If permitted by the application, Compressor 2 MAY be supplied with
 some or all of the following items of data:

 overall_memory_size
 cycles_per_bit
 cycles_per_message
 id lengths and id values of successfully established state

 Since the design of each compressor is left as an implementation
 decision, there is no need to standardize the format in which this
 data is provided to Compressor 2.

 The second hop along the path is between Compressor 2 and UDVM 1. For
 this step Compressor 2 transmits the feedback information to UDVM 1
 across the same transport mechanism used to carry compressed data.
 Typically this feedback information is piggybacked onto existing
 compressed messages (standalone feedback messages are generally
 vetoed by the application due to the lack of a corresponding
 decompressed message).

 Note that Compressor 2 can send the feedback information compressed
 in order to reduce the total number of bits transmitted. Equally,
 Compressor 2 may opt not to send feedback information at all.

 If Compressor 2 chooses not to send feedback information then it sets
 the feedback_location parameter in the END-MESSAGE instruction to 0.
 Otherwise, it copies the following block of data to the memory of
 UDVM 1 and places the starting memory address of this block in the
 feedback_location parameter:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | UDVM_version |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | overall_memory_size |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | cycles_per_bit |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | cycles_per_message |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S| n |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | id_length 1 |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 : id_value_1 :
 | |

Price et al. [PAGE 32]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | id_length 2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 : id_value_2 :
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 : :
 : :
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | id_length n |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 : id_value_n :
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Each of the items of data is explained in greater detail below:

7.1. UDVM version

 The first 2 bytes of feedback data specify whether only the basic
 version of the UDVM is available, or whether an upgraded version of
 the UDVM is available offering additional instructions, feedback data
 etc.

 The basic version of the UDVM is Version 0, which is the version
 described in this document. Upgraded versions MUST be backwards-
 compatible with the basic version in the following sense:

 * If some UDVM bytecode reaches the END-MESSAGE or DECOMPRESSION-
 FAILURE instructions when running on Version 0 of the UDVM, then
 the upgraded version MUST run the bytecode in an identical
 manner.

 This condition ensures that all bytecode that is valid for Version 0
 of the UDVM will continue to be valid for upgraded versions of the
 UDVM. However, bytecode that is invalid on Version 0 of the UDVM
 (i.e. bytecode that produces a decompression failure that is not
 manually triggered) may become valid on upgraded versions.

 Examples of how to upgrade the UDVM in a backwards-compatible manner
 include: adding new UDVM instructions, adding more items of feedback
 data etc.

7.2. Memory size and CPU cycles

 The next 6 bytes of feedback data specify new values for the
 application-defined parameters overall_memory_size, cycles_per_bit
 and cycles_per_message. This allows Application 2 to inform

 Compressor 1 that it has additional memory or processing power
 available that could be used to improve the overall compression
 ratio.

Price et al. [PAGE 33]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Note that the feedback data can only be used to increase the amount
 of resources available for Compressor 1 to use. If the feedback data
 specifies a parameter value that is smaller than the value already
 possessed by Compressor 1, the parameter keeps its original value
 (i.e. the feedback data for this parameter is simply ignored).

 The reason for this behavior is that if UDVM 2 is initialized with
 more memory than expected by Compressor 1 then no problem arises, but
 if UDVM 2 is initialized with less memory that expected by Compressor
 1 then decompression failure may occur. Therefore, only allowing the
 parameter values to increase means that the feedback mechanism is
 robust against message loss or reordering on the feedback channel.

 The parameters can only be restored to their original values if reset
 or renegotiated by the application.

7.3. State identifiers

 The variable n specifies the number of state identifiers to be
 acknowledged.

 Each state identifier is usually the first few bytes from an [MD5]
 hash of the state being acknowledged. When a state identifier is
 placed in the feedback information of UDVM 1, it is known by
 Compressor 1 that the corresponding state has been successfully
 established and can be referenced in future by using a STATE-
 REFERENCE or a STATE-EXECUTE instruction. The feedback information
 includes the length and value of each hash to be acknowledged.

 Note that the MSB of n has a special meaning; if set to 1 then it
 acknowledges the state that is currently being created by UDVM_1 via
 the END-MESSAGE instruction. This saves having to transmit the
 id_length and id_value explicitly on the feedback channel.

8. Security considerations

 The following chapter identifies the potential security risks
 associated with the overall UDVM architecture, and details the
 proposed solution for each risk.

 ** Avoid snooping into state of other users

 State can only be accessed using a state identifier, which is a
 (prefix of a) cryptographic hash of the state being referenced. This
 implies that the referencing packet already needs knowledge about the
 state. To enforce this, a minimum reference length of 48 bits is
 RECOMMENDED for applications running over an unsecure transport
 mechanism. This also minimises the probability of an accidental state
 collision.

 Generally, ways to obtain knowledge about the state identifier (e.g.,
 passive attacks) will also easily provide knowledge about the state
 referenced, so no new vulnerability results.

Price et al. [PAGE 34]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 The application needs to handle state identifiers with the same care
 it would handle the state itself.

 ** Avoid DoS vulnerabilities

 *** Use of the UDVM as a tool in a DoS attack to another target

 The UDVM cannot easily be used as an amplifier in a reflection
 attack, as it only generates one decompressed message per incoming
 compressed message. This packet is then handed to the application;
 the utility as a reflection amplifier is therefore limited by the
 utility of the application.

 However, it must be noted that the UDVM can be used to generate
 larger packets as input to the application than have to be sent from
 the malicious sender; this therefore can send smaller packets (at a
 lower bandwidth) than are delivered to the application. Depending on
 the reflection characteristics of the application, this can be
 considered a mild form of amplification. The application MUST limit
 the number of packets reflected to a potential target - even if the
 UDVM is used to generate a large amount of information from a small
 incoming attack packet.

 *** Attacking the UDVM as the DoS target by filling it with state

 Excessive state can only be installed by a malicious sender (or a set
 of malicious senders) with the consent of the application. The system
 consisting of UDVM and application is thus approximately as
 vulnerable as the application itself, unless it allows the
 installation of state from a message where it would not have
 installed state itself.

 If this is desirable to increase the compression ratio, the effect
 can be mitigated by adding feedback at the application level that
 indicates whether the state was actually installed - this allows a
 system under attack to gracefully degrade by no longer installing
 compressor state that is not matched by application state.

 *** Attacking the UDVM by faking state or making unauthorized changes
 to state

 State cannot be destroyed or changed by a malicious sender - it can
 only add new state.

 *** Attacking the UDVM by sending it looping code

 The application sets an upper limit to the number of "CPU cycles"
 that can be used per compressed message and per input bit in the
 compressed message. The damage inflicted by sending packets with
 looping code is therefore limited, although this may still be

 substantial if a large number of CPU cycles are offered by the UDVM.
 However, this would be true for any decompressor that can receive
 packets from anywhere.

Price et al. [PAGE 35]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

9. Acknowledgements

 Individual compression algorithms such as [DEFLATE] have been
 important sources of ideas and knowledge.

 Thanks to

 Abigail Surtees (abigail.surtees@roke.co.uk)
 Mark A West (mark.a.west@roke.co.uk)
 Lawrence Conroy (lwc@roke.co.uk)
 Christian Schmidt (christian.schmidt@icn.siemens.de)
 Max Riegel (maximilian.riegel@icn.siemens.de)
 Jan Christoffersson (jan.christoffersson@epl.ericsson.se)
 Stefan Forsgren (stefan.forsgren@epl.ericsson.se)
 Krister Svanbro (krister.svanbro@epl.ericsson.se)
 Christopher Clanton (christopher.clanton@nokia.com)
 Khiem Le (khiem.le@nokia.com)
 Ka Cheong Leung (kacheong.leung@nokia.com)

 for valuable input and review.

10. References

 [DEFLATE] "DEFLATE Compressed Data Format Specification version
 1.3", P. Deutsch, RFC 1951, Internet Engineering Task
 Force, May 1996

 [SCTP] "Stream Control Transmission Protocol", Stewart et al,
RFC 2960, Internet Engineering Task Force, October 2000

 [SIP] "SIP: Session Initiation Protocol", Handley et al,
RFC 2543, Internet Engineering Task Force, March 1999

 [MD5] "The MD5 Message-Digest Algorithm", R. Rivest, RFC 1321,
 Internet Engineering Task Force, April 1992

 [RFC-1662] "PPP in HDLC-like Framing", Simpson et al, Internet
 Engineering Task Force, July 1994

 [RFC-2026] "The Internet Standards Process - Revision 3", Scott
 Bradner, Internet Engineering Task Force, October 1996

 [RFC-2119] "Key words for use in RFCs to Indicate Requirement
 Levels", Scott Bradner, Internet Engineering Task Force,
 March 1997

11. Authors' addresses

 Richard Price Tel: +44 1794 833681

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc1321

 Email: richard.price@roke.co.uk

 Roke Manor Research Ltd
 Romsey, Hants, SO51 0ZN

Price et al. [PAGE 36]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 United Kingdom

 Jonathan Rosenberg
 Email: jdrosen@dynamicsoft.com

 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936

 Carsten Bormann Tel: +49 421 218 7024
 Email: cabo@tzi.org

 Universitaet Bremen TZI
 Postfach 330440
 D-28334 Bremen, Germany

 Hans Hannu Tel: +46 920 20 21 84
 Email: hans.hannu@epl.ericsson.se

 Box 920
 Ericsson Erisoft AB
 SE-971 28 Lulea, Sweden

 Zhigang Liu Tel: +1 972 894-5935
 Email: zhigang.liu@nokia.com

 Nokia Research Center
 6000 Connection Drive
 Irving, TX 75039
 USA

Price et al. [PAGE 37]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

Appendix A. Mnemonic language

 Writing UDVM programs directly in bytecode would be a daunting task,
 so a simple mnemonic language is provided to facilitate the creation
 of new decompression algorithms. Most importantly, the language
 allows the parameters of an instruction to be specified as text names
 rather than as integer values.

 If an instruction parameter is given as a text name, it should
 correspond to exactly one instance of a label, a reserved memory
 address or an externally defined keyword. A label is simply a text
 name preceded by a colon, for example:

 :loop
 JUMP (loop)

 For any parameters corresponding to a label, the integer value of the
 parameter is calculated by the following formula:

 parameter_value = (instruction_address - label_address) modulo 2^16

 Note that the "label address" is simply the memory address of the
 instruction immediately following the label. In particular, the above
 example can be rewritten as JUMP (0).

 A reserved memory address is specified using the "reserve" keyword
 followed by a text_name and (optionally) an integer value. For
 example:

 reserve apples
 reserve pears (8)
 reserve bananas
 LOAD (bananas, 5)

 For any parameters corresponding to a reserved memory address, the
 integer value of the parameter is the next free memory address that
 has not yet been reserved. Starting at this address, the specified
 number of bytes of memory are then reserved (if no value is given
 then a total of 2 bytes is reserved).

 The first instance of a "reserve" keyword begins reserving memory at
 Address 6 (to avoid overwriting the three well-known variables of

Section 4.2). So the above example can be rewritten as LOAD (16, 5).

 An externally defined keyword is specified outside of the mnemonic
 language. All of the application-defined parameters are considered to
 be externally defined keywords and can be referenced in the mnemonic
 code (useful for adapting the code based on the available memory or
 CPU cycles). The following additional keywords can also be used:

 Keyword: Corresponding value:

 byte_copy_left 0
 byte_copy_right 2

Price et al. [PAGE 38]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 stack_location 4
 reserved_end See below
 bytecode_length See below
 total_length See below

 The keyword reserved_end specifies the highest reserved memory
 address for the entire mnemonic code (taking into account all the
 occasions where memory is reserved).

 The keyword bytecode_length specifies the total size of the bytecode
 corresponding to the mnemonic code. Any instances of bytecode_length
 are initially replaced with 3 bytes of zeroes, and then are filled in
 after the remainder of the bytecode has been generated.

 Similarly, the keyword total_length specifies the total amount of
 memory required at the UDVM including bytecode and reserved memory
 addresses.

 A complete description of the mnemonic language and how it should be
 translated into bytecode is given below:

 Instructions: Instruction names are given in capitals. Replace
 each name with the corresponding 1-byte value as
 per Chapter 6.

 $: When appended to the front of an instruction
 parameter then the parameter is a memory address
 rather than a direct value. This symbol is
 mandatory for reference parameters, optional for
 multitype parameters and disallowed for literals.

 Integers: Instruction parameters can be given in the form of
 decimal integers. They are converted into the
 shortest bytecode capable of representing the
 integer by the rules of Section 4.3.

 Text references: Instruction parameters can also be given in the
 form of lowercase names. These names should match
 exactly one label, reserved memory address or
 externally defined keyword as described above.

 Labels: Label names are given as a colon followed by
 lowercase text. They are deleted when converting
 the mnemonics to bytecode.

 Reserved memory: Memory addresses are reserved using the "reserve"
 keyword. The line containing the reserve keyword
 is deleted when converting to bytecode.

 .LSB: When appended to the end of a text name, the

 integer value corresponding to the name is
 increased by 1. This is useful for addressing the
 LSBs of a 2-byte variable.

Price et al. [PAGE 39]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 0b, 0d: Bytecode values can be specified directly in
 binary or decimal via the appropriate prefix. The
 direct bytecode continues until a character occurs
 that is not an integer or whitespace.

 Whitespace: All whitespace (plus brackets and commas) just
 delimit the instructions. Delete.

 Comments: These are indicated by a semicolon and continue
 to the end of the line. Delete.

 Once the mnemonic code has been converted into bytecode, it can be
 executed by copying the bytecode into the UDVM memory beginning at
 the first memory address that has not been reserved by an instance of
 the "reserve" keyword. Program execution is assumed to begin at this
 address.

 Note that further to the rules outlined above, well-written mnemonic
 code will also have the following properties:

 * Any instance of a memory address will be specified as a text
 reference rather than an integer value. This ensures that the
 mnemonic code is portable.

 * The mnemonic code will not write to any memory address except
 those reserved by the "reserve" keyword. This ensures that the
 code can be compiled.

Appendix B. Example application-defined parameters

 This appendix gives some example values for each of the application-
 defined parameters. These values are geared towards the compression
 of a text-based protocol running over UDP or TCP, for example a
 signaling protocol such as [SIP].

 Note that all of the proposed values are fixed and not negotiated
 between the two instances of the application invoking the compressor
 and the UDVM. This is because it is possible for the application
 invoking the UDVM to receive compressed messages from several
 different applications, and it is difficult to determine which
 message corresponds to which application. [SIP] does this using
 "From:" and "To:" fields in the message itself, but these are not
 visible until the message has been decompressed. It is simpler just
 to fix a set of parameter for every instance of the application.

 UDVM_version 0
 maximum_compressed_size 65535
 maximum_uncompressed_size 65535
 minimum_hash_size 6
 overall_memory_size 8192

 working_memory_start 0
 working_memory_end 8191
 cycles_per_bit 20
 cycles_per_message 2000

Price et al. [PAGE 40]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 first_instruction 26
 Note that the parameters overall_memory_size, cycles_per_bit and
 cycles_per_message can be increased on the fly using the feedback
 mechanism of Chapter 7. This mechanism is designed to be function
 correctly even when the application invoking the UDVM is sent
 compressed messages from several different applications.

 The initial contents of the UDVM memory also need to be defined. It
 is not enough simply to initialize the memory containing all zeroes,
 as the UDVM would be unable to input any compressed data. Instead,
 for each new compressed message the memory should be initialized
 containing a simple decompressor capable of extracting the first few
 bytes of compressed data. These bytes can then be interpreted as UDVM
 instructions for a more powerful decompression algorithm, a state
 reference to retrieve a previously stored algorithm etc.

 As an example, the following mnemonic code can be converted to
 bytecode and pasted into the UDVM memory beginning at Address 26:

 reserve length
 reserve destination
 reserve hash (16)

 INPUT-BYTECODE (1, length, fail)
 COMPARE (length, 16, retrieve_state, retrieve_state, new_code)

 :retrieve_state

 INPUT-BYTECODE ($length, hash, fail)
 STATE-EXECUTE (hash, $length)

 :new_code

 INPUT-BYTECODE (2, destination, fail)
 INPUT-BYTECODE ($length, $destination, fail)
 SUBTRACT ($destination, execute_new_code)

 :execute_new_code

 JUMP ($destination)

 :fail

 DECOMPRESSION-FAILURE

 The mnemonic code requests a single byte of compressed data, which is
 considered to be a length from 0 to 255. Lengths from 0 to 16
 inclusive are interpreted as the length of a hash value that is used
 to retrieve and run bytecode previously stored as state. Lengths from
 17 to 255 are interpreted as an amount of new UDVM bytecode to be

 extracted from the start of the compressed data.

Price et al. [PAGE 41]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 Finally, the application can define initial state that is available
 to the UDVM. Examples of application-defined state include common
 decompression algorithms, dictionaries of common text phrases etc.

Appendix C. Example decompression algorithms

 This appendix gives examples of decompression algorithms which can be
 downloaded to the UDVM in the form of bytecode.

C.1. Example UDVM code for simple LZ77 decompression

 The first example gives the code required to decompress data from a
 very simple LZ77-based algorithm. The UDVM is instructed to interpret
 a compressed message as a set of 4-byte characters, where each
 character contains a 2-byte position integer followed by a 2-byte
 length integer. Taken together these integers point to a previously
 received text string in the UDVM memory, which is then copied to the
 end of the uncompressed message.

 Since the compressor can only send references to strings already
 present in the UDVM memory, before the first message is decompressed
 the memory must be initialized with a static dictionary containing
 the 256 ASCII characters.

 The algorithm write-protects the memory containing the UDVM
 instructions used to decompress each character, so that they can
 easily be compiled to improve the speed of decompression.

 A 2-byte CRC over the uncompressed message is appended to the end of
 the compressed message, to verify that correct decompression has
 occurred. The algorithm also requests that the contents of the UDVM
 memory be saved using the state request mechanism, so that it can be
 retrieved by sending the appropriate 6-byte hash.

 reserve byte_copy_left
 reserve byte_copy_right
 reserve uncompressed_start
 reserve uncompressed_end
 reserve uncompressed_length
 reserve position
 reserve length
 reserve static_dictionary (256)
 reserve circular_buffer (2048)

 WORKING-MEMORY (uncompressed_start, reserved_end)
 MULTILOAD (0, 7, circular_buffer, reserved_end, static_dictionary,
 circular_buffer, 0, 0, 0)

 :unpack_static_dictionary

 ; The following instructions initialize the static dictionary.

 COPY-LITERAL (position.LSB, 1, $uncompressed_start)
 ADD ($position, 1)

Price et al. [PAGE 42]

INTERNET-DRAFT Decompressor Virtual Machine 28 January, 2002

 COMPARE ($position, 256, unpack_static_dictionary, next_character, 0)

 :next_character

 INPUT-FIXED (16, position, fail)
 INPUT-FIXED (16, length, end_of_message)
 COPY-LITERAL ($position, $length, $uncompressed_end)
 ADD ($uncompressed_length, $length)
 JUMP (next_character)

 :fail

 DECOMPRESSION-FAILURE

 :end_of_message

 CRC ($position, $uncompressed_start, $uncompressed_length, fail)
 OUTPUT ($uncompressed_start, $uncompressed_length)
 END-MESSAGE (6, 0, total_length, next_character, 0)

Price et al. [PAGE 43]

