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Abstract

   This draft defines a "Universal Decompressor Virtual Machine"
   optimized for the task of running decompression algorithms. The UDVM
   can be configured to understand the output of many well-known
   compressors such as [DEFLATE].
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1.  Introduction

   This draft defines a "Universal Decompressor Virtual Machine" (UDVM).
   The UDVM is a virtual machine much like the Java Virtual Machine but
   with a key difference: it is designed solely for the purpose of
   running decompression algorithms.

   The motivation for creating the UDVM is to provide unlimited
   flexibility when choosing how to compress a given item of data.
   Rather than picking one of a small number of pre-negotiated
   compression algorithms, the implementer has the freedom to select an
   algorithm of their choice. The compressed data is then combined with
   a set of UDVM instructions that allow the original data to be
   extracted, and the result is outputted as UDVM bytecode.

   Since the UDVM is optimized specifically for running decompression
   algorithms, the code size of a typical algorithm is small (often sub
   100 bytes). Moreover the UDVM approach does not add significant extra
   processing or memory requirements compared to running a fixed pre-
   programmed decompression algorithm.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC-2119].

   Virtual machine

     A machine architecture designed to be implemented in software
     (although silicon implementations are of course possible).

   Universal Decompressor Virtual Machine (UDVM)

     The virtual machine described in this draft. The UDVM is designed
     specifically for the task of running decompression algorithms.

   Bytecode

     Machine code that can be executed by a virtual machine. UDVM
     bytecode is a combination of UDVM instructions and compressed data.

   Application

     Entity which invokes the UDVM. The application is also responsible
     for supplying the compressed data to the UDVM and making use of the
     uncompressed data.

   Transport mechanism

https://datatracker.ietf.org/doc/html/rfc2119


     Mechanism for passing data between two instances of an application.
     The UDVM is designed to work in conjunction with a wide range of
     transport mechanisms including TCP, UDP and [SCTP].
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   Message-oriented transport mechanism

     A transport mechanism that carries data as a set of distinct,
     bounded messages.

   Stream-oriented transport mechanism

     A transport mechanism that carries data as a continuous stream
     with no message boundaries. In this case, the UDVM reserves a
     specific character to delimit messages in the compressed stream.

   Compressor

     Entity which converts application data into compressed data that
     can be reconstructed by the UDVM.

   Application-defined parameters

     Parameters that must be agreed upon by the application invoking the
     compressor and the application invoking the UDVM. Depending on the
     application these parameters might be fixed a-priori or negotiated.

   Per-message compression

     Compression that does not reference data from previous messages.
     The UDVM can decompress a message of this type using only the
     application-defined parameters and the data in the message itself.

   Dynamic compression

     Compression relative to messages sent prior to the current
     compressed message. The UDVM stores and retrieves this data using
     the secure state reference mechanism.

   State

     Information which is saved by the UDVM and retrieved for the
     decompression of subsequent messages. For security reasons, state
     can only be saved with the permission of the application and can
     only be retrieved using an [MD5] hash of the state.

   State identifier

     A 16-byte value used to access an item of stored state information.
     (for security it is the first n bytes of an [MD5] hash of the state
     to be accessed). The minimum acceptable value of n is fixed for
     security purposes, but implementers can choose higher values of n.

   CPU cycles



     A measure of the amount of "CPU power" required to execute a UDVM
     instruction (the simplest UDVM instructions require a single CPU
     cycle). An upper limit is placed on the number of cycles that can
     be used to decompress each bit in a compressed message.
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3.  Description of the UDVM architecture

   This chapter describes the overall UDVM architecture including the
   interfaces between the UDVM and its environment. The requirements on
   the entities external to the UDVM are also given.

   In the architecture the UDVM is considered to provide a decompression
   service for a certain application. The application invokes the UDVM,
   and is responsible for supplying compressed data to the UDVM and
   making use of the corresponding uncompressed data.

   In general the UDVM can offer a decompression service to a wide range
   of applications. The principal motivation for developing the UDVM has
   been the compression of application-layer protocols, in particular
   text-based signaling protocols such as [SIP]. The UDVM architecture
   is designed to operate securely and to provide a high compression
   ratio for this case.

   Note however that the UDVM can be used in any situation provided that
   the requirements detailed in this chapter are satisfied by the
   application and the transport mechanism.

   The following sections describe the overall UDVM architecture and the
   requirements on entities external to the UDVM such as the transport
   mechanism and the compressor.

3.1.  UDVM architecture

   The UDVM architecture includes the following basic entities, each of
   which is defined in subsequent sections of the document:

   UDVM
   Application (including state)
   Transport mechanism
   Compressor

   Two variants of the architecture are available, depending on whether
   the transport mechanism offers unidirectional or bidirectional data
   transport. The unidirectional architecture can be considered to be a
   special case of the bidirectional version.

   Note that the UDVM itself does not need to know which architecture
   has been chosen, because its operation is identical for both cases.

   If bidirectional data transport is unavailable or undesirable for any
   other reason, then the UDVM architecture is illustrated in Figure 1.
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       +--------------------+                 +--------------------+
       |     Compressor     |                 |        UDVM        |
       +--------------------+                 +--------------------+
            ^    Appl. ^  |                     ^  |  Appl.   ^
            |    data  |  |                     |  v  data    |
       +----|-------------|-+                 +-|-------------|----+
       |    |             | |                 | |            [X]   |
       |    |   Appl. 1   v | Compressed data | |    Appl. 2  |    |
       |    v             +---------->----------+             v    |
       |   +-------+        |                 |        +-------+   |
       |   | State |        | Data transport  |        | State |   |
       |   +-------+        |                 |        +-------+   |
       |                    |                 |                    |
       |                    |                 |                    |
       |                    |                 |                    |
       +--------------------+                 +--------------------+

       Figure 1: UDVM architecture for unidirectional data transport

   In the unidirectional case the UDVM has two 2-way interfaces to the
   application. The first interface passes compressed data from the
   application to the UDVM, and provides the corresponding uncompressed
   data in return. The second interface allows the UDVM to request the
   creation of state (information that may improve the compression ratio
   of subsequent messages), and to access previously stored state.

   Note that both of these interfaces can be provided as extensions to
   an existing application (e.g. a SIP client) or as a "shim" layer
   between a compression-unaware client and the UDVM. In the latter
   case, the term "application" refers to the combined client and shim
   layer.

   The [X] symbol denotes that the application has a veto over the
   corresponding interface. In this case the application has veto over
   the state interface and can refuse state creation requests if it
   considers them to be inappropriate. See Section 3.2.2 for further
   details.

   Note that although the UDVM architecture only shows one compression
   entity, it is possible for the UDVM to decompress messages from
   multiple compressors at different physical locations in a network.
   The UDVM architecture is designed to prevent data from one compressor
   interfering with data from a different compressor. A consequence of
   this design choice is that it is difficult for a malicious user to
   disrupt UDVM operation by inserting false compressed messages on the
   transport mechanism.

   If the transport mechanism exchanges data in both directions then the
   architecture of Figure 2 can also be used. In this case, two



   instances of the application communicate using a bidirectional
   transport mechanism. Both instances of the application invoke a
   compressor to compress their data, and a UDVM to retrieve the
   uncompressed data sent by the remote application.
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       +--------------------+                 +--------------------+
       |    Compressor 1    |                 |       UDVM 2       |
       +--------------------+                 +--------------------+
         ^  ^    Appl. ^  |                     ^  |  Appl.   ^  |
         |  |    data  |  |                     |  v  data    |  v
       +-|--|-------------|-+                 +-|-------------|--|-+
       | |  |             | | Compressed data | |            [X][X]|
       | |  |   Appl. 1   v |    plus acks    | |   Appl. 2   |  | |
       | |  v             +---------->----------+             v  | |
       | A +-------+        |                 |        +-------+ A |
       | c | State |        | Data transport  |        | State | c |
       | k +-------+        |                 |        +-------+ k |
       | s  ^             +----------<----------+             ^  s |
       | |  |             | | Compressed data | ^             |  | |
       |[X][X]            | |    plus acks    | |             |  | |
       +-|--|-------------|-+                 +-|-------------|--|-+
         ^  |    Appl. ^  |                     |  |  Appl.   |  |
         |  v    data  |  v                     |  v  data    v  v
       +--------------------+                 +--------------------+
       |       UDVM 1       |                 |    Compressor 2    |
       +--------------------+                 +--------------------+

       Figure 2: UDVM architecture for bidirectional data transport

   For a bidirectional transport mechanism an additional interface is
   provided from the UDVM, via the application, to the compressor on the
   reverse transport channel. This interface can be used to send
   feedback information from an application to the remote compressor.
   The path taken by feedback data between Application 2 and Compressor
   1 is as follows:

     Appl. 2 --> Compressor 2 --> UDVM 1 --> Appl. 1 --> Compressor 1

   This feedback information monitors the behavior of the UDVM,
   including whether data has been successfully decompressed, the amount
   of available memory etc. The compressor can make use of this
   information to improve the overall compression ratio.

   Note that it is an implementation decision whether to use the
   feedback channel or not, and compressors must operate successfully
   even if no feedback information is received.

3.2.  Requirements on application

   The application is the entity responsible for invoking the UDVM,
   supplying the UDVM with compressed data, and making use of the
   corresponding uncompressed data.

   Note that in order to use the UDVM decompression service an



   application (e.g. a SIP client) will require interfaces to the UDVM.
   These interfaces can be provided by extending the original client, or
   by providing a "shim" layer between a compression-unaware client and
   the UDVM.
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   In addition, two instances of an application MUST agree on how to
   invoke the UDVM decompression service, and MUST fix or negotiate a
   common set of application-defined parameters (e.g.
   maximum_compressed_size) as per Section 3.5.

   Certain application-defined parameters can be modified on the fly
   using the state creation mechanism and the feedback mechanism. The
   application SHOULD additionally provide some external means of
   resetting or renegotiating these parameters (possibly by terminating
   the decompression service offered by the UDVM).

   The UDVM has a total of three interfaces to the environment: a two-
   way interface for exchanging compressed and uncompressed data, a two-
   way interface for storing and receiving state, and a one-way
   interface for forwarding feedback data. To protect against the
   malicious establishment of false state or false feedback data all of
   the UDVM interfaces pass through the application, and requests for
   state creation and feedback can be rejected if they are not
   accompanied by a valid uncompressed message.

   Each of the three interfaces is described in greater detail below:

3.2.1.  Compressed and uncompressed data

   The first interface supplies compressed data to the UDVM and
   retrieves the corresponding uncompressed data. Note that when the
   UDVM is invoked it does not receive any compressed data by default,
   but instead requests new data explicitly using a specific
   instruction. This means that the first part of a message can be
   decompressed without waiting for the entire message to arrive, which
   is especially useful over a stream-oriented transport such as TCP.

   Uncompressed data is also passed to the application using a specific
   instruction. It is an application decision whether to make use of the
   data immediately or to buffer and wait for a complete message to be
   successfully decompressed.

3.2.2.  Storing and retrieving state

   To provide security against the malicious insertion of false
   compressed data, the contents of the UDVM memory are reinitialized
   after each compressed message. This ensures that damaged compressed
   messages do not prevent the successful decompression of subsequent
   valid messages.

   Note however that the overall compression ratio is often
   significantly higher if messages can be compressed relative to the
   information stored in previous messages. For this reason it is
   possible for the UDVM to create "state" information for access when a
   later message is being decompressed.



   Both the creation and access of state are designed to be secure
   against malicious tampering with the compressed data. State can only
   be created when a complete message has been successfully
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   decompressed, and the application can veto a state creation request
   based on the contents of the decompressed message. This is especially
   useful if the application has an authentication mechanism that can be
   applied to determine whether the uncompressed data is legitimate.

   Furthermore, the UDVM can only access previously created state
   information by providing an [MD5] hash of the state to be accessed.
   The advantage of using a secure hash to access state information is
   that it is very difficult to guess the correct hash value without
   complete knowledge of the state being accessed.

   Also note that state is not deleted when it is accessed. So even if a
   malicious user manages to access state information, subsequent
   messages compressed relative to this state can still be successfully
   decompressed. Instead, the application is responsible for deleting
   state information once it determines that the state will no longer be
   needed.

3.2.3.  Feedback information

   The final interface is only used when the transport mechanism is
   bidirectional. It provides feedback information from the UDVM to the
   compressor on the reverse channel, and can be used to improve the
   overall compression ratio.

   Note that the feedback information is forwarded via the application.
   Just as for the state interface above, the application can veto
   feedback information if it considers the corresponding decompressed
   message to be invalid.

   If the transport mechanism only provides one-way data transport then
   the feedback interface is considered to be null: any feedback
   information sent across the interface is simply discarded by the
   application.

3.3.  Requirements on transport mechanism

   The transport mechanism is the entity that passes data between two
   instances of an application. Since the motivation for developing the
   UDVM has been the compression of signaling protocols such as [SIP],
   the UDVM is designed to operate successfully over both stream-
   oriented protocols such as TCP and message-oriented protocols such as
   UDP.

   Note that the UDVM is not given direct access to the underlying
   transport mechanism; instead the compressed data is considered to
   first pass through the application. It is an application decision
   whether to pass all data from the transport mechanism directly to the
   UDVM or whether to mix compressed and uncompressed data (e.g. by
   restricting compressed data to a certain port).



   If the transport mechanism is message-oriented then the UDVM converts
   each compressed message into a corresponding uncompressed message. It
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   is not possible for one compressed message to reconstruct multiple
   uncompressed messages.

   If the transport mechanism is stream-oriented then the UDVM simply
   converts a stream of compressed data into a stream of uncompressed
   data. However, when running over a stream-oriented transport such as
   TCP, applications often insert their own internal message delimiters
   into the data stream. As the message is compressed, it will not be
   possible to detect these delimiters in the compressed data stream.
   Therefore the UDVM provides a similar character that can be inserted
   into the compressed data stream to delimit messages (see Section 3.4
   for further details).

   No assumption is made about the reliability of the transport
   mechanism. The UDVM can operate successfully over unreliable
   transport mechanisms such as UDP as well as reliable transport
   mechanisms such as TCP.

   No assumption is made about the security of the transport mechanism.
   It may be possible for a malicious user to insert or modify data on
   the path between the compressor and the UDVM. In this case, the
   design goal of the UDVM is to avoid presenting additional security
   risks compared to simply transporting the application data
   uncompressed.

3.4.  Requirements on compressor

   An important feature of the UDVM is that it can decompress data
   generated by arbitrary compression algorithms. In particular this
   means that it is not necessary to standardize a compression algorithm
   for use with the UDVM; instead the choice can be left to the
   implementer.

   The overall requirement placed on the compressor is that of
   transparency, i.e. the compressor MUST NOT send instructions which
   cause the UDVM to incorrectly decompress a given message.

   The following more specific requirements are also placed on the
   compressor (they can be considered particular instances of the
   transparency requirement):

   *    Since feedback information is purely optional, the compressor
        MUST be able to operate successfully even if it receives no
        feedback data.

   *    It is RECOMMENDED that the compressor supply a CRC over the
        uncompressed message to ensure that successful decompression has
        occurred. A UDVM instruction is provided to verify this CRC.

   *    If the transport mechanism is message-oriented then the



        compressor MUST preserve the boundaries between messages.

   *    If the transport mechanism is stream-oriented but the
        application defines its own internal message boundaries, then
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        the compressor SHOULD preserve the boundaries between messages
        by using the "end-of-message" character 0xFFFF reserved in UDVM
        bytecode.

   The reason for preserving the message boundaries over a stream-
   oriented transport is that damage to one compressed message does not
   affect the decompression of subsequent messages. Moreover, the
   application typically vetoes state creation and feedback requests on
   a per-message basis.

   Note that the UDVM also reserves the character 0xFF00 over a stream-
   oriented transport mechanism, and replaces every instance of 0xFF00
   with 0xFF before decompressing the data. This ensures that arbitrary
   compression algorithms can be used over a stream-oriented transport,
   provided that every instance of 0xFF in the compressed data stream is
   identified and replaced with 0xFF00. This "byte-stuffing" scheme
   prevents the compression algorithm from inserting a message delimiter
   into the data stream where one is not required.

3.4.1.  Types of compression algorithm

   Any of the following classes of compression algorithm may be useful
   depending on the type of application:

   *    Generic compressor (for example [DEFLATE] or a similar
        algorithm).

   *    Protocol-aware compressor offering excellent performance for
        one particular type of data (for example the text messages
        generated by [SIP]).

   *    Hybrid compressor with similar performance to [DEFLATE] for
        generic data and superior performance for certain types of data.

   Provided that the uncompressed data can be reconstructed at the UDVM
   using the available memory and CPU cycles, implementers have freedom
   to use a compression algorithm of their choice.

   Note that when using an "off-the-shelf" compression algorithm,
   bytecode for the corresponding decompressor will need to be made
   available at the UDVM. In general the decompressor bytecode is placed
   at the front of the first compressed message, unless the application
   offers the ability to download UDVM bytecode offline (in which case
   the UDVM memory will be initialized already containing a copy of the
   decompression algorithm).

3.5.  Application-defined parameters

   When an application invokes an instance of the UDVM, a number of
   parameters are provided by the application to control the UDVM memory



   size, maximum number of CPU cycles etc. The application invoking the
   UDVM and the application invoking the compressor MUST initially agree
   on a common set of values for these parameters.
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   Note that if the transport mechanism is bidirectional then the
   application invoking the UDVM can use the reverse channel to indicate
   that additional memory or CPU cycles are available (compared to the
   values initially agreed by the application invoking the compressor).
   The compressor can then make use of these extra resources to improve
   the compression ratio.

   The feedback mechanism can also advertise that an upgraded version of
   the UDVM is available (e.g. offering additional UDVM instructions),
   provided that the upgraded version is backwards compatible with the
   basic version described in this document. See Chapter 7 for further
   details.

   Each parameter is described in greater detail below; example values
   for the parameters are listed in Appendix B.

   UDVM_version

     The UDVM_version parameter specifies the level of functionality
     available at the UDVM. The basic version of the UDVM (Version 0)
     is defined in this document.

   maximum_compressed_size

     The maximum_compressed_size parameter limits the size of one
     compressed message. Decompression failure occurs if a message
     larger than the specified value is provided.

   maximum_uncompressed_size

     The maximum_uncompressed_size parameter limits the size of one
     uncompressed message. Decompression failure occurs if a message
     larger than the specified value is provided.

   minimum_hash_size

     The minimum_hash_size parameter specifies the minimum size of the
     state identifier that can be used to reference state. This value
     needs to be sufficiently large to prevent malicious users from
     guessing a state identifier by brute force.

   overall_memory_size

     The overall_memory_size parameter specifies the total number of
     bytes in the UDVM memory.

   working_memory_start

     The working_memory_start parameter specifies the start of the UDVM
     memory area that can be modified. Memory addresses below this



     value are considered read-only by the UDVM.
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   working_memory_end

     The working_memory_end parameter specifies the end of the UDVM
     memory area that can be modified. Memory addresses above this
     value are considered read-only by the UDVM.

   cycles_per_bit

     The cycles_per_bit parameter specifies the number of "CPU cycles"
     that can be used to decompress a single bit of data. One CPU cycle
     typically corresponds to a single UDVM instruction, although some
     of the high-level instructions may require additional cycles.

   cycles_per_message

     The cycles_per_message parameter specifies the number of additional
     CPU cycles made available at the start of a compressed message.
     These cycles can be useful when decompressing algorithms that
     download additional data on a per-message basis, for example a new
     set of Huffman codes as with [DEFLATE].

     The total number of "CPU cycles" available for each compressed
     message is specified by the following formula:

     total_cycles = message_size * cycles_per_bit + cycles_per_message

   first_instruction

     The first_instruction parameter specifies the memory address of the
     first instruction to be executed when the UDVM is initialized.

   Initial memory contents

     For each new compressed message the UDVM memory is reinitialized
     with contents defined by the application. For example, the
     application may be able to download UDVM bytecode for a
     decompression algorithm before the first compressed message
     arrives. In this case, for each new compressed message the UDVM
     memory is initialized already containing a copy of the
     decompression algorithm.

   Initial state

     As well as deciding the initial contents of the UDVM memory, the
     application can also store useful information in the form of state.
     This predefined state will typically contain optional data that can
     be used to improve the overall compression ratio, for example a
     well-known decompression algorithm or a dictionary of commonly used
     [SIP] phrases. Note that unlike state created on the fly by the
     UDVM, there is no need for the application-defined state to use an



     [MD5] hash as the state identifier.
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4.  Overview of the UDVM

   This chapter describes some basic features of the UDVM, including the
   memory allocation, well-known variables and instruction parameters.

4.1.  UDVM memory allocation

   The memory available to the UDVM is partitioned into a number of
   sections, providing space for program code, variables and
   miscellaneous data:

                  <----- working_memory_size ------>

   | Fixed values | Variables | Miscellaneous data | Program code |
   +--------------+-----------+--------------------+--------------+

   <--------------------- overall_memory_size -------------------->

                  Figure 3: Memory allocation in the UDVM

   Recall that the amount of memory available to the UDVM is defined by
   the application-specific parameters overall_memory_size,
   working_memory_start and working_memory_end. Note that all of these
   parameters are initialized by the application, but can be
   renegotiated on the fly using the feedback mechanism of Chapter 7.

   The memory area from Address (working_memory_start) to Address
   (working_memory_end) inclusive can be used to store arbitrary data
   (variables, program code, Huffman codes etc.). UDVM instructions are
   allowed to read from or write to any address in this memory area.

   The first part of this memory area is typically used to store a
   number of 2-byte variables. UDVM instructions can reference these
   variables using a special instruction parameter as described in

Section 4.3.

   The memory area from Address 0 to Address (working_memory_start - 1)
   and from Address (working_memory_end + 1) to Address
   (overall_memory_size - 1) inclusive is write-protected, so UDVM
   instructions can read from this memory area but cannot write to it.
   This memory area is intended for storing UDVM bytecode that can be
   compiled.

   Any attempt to read memory addresses beyond the overall memory size
   or to write to memory addresses outside the working memory area MUST
   cause a decompression failure (see Section 5.3).

   The first part of the write-protected UDVM memory is intended for
   storing variables whose values no longer need to be modified. The
   second part of the write-protected memory is intended for storing



   program code including UDVM instructions and their associated
   parameters. Note that if an instruction references a variable that
   has been write-protected, the compiled version of the instruction
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   will typically run faster than if the referenced variable lies in the
   working memory area.

4.2.  Well-known variables

   The first few variables in the UDVM memory have special tasks, for
   example specifying the location of the stack used by the CALL and
   RETURN instructions. Each of these well-known variables is a 2-byte
   integer.

   The following list gives the name of each well-known variable and the
   memory address at which the variable can be found:

   Name:                    Starting memory address:

   byte_copy_left                       0
   byte_copy_right                      2
   stack_location                       4

   The MSBs of each variable are always stored before the LSBs. So, for
   example, the MSBs of stack_location are stored at Address 4 whilst
   the LSBs are stored at Address 5.

   The use of each well-known variable is described in the following
   sections of the draft.

4.3.  Instruction parameters

   Each of the UDVM instructions is followed by 0 or more bytes
   containing the parameters required by the instruction.

   To reduce the code size of a typical UDVM program, each parameter for
   a UDVM instruction is compressed using variable-length encoding. The
   aim is to store more common parameter values using fewer bits than
   rarely occurring values.

   Three different types of parameter are available: the literal, the
   reference and the multitype. The parameter types that follow each
   UDVM instruction are specified in Chapter 6.

   The UDVM bytecode for each parameter type is illustrated in Figure 4
   to Figure 6, together with the integer values represented by the
   bytecode.

   Note that the MSBs in the bytecode are illustrated as preceding the
   LSBs. Also, any string of bits marked with k consecutive "n"s is to
   be interpreted as an integer N from 0 to 2^k - 1 inclusive (with the
   MSBs of n illustrated as preceding the LSBs).

   The decoded integer value of the bytecode can be interpreted in two



   ways. In some cases it is taken to be the actual value of the
   parameter. In other cases it is taken to be a memory address at which
   the 2-byte parameter value can be found (MSBs found at the specified
   address, LSBs found at the following address). The latter case is

Price et al.                                                 [PAGE 15]



INTERNET-DRAFT       Decompressor Virtual Machine     28 January, 2002

   denoted by memory[X] where X is the address and memory[X] is the 2-
   byte value starting at Address X.

   The simplest parameter type is the literal (#), which encodes a
   constant integer from 0 to 65535 inclusive. A literal parameter may
   require between 1 and 3 bytes depending on its value.

   Bytecode:                    Parameter value:          Range:

   0nnnnnnn                     N                         0 - 127
   10nnnnnn nnnnnnnn            N                         0 - 16383
   11000000 nnnnnnnn nnnnnnnn   N                         0 - 65535

              Figure 4: Bytecode for a literal (#) parameter

   The second parameter type is the reference ($), which is always used
   to access a 2-byte value located elsewhere in the UDVM memory. The
   bytecode for a reference parameter is decoded to be a constant
   integer from 0 to 65535 inclusive, which is interpreted as the memory
   address containing the actual value of the parameter.

   Bytecode:                    Parameter value:          Range:

   0nnnnnnn                     memory[2 * N]             0 - 254
   10nnnnnn nnnnnnnn            memory[2 * N]             0 - 32766
   11000000 nnnnnnnn nnnnnnnn   memory[N]                 0 - 65535

             Figure 5: Bytecode for a reference ($) parameter

   The third kind of parameter is the multitype (%), which can be used
   to encode both actual values and memory addresses. The multitype
   parameter also offers efficient encoding for small integer values
   (both positive and negative) and for powers of 2.

   Bytecode:                    Parameter value:          Range:

   00nnnnnn                     N                         0 - 63
   01nnnnnn                     memory[2 * N]             0 - 126
   1000011n                     2 ^ (N + 6)              64 - 128
   10001nnn                     2 ^ (N + 8)             256 - 32768
   111nnnnn                     N + 65504             65504 - 65535
   1001nnnn nnnnnnnn            N + 61440             61440 - 65535
   101nnnnn nnnnnnnn            N                         0 - 8191
   110nnnnn nnnnnnnn            memory[N]                 0 - 8191
   10000000 nnnnnnnn nnnnnnnn   N                         0 - 65535
   10000001 nnnnnnnn nnnnnnnn   memory[N]                 0 - 65535

             Figure 6: Bytecode for a multitype (%) parameter

4.4.  Byte copying



   A number of UDVM instructions require a string of bytes to be copied
   to and from areas of the UDVM memory. This section defines how the
   byte copying operation should be performed.
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   In general, the string of bytes is copied in ascending order of
   memory address. So if a byte is copied from/to Address n then the
   next byte is copied from/to Address n + 1. As usual, if a byte is
   read from an address beyond the overall memory size or is written to
   an address outside the working memory area then decompression failure
   occurs.

   Note however that if a byte is copied from/to the memory address
   specified in byte_copy_right, the byte copy operation continues by
   copying the next byte from/to the memory address specified in
   byte_copy_left. This is useful for setting up a "circular buffer"
   within the UDVM memory.

   Note that the string of bytes is copied on a purely byte-by-byte
   basis. In particular, some of the later bytes to be copied may
   themselves have been written into the UDVM memory by the byte copying
   operation currently being performed.

   Equally, it is possible for a byte copying operation to overwrite the
   instruction that called the byte copy. If this occurs then the byte
   copying operation MUST be completed as if the original instruction
   were still in place in the UDVM memory (this also applies if
   byte_copy_left or byte_copy_right are overwritten).

5.  Decompressing a compressed message

   This chapter lists the steps involved in the decompression of a
   single compressed message.

5.1.  Invoking the UDVM

   Whenever the application receives a message to be decompressed, it
   invokes a new instance of the UDVM. The overall_memory_size and
   initial contents of the UDVM memory are initialized using the
   corresponding application-defined parameters. The following steps are
   then taken:

   1.)   The number of remaining CPU cycles is set equal to the
   application-defined parameter cycles_per_message.

   Notes:

   The amount of compressed data available to the UDVM is exactly one
   compressed message. If the transport mechanism is stream-oriented
   then the UDVM uses the reserved byte string 0xFFFF to delimit the
   compressed messages: the UDVM takes the data between a pair of
   neighboring reserved byte strings to be a single compressed message.
   The reserved byte string itself is not considered to be part of the
   compressed message.



   For a stream-oriented transport, the UDVM parses the compressed data
   stream for instances of 0xFF and takes the following actions:
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   Occurs in data stream:               Action:

   0xFFFF                               Delimit compressed message
   0xFF00                               Replace with 0xFF
   0xFF01 - 0xFFFE                      Decompression failure

   The reserved character 0xFF00 is useful for byte stuffing (if a
   compression algorithm generates compressed data containing the
   character 0xFF then it should be replaced by the character 0xFF00 to
   avoid accidentally inserting a message delimiter into the compressed
   data stream).

   The compressed data is not provided to the UDVM by default. Instead,
   the UDVM requests compressed data using the INPUT instructions
   (useful when running over a stream-oriented transport since there is
   no need to wait for the entire compressed message before
   decompression can begin). Note that in particular, this means that
   the application MUST define the initial contents of the UDVM memory
   to contain at least one INPUT instruction. See Appendix B for an
   example of how the application might initialize the UDVM memory.

   The application MUST NOT make more than one compressed message
   available to a given instance of the UDVM. In particular, the
   application MUST NOT concatenate two messages to form a single
   compressed message. This is because compressed messages are typically
   padded with trailing zero bits so that they are a whole number of
   bytes long. Concatenating two messages would cause these padding bits
   to be incorrectly interpreted as compressed data.

   2.)   Next, the instructions contained within the UDVM memory are
   executed beginning at the address specified in first_instruction.

   Notes:

   The instructions are executed consecutively unless otherwise
   indicated (for example when the UDVM encounters a JUMP instruction).

   If the next instruction to be executed lies outside the available
   memory then decompression failure occurs (see Section 5.3).

   3.)   Each time an instruction is executed the number of available
   CPU cycles is decreased by the amount specified in Chapter 6.
   Additionally, if the UDVM requests n bits of compressed data (using
   one of the INPUT instructions) then the number of available CPU
   cycles is increased by n * cycles_per_bit.

   Notes:

   This means that the total number of CPU cycles available for
   processing a compressed message is given by the formula:



     total_cycles = cycles_per_message + message_size * cycles_per_bit
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   The reason that this total is not allocated to the UDVM when it is
   invoked is that the UDVM can begin to decompress a message that has
   only been partially received. So the total message size may not be
   known when the UDVM is initialized.

   4.)   The UDVM stops executing instructions when it encounters an
   END-MESSAGE instruction or if decompression failure occurs.

   Notes:

   The UDVM passes uncompressed data to the application using the OUTPUT
   instruction. The OUTPUT instruction can be used to output a partially
   decompressed message; it is an application decision whether to use
   the data immediately or whether to buffer and wait until the entire
   message has been decompressed.

   The UDVM passes state creation and feedback requests to the
   application using the END-MESSAGE instruction. This means that it is
   only possible to make a state creation and a feedback request once
   the message has been decompressed, which is necessary since the
   application typically checks the validity of these requests based on
   the contents of the decompressed message.

5.2.  Successful decompression

   The END-MESSAGE instruction indicates that the compressed message has
   been successfully decompressed and passed to the application. Note
   that the actual uncompressed message is outputted beforehand using
   the OUTPUT instruction; this allows the UDVM to output each part of
   the message to the application as soon as it has been decompressed.

   The END-MESSAGE instruction provides two additional pieces of
   information to the application: the state creation request and the
   feedback data. The state creation request mechanism is discussed
   below; feedback information is discussed separately in Chapter 7.

   The UDVM may optionally save part of its memory for retrieval by
   later messages. However to prevent malicious storage of a large
   amount of unnecessary state information, the application MUST give
   permission before any state can be created. The application typically
   makes a decision on whether state can be created based on the
   contents of the decompressed message, particularly if the message
   contains authentication data that can verify whether or not the
   sender is legitimate.

   The END-MESSAGE instruction requests the creation of state using the
   parameters state start and state length, which together denote a byte
   string state_value. Provided that the application gives permission,
   state_value is byte copied from the UDVM memory (obeying the rules of

Section 4.4) and stored together with a 16-byte state identifier that



   can be used to access the state by a later compressed message.

   To provide security against malicious access, the identifier for any
   item of state created by the UDVM is derived from the [MD5] hash of
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   the state_value to be stored. The state identifier is constructed by
   taking the 16-byte [MD5] hash and replacing all but the first
   hash_length most significant bytes with zeroes. Note that if
   hash_length is 16 then the unmodified [MD5] hash is the state
   identifier. Decompression failure occurs if hash_length is less than
   the application-defined parameter minimum_hash_size or greater than
   16.

   Each item of state stores the following information (accessed by the
   state_identifier):

   state_identifier
   state start
   state length
   state_value
   state_instruction

   Note that state_start, state_length and state_instruction are all
   parameters from the END-MESSAGE instruction, whereas state_identifier
   and state_value are created as specified above.

   If a state creation request is made with a state identifier that has
   been used by existing state, then the request fails automatically.

   This state can subsequently be accessed by using the STATE-REFERENCE
   and STATE-EXECUTE instructions (by providing the correct state
   identifier).

5.3.  Decompression failure

   If a compressed message given to the UDVM is corrupted (either
   accidentally or maliciously) then the UDVM may terminate with a
   decompression failure.

   Reasons for decompression failure include the following:

   *    A compressed or uncompressed message exceeds the maximum size
        defined by the application.

   *    The UDVM exceeds the available CPU cycles for decompressing a
        message.

   *    The UDVM attempts to read a memory address beyond the overall
        memory size, or to write into a memory address outside the
        working memory area.

   *    An unknown instruction type is encountered.

   *    An unknown parameter type is encountered.



   *    An instruction is encountered that cannot be processed
        successfully by the UDVM (for example a RETURN instruction when
        no CALL instruction has previously been encountered).
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   *    The UDVM attempts to access non-existent state.

   *    A manual decompression failure is triggered using the
        DECOMPRESSION-FAILURE instruction.

   If a decompression failure occurs when decompressing a message then
   the UDVM informs the application and takes no further action. It is
   the responsibility of the application to decide how to cope with the
   decompression failure. In general an application SHOULD discard the
   compressed message and any decompressed data that has been outputted.

6.  UDVM instruction set

   The UDVM currently understands 28 instructions, chosen to support the
   widest possible range of compression algorithms with the minimum
   possible overhead.

   Figure 7 lists the different instructions and the bytecode values
   used to store the instructions at the UDVM. The cost of each
   instruction in CPU cycles is also given:

   Instruction:              Bytecode value:   Cost in CPU cycles:

   DECOMPRESSION-FAILURE            0           1
   AND                              1           1
   OR                               2           1
   NOT                              3           1
   ADD                              4           1
   SUBTRACT                         5           1
   MULTIPLY                         6           1
   DIVIDE                           7           1
   LOAD                             8           1
   MULTILOAD                        9           1 + n
   WORKING-MEMORY                   10          1
   COPY                             11          1 + length
   COPY-LITERAL                     12          1 + length
   COPY-OFFSET                      13          1 + length + offset
   JUMP                             14          1
   COMPARE                          15          1
   CALL                             16          1
   RETURN                           17          1
   SWITCH                           18          1 + n
   CRC                              19          1 + length
   END-MESSAGE                      20          1 + state length
   OUTPUT                           21          1 + output_length
   NBO                              22          1
   INPUT-BYTECODE                   23          1 + length
   INPUT-FIXED                      24          1
   INPUT-HUFFMAN                    25          1 + n



   STATE-REFERENCE                  26          1 + state_length
   STATE-EXECUTE                    27          1 + state length

       Figure 7: UDVM instructions and corresponding bytecode values

Price et al.                                                 [PAGE 21]



INTERNET-DRAFT       Decompressor Virtual Machine     28 January, 2002

   Each UDVM instruction costs a minimum of 1 CPU cycle. Certain high-
   level instructions may cost additional cycles depending on the value
   of one of the instruction parameters.

   The only exception when calculating the number of CPU cycles is that
   the STATE-EXECUTE instruction takes (1 + state_length) cycles even
   though it does not have a state_length parameter; instead the value
   of state length is provided by the application as part of the state
   being accessed.

   All instructions are stored as a single byte to indicate the
   instruction type, followed by 0 or more bytes containing the
   parameters required by the instruction. The instruction specifies
   which of the three parameter types of Section 4.3 is used in each
   case. For example, the ADD instruction is followed by two parameters
   as shown below:

   ADD ($parameter_1, %parameter_2)

   When converted into bytecode the number of bytes required by the ADD
   instruction depends on the size of each parameter value, and whether
   the second (multitype) parameter contains the parameter value itself
   or a memory address where the actual value of the parameter can be
   found.

   The instruction set available for the UDVM offers a mix of low-level
   and high-level instructions. The high-level instructions can all be
   emulated using the low-level instructions provided, but given a
   choice it is generally preferable to use a single instruction rather
   than a large number of general-purpose instructions. The resulting
   bytecode will be more compact (leading to a higher overall
   compression ratio) and decompression will typically be faster because
   the implementation of the compression-specific instructions can be
   optimized for the UDVM.

   Each instruction is explained in more detail below:

6.1.  Bit manipulation instructions

   The AND, OR and NOT instructions provide simple bit manipulation on
   2-byte words.

   AND ($parameter_1, %parameter_2)
   OR ($parameter_1, %parameter_2)
   NOT ($parameter_1)

   After the operation is complete, the value of the first parameter is
   overwritten with the result. Note that since this parameter is a
   reference, the memory address specified by the parameter is always
   overwritten and not the parameter itself.
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6.2.  Arithmetic instructions

   The ADD, SUBTRACT, MULTIPLY and DIVIDE instructions perform
   arithmetic on 2-byte words.

   ADD ($parameter_1, %parameter_2)
   SUBTRACT ($parameter_1, %parameter_2)
   MULTIPLY ($parameter_1, %parameter_2)
   DIVIDE ($parameter_1, %parameter_2)

   After the operation is complete, the first parameter is overwritten
   with the result.

   Note that in all cases the arithmetic operation is performed modulo
   2^16. So for example, subtracting 1 from 0 gives the result 65535.

   For the SUBTRACT instruction the second parameter is subtracted from
   the first. Similarly, for the DIVIDE instruction the first parameter
   is divided by the second parameter. Note that if the second parameter
   does not divide exactly into the first parameter then the remainder
   is ignored.

6.3.  Memory management instructions

   The following instructions are used to manipulate the UDVM memory.
   Bytes can be copied from one area of memory to another, and areas of
   memory can be write-protected to make it easier for UDVM code to be
   compiled.

6.3.1.  LOAD

   The LOAD instruction sets a 2-byte variable to a certain specified
   value. The format of a LOAD instruction is as follows:

   LOAD (%address, %value)

   The first parameter specifies the starting address of the 2-byte
   variable, whilst the second parameter specifies the value to be
   loaded into this variable. As usual, MSBs are stored before LSBs in
   the UDVM memory.

6.3.2.  MULTILOAD

   The MULTILOAD instruction sets a contiguous block of 2-byte variables
   to specified values.

   MULTILOAD (%address, #n, %value_0, ..., %value_n-1)

   The first parameter specifies the starting address of the contiguous
   variables, whilst the parameters value_0 through to value_n-1 specify



   the values to load into these variables (in the same order as they
   appear in the instruction).
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6.3.3.  WORKING-MEMORY

   The WORKING-MEMORY instruction is used to prevent part of the UDVM
   memory from being modified. This can be very useful when offering
   UDVM code for compilation.
   WORKING-MEMORY (%memory_start, %memory_end)

   The parameters memory_start and memory_end specify the new working
   memory area for the UDVM. These parameters replace the application-
   defined parameters working_memory_start and working_memory_end, but
   only while the current message is being decompressed. When a new
   instance of the UDVM is invoked the working memory area is set by the
   original application-defined parameters.

   If memory_end < memory_start, or if the parameters reference a memory
   address beyond the overall UDVM memory size, then decompression
   failure occurs.

   After the WORKING-MEMORY instruction has been encountered, the only
   way to write into UDVM memory within the protected region is to
   cancel the protection using another WORKING-MEMORY instruction (or to
   invoke a new instance of the UDVM).

6.3.4.  COPY

   The COPY instruction is used to copy a string of bytes from one part
   of the UDVM memory to another.

   COPY (%position, %length, %destination)

   The position parameter specifies the memory address of the first byte
   in the string to be copied, and the length parameter specifies the
   number of bytes to be copied.

   The destination parameter gives the address to which the first byte
   in the string will be copied.

   Note that byte copying is performed as per the rules of Section 4.4.

6.3.5.  COPY-LITERAL

   A modified version of the COPY instruction is given below:

   COPY-LITERAL (%position, %length, $destination)

   The COPY-LITERAL instruction behaves as a COPY instruction except
   that after copying, the destination parameter is replaced with the
   memory address immediately following the address to which the final
   byte was copied. If the final byte was copied to the memory address
   specified in byte_copy_right, the destination parameter is set to the



   memory address specified in byte_copy_left.
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6.3.6.  COPY-OFFSET

   A further version of the COPY-LITERAL instruction is given below:

   COPY-OFFSET (%offset, %length, $destination)

   The COPY-OFFSET instruction behaves as a COPY-LITERAL instruction
   except that an offset parameter is given instead of a position
   parameter.

   To derive a suitable position parameter, starting at the memory
   address specified by destination, the UDVM counts backwards a total
   of offset memory addresses. If the memory address specified in
   byte_copy_left is reached, the next memory address is taken to be
   byte_copy_right.

   The COPY-OFFSET instruction then behaves as a COPY-LITERAL
   instruction, taking the position parameter to be the last memory
   address reached in the above step.

6.4.  Program flow instructions

   The following instructions alter the flow of UDVM code. Each
   instruction jumps to one of a number of memory addresses based on a
   certain specified criterion. Note that all of the instructions give
   the memory addresses in the form of deltas relative to the memory
   address of the instruction. The actual memory address is calculated
   as follows:

   memory_address = (memory_address_of_instruction + delta) modulo 2^16

   Note that certain I/O instructions (see Section 6.5) can also alter
   program flow.

6.4.1.  JUMP

   The JUMP instruction moves program execution to the specified memory
   address.

   JUMP (%delta)

   Note that if the address (specified as a delta from the address of
   the JUMP instruction) lies beyond the overall UDVM memory size then
   decompression failure occurs.

6.4.2.  COMPARE

   The COMPARE instruction compares two parameters and then jumps to one
   of three specified memory addresses depending on the result.



   COMPARE (%parameter_1, %parameter_2, %delta_1, %delta_2, %delta_3)

   If parameter_1 < parameter_2 then the UDVM continues instruction
   execution at the (relative) memory address specified by delta 1. If
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   parameter_1 = parameter_2 then it jumps to the address specified by
   delta_2. If parameter_1 > parameter_2 then it jumps to the address
   specified by delta_3.

6.4.3.  CALL and RETURN

   The CALL and RETURN instructions provide support for compression
   algorithms with a nested structure.

   CALL (%delta)

   RETURN

   The CALL and RETURN instructions make use of a stack of 2-byte
   variables stored at the memory address specified by the well-known
   variable stack_location. The stack contains the following variables:

   Name:                    Starting memory address:

   stack_free                   stack_location
   stack[0]                     stack_location + 2
   stack[1]                     stack_location + 4
   stack[2]                     stack_location + 6
      :                                 :

   The MSBs of these variables are stored before the LSBs in the UDVM
   memory.

   When the UDVM reaches a CALL instruction, it finds the memory address
   of the instruction immediately following the CALL instruction and
   copies this 2-byte value into stack[stack_free] ready for later
   retrieval. It then increases stack_free by 1 and continues
   instruction execution at the (relative) memory address specified by
   the parameter.

   When the UDVM reaches a RETURN instruction it decreases stack_free by
   1, and then continues instruction execution at the byte position
   stored in stack[stack_free].

   If the variable stack_free is ever increased beyond 65535 or
   decreased below 0 then a bad compressed message has been received and
   decompression failure occurs (see Section 5.3).

   Decompression failure also occurs if one of the above instructions is
   encountered and the value of stack_location is smaller than 6 (this
   prevents the stack from overwriting the well-known variables).

6.4.4.  SWITCH

   The SWITCH instruction performs a conditional jump based on the value



   of one of its parameters.

   SWITCH (#n, %j, %delta_0, %delta_1, ... , %delta_n-1)
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   When a SWITCH instruction is encountered the UDVM reads the value of
   j. It then continues instruction execution at the (relative) address
   specified by delta j.

   If j specifies a value of n or more, a bad compressed message has
   been received and decompression failure occurs.

6.4.5.  CRC

   The CRC instruction verifies a string of bytes using a 2-byte CRC.

   CRC (%value, %position, %length, %delta)

   The actual CRC calculation is performed using the generator
   polynomial x^16 + x^12 + x^5 + 1, which coincides with the 2-byte
   Frame Check Sequence (FCS) of [RFC-1662].

   The position and length parameters define the string of bytes over
   which the CRC is evaluated. Byte copying rules are enforced as per

Section 4.4.

   Important note: Since a CRC calculation is always performed over a
   bitstream, for interoperability it is necessary to define the order
   in which bits are supplied within each individual byte. In this case
   the MSBs of the byte MUST be supplied to the CRC calculation before
   the LSBs.

   The value parameter contains the expected integer value of the 2-byte
   CRC. If the calculated CRC matches the expected value then the UDVM
   continues at the following instruction. Otherwise the UDVM jumps to
   the (relative) memory address specified by delta.

6.5.  I/O instructions

   The following instructions allow the UDVM to interface with its
   environment. Note that in the current UDVM architecture all of the
   interfaces pass through the application (which has a veto over any
   information supplied to or from the UDVM).

6.5.1.  END-MESSAGE

   The END-MESSAGE instruction successfully terminates the UDVM and
   passes feedback and state information to the application.

   END-MESSAGE (%hash_length, %state_start, %state_length,
   %state_instruction, %feedback_location)

   The actions taken by the UDVM upon encountering the END-MESSAGE
   instruction are described in Section 5.2.

https://datatracker.ietf.org/doc/html/rfc1662


6.5.2.  DECOMPRESSION-FAILURE

   The DECOMPRESSION-FAILURE instruction triggers a manual decompression
   failure. This is useful if the UDVM program discovers that it cannot
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   successfully decompress the message (e.g. by using the CRC
   instruction).

   This instruction has no parameters.

6.5.3.  OUTPUT

   The OUTPUT instruction provides successfully decompressed data to the
   application.

   OUTPUT (%output_start, %output_length)

   The parameters define the starting memory address and length of the
   byte string to be provided to the application. Note that the OUTPUT
   instruction can be used to output a partially decompressed message;
   each time the instruction is encountered it appends a byte string to
   the end of the data previously passed to the application via the
   OUTPUT instruction.

   The string of data is byte copied from the UDVM memory obeying the
   rules of Section 4.4.

   Decompression failure occurs if the cumulative number of bytes
   provided to the application exceeds the application-defined parameter
   maximum_uncompressed_size.

   Since there is technically a difference between outputting a 0-byte
   decompressed message, and not outputting a decompressed message at
   all, the OUTPUT instruction needs to distinguish between the two
   cases. Thus, if the UDVM terminates before encountering an OUTPUT
   instruction it is considered not to have outputted a decompressed
   message. If it encounters one or more OUTPUT instructions, each of
   which provides 0 bytes of data to the application, then it is
   considered to have outputted a 0-byte decompressed message.

6.5.4.  NBO

   The NBO instruction modifies the order in which compressed bits are
   passed to the UDVM.

   As the INPUT-FIXED and INPUT-HUFFMAN instructions read individual
   bits from within a byte, to avoid ambiguity it is necessary to define
   the order in which these bits are read. The default operation is to
   read the MSBs before the LSBs, but if the NBO instruction is
   encountered then the LSBs are read before the MSBs. Both cases are
   illustrated below:

    MSB         LSB MSB         LSB     MSB         LSB MSB         LSB

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   |0 1 2 3 4 5 6 7|8 9 ...        |   |7 6 5 4 3 2 1 0|        ... 9 8|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Byte 0          Byte 1              Byte 0          Byte 1
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           Default operation                 After NBO instruction

   The NBO instruction can only be used before bitwise compressed data
   is passed to the UDVM. Therefore, a decompression failure occurs if
   it is encountered after an INPUT-FIXED or an INPUT-HUFFMAN
   instruction has been used.

6.5.5.  INPUT-BYTECODE

   The INPUT-BYTECODE instruction requests a certain number of bytes of
   compressed data from the application.

   INPUT-BYTECODE (%length, %destination, %delta)

   The length parameter indicates the requested number of bytes of
   compressed data, and the destination parameter specifies the starting
   memory address to which they should be copied. Byte copying is
   performed as per the rules of Section 4.4.

   If the instruction requests data that lies beyond the end of the
   compressed message, no data is returned. Instead the UDVM moves
   program execution to the memory address specified by the formula
   (memory_address_of_INPUT-BYTECODE_instruction + delta) modulo 2^16.

   The INPUT-BYTECODE instruction can only be used before bitwise
   compressed data is passed to the UDVM. Therefore, a decompression
   failure occurs if it is encountered after an INPUT-FIXED or an INPUT-
   HUFFMAN instruction has been used.

6.5.6.  INPUT-FIXED

   The INPUT-FIXED instruction requests a certain number of bits of
   compressed data from the application.

   INPUT-FIXED (%length, %destination, %delta)

   The length parameter indicates the requested number of bits. If this
   parameter does not lie between 1 and 16 inclusive then a
   decompression failure occurs.

   The destination parameter specifies the memory address to which the
   compressed data should be copied. Note that the requested bits are
   interpreted as a 2-byte integer ranging from 0 to 2^length - 1. Under
   default operation the MSBs of this integer are provided first, but if
   an NBO instruction has been executed then the LSBs are provided
   first.

   If the instruction requests data that lies beyond the end of the
   compressed message, no data is returned. Instead the UDVM moves



   program execution to the memory address specified by the formula
   (memory_address_of_INPUT-FIXED_instruction + delta) modulo 2^16.
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6.5.7.  INPUT-HUFFMAN

   The INPUT-HUFFMAN instruction requests a variable number of bits of
   compressed data from the application. The instruction initially
   requests a small number of bits and compares the result against a
   certain criterion; if the criterion is not met then additional bits
   are requested until the criterion is achieved.

   The INPUT-HUFFMAN instruction is followed by three mandatory
   parameters plus n additional sets of parameters. Every additional set
   contains four parameters as shown below:

   INPUT-HUFFMAN (%destination, %delta, #n, %bits_1, %lower_bound_1,
   %upper_bound_1, %uncompressed_1, ... , %bits_n, %lower_bound_n,
   %upper_bound_n, %uncompressed_n)

   Note that if n = 0 then the INPUT-HUFFMAN instruction is ignored by
   the UDVM. If bits_1 = 0 or (bits_1 + ... + bits_n) > 16 then
   decompression failure occurs.

   In all other cases, the behavior of the INPUT-HUFFMAN instruction is
   defined below:

   1.)   Set j = 1.

   2.)   Request an additional bits_j compressed bits. Interpret the
   total (bits_1 + ... + bits_j) bits of compressed data requested so
   far as an integer H, with the first bit to be supplied as the MSB and
   the last bit to be supplied as the LSB (note that this is always the
   case, independently of whether the NBO instruction has been used).

   3.)   If data is requested that lies beyond the end of the compressed
   message, terminate the INPUT-HUFFMAN instruction and move program
   execution to the memory address specified by the formula
   (memory_address_of_INPUT-HUFFMAN_instruction + delta) modulo 2^16.

   4.)   If (H < lower_bound_j) or (H > upper_bound_j) then set j = j +
   1. Then go back to Step 2, unless j > n in which case decompression
   failure occurs.

   5.)   Copy (H + uncompressed_j - lower_bound_j) modulo 2^16 to the
   memory address specified by the destination parameter.

6.5.8.  STATE-REFERENCE

   The STATE-REFERENCE instruction retrieves some previously stored
   state information.

   STATE-REFERENCE (%id_start, %id_length, %state_start, %state_length,
   %state_destination)



   The id_start and id_length parameters specify the location of the
   state identifier used to retrieve the state information. The state
   identifier is always 16 bytes long; if id_length is less than 16 then
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   the remaining least significant bytes of the identifier are padded
   with zeroes.

   Decompression failure occurs if id_length is greater than 16.
   Decompression failure also occurs if no state information matching
   the state identifier can be found.

   Note that when accessing state information that has been previously
   created by the UDVM, the state identifier is always taken from an
   [MD5] hash of the state to be retrieved. However this is not
   necessarily the case for application-defined state as per Section

3.5.

   The state_start and state_length parameters define the starting byte
   and number of bytes to copy from the state_value contained in the
   identified item of state. If more state is requested than is actually
   available then decompression failure occurs.

   The state_destination parameter contains a UDVM memory address. The
   requested state is byte copied to this memory address using the rules
   of Section 4.4.

6.5.9.  STATE-EXECUTE

   The STATE-EXECUTE instruction retrieves and runs some previously
   stored state information.

   STATE-EXECUTE (%id_start, %id_length)

   The id_start and id_length parameters function as per the STATE-
   REFERENCE instruction.

   STATE-EXECUTE is similar to STATE-REQUEST except that it does not
   require the amount of state being requested or the proposed
   destination for the state to be specified explicitly. Instead, it
   simply puts the state back into the UDVM memory using the original
   parameters from the END-MESSAGE instruction that created the state.

   The entire state_value (all state length bytes of it) is byte copied
   into the memory address specified by state start The UDVM then jumps
   to the (absolute) memory address specified by state_instruction.

   Note that state start, state length and state_instruction are all
   stored together with state_value as part of an item of state
   information.

7.  Feedback information

   If the transport mechanism offers bidirectional data transport then
   the compression ratio can be improved by sending feedback



   information. Since feedback data is optional, compressors must be
   able to function correctly even if no feedback information is
   provided.
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   In the bidirectional UDVM architecture, suppose that Application 2
   wishes to send feedback information to Compressor 1. The path taken
   by the feedback information is as follows:

     Appl. 2 --> Compressor 2 --> UDVM 1 --> Appl. 1 --> Compressor 1

   The first hop along the path is between Application 2 and Compressor
   2. If permitted by the application, Compressor 2 MAY be supplied with
   some or all of the following items of data:

   overall_memory_size
   cycles_per_bit
   cycles_per_message
   id lengths and id values of successfully established state

   Since the design of each compressor is left as an implementation
   decision, there is no need to standardize the format in which this
   data is provided to Compressor 2.

   The second hop along the path is between Compressor 2 and UDVM 1. For
   this step Compressor 2 transmits the feedback information to UDVM 1
   across the same transport mechanism used to carry compressed data.
   Typically this feedback information is piggybacked onto existing
   compressed messages (standalone feedback messages are generally
   vetoed by the application due to the lack of a corresponding
   decompressed message).

   Note that Compressor 2 can send the feedback information compressed
   in order to reduce the total number of bits transmitted. Equally,
   Compressor 2 may opt not to send feedback information at all.

   If Compressor 2 chooses not to send feedback information then it sets
   the feedback_location parameter in the END-MESSAGE instruction to 0.
   Otherwise, it copies the following block of data to the memory of
   UDVM 1 and places the starting memory address of this block in the
   feedback_location parameter:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       UDVM_version        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    overall_memory_size    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      cycles_per_bit       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    cycles_per_message     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |S|            n            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        id_length 1        |



   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           |
   :        id_value_1         :
   |                           |
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   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        id_length 2        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           |
   :        id_value_2         :
   |                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            :         :
            :         :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        id_length n        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           |
   :        id_value_n         :
   |                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Each of the items of data is explained in greater detail below:

7.1.  UDVM version

   The first 2 bytes of feedback data specify whether only the basic
   version of the UDVM is available, or whether an upgraded version of
   the UDVM is available offering additional instructions, feedback data
   etc.

   The basic version of the UDVM is Version 0, which is the version
   described in this document. Upgraded versions MUST be backwards-
   compatible with the basic version in the following sense:

   *    If some UDVM bytecode reaches the END-MESSAGE or DECOMPRESSION-
        FAILURE instructions when running on Version 0 of the UDVM, then
        the upgraded version MUST run the bytecode in an identical
        manner.

   This condition ensures that all bytecode that is valid for Version 0
   of the UDVM will continue to be valid for upgraded versions of the
   UDVM. However, bytecode that is invalid on Version 0 of the UDVM
   (i.e. bytecode that produces a decompression failure that is not
   manually triggered) may become valid on upgraded versions.

   Examples of how to upgrade the UDVM in a backwards-compatible manner
   include: adding new UDVM instructions, adding more items of feedback
   data etc.

7.2.  Memory size and CPU cycles

   The next 6 bytes of feedback data specify new values for the
   application-defined parameters overall_memory_size, cycles_per_bit
   and cycles_per_message. This allows Application 2 to inform



   Compressor 1 that it has additional memory or processing power
   available that could be used to improve the overall compression
   ratio.
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   Note that the feedback data can only be used to increase the amount
   of resources available for Compressor 1 to use. If the feedback data
   specifies a parameter value that is smaller than the value already
   possessed by Compressor 1, the parameter keeps its original value
   (i.e. the feedback data for this parameter is simply ignored).

   The reason for this behavior is that if UDVM 2 is initialized with
   more memory than expected by Compressor 1 then no problem arises, but
   if UDVM 2 is initialized with less memory that expected by Compressor
   1 then decompression failure may occur. Therefore, only allowing the
   parameter values to increase means that the feedback mechanism is
   robust against message loss or reordering on the feedback channel.

   The parameters can only be restored to their original values if reset
   or renegotiated by the application.

7.3.  State identifiers

   The variable n specifies the number of state identifiers to be
   acknowledged.

   Each state identifier is usually the first few bytes from an [MD5]
   hash of the state being acknowledged. When a state identifier is
   placed in the feedback information of UDVM 1, it is known by
   Compressor 1 that the corresponding state has been successfully
   established and can be referenced in future by using a STATE-
   REFERENCE or a STATE-EXECUTE instruction. The feedback information
   includes the length and value of each hash to be acknowledged.

   Note that the MSB of n has a special meaning; if set to 1 then it
   acknowledges the state that is currently being created by UDVM_1 via
   the END-MESSAGE instruction. This saves having to transmit the
   id_length and id_value explicitly on the feedback channel.

8.  Security considerations

   The following chapter identifies the potential security risks
   associated with the overall UDVM architecture, and details the
   proposed solution for each risk.

   ** Avoid snooping into state of other users

   State can only be accessed using a state identifier, which is a
   (prefix of a) cryptographic hash of the state being referenced. This
   implies that the referencing packet already needs knowledge about the
   state. To enforce this, a minimum reference length of 48 bits is
   RECOMMENDED for applications running over an unsecure transport
   mechanism. This also minimises the probability of an accidental state
   collision.



   Generally, ways to obtain knowledge about the state identifier (e.g.,
   passive attacks) will also easily provide knowledge about the state
   referenced, so no new vulnerability results.
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   The application needs to handle state identifiers with the same care
   it would handle the state itself.

   ** Avoid DoS vulnerabilities

   *** Use of the UDVM as a tool in a DoS attack to another target

   The UDVM cannot easily be used as an amplifier in a reflection
   attack, as it only generates one decompressed message per incoming
   compressed message. This packet is then handed to the application;
   the utility as a reflection amplifier is therefore limited by the
   utility of the application.

   However, it must be noted that the UDVM can be used to generate
   larger packets as input to the application than have to be sent from
   the malicious sender; this therefore can send smaller packets (at a
   lower bandwidth) than are delivered to the application. Depending on
   the reflection characteristics of the application, this can be
   considered a mild form of amplification. The application MUST limit
   the number of packets reflected to a potential target - even if the
   UDVM is used to generate a large amount of information from a small
   incoming attack packet.

   *** Attacking the UDVM as the DoS target by filling it with state

   Excessive state can only be installed by a malicious sender (or a set
   of malicious senders) with the consent of the application. The system
   consisting of UDVM and application is thus approximately as
   vulnerable as the application itself, unless it allows the
   installation of state from a message where it would not have
   installed state itself.

   If this is desirable to increase the compression ratio, the effect
   can be mitigated by adding feedback at the application level that
   indicates whether the state was actually installed - this allows a
   system under attack to gracefully degrade by no longer installing
   compressor state that is not matched by application state.

   *** Attacking the UDVM by faking state or making unauthorized changes
   to state

   State cannot be destroyed or changed by a malicious sender - it can
   only add new state.

   *** Attacking the UDVM by sending it looping code

   The application sets an upper limit to the number of "CPU cycles"
   that can be used per compressed message and per input bit in the
   compressed message. The damage inflicted by sending packets with
   looping code is therefore limited, although this may still be



   substantial if a large number of CPU cycles are offered by the UDVM.
   However, this would be true for any decompressor that can receive
   packets from anywhere.
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Appendix A.  Mnemonic language

   Writing UDVM programs directly in bytecode would be a daunting task,
   so a simple mnemonic language is provided to facilitate the creation
   of new decompression algorithms. Most importantly, the language
   allows the parameters of an instruction to be specified as text names
   rather than as integer values.

   If an instruction parameter is given as a text name, it should
   correspond to exactly one instance of a label, a reserved memory
   address or an externally defined keyword. A label is simply a text
   name preceded by a colon, for example:

   :loop
   JUMP (loop)

   For any parameters corresponding to a label, the integer value of the
   parameter is calculated by the following formula:

    parameter_value = (instruction_address - label_address) modulo 2^16

   Note that the "label address" is simply the memory address of the
   instruction immediately following the label. In particular, the above
   example can be rewritten as JUMP (0).

   A reserved memory address is specified using the "reserve" keyword
   followed by a text_name and (optionally) an integer value. For
   example:

   reserve apples
   reserve pears (8)
   reserve bananas
   LOAD (bananas, 5)

   For any parameters corresponding to a reserved memory address, the
   integer value of the parameter is the next free memory address that
   has not yet been reserved. Starting at this address, the specified
   number of bytes of memory are then reserved (if no value is given
   then a total of 2 bytes is reserved).

   The first instance of a "reserve" keyword begins reserving memory at
   Address 6 (to avoid overwriting the three well-known variables of

Section 4.2). So the above example can be rewritten as LOAD (16, 5).

   An externally defined keyword is specified outside of the mnemonic
   language. All of the application-defined parameters are considered to
   be externally defined keywords and can be referenced in the mnemonic
   code (useful for adapting the code based on the available memory or
   CPU cycles). The following additional keywords can also be used:



   Keyword:                        Corresponding value:

   byte_copy_left                           0
   byte_copy_right                          2
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   stack_location                           4
   reserved_end                         See below
   bytecode_length                      See below
   total_length                         See below

   The keyword reserved_end specifies the highest reserved memory
   address for the entire mnemonic code (taking into account all the
   occasions where memory is reserved).

   The keyword bytecode_length specifies the total size of the bytecode
   corresponding to the mnemonic code. Any instances of bytecode_length
   are initially replaced with 3 bytes of zeroes, and then are filled in
   after the remainder of the bytecode has been generated.

   Similarly, the keyword total_length specifies the total amount of
   memory required at the UDVM including bytecode and reserved memory
   addresses.

   A complete description of the mnemonic language and how it should be
   translated into bytecode is given below:

   Instructions:     Instruction names are given in capitals. Replace
                     each name with the corresponding 1-byte value as
                     per Chapter 6.

   $:                When appended to the front of an instruction
                     parameter then the parameter is a memory address
                     rather than a direct value. This symbol is
                     mandatory for reference parameters, optional for
                     multitype parameters and disallowed for literals.

   Integers:         Instruction parameters can be given in the form of
                     decimal integers. They are converted into the
                     shortest bytecode capable of representing the
                     integer by the rules of Section 4.3.

   Text references:  Instruction parameters can also be given in the
                     form of lowercase names. These names should match
                     exactly one label, reserved memory address or
                     externally defined keyword as described above.

   Labels:           Label names are given as a colon followed by
                     lowercase text. They are deleted when converting
                     the mnemonics to bytecode.

   Reserved memory:  Memory addresses are reserved using the "reserve"
                     keyword. The line containing the reserve keyword
                     is deleted when converting to bytecode.

   .LSB:             When appended to the end of a text name, the



                     integer value corresponding to the name is
                     increased by 1. This is useful for addressing the
                     LSBs of a 2-byte variable.
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   0b, 0d:           Bytecode values can be specified directly in
                     binary or decimal via the appropriate prefix. The
                     direct bytecode continues until a character occurs
                     that is not an integer or whitespace.

   Whitespace:       All whitespace (plus brackets and commas) just
                     delimit the instructions. Delete.

   Comments:         These are indicated by a semicolon and continue
                     to the end of the line. Delete.

   Once the mnemonic code has been converted into bytecode, it can be
   executed by copying the bytecode into the UDVM memory beginning at
   the first memory address that has not been reserved by an instance of
   the "reserve" keyword. Program execution is assumed to begin at this
   address.

   Note that further to the rules outlined above, well-written mnemonic
   code will also have the following properties:

   *    Any instance of a memory address will be specified as a text
        reference rather than an integer value. This ensures that the
        mnemonic code is portable.

   *    The mnemonic code will not write to any memory address except
        those reserved by the "reserve" keyword. This ensures that the
        code can be compiled.

Appendix B.  Example application-defined parameters

   This appendix gives some example values for each of the application-
   defined parameters. These values are geared towards the compression
   of a text-based protocol running over UDP or TCP, for example a
   signaling protocol such as [SIP].

   Note that all of the proposed values are fixed and not negotiated
   between the two instances of the application invoking the compressor
   and the UDVM. This is because it is possible for the application
   invoking the UDVM to receive compressed messages from several
   different applications, and it is difficult to determine which
   message corresponds to which application. [SIP] does this using
   "From:" and "To:" fields in the message itself, but these are not
   visible until the message has been decompressed. It is simpler just
   to fix a set of parameter for every instance of the application.

   UDVM_version                         0
   maximum_compressed_size              65535
   maximum_uncompressed_size            65535
   minimum_hash_size                    6
   overall_memory_size                  8192



   working_memory_start                 0
   working_memory_end                   8191
   cycles_per_bit                       20
   cycles_per_message                   2000
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   first_instruction                    26
   Note that the parameters overall_memory_size, cycles_per_bit and
   cycles_per_message can be increased on the fly using the feedback
   mechanism of Chapter 7. This mechanism is designed to be function
   correctly even when the application invoking the UDVM is sent
   compressed messages from several different applications.

   The initial contents of the UDVM memory also need to be defined. It
   is not enough simply to initialize the memory containing all zeroes,
   as the UDVM would be unable to input any compressed data. Instead,
   for each new compressed message the memory should be initialized
   containing a simple decompressor capable of extracting the first few
   bytes of compressed data. These bytes can then be interpreted as UDVM
   instructions for a more powerful decompression algorithm, a state
   reference to retrieve a previously stored algorithm etc.

   As an example, the following mnemonic code can be converted to
   bytecode and pasted into the UDVM memory beginning at Address 26:

   reserve length
   reserve destination
   reserve hash (16)

   INPUT-BYTECODE (1, length, fail)
   COMPARE (length, 16, retrieve_state, retrieve_state, new_code)

   :retrieve_state

   INPUT-BYTECODE ($length, hash, fail)
   STATE-EXECUTE (hash, $length)

   :new_code

   INPUT-BYTECODE (2, destination, fail)
   INPUT-BYTECODE ($length, $destination, fail)
   SUBTRACT ($destination, execute_new_code)

   :execute_new_code

   JUMP ($destination)

   :fail

   DECOMPRESSION-FAILURE

   The mnemonic code requests a single byte of compressed data, which is
   considered to be a length from 0 to 255. Lengths from 0 to 16
   inclusive are interpreted as the length of a hash value that is used
   to retrieve and run bytecode previously stored as state. Lengths from
   17 to 255 are interpreted as an amount of new UDVM bytecode to be



   extracted from the start of the compressed data.
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   Finally, the application can define initial state that is available
   to the UDVM. Examples of application-defined state include common
   decompression algorithms, dictionaries of common text phrases etc.

Appendix C.  Example decompression algorithms

   This appendix gives examples of decompression algorithms which can be
   downloaded to the UDVM in the form of bytecode.

C.1.  Example UDVM code for simple LZ77 decompression

   The first example gives the code required to decompress data from a
   very simple LZ77-based algorithm. The UDVM is instructed to interpret
   a compressed message as a set of 4-byte characters, where each
   character contains a 2-byte position integer followed by a 2-byte
   length integer. Taken together these integers point to a previously
   received text string in the UDVM memory, which is then copied to the
   end of the uncompressed message.

   Since the compressor can only send references to strings already
   present in the UDVM memory, before the first message is decompressed
   the memory must be initialized with a static dictionary containing
   the 256 ASCII characters.

   The algorithm write-protects the memory containing the UDVM
   instructions used to decompress each character, so that they can
   easily be compiled to improve the speed of decompression.

   A 2-byte CRC over the uncompressed message is appended to the end of
   the compressed message, to verify that correct decompression has
   occurred. The algorithm also requests that the contents of the UDVM
   memory be saved using the state request mechanism, so that it can be
   retrieved by sending the appropriate 6-byte hash.

   reserve byte_copy_left
   reserve byte_copy_right
   reserve uncompressed_start
   reserve uncompressed_end
   reserve uncompressed_length
   reserve position
   reserve length
   reserve static_dictionary (256)
   reserve circular_buffer (2048)

   WORKING-MEMORY (uncompressed_start, reserved_end)
   MULTILOAD (0, 7, circular_buffer, reserved_end, static_dictionary,
   circular_buffer, 0, 0, 0)

   :unpack_static_dictionary



   ; The following instructions initialize the static dictionary.

   COPY-LITERAL (position.LSB, 1, $uncompressed_start)
   ADD ($position, 1)
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   COMPARE ($position, 256, unpack_static_dictionary, next_character, 0)

   :next_character

   INPUT-FIXED (16, position, fail)
   INPUT-FIXED (16, length, end_of_message)
   COPY-LITERAL ($position, $length, $uncompressed_end)
   ADD ($uncompressed_length, $length)
   JUMP (next_character)

   :fail

   DECOMPRESSION-FAILURE

   :end_of_message

   CRC ($position, $uncompressed_start, $uncompressed_length, fail)
   OUTPUT ($uncompressed_start, $uncompressed_length)
   END-MESSAGE (6, 0, total_length, next_character, 0)
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