
Network Working Group Richard Price, Siemens/Roke Manor
INTERNET-DRAFT Robert Hancock, Siemens/Roke Manor
Expires: May 2002 Stephen McCann, Siemens/Roke Manor
 Mark A West, Siemens/Roke Manor
 Abigail Surtees, Siemens/Roke Manor
 Paul Ollis, Siemens/Roke Manor

 Qian Zhang, Microsoft Research Asia
 Hongbin Liao, Microsoft Research Asia
 Wenwu Zhu, Microsoft Research Asia
 Ya-Qin Zhang, Microsoft Research Asia

 21 November, 2001

TCP/IP Compression for ROHC
<draft-ietf-rohc-tcp-epic-02.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC-2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This document is a submission to the IETF ROHC WG. Comments should be
 directed to the mailing list of ROHC, rohc@cdt.luth.se.

Abstract

 This draft describes a ROHC profile for the robust compression of
 TCP/IP.

 The RObust Header Compression [ROHC] scheme is designed to compress
 packet headers over error prone channels. It is built around an
 extensible core framework that can be tailored to compress new
 protocol stacks by adding additional ROHC profiles.

 The new profile for TCP/IP compression is provided by the Efficient
 Protocol Independent Compression (EPIC-LITE) scheme.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-epic-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Price et al. [PAGE 1]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

Table of contents

 Status of this Memo..1
 Abstract...1

1. Introduction...2
3. ROHC Profile for compression of TCP/IP.........................3
4. The concept and framework of TAROC-C...........................5

4.1. TCP congestion window tracking.............................7
4.2. Compressor/decompressor state machine with TAROC-C........11
4.3. Compressor logic in TAROC-C...............................12
4.4. Decompressor logic in TAROC-C.............................14
4.5. Modes of operation..15
4.6. Implementation issues.....................................17
4.7. Performance of TAROC-C....................................17

5. Security considerations.......................................18
6. Acknowledgements..18
7. References..18
Appendix A. Packet types provided by ROHC framework..............21

A.1. CO packet..21
A.2. IR-DYN packet..22
A.3. IR packet..22

1. Introduction

 This document describes a method for compressing TCP/IP headers
 within the [ROHC] framework.

 The new profile for TCP/IP compression is provided by the Efficient
 Protocol Independent Compression (EPIC) scheme. EPIC takes as its
 input a BNF description of the protocol stack to be compressed, and
 derives a set of packet formats that can be used to quickly and
 efficiently compress and decompress headers.

 A TCP-Aware RObust Header Compression Control scheme, TAROC-C, is
 also introduced in this draft. The key point of TAROC-C is the TCP
 congestion window tracking mechanism, which can be used to improve
 the efficiency of the window-based encoding and the performance of
 the overall header compression scheme without sacrificing the
 robustness. With the dynamic congestion window tracking, our scheme
 can achieve good performance even when the feedback channel is not
 available.

Price et al. [PAGE 2]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

3. ROHC Profile for compression of TCP/IP

 This chapter describes a simple ROHC profile for the compression of
 TCP/IP.

 Note that the current TCP/IP profile is designed specifically to test
 implementations of [EPIC]. The profile is not designed to compress
 TCP/IP with a high level of efficiency.

 The profile supports all TCP options (it does not compress the
 options, but instead passes them through transparently as part of the
 payload).

 The profile for TCP/IP compression is given below:

 profile_identifier 0xFFFF
 max_formats 200
 max_sets 1
 bit_alignment 8
 npatterns 224
 CO_packet TCP-IP

 ; The profile identifier is a placeholder.

 ; The IR-DYN_packet and IR_packet parameters are not specified. This
 ; means that the IR-DYN and IR packets are generated using the same
 ; encoding method "TCP/IP" as for the CO packets.

 ; The encoding methods used by the TCP/IP profile are given below:

 TCP-IP = IPv4-header
 TCP-header
 msn

 msn = C(MSN-LSB(4,-1,90%)) | C(MSN-LSB(7,-1,9%)) |
 MSN-IRREGULAR(16,1%)

 IPv4-header = version
 header_len
 tos
 ecn
 length
 ip-id
 rf_flag

https://datatracker.ietf.org/doc/html/rfc2119

 df_flag
 mf_flag
 offset
 ttl

Price et al. [PAGE 3]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 protocol
 ip_chksum
 src_address
 dst_address

 version = STATIC-KNOWN(4,4)

 header_len = STATIC-KNOWN(4,5)

 tos = C(STATIC(99%)) | IRREGULAR(6,1%)

 ecn = IRREGULAR(2,100%)

 length = IRREGULAR(16)

 ip-id = C(LSB(4,-1,90%)) | C(LSB(6,-1,8%)) |
 C(LSB(8,-1,1%)) | IRREGULAR(16,1%)

 rf_flag = VALUE(1,0,100%)

 df_flag = IRREGULAR(1,100%)

 mf_flag = VALUE(1,0,99%) | VALUE(1,1,1%)

 offset = C(STATIC(99%)) | IRREGULAR(13,1%)

 ttl = C(STATIC(99%)) | IRREGULAR(8,1%)

 protocol = STATIC-KNOWN(8,6)

 ip_chksum = IRREGULAR(16,100%)

 src_address = STATIC-UNKNOWN(32)

 dst_address = STATIC-UNKNOWN(32)

 TCP-header = source_port
 dest_port
 seqno
 ackno
 data_offset
 flags
 window
 tcp_chksum
 urg_ptr

 source_port = STATIC-UNKNOWN(16)

 dest_port = STATIC-UNKNOWN(16)

 seqno = C(LSB(8,63,80%)) | C(LSB(14,127,10%)) |
 C(LSB(20,1023,5%)) | IRREGULAR(32,5%)

 ackno = C(LSB(8,-1,80%)) | C(LSB(14,-1,10%)) |

Price et al. [PAGE 4]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 C(LSB(20,-1,5%)) | IRREGULAR(32,5%)

 data_offset = IRREGULAR(4,100%)

 window = C(STATIC(80%)) | C(LSB(12,63,10%)) |
 IRREGULAR(16,10%)

 tcp_chksum = IRREGULAR(16,100%)

 urg_ptr = C(STATIC(99%)) | IRREGULAR(16,1%)

 flags = reserved
 cwr
 ece
 urg
 ack
 psh
 rst
 syn
 fin

 reserved = C(STATIC(90%)) | IRREGULAR(4,10%)

 cwr = VALUE(1,0,80%) | VALUE(1,1,20%)

 ece = VALUE(1,0,80%) | VALUE(1,1,20%)

 urg = VALUE(1,0,99%) | VALUE(1,1,1%)

 ack = VALUE(1,1,99%) | VALUE(1,0,1%)

 psh = IRREGULAR(1,100%)

 rst = VALUE(1,0,99%) | VALUE(1,1,1%)

 syn = VALUE(1,0,99%) | VALUE(1,1,1%)

 fin = VALUE(1,0,95%) | VALUE(1,1,5%)

4. The concept and framework of TAROC-C

 This section first describes the concept of the TCP-aware robust
 header compression control (TAROC-C) mechanism and then discusses how
 this concept leads to a better performance when used over unreliable
 links.

 To design suitable mechanisms for efficient compression of all TCP/IP
 header fields, it would be important to analyze their change patterns
 first. It is known that the change patterns of several TCP fields

 (for example, Sequence Number, Acknowledgement Number, Window, etc.)
 are completely different from the ones of RTP, which had already
 discussed in detail in [ROHC], and are very hard to predict. Thus, it
 is hard to encode these fields with k-LSB both efficiently and

Price et al. [PAGE 5]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 robustly. On the other hand, Window-based LSB encoding [ROHC], which
 does not assume the linear changing pattern of the target header
 fields, is more suitable to encode those TCP fields both efficiently
 and robustly.

 The main idea of TAROC-C, the control mechanism of TAROC, is the
 combination of the Window-based LSB encoding (W-LSB encoding) and
 dynamically TCP congestion window tracking. In W-LSB encoding, a
 sliding window (VSW), which equals to value r mentioned in Section

6.4, is maintained on the compressor side. The compressor gets
 inconsistent with the decompressor only when the reference value on
 the decompressor side is out of this VSW. By keeping the sliding
 window large enough, the compressor rarely gets out of
 synchronization with the decompressor.

 However, the larger the sliding window is, the less the header
 compression gains. To shrink the window size, the compressor needs
 some form of feedback to get sufficient confidence that a certain
 value will not be used as a reference by the decompressor. Then the
 window can be advanced by removing that value and all other values
 older than it. Obviously, when a feedback channel is available,
 confidence can be achieved by proactive feedback in the form of ACKs
 from the decompressor. A feedback channel, however, is unavailable or
 expensive in some environments. In this Internet draft, a mechanism
 based on dynamically tracking TCP congestion window is proposed to
 explore such feedbacks from the nature feedback-loop of TCP protocol
 itself.

 Since TCP is a window-based protocol, a new segment cannot be
 transmitted without getting the acknowledgment of segment in the
 previous window. Upon receiving the new segment, the compressor can
 get enough confidence that the decompressor has received the segment
 in the previous window and then shrink the sliding window by removing
 all the values older than that segment.

 As originally outlined in [CONG1] and specified in [CONG2], TCP is
 incorporated with four congestion control algorithms: slow-start,
 congestion-avoidance, fast retransmit, and fast recovery. The
 effective window of TCP is mainly controlled by the congestion window
 and may change during the entire connection life. TAROC-C designs a
 mechanism to track the dynamics of TCP congestion window, and control
 the sliding window of W-LSB encoding by the estimated congestion
 window. By combining the W-LSB encoding and TCP congestion window
 tracking, TAROC can achieve better performance over high bit-error-
 rate links.

 Note that in one-way TCP traffic, only the information about sequence
 number or acknowledgment number is available for tracking TCP
 congestion window. TAROC-C does not require that all one-way TCP

 traffics must cross the same compressor. The detail will be described
 in the following sections.

 The TAROC scheme achieves its compression gain by establishing state
 information at both ends of the link, i.e., at the compressor and at

Price et al. [PAGE 6]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 the decompressor. Header compression with TAROC can be characterized
 as an interaction between two state machines, one compressor machine
 and one decompressor machine, each instantiated once per context.

 In the rest of this session, the TCP congestion window tracking
 algorithm, the state machines in the TCP/IP header compression
 framework, and the logics of the compressor/decompressor, are
 described in detail.

4.1. TCP congestion window tracking

4.1.1. General principle of congestion window tracking

 The general principle of congestion window tracking is as follows.
 The compressor imitates the congestion control behavior of TCP upon
 receiving each segment, in the meantime, estimates the congestion
 window (cwnd) and the slow start threshold (ssthresh). Besides the
 requirement of accuracy, there are also some other requirements for
 the congestion window tracking algorithms:

 - Simplex link. The tracking algorithm SHOULD always only take
 Sequence Number or Acknowledgment Number of a one-way TCP
 traffic into consideration. It SHOULD NOT use Sequence Number
 and Acknowledgment Number of that traffic simultaneously.

 - Misordering resilience. The tracking algorithm SHOULD work
 well while receiving misordered segments.

 - Multiple-links. The tracking algorithm SHOULD work well when
 not all the one-way TCP traffics are crossing the same link.

 - Slightly overestimation. If the tracking algorithm cannot
 guarantee the accuracy of the estimated cwnd and ssthresh, it is
 RECOMMANDED that it produces a slightly overestimated one.

 The following sections will describe two congestion window tracking
 algorithms, which use Sequence Number and Acknowledgment Number of a
 one-way TCP traffic, respectively.

4.1.2. Congestion window tracking based on Sequence Number

 This algorithm (Algorithm SEQ) contains 3 states: SLOW-START,
 CONGESTION-AVOIDANCE, and FAST-RECOVERY, which are equivalent to the
 states in TCP congestion control algorithms. It maintains 2 variables:
 cwnd and ssthresh.

 +-------------+
 | |
 ---------------->| CONGESTION- |

 | | AVOIDANCE |
 | ----| |<---
 +------------+ | +-------------+ |
 | | | |

Price et al. [PAGE 7]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 | SLOW-START | | |
 | | | +-------------+ |
 +------------+ | | | |
 | |-->| FAST- |----
 | | RECOVERY |
 ---------------->| |
 +-------------+

 Initially, this algorithm starts in state SLOW-START with ssthresh
 set to ISSTHRESH and cwnd set to IW.

 Upon receiving a segment, if it is the first segment, which is not
 necessary to be the SYN segment, the algorithm sets the current
 maximum Sequence Number (CMAXSN) and the current minimum Sequence
 Number (CMINSN) to this segment's sequence number; otherwise, the
 algorithm takes a procedure according to the current state.

 - SLOW-START

 * If the new Sequence Number (NSN) is larger than CMAXSN,
 increase cwnd by the distance between NSN and CMAXSN, and
 update CMAXSN and CMINSN based on the following rules:
 CMAXSN = NSN
 if (CMAXSN - CMINSN) > cwnd)
 CMINSN = cwnd - CMAXSN;
 If the cwnd is larger than ssthresh, the algorithm transits to
 CONGESTION-AVOIDANCE state;

 * If the distance between NSN and CMAXSN is less than or equal
 to 3*MSS, ignore it;

 * If the distance is larger than 3*MSS, halve the cwnd and set
 ssthresh to MAX(cwnd, 2*MSS). After that, the algorithm
 transits into FAST-RECOVERY state.

 - CONGESTION-AVOIDANCE

 * If NSN is larger than CMAXSN, increase cwnd by ((NSN-
 CMAXSN)*MSS)/cwnd and then update CMAXSN and CMINSN based on
 the following rules:
 CMAXSN = NSN
 if (CMAXSN - CMINSN) > cwnd)
 CMINSN = cwnd - CMAXSN;

 * If the distance between NSN and CMAXSN is less than or equal
 to 3*MSS, ignore it;

 * If the distance is larger than 3*MSS, halve the cwnd and set
 ssthresh to MAX(cwnd, 2*MSS). After that, the algorithm

 transits into FAST-RECOVERY state.

 - FAST-RECOVERY

Price et al. [PAGE 8]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 * If NSN is larger than or equal to CMAXSN + cwnd, the algorithm
 transits into CONGESTION-AVOIDANCE state;

 * Otherwise, ignore it.

 In this algorithm, MSS is denoted as the estimated maximum segment
 size. The implementation can use the MTU of the link as an
 approximation of this value. ISSHRESH and IW are the initial values
 of ssthresh and cwnd, respectively. ISSTHRESH MAY be arbitrarily high.
 IW SHOULD be set to 4*MSS.

4.1.3. Congestion window tracking based on Acknowledgment Number

 This algorithm (Algorithm ACK) maintains 3 states: SLOW-START,
 CONGESTION-AVOIDANCE and FAST-RECOVERY, which are equivalent to the
 states in TCP congestion control algorithms. It also maintains 2
 variables: cwnd and ssthresh.

 +-------------+
 | |
 ---------------->| CONGESTION- |
 | | AVOIDANCE |
 | ----| |<---
 +------------+ | +-------------+ |
 | | | |
 | SLOW-START | | |
 | | | +-------------+ |
 +------------+ | | | |
 | |-->| FAST- |----
 | | RECOVERY |
 ---------------->| |
 +-------------+

 Initially, this algorithm starts in state SLOW-START with ssthresh
 set to ISSTHRESH and cwnd set to IW.

 Upon receiving a segment, if it is the first segment, which is not
 necessary to be the SYN segment, the algorithm sets the current
 maximum Acknowledgment Number (CMAXACK) to this segment's
 acknowledgment number; otherwise, the algorithm takes a procedure
 according to the current state.

 - SLOW-START

 * If the new Acknowledgment Number (NEWACK) is larger than
 CMAXACK, increase cwnd by the distance between NEWACK and
 CMAXACK, set duplicate ack counter (NDUPACKS) to 0, and update
 CMAXACK accordingly; If the cwnd is larger than ssthresh, the
 algorithm transits to CONGESTION-AVOIDANCE state;

 * If NEWACK is equal to CMAXACK, increase the NDUPACKS by 1. If
 NDUPACKS is greater than 3, halve the cwnd and set ssthresh to

Price et al. [PAGE 9]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 MAX(cwnd, 2*MSS). Consequently, the algorithm transits into
 FAST-RECOVERY state;

 * Otherwise, set NDUPACKS to 0.

 - CONGESTION-AVOIDANCE

 * If NEWACK is larger than CMAXACK, increase cwnd by ((NEWACK-
 CMAXACK)*MSS)/cwnd, set NDUPACKS to 0 and update CMAXACK
 accordingly;

 * If NEWACK is equal to CMAXACK, increase NDUPACKS by 1. If
 NDUPACKS is greater than 3, halve the cwnd and set ssthresh to
 MAX(cwnd, 2*MSS). After that, the algorithm transits into
 FAST-RECOVERY state;

 * Otherwise, set NDUPACKS to 0.

 - FAST-RECOVERY

 * If NEWACK is larger than CMAXACK, set NDUPACKS to 0.
 Consequently, the algorithm transits into CONGESTION-AVOID
 state;

 * Otherwise, ignore it.

 In this algorithm, MSS is denoted as the estimated maximum segment
 size. The implementation can use the MTU of the link as an
 approximation of this value. ISSHRESH and IW are the initial values
 of ssthresh and cwnd, respectively. ISSTHRESH MAY be arbitrarily high.
 IW SHOULD be set to 4*MSS.

4.1.4. Further discussion on congestion window tracking

 In some cases, it is inevitable for the tracking algorithms to
 overestimate the TCP congestion window. Also, it SHOULD be avoided
 that the estimated congestion window gets significantly smaller that
 the actual one. For all of these cases, TAROC simply applies two
 boundaries on the estimated congestion window size. One of the two
 boundaries is the MIN boundary, which is the minimum congestion
 window size and whose value is determined according to the [INITWIN];
 the other boundary is the MAX boundary, which is the maximum
 congestion window size. There are two possible approaches to setting
 this MAX boundary. One is to select a commonly used maximum TCP
 socket buffer size. The other one is to use the simple equation
 W=sqrt(8/3*l), where W is the maximum window size and l is the
 typical packet loss rate.

 If ECN mechanism is deployed, according to [RFC-2481] and [ECN], the
 TCP sender will set the CWR (Congestion Window Reduced) flag in the

https://datatracker.ietf.org/doc/html/rfc2481

 TCP header of the first new data packet sent after the window
 reduction, and the TCP receiver will reset the ECN-Echo flag back to
 0 after receiving a packet with CWR flag set. Thus, the CWR flag and
 the ECN-Echo flag's transition from 1 to 0 can be used as another

Price et al. [PAGE 10]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 indication of congestion combined with other mechanisms mentioned in
 the tracking algorithm.

4.2. Compressor/decompressor state machine with TAROC-C

4.2.1. Compressor states

 There are three compressor states in TAROC: Initialization and
 Refresh (IR) state, First Order (FO), and Second Order (SO) states.
 The compressor starts in the lowest compression state (IR) and
 transits gradually to the higher compression state. The compressor
 will always operate in the highest possible compression state, under
 the constraint that the compressor is sufficiently confident that the
 decompressor has the information necessary to decompress a header,
 which is compressed according to the state.

 +----------+
 | |
 +----------+ | FO State | +----------+
 | | <--------> | | <--------> | |
 | IR State | +----------+ | SO State |
 | | <----------------------------------> | |
 +----------+ +----------+

4.2.1.1. Initialization and Refresh (IR) state

 The purpose of IR state is to initialize or refresh the static parts
 of the context at the decompressor. In this state, the compressor
 sends full header periodically with an exponentially increasing
 period, which is so-called compression slow-start [RFC-2507]. The
 compressor leaves the IR state only when it is confident that the
 decompressor has correctly received the static information.

 To compress short-lived TCP transfers more efficiently, the
 compressor should speed up the initial process. The compressor enters
 the IR state when it receives the packet with SYN bit set and sends
 IR packet. When it receives the first data packet of the transfer, it
 should transit to FO state because that means the decompressor has
 received the packet with SYN bit set and established the context
 successfully at its side. Using this mechanism can significantly
 reduce the number of context initiation headers.

4.2.1.2. First Order (FO) State

 The purpose of FO state is to efficiently transmit the difference

https://datatracker.ietf.org/doc/html/rfc2507

 between the two consecutive packets in the TCP stream. When operating
 in this state, the compressor and the decompressor should have the
 same context. Only compressed packet is transmitted from the
 compressor to the decompressor in this state. The compressor transits
 back to IR state only when it finds that the context of decompressor

Price et al. [PAGE 11]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 may be inconsistent, or there are remarkable changes in the TCP/IP
 header.

4.2.1.3. Second Order (SO) State

 The purpose of SO state is to efficiently transmit the fixed-payload
 data. The compressor enters this state when it is sufficiently
 confident that the decompressor has got the constant payload size of
 the data transferring.

 The compressor leaves this state and transits to the FO state when
 the current payload size no longer conforms to the constant payload.
 The compressor transits back to IR state only when it finds that the
 context of decompressor may be inconsistent, or there are remarkable
 changes in the TCP/IP header.

4.2.2. Decompressor states

 The decompressor starts in its lowest compression state, "No Context"
 and gradually transits to higher state, "Full Context". The
 decompressor state machine normally never leaves the "Full Context"
 state once it has entered this state.

 +--------------+ +--------------+
 | No Context | <---> | Full Context |
 +--------------+ +--------------+

4.3. Compressor logic in TAROC-C

 In TAROC-C, the compressor will start in the IR state and perform
 different logics in different states. The following sub-sections will
 describe the logic for each compressor sate in detail.

4.3.1. IR state

 The operations of compressor in IR state can be summarized as follows:

 a) Upon receiving a packet, the compressor sends IR or IR-DYN packet
 on the following conditions: 1) if it is the turn to send full
 header packet according to compression slow-start, i.e. after
 sending F_PERIOD compressed packets; 2) if the packet to be sent
 is a retransmission of the packet in VSW and it was sent as IR or
 IR-DYN packet previously. Otherwise, the compressor compresses
 the packet using W-LSB encoding. If the compressor enters the IR
 state for the first time or the static part of the TCP flow has
 changed, it will send IR packet. Otherwise, it will send IR-DYN
 packet because the decompressor has known the static part.

 b) The packet is added into VSW as a potential reference after it
 has been sent out. The compressor then invokes the Algorithm SEQ

 and Algorithm ACK to track the congestion windows of the two one-
 way traffics with different directions in a TCP connection.
 Suppose that the estimated congestion windows are cwnd_seq and
 cwnd_ack, while the estimated slow start thresholds are

Price et al. [PAGE 12]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 ssthresh_seq and ssthresh_ack, respectively. Let W(cwnd_seq,
 ssthresh_seq, cwnd_ack, ssthresh_ack) = K*MAX(MAX(cwnd_seq,
 2*ssthresh_seq), MAX(cwnd_ack, 2*ssthresh_ack)). If the size of
 VSW is larger than W(cwnd_seq, ssthresh_seq, cwnd_ack,
 ssthresh_ack), the VSW can be shrunk. K is an implementation
 parameter that will be further discussed in Section 5.6.

 c) After sending F_PERIOD compressed packets, F_PERIOD SHOULD be
 doubled. If it gets larger than W(cwnd_seq, ssthresh_seq,
 cwnd_ack, ssthresh_ack), the compressor transits to FO or SO
 state. If the compressor finds that the payload size of
 consecutive packets is a constant value and one of such packets
 is removed from the VSW, which means the decompressor has known
 the exact value of the constant size, it may transit to SO state.
 Otherwise it will transit to the FO state.

4.3.2. FO state

 The operations of the compressor in the FO state can be summarized as
 follows:

 a) Upon receiving a packet, if it falls behind the VSW, i.e. it is
 older than all the packets in VSW; the compressor transits to IR
 state. Otherwise, the compressor compresses it using W-LSB encoding
 and sends it.

 b) The packet is added into VSW as a potential reference after it has
 been sent out. The compressor then invokes the Algorithm SEQ and
 Algorithm ACK to track the congestion windows of the two one-way
 traffics with different directions in a TCP connection. Suppose
 that the estimated congestion windows are cwnd_seq and cwnd_ack,
 while the estimated slow start thresholds are ssthresh_seq and
 ssthresh_ack, respectively. Let W(cwnd_seq, ssthresh_seq, cwnd_ack,
 ssthresh_ack) = K*MAX(MAX(cwnd_seq, 2*ssthresh_seq), MAX(cwnd_ack,
 2*ssthresh_ack)). If the size of VSW is larger than W(cwnd_seq,
 ssthresh_seq, cwnd_ack, ssthresh_ack), the VSW can be shrunk. K is
 also an implementation parameter, which can be set to the same
 value as in the IR state.

 c) If the VSW contains only one packet, which means there is a long
 jump in the packet sequence number or acknowledge number, the
 compressor will transit to the IR state and re-initialize the
 algorithm for tracking TCP congestion window. Here, a segment
 causes a long jump when the distance between its sequence number
 (or acknowledgment number) and CMAXSN (or CMAXACK) is larger than
 the estimated congestion window size, i.e.,
 |sequence number (acknowledgement number) û CMAXSN (CMAXACK)| >
 estimated congestion window size.

 d) If the compressor finds that the payload size of consecutive
 packets is a constant value and one of such packets has been
 removed from the VSW, which means the decompressor has known the
 exact value of the constant size, it may transit to the SO state.

Price et al. [PAGE 13]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 e) If the static context of transfers changed, the compressor will
 transit to the IR state and re-initialize the algorithms for
 tracking TCP congestion window.

4.3.3. SO state

 The operations of the compressor in the SO state can be summarized as
 follows:

 a) Upon receiving a packet, if it falls behind the VSW, i.e. it is
 older than all the packets in VSW; the compressor transits to IR
 state. Otherwise, the compressor compresses it using fixed-payload
 encoding and sends it.

 b) The packet is added into VSW as a potential reference after it has
 been sent out. The compressor then invokes the Algorithm SEQ and
 Algorithm ACK to track the congestion windows of the two one-way
 traffics with different directions in a TCP connection. Suppose
 that the estimated congestion windows are cwnd_seq and cwnd_ack,
 while the estimated slow start thresholds are ssthresh_seq and
 ssthresh_ack, respectively. Let W(cwnd_seq, ssthresh_seq, cwnd_ack,
 ssthresh_ack) = K*MAX(MAX(cwnd_seq, 2*ssthresh_seq), MAX(cwnd_ack,
 2*ssthresh_ack)). If the size of VSW is larger than W(cwnd_seq,
 ssthresh_seq, cwnd_ack, ssthresh_ack), the VSW can be shrunk. K is
 an implementation parameter, which can be set to the same value as
 in the IR state.

 c) If the VSW contains only one packet, which means there is a long
 jump in the packet sequence number or acknowledge number, the
 compressor will transit to the IR state and re-initialize the
 algorithms for tracking TCP congestion window.

 d) If the payload size of the packets in VSW doesn't keep constant,
 the compressor transits to the FO state.

 e) If the static context of transfers changed, the compressor will
 transit to the IR state and re-initialize the algorithms for
 tracking TCP congestion window.

4.4. Decompressor logic in TAROC-C

 The logic of the decompressor is simpler compared to the compressor.

4.4.1. No Context State

 The decompressor starts in this state. Upon receiving an IR or IR-DYN
 packet, the decompressor should verify the correctness of its header
 by TCP checksum. If the verification succeeds, the decompressor will
 update the context and use this packet as the reference packet. After

 that, the decompressor will pass it to the system's network layer and
 transit to Full Context State. Conformed to ROHC framework [ROHC],
 only IR or IR-DYN packets may be decompressed in No Context state.

Price et al. [PAGE 14]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

4.4.2. Full Context State

 The operations of decompressor in Full Context state can be
 summarized as follows:

 a) Upon receiving an IR or IR-DYN packet, the decompressor should
 verify the correctness of its header by TCP checksum. If the
 verification succeeds, the decompressor will update the context and
 use this packet as the reference packet. Consequently, the
 decompressor will convert the packet into the original packet and
 pass it to the network layer of the system.

 b) Upon receiving the other type of packet, the decompressor will
 decompress it. After that, the decompressor MUST verify the
 correctness of the decompressed packet by the TCP checksum. If the
 verification succeeds, the decompressor passes it to the system's
 network layer. Then the decompressor will use it as the reference
 value if this packet is not older than the current reference packet.

 c) If consequent N packets fail to be decompressed, the decompressor
 should transit downwards to No Context State. N is an implementation
 parameter that will be further discussed in Section 8.6.

4.5. Modes of operation

 There are three modes in ROHC framework, called Unidirectional, Bi-
 directional Optimistic, and Bi-directional Reliable mode,
 respectively. The mode transitions are conformed to ROHC framework.
 However, the operations of each mode are different.

4.5.1. Unidirectional mode -- U-mode

 When in U-mode, packets are sent in one direction only: from
 compressor to decompressor. Therefore, feedbacks from decompressor to
 the compressor are unavailable under this mode.

 In the U-mode, the compressor and decompressor logic is the same as
 the discussion in section 8.3 and 8.4.

4.5.2. Bi-directional Optimistic mode -- O-mode

 When in O-mode, a feedback channel is used to send error recovery
 requests and (optionally) acknowledgments of significant context
 updates from the decompressor to the compressor. In this mode, the
 VSW will be shrunk more efficiently.

4.5.2.1. Compressor states and logic (O-mode)

 Following rules should be combined with the action defined in section

8.3.

 In the IR state, the compressor can transit to the FO or SO state
 once it receives a valid ACK(O) for an IR packet sent (an ACK(O) can

Price et al. [PAGE 15]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 only be valid if it refers to a packet sent earlier). If the packet
 referred by the feedback is in the VSW, the compressor will remove
 the packets older than the referred packet from the VSW window.
 Because ACK(O) means that the packet referred by ACK(O) has been the
 reference of the decompressor, the compressor doesn't need to keep
 older packets.

 If the compressor is in the FO or SO state, it will remove the
 packets older than the referred packet from the VSW window.

 Upon receiving an NACK(O), the compressor transits back to IR state.

4.5.2.2. Decompressor states and logic (O-mode)

 The decompression states and the state transition logic are the same
 as in the Unidirectional case (see section 8.5.1.). What differs is
 the feedback logic.

 Below, rules are defined stating which feedback to use when.

 When an IR packet passes the verification, send an ACK(O). When an
 IR-DYN packet or other packet is correctly decompressed, optionally
 send an ACK(O). When any packet fails the verification, send an
 NACK(O).

4.5.3. Bi-directional Reliable mode -- R-mode

 The R-mode are a more intensive usage of the feedback channel and a
 stricter logic at both the compressor and the decompressor that
 prevents loss of context synchronization between the compressor and
 decompressor except for very high residual bit error rates. Feedback
 is sent to acknowledge all context updates. In this mode, the VSW
 will be shrunk with the highest efficiency.

4.5.3.1. Compressor states and logic (R-mode)

 Following rules should be reparation to the action defined in section
8.3.

 In IR state, the compressor should transit to the FO or SO state only
 when it receives a valid ACK(R) for an IR or IR-DYN packet sent (an
 ACK(R) can only be valid if it refers to an packet sent earlier). If
 the packet referred by the feedback is in the VSW, the compressor
 will remove the packets older than the referred packet from the VSW
 window. Because ACK(R) means that the packet referred by ACK(R) has
 been the reference of the decompressor; the compressor doesn't need
 to keep older packets.

 If the compressor is in the FO or SO state, when it receives a valid
 ACK(R), it will remove the packets older than the referred packet

 from the VSW window. In this mode, the compressor need not use window
 tracking, because feedback can shrink VSW efficiently and robustly.

 Upon receiving an NACK(O), the compressor transits back to IR state.

Price et al. [PAGE 16]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

4.5.3.2. Decompressor states and logic (R-mode)

 Below, rules are defined stating which feedback to use when.

 @When a packet is correctly decompressed and updates the context,
 send an ACK(R).

 @When any packet fails the verification, send a NACK(R).

 The frequency of updating context will be discussed in section 8.6.

4.6. Implementation issues

4.6.1. Determine the value K

 As mentioned above, the VSW SHOULD be shrunk when its size gets
 larger than K*MAX(MAX(cwnd_seq, 2*ssthresh_seq), MAX(cwnd_ack,
 2*ssthresh_ack)). Since the Fast Recovery algorithm was introduced in
 TCP, several TCP variants had been proposed, which are different only
 in the behaviors of Fast Recovery. Some of them need several RTTs to
 be recovered from multiple losses in a window. Ideally, they may send
 L*W/2 packets in this stage, where L is the number of lost packets
 and W is the size of the congestion window where error occurs. Some
 recent work [TCPREQ] on improving TCP performance allows to transmit
 packets even when receiving duplicate acknowledgments. Due to the
 above concerns, it'd better keep K large enough so as to prevent
 shrinking VSW without enough confidence that corresponding packets
 had been successfully received.

 Considering the bandwidth-limited environments and the limited
 receiver buffer, a practical range of K is around 1~2. From the
 simulation results, K=1 is good enough for most cases.

4.6.2. Determine the value N

 We should distinguish out of synchronization from the packet errors
 cause by the link. So considering the error condition of the link, N
 should be higher than the packet burst error length, a practical
 range of N is around 8~10.

4.6.3. Determine the frequency of updating context

 The choice of the frequency of updating context, ACK(R), is a balance
 between the efficiency and robustness, i.e. sending ACK(R) more
 frequently improves the compression robustness but adds more system
 overhead, and the vice versa. From a practical view, the ACK(R)
 SHOULD be sent for every 4~8 successfully decompressed packets.

4.7. Performance of TAROC-C

Price et al. [PAGE 17]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 The Simulations results (see Appendix B in [TAROC-3]) demonstrate the
 effectiveness of control mechanism TAROC-C and corresponding header
 compression scheme.

5. Security considerations

 EPIC-LITE generates compressed header formats for direct use in ROHC
 profiles. Consequently the security considerations for EPIC-LITE
 match those of [ROHC].

6. Acknowledgements

 Header compression schemes from [ROHC] have been important sources of
 ideas and knowledge. Basic Huffman encoding [HUFF] was enhanced for
 the specific tasks of robust, efficient header compression.

 Thanks to

 Carsten Bormann (cabo@tzi.org)
 Christian Schmidt (christian.schmidt@icn.siemens.de)
 Max Riegel (maximilian.riegel@icn.siemens.de)

 for valuable input and review.

7. References

 [ROHC] "RObust Header Compression (ROHC)", Carsten Bormann et
 al, RFC3095, Internet Engineering Task Force, July 2001

 [EPIC] "Framework for EPIC-LITE", Richard Price et al,
 <draft-ietf-rohc-epic-lite-00.txt>, Internet
 Engineering Task Force, October 23, 2001

 [HUFF] "The Data Compression Book", Mark Nelson and Jean-Loup
 Gailly, M&T Books, 1995

 [RFC-1144] "Compressing TCP/IP Headers for Low-Speed Serial
 Links", V. Jacobson, Internet Engineering Task Force,
 February 1990

 [RFC-1951] "DEFLATE Compressed Data Format Specification version
 1.3", P. Deutsch, Internet Engineering Task Force, May
 1996

 [RFC-2026] "The Internet Standards Process - Revision 3", Scott
 Bradner, Internet Engineering Task Force, October 1996

 [RFC-2119] "Key words for use in RFCs to Indicate Requirement
 Levels", Scott Bradner, Internet Engineering Task

https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/draft-ietf-rohc-epic-lite-00.txt

 Force, March 1997

Price et al. [PAGE 18]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 [RFC-2507] M. Degermark, B. Nordgren, and S. Pink, "IP Header
 Compression", Internet Engineering Task Force, February
 1999

 [CONG1] "Congestion avoidance and control", V. Jacobson, In ACM
 SIGCOMM '88, 1988

 [CONG2] "TCP Congestion Control", M. Allman, V. Paxson, and W.
 R. Stevens, RFC 2581, April 1999

 [RFC-2481] "A Proposal to add Explicit Congestion Notification
 (ECN) to IP", K. Ramakrishnan, S. Floyd, Internet
 Engineering Task Force, January 1999

 [ECN] "The Addition of Explicit Congestion Notification (ECN)
 to IP", K. K. RamaKrishnan, Sally Floyd, D. Black,
 Internet Draft (work in progress), June, 2001. <draft-

ietf-tsvwg-ecn-04.txt>

 [TCPREQ] "Requirements for ROHC IP/TCP header compression", L-E.
 Jonsson, Internet Draft (work in progress), June 20,
 2001

 [INITWIN] "Increasing TCP's Initial Window", M. Allman, S. Floyd,
 and C. Partridge, Internet Draft (work in progress),
 May 2001. <draft-ietf-tsvwg-initwin-00.txt>

 [TAROC-4] H. Liao, Q. Zhang, W. Zhu, and Y.-Q. Zhang, ôTCP-Aware
 RObust Header Compression (TAROC)ö, Internet Draft
 (work in progress), Nov. 2001. <draft-ietf-rohc-taroc-

04.txt>

8. Authors' addresses

 Richard Price Tel: +44 1794 833681
 Email: richard.price@roke.co.uk

 Robert Hancock Tel: +44 1794 833601
 Email: robert.hancock@roke.co.uk

 Stephen McCann Tel: +44 1794 833341
 Email: stephen.mccann@roke.co.uk

 Mark A West Tel: +44 1794 833311
 Email: mark.a.west@roke.co.uk

 Abigail Surtees Tel: +44 1794 833131
 Email: abigail.surtees@roke.co.uk

 Paul Ollis Tel: +44 1794 833168

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-initwin-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rohc-taroc-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rohc-taroc-04.txt

 Email: paul.ollis@roke.co.uk

 Roke Manor Research Ltd
 Romsey, Hants, SO51 0ZN

Price et al. [PAGE 19]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 United Kingdom

 Qian Zhang Tel: +86 10 62617711-3135
 Email: qianz@microsoft.com

 HongBin Liao Tel: +86 10 62617711-3156
 Email: i-hbliao@microsoft.com

 Wenwu Zhu Tel: +86 10 62617711-5405
 Email: wwzhu@microsoft.com

 Ya-Qin Zhang Tel: +86 10 62617711
 Email: yzhang@microsoft.com

 Microsoft Research Asia
 Beijing Sigma Center
 No.49, Zhichun Road, Haidian District
 Beijing 100080, P.R.C.

Price et al. [PAGE 20]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

Appendix A. Packet types provided by ROHC framework

 In addition to the standard CO (compressed) packets, the [ROHC]
 framework contains two special packet types designed to help
 synchronize the context at the compressor and decompressor. An IR
 (Initialization and Refresh) packet associates a context with a
 certain ROHC profile, and transmits the value of all fields including
 those which remain constant throughout the lifetime of the context.

 An IR-DYN (Dynamic Initialization and Refresh) packet associates a
 context with a ROHC profile, and additionally transmits the value of
 any fields except those that remain constant for the lifetime of the
 context. An IR-DYN packet cannot be used to completely initialize a
 new context, but it is usually smaller than a full IR packet.

 [ROHC] also defines a general compressed packet that can be used to
 encapsulate CO, IR and IR-DYN packets. The general packet format
 includes a CID (Context Identifier) to indicate the context to which
 the compressed packet belongs. It also includes a packet type
 indicator to specify whether the packet is a feedback, initialization
 or general compressed packet, whether it is segmented, and whether it
 contains padding.

 The following packet type indicators are reserved in the overall
 [ROHC] framework:

 1110: Padding or Add-CID octet
 11110: Feedback
 11111000: IR-DYN packet
 1111110: IR packet
 1111111: Segment

 Any packet types not indicated by the bit pattern 111XXXXX can be
 used by individual [ROHC] profiles such as the TCP/IP profile.

A.1. CO packet

 The compressed (CO) packet type is the basic compressed packet
 offered by EPIC-LITE. CO packets can be used to transmit data between
 the compressor and decompressor with a high level of efficiency, and
 can cope with most irregularities in the packet stream.

 The location of an EPIC-LITE CO packet within the general ROHC packet
 is shown below:

 0 7
 --- --- --- --- --- --- --- ---
 | Add-CID octet | if for CID 1-15 and small CIDs
 +---+--- --- --- ---+--- --- ---+
 | EPIC-LITE CO packet | 1 octet

 +---+--- ---+---+---+--- --- ---+
 | |
 / 0, 1, or 2 octets of CID / 1 or 2 octets if large CIDs
 | |

Price et al. [PAGE 21]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 +---+---+---+---+---+---+---+---+
 / EPIC-LITE CO packet / variable
 +---+---+---+---+---+---+---+---+

 Figure 1 : Format of CO packet generated by EPIC-LITE

 Note that CO packets are decompressed relative to the context stored
 at the decompressor. If the compressor has not yet initialized this
 context, or suspects that it has become invalidated, then a CO packet
 cannot be sent.

A.2. IR-DYN packet

 The structure of the IR-DYN packet used by EPIC-LITE is shown below:

 0 1 2 3 4 5 6 7
 --- --- --- --- --- --- --- ---
 : Add-CID octet : if for CID 1-15 and small CIDs
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 0 0 | 0 | IR-DYN type octet
 +---+---+---+---+---+---+---+---+
 : :
 / 0-2 octets of CID / 1-2 octets if for large CIDs
 : :
 +---+---+---+---+---+---+---+---+
 | Profile | 1 octet
 +---+---+---+---+---+---+---+---+
 | CRC | 1 octet
 +---+---+---+---+---+---+---+---+
 | |
 / EPIC-LITE IR-DYN packet / variable length
 | |
 +---+---+---+---+---+---+---+---+

 Figure 2 : Format of IR-DYN packet generated by EPIC-LITE

 The Profile field associates the context with a certain profile. It
 transmits the 8 least significant bits of the EPIC-LITE
 profile_identifier parameter described in Section 7.1. Furthermore,
 the polynomial used to calculate the CRC is defined in Section 6.12.

A.3. IR packet

 The structure of the IR packet used by EPIC-LITE is shown below:

 0 1 2 3 4 5 6 7
 --- --- --- --- --- --- --- ---
 : Add-CID octet : if for CID 1-15 and small CIDs
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 1 0 | D | IR type octet

 +---+---+---+---+---+---+---+---+
 : :
 / 0-2 octets of CID / 1-2 octets if for large CIDs
 : :

Price et al. [PAGE 22]

INTERNET-DRAFT TCP/IP Compression for ROHC 21 November, 2001

 +---+---+---+---+---+---+---+---+
 | Profile | 1 octet
 +---+---+---+---+---+---+---+---+
 | CRC | 1 octet
 +---+---+---+---+---+---+---+---+
 | |
 / EPIC-LITE IR packet / variable length
 | |
 +---+---+---+---+---+---+---+---+

 Figure 3 : Format of IR packet generated by EPIC-LITE

 Note that the D bit is currently always set to 1 (as specified in
 [ROHC]), since the IR packet generated by EPIC-LITE always compresses
 every field in the header. A version of the IR packet that only
 compresses static fields may be introduced in future.

Price et al. [PAGE 23]

