
ROHC WG HongBin Liao, Microsoft Research Asia
Internet Draft Qian Zhang, Microsoft Research Asia
Expires: May 2002 Wenwu Zhu, Microsoft Research Asia
 Ya-Qin Zhang, Microsoft Research Asia

 Richard Price, Siemens/Roke Manor
 Robert Hancock, Siemens/Roke Manor
 Stephen McCann, Siemens/Roke Manor
 Mark A West, Siemens/Roke Manor
 Abigail Surtees, Siemens/Roke Manor
 Paul Ollis, Siemens/Roke Manor

 November 21, 2001

TCP-Aware RObust Header Compression (TAROC)
draft-ietf-rohc-tcp-taroc-04.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [1].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsolete by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

1. Abstract

 As a major transport protocol of current Internet, TCP has the
 problem of the large header overhead on bandwidth-limited links.
 Header compression has been proven to be efficient for using TCP
 over bandwidth-limited reliable links. Unfortunately, existing
 TCP/IP header compression schemes do not work well on noisy links,
 especially the one with high bit error rate and long roundtrip time.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 In addition, existing schemes [2,3] have not addressed some TCP
 options such as SACK [4,5] and Timestamps [6].

Liao, et al. [Page 1]

draft-ietf-rohc-tcp-taroc-04.txt

 A robust and efficient header compression scheme for TCP/IP, called
 TAROC, is presented in this document. TAROC is composed of a
 behavior-aware control mechanism, called TAROC-C, and a detailed
 header encoding scheme. In this draft, the Efficient Protocol
 Independent Compression (EPIC-LITE) scheme is used as the compressed
 header encoding framework. The window-based LSB encoding is
 introduced in our scheme for compressing redundant fields and
 reducing error propagation. The key point of TAROC-C is the TCP
 congestion window tracking approach, which can be used to improve
 the efficiency of the window-based encoding and the performance of
 the overall header compression scheme. With the dynamical congestion
 window tracking, our scheme can achieve good performance even when
 the feedback channel is not available.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 2]

draft-ietf-rohc-tcp-taroc-04.txt

Table of Contents

 Status of this Memo..1
1. Abstract..1
2. Conventions used in this document...............................6
3. Introduction..6

 4. The concept and components of TCP-Aware RObust Header compression
 and Efficient Protocol Independent Compression (EPIC-LITE) scheme..8

5. The framework of TAROC-C..9
5.1. TCP congestion window tracking.............................9

5.1.1. General principle of congestion window tracking.......9
5.1.2. Congestion window tracking based on Sequence Number..10

 5.1.3. Congestion window tracking based on Acknowledgment
 Number..11

5.1.4. Further discussion on congestion window tracking.....13
5.2. Compressor/decompressor state management with TAROC-C.....13

5.2.1. Compressor states....................................13
5.2.1.1. Initialization and Refresh (IR) state...........14
5.2.1.2. First Order (FO) State..........................14
5.2.1.3. Second Order (SO) State.........................14

5.2.2. Decompressor states..................................15
5.3. Compressor logic in TAROC-C...............................15

5.3.1. IR state...15
5.3.2. FO state...16
5.3.3. SO state...16

5.4. Decompressor logic in TAROC-C.............................17
5.4.1. No Context State.....................................17
5.4.2. Full Context State...................................17

5.5. Modes of operation..18
5.5.1. Unidirectional mode -- U-mode........................18
5.5.2. Bi-directional Optimistic mode -- O-mode............18

5.5.2.1. Compressor states and logic (O-mode)...........18
5.5.2.2. Decompressor states and logic (O-mode).........19

5.5.3. Bi-directional Reliable mode -- R-mode..............19
5.5.3.1. Compressor states and logic (R-mode)...........19
5.5.3.2. Decompressor states and logic (R-mode).........20

5.6. Implementation issues.....................................20
5.6.1. Determine the value K................................20
5.6.2. Determine the value N................................20
5.6.3. Determine the frequency of updating context..........20

6. Coding scheme and compressed packet header format..............21
6.1. Window-based LSB encoding and fixed-payload encoding......21
6.2. The framework of EPIC-LITE scheme.........................21
6.3. ROHC Profile for compression of TCP/IP....................22

7. Conclusions..24
8. Acknowledgments..25
9. Security considerations..25
10. Authors' addresses..26

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

11. References..26
12. Intellectual property considerations..........................29
Appendix A - Simulation results...................................29

A.1. Simulation topology.......................................29
A.2. Tested header compression schemes.........................29

Liao, et al. [Page 3]

draft-ietf-rohc-tcp-taroc-04.txt

A.3. Simulations and results...................................30
A.3.1. 384kb..30
A.3.2. 114kb..32
A.3.3. 64kb...33
A.3.4. 9.6kb..35

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 4]

draft-ietf-rohc-tcp-taroc-04.txt

 Document History

 04 Nov. 21, 2001 Separate the control mechanism, TAROC-C, with
 the detailed compressed packet formats
 generation approach;
 TAROC-C does not have an IPR-statement;
 Introduce the simple TCP/IP profile;
 Use EPIC-LITE as coding framework to simplify
 the creation of new TCP/IP compressed header
 format.
 03 Oct. 26, 2001 Modify our TCP congestion window estimation
 scheme with the MAX and MIN boundary;
 Clarify the initialization and state
 transition process in compressor state
 management;
 Add the CRC option in our compressed header.
 02 July 20, 2001 Integrate TAROC with ROHC framework;
 Add a second order (SO) state on compressor
 side for fixed-payload packets compression;
 Modify the coding method for type
 identification and adjust corresponding packet
 format to improve compression efficiency;
 Update the simulation results.
 01 March 01, 2001 Improve congestion window tracking algorithm
 to handle the special cases where congestion
 indications are lost;
 Improve the compression efficiency by adding
 fixed-payload encoding;
 Change in header format accordingly.
 00 November 17, 2000 First release.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 5]

draft-ietf-rohc-tcp-taroc-04.txt

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [7].

 Other terminologies, such as Profile, Context, Compressed header
 format, Encoding method, Indicator flags, Set of compressed header
 formats, Library of encoding methods, Input language, Control field,
 are defined in [19].

3. Introduction

 The necessity and importance of doing TCP/IP header compression on
 low- or medium-speed links have been discussed in [3]. For
 conciseness, the general background information on header
 compression has not been discussed in detail in this draft. Detailed
 information can be found in RFC2507 [3]. Existing header compression
 schemes, such as VJHC [2] and IPHC [3], rely on transmitting only
 the difference from the previous header in order to reduce the large
 overhead of TCP/IP header.

 Although VJHC works well over reliable links, when used over
 unreliable link, such as wireless links, it induces many additional
 errors due to inconsistent contexts between the compressor and the
 decompressor. Considering the high bit error rate in wireless
 channel, if a packet gets lost, the compressed header of next packet
 cannot be correctly decompressed. Then the decompressor must send
 the request for resynchronization and in the meanwhile discard all
 compressed header. A fatal result of this effect is that it prevents
 TCP Fast Retransmit algorithm [8] from being fired and always causes
 TCP retransmission timeout. This effect is shown in detail in [9].

 IPHC proposes two simple mechanisms, the TWICE algorithm and the
 full header request mechanism, to reduce the errors due to the
 inconsistent contexts between the compressor and the decompressor.
 The TWICE algorithm assumes that only the Sequence Number field of
 TCP segments are changing during the connection and the deltas among
 consecutive packets are constant in most cases. However, these
 assumptions are not always true, especially when TCP Timestamp and
 SACK options are used. The full header request mechanism needs a
 feedback channel, which is unavailable in some circumstances. Even
 when the feedback channel is available, this mechanism still cannot
 perform well enough if the roundtrip time of this link is very long.
 Once a packet is corrupted on the noisy link, there are still
 several consecutive packets dropped due to the inconsistency between
 the compressor and the decompressor.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2507

 This Internet draft describes a new header compression scheme (TAROC,
 or TCP-Aware RObust header Compression), which consists of two
 components, TAROC-C (TCP-Aware RObust Header Compression Control
 mechanism) and EPIC-LITE (Efficient Protocol Independent Compression

Liao, et al. [Page 6]

draft-ietf-rohc-tcp-taroc-04.txt

 scheme). By combining them together, our scheme is more robust
 against packet loss and hence achieves better performance over
 wireless links.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 7]

draft-ietf-rohc-tcp-taroc-04.txt

4. The concept and components of TCP-Aware RObust Header compression
 and Efficient Protocol Independent Compression (EPIC-LITE) scheme

 This section first describes the concept of the TCP-aware robust
 header compression (TAROC) proposal and then discusses how this
 concept leads to a better performance when used over unreliable
 links.

 To design suitable mechanisms for efficient compression of all
 TCP/IP header fields, it would be important to analyze their change
 patterns first. It is known that the change patterns of several TCP
 fields (for example, Sequence Number, Acknowledgement Number, Window,
 etc.) are completely different from the ones of RTP, which had
 already discussed in detail in [10], and are very hard to predict.
 Thus, it is hard to encode these fields with k-LSB both efficiently
 and robustly. On the other hand, Window-based LSB encoding [10],
 which does not assume the linear changing pattern of the target
 header fields, is more suitable to encode those TCP fields both
 efficiently and robustly.

 The main idea of TAROC-C, the control mechanism of TAROC, is the
 combination of the Window-based LSB encoding (W-LSB encoding) and
 dynamically TCP congestion window tracking. In W-LSB encoding, a
 sliding window (VSW), which equals to the value r mentioned in the

Section 6.4 in EPIC-LITE [19], is maintained on the compressor side.
 The compressor gets inconsistent with the decompressor only when the
 reference value on the decompressor side is out of this VSW. By
 keeping the sliding window large enough, the compressor rarely gets
 out of synchronization with the decompressor.

 However, the larger the sliding window is, the less the header
 compression gains. To shrink the window size, the compressor needs
 some form of feedback to get sufficient confidence that a certain
 value will not be used as a reference by the decompressor. Then the
 window can be advanced by removing that value and all other values
 older than it. Obviously, when a feedback channel is available,
 confidence can be achieved by proactive feedback in the form of ACKs
 from the decompressor. A feedback channel, however, is unavailable
 or expensive in some environments. In this Internet draft, a
 mechanism based on dynamically tracking TCP congestion window is
 proposed to explore such feedbacks from the nature feedback-loop of
 TCP protocol itself.

 Since TCP is a window-based protocol, a new segment cannot be
 transmitted without getting the acknowledgment of segment in the
 previous window. Upon receiving the new segment, the compressor can
 get enough confidence that the decompressor has received the segment
 in the previous window and then shrink the sliding window by

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 removing all the values older than that segment.

 As originally outlined in [11] and specified in [12], TCP is
 incorporated with four congestion control algorithms: slow-start,
 congestion-avoidance, fast retransmit, and fast recovery. The

Liao, et al. [Page 8]

draft-ietf-rohc-tcp-taroc-04.txt

 effective window of TCP is mainly controlled by the congestion
 window and may change during the entire connection life. TAROC-C
 designs a mechanism to track the dynamics of TCP congestion window,
 and control the sliding window of W-LSB encoding by the estimated
 congestion window. By combining the W-LSB encoding and TCP
 congestion window tracking, TAROC can achieve better performance
 over high bit-error-rate links.

 Note that in one-way TCP traffic, only the information about
 sequence number or acknowledgment number is available for tracking
 TCP congestion window. TAROC-C does not require that all one-way TCP
 traffics must cross the same compressor. The detail will be
 described in the following sections. The topology assumption of
 TAROC is the same as the one in VJHC.

 The TAROC scheme achieves its compression gain by establishing state
 information at both ends of the link, i.e., at the compressor and at
 the decompressor. Header compression with TAROC can be characterized
 as an interaction between two state machines, one compressor machine
 and one decompressor machine, each instantiated once per context.

 The Efficient Protocol Independent Compression (EPIC-LITE) scheme,
 which had been discussed in detail in [19], is used to generate new
 ROHC profiles. This scheme takes as its input a list of fields in the
 protocol stack to be compressed, and for each field a choice of one
 or more compression techniques. Using this input EPIC-LITE derives a
 set of compressed header formats that can be used to quickly and
 efficiently compress and decompress headers.

 A TCP/IP profile is proposed to describe the behaviors of each field
 in TCP/IP header.

 In the rest of this draft, the control mechanism, TAROC-C, and the
 detailed compressed packet header format will be discussed in detail
 respectively. More specifically, the TCP congestion window tracking
 algorithm, the state machines in the header compression framework,
 and the logics of the compressor/decompressor, are described in
 TAROC-C.

5. The framework of TAROC-C

5.1. TCP congestion window tracking

5.1.1. General principle of congestion window tracking

 The general principle of congestion window tracking is as follows.
 The compressor imitates the congestion control behavior of TCP upon
 receiving each segment, in the meantime, estimates the congestion

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 window (cwnd) and the slow start threshold (ssthresh). Besides the

Liao, et al. [Page 9]

draft-ietf-rohc-tcp-taroc-04.txt

 requirement of accuracy, there are also some other requirements for
 the congestion window tracking algorithms:

 - Simplex link. The tracking algorithm SHOULD always only take
 Sequence Number or Acknowledgment Number of a one-way TCP
 traffic into consideration. It SHOULD NOT use Sequence Number
 and Acknowledgment Number of that traffic simultaneously.

 - Misordering resilience. The tracking algorithm SHOULD work
 well while receiving misordered segments.

 - Multiple-links. The tracking algorithm SHOULD work well when
 not all the one-way TCP traffics are crossing the same link.

 - Slightly overestimation. If the tracking algorithm cannot
 guarantee the accuracy of the estimated cwnd and ssthresh, it is
 RECOMMANDED that it produces a slightly overestimated one.

 The following sections will describe two congestion window tracking
 algorithms, which use Sequence Number and Acknowledgment Number of a
 one-way TCP traffic, respectively.

5.1.2. Congestion window tracking based on Sequence Number

 This algorithm (Algorithm SEQ) contains 3 states: SLOW-START,
 CONGESTION-AVOIDANCE, and FAST-RECOVERY, which are equivalent to the
 states in TCP congestion control algorithms. It maintains 2
 variables: cwnd and ssthresh.

 +-------------+
 | |
 ---------------->| CONGESTION- |
 | | AVOIDANCE |
 | ----| |<---
 +------------+ | +-------------+ |
 | | | |
 | SLOW-START | | |
 | | | +-------------+ |
 +------------+ | | | |
 | |-->| FAST- |----
 | | RECOVERY |
 ---------------->| |
 +-------------+

 Initially, this algorithm starts in state SLOW-START with ssthresh
 set to ISSTHRESH and cwnd set to IW.

 Upon receiving a segment, if it is the first segment, which is not

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 necessary to be the SYN segment, the algorithm sets the current
 maximum Sequence Number (CMAXSN) and the current minimum Sequence
 Number (CMINSN) to this segment's sequence number; otherwise, the
 algorithm takes a procedure according to the current state.

Liao, et al. [Page 10]

draft-ietf-rohc-tcp-taroc-04.txt

 - SLOW-START

 * If the new Sequence Number (NSN) is larger than CMAXSN,
 increase cwnd by the distance between NSN and CMAXSN, and
 update CMAXSN and CMINSN based on the following rules:
 CMAXSN = NSN
 if (CMAXSN - CMINSN) > cwnd)
 CMINSN = cwnd - CMAXSN;
 If the cwnd is larger than ssthresh, the algorithm transits to
 CONGESTION-AVOIDANCE state;

 * If the distance between NSN and CMAXSN is less than or equal
 to 3*MSS, ignore it;

 * If the distance is larger than 3*MSS, halve the cwnd and set
 ssthresh to MAX(cwnd, 2*MSS). After that, the algorithm
 transits into FAST-RECOVERY state.

 - CONGESTION-AVOIDANCE

 * If NSN is larger than CMAXSN, increase cwnd by ((NSN-
 CMAXSN)*MSS)/cwnd and then update CMAXSN and CMINSN based on
 the following rules:
 CMAXSN = NSN
 if (CMAXSN - CMINSN) > cwnd)
 CMINSN = cwnd - CMAXSN;

 * If the distance between NSN and CMAXSN is less than or equal
 to 3*MSS, ignore it;

 * If the distance is larger than 3*MSS, halve the cwnd and set
 ssthresh to MAX(cwnd, 2*MSS). After that, the algorithm
 transits into FAST-RECOVERY state.

 - FAST-RECOVERY

 * If NSN is larger than or equal to CMAXSN + cwnd, the algorithm
 transits into CONGESTION-AVOIDANCE state;

 * Otherwise, ignore it.

 In this algorithm, MSS is denoted as the estimated maximum segment
 size. The implementation can use the MTU of the link as an
 approximation of this value. ISSHRESH and IW are the initial values
 of ssthresh and cwnd, respectively. ISSTHRESH MAY be arbitrarily
 high. IW SHOULD be set to 4*MSS.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

5.1.3. Congestion window tracking based on Acknowledgment Number

Liao, et al. [Page 11]

draft-ietf-rohc-tcp-taroc-04.txt

 +-------------+
 | |
 ---------------->| CONGESTION- |
 | | AVOIDANCE |
 | ----| |<---
 +------------+ | +-------------+ |
 | | | |
 | SLOW-START | | |
 | | | +-------------+ |
 +------------+ | | | |
 | |-->| FAST- |----
 | | RECOVERY |
 ---------------->| |
 +-------------+

 This algorithm (Algorithm ACK) maintains 3 states: SLOW-START,
 CONGESTION-AVOIDANCE and FAST-RECOVERY, which are equivalent to the
 states in TCP congestion control algorithms. It also maintains 2
 variables: cwnd and ssthresh.

 Initially, this algorithm starts in state SLOW-START with ssthresh
 set to ISSTHRESH and cwnd set to IW.

 Upon receiving a segment, if it is the first segment, which is not
 necessary to be the SYN segment, the algorithm sets the current
 maximum Acknowledgment Number (CMAXACK) to this segment's
 acknowledgment number; otherwise, the algorithm takes a procedure
 according to the current state.

 - SLOW-START

 * If the new Acknowledgment Number (NEWACK) is larger than
 CMAXACK, increase cwnd by the distance between NEWACK and
 CMAXACK, set duplicate ack counter (NDUPACKS) to 0, and update
 CMAXACK accordingly; If the cwnd is larger than ssthresh, the
 algorithm transits to CONGESTION-AVOIDANCE state;

 * If NEWACK is equal to CMAXACK, increase the NDUPACKS by 1. If
 NDUPACKS is greater than 3, halve the cwnd and set ssthresh to
 MAX(cwnd, 2*MSS). Consequently, the algorithm transits into
 FAST-RECOVERY state;

 * Otherwise, set NDUPACKS to 0.

 - CONGESTION-AVOIDANCE

 * If NEWACK is larger than CMAXACK, increase cwnd by ((NEWACK-
 CMAXACK)*MSS)/cwnd, set NDUPACKS to 0 and update CMAXACK
 accordingly;

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 * If NEWACK is equal to CMAXACK, increase NDUPACKS by 1. If
 NDUPACKS is greater than 3, halve the cwnd and set ssthresh to

Liao, et al. [Page 12]

draft-ietf-rohc-tcp-taroc-04.txt

 MAX(cwnd, 2*MSS). After that, the algorithm transits into
 FAST-RECOVERY state;

 * Otherwise, set NDUPACKS to 0.

 - FAST-RECOVERY

 * If NEWACK is larger than CMAXACK, set NDUPACKS to 0.
 Consequently, the algorithm transits into CONGESTION-AVOID
 state;

 * Otherwise, ignore it.

 In this algorithm, MSS is denoted as the estimated maximum segment
 size. The implementation can use the MTU of the link as an
 approximation of this value. ISSHRESH and IW are the initial values
 of ssthresh and cwnd, respectively. ISSTHRESH MAY be arbitrarily
 high. IW SHOULD be set to 4*MSS.

5.1.4. Further discussion on congestion window tracking

 In some cases, it is inevitable for the tracking algorithms to
 overestimate the TCP congestion window. Also, it SHOULD be avoided
 that the estimated congestion window gets significantly smaller that
 the actual one. For all of these cases, TAROC simply applies two
 boundaries on the estimated congestion window size. One of the two
 boundaries is the MIN boundary, which is the minimum congestion
 window size and whose value is determined according to the [18]; the
 other boundary is the MAX boundary, which is the maximum congestion
 window size. There are two possible approaches to setting this MAX
 boundary. One is to select a commonly used maximum TCP socket buffer
 size. The other one is to use the simple equation W=sqrt(8/3*l),
 where W is the maximum window size and l is the typical packet loss
 rate.

 If ECN mechanism is deployed, according to [13] and [14], the TCP
 sender will set the CWR (Congestion Window Reduced) flag in the TCP
 header of the first new data packet sent after the window reduction,
 and the TCP receiver will reset the ECN-Echo flag back to 0 after
 receiving a packet with CWR flag set. Thus, the CWR flag and the
 ECN-Echo flag's transition from 1 to 0 can be used as another
 indication of congestion combined with other mechanisms mentioned in
 the tracking algorithm.

5.2. Compressor/decompressor state management with TAROC-C

5.2.1. Compressor states

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 There are three compressor states in TAROC: Initialization and
 Refresh (IR) state, First Order (FO), and Second Order (SO) states.
 The compressor starts in the lowest compression state (IR) and

Liao, et al. [Page 13]

draft-ietf-rohc-tcp-taroc-04.txt

 transits gradually to the higher compression state. The compressor
 will always operate in the highest possible compression state, under
 the constraint that the compressor is sufficiently confident that
 the decompressor has the information necessary to decompress a
 header, which is compressed according to the state.

 +----------+
 | |
 +----------+ | FO State | +----------+
 | | <--------> | | <--------> | |
 | IR State | +----------+ | SO State |
 | | <----------------------------------> | |
 +----------+ +----------+

5.2.1.1. Initialization and Refresh (IR) state

 The purpose of IR state is to initialize or refresh the static parts
 of the context at the decompressor. In this state, the compressor
 sends full header periodically with an exponentially increasing
 period, which is so-called compression slow-start [3]. The
 compressor leaves the IR state only when it is confident that the
 decompressor has correctly received the static information.

 To compress short-lived TCP transfers more efficiently, the
 compressor should speed up the initial process. The compressor
 enters the IR state when it receives the packet with SYN bit set and
 sends IR packet. When it receives the first data packet of the
 transfer, it should transit to FO state because that means the
 decompressor has received the packet with SYN bit set and
 established the context successfully at its side. Using this
 mechanism can significantly reduce the number of context initiation
 headers.

5.2.1.2. First Order (FO) State

 The purpose of FO state is to efficiently transmit the difference
 between the two consecutive packets in the TCP stream. When
 operating in this state, the compressor and the decompressor should
 have the same context. Only compressed packet is transmitted from
 the compressor to the decompressor in this state. The compressor
 transits back to IR state only when it finds that the context of
 decompressor may be inconsistent, or there are remarkable changes in
 the TCP/IP header.

5.2.1.3. Second Order (SO) State

 The purpose of SO state is to efficiently transmit the fixed-payload

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 data. The compressor enters this state when it is sufficiently
 confident that the decompressor has got the constant payload size of
 the data transferring.

Liao, et al. [Page 14]

draft-ietf-rohc-tcp-taroc-04.txt

 The compressor leaves this state and transits to the FO state when
 the current payload size no longer conforms to the constant payload.
 The compressor transits back to IR state only when it finds that the
 context of decompressor may be inconsistent, or there are remarkable
 changes in the TCP/IP header.

5.2.2. Decompressor states

 The decompressor starts in its lowest compression state, "No
 Context" and gradually transits to higher state, "Full Context". The
 decompressor state machine normally never leaves the "Full Context"
 state once it has entered this state.

 +--------------+ +--------------+
 | No Context | <---> | Full Context |
 +--------------+ +--------------+

5.3. Compressor logic in TAROC-C

 In TAROC-C, the compressor will start in the IR state and perform
 different logics in different states. The following sub-sections
 will describe the logic for each compressor sate in detail.

5.3.1. IR state

 The operations of compressor in IR state can be summarized as
 follows:

 a) Upon receiving a packet, the compressor sends IR or IR-DYN packet
 on the following conditions: 1) if it is the turn to send full
 header packet according to compression slow-start, i.e. after
 sending F_PERIOD compressed packets; 2) if the packet to be sent
 is a retransmission of the packet in VSW and it was sent as IR or
 IR-DYN packet previously. Otherwise, the compressor compresses
 the packet using W-LSB encoding. If the compressor enters the IR
 state for the first time or the static part of the TCP flow has
 changed, it will send IR packet. Otherwise, it will send IR-DYN
 packet because the decompressor has known the static part.

 b) The packet is added into VSW as a potential reference after it
 has been sent out. The compressor then invokes the Algorithm SEQ
 and Algorithm ACK to track the congestion windows of the two one-
 way traffics with different directions in a TCP connection.
 Suppose that the estimated congestion windows are cwnd_seq and
 cwnd_ack, while the estimated slow start thresholds are
 ssthresh_seq and ssthresh_ack, respectively. Let W(cwnd_seq,
 ssthresh_seq, cwnd_ack, ssthresh_ack) = K*MAX(MAX(cwnd_seq,
 2*ssthresh_seq), MAX(cwnd_ack, 2*ssthresh_ack)). If the size of
 VSW is larger than W(cwnd_seq, ssthresh_seq, cwnd_ack,

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 ssthresh_ack), the VSW can be shrunk. K is an implementation
 parameter that will be further discussed in Section 5.6.

Liao, et al. [Page 15]

draft-ietf-rohc-tcp-taroc-04.txt

 c) After sending F_PERIOD compressed packets, F_PERIOD SHOULD be
 doubled. If it gets larger than W(cwnd_seq, ssthresh_seq,
 cwnd_ack, ssthresh_ack), the compressor transits to FO or SO
 state. If the compressor finds that the payload size of
 consecutive packets is a constant value and one of such packets
 is removed from the VSW, which means the decompressor has known
 the exact value of the constant size, it may transit to SO state.
 Otherwise it will transit to the FO state.

5.3.2. FO state

 The operations of the compressor in the FO state can be summarized
 as follows:

 a) Upon receiving a packet, if it falls behind the VSW, i.e. it is
 older than all the packets in VSW; the compressor transits to IR
 state. Otherwise, the compressor compresses it using W-LSB
 encoding and sends it.

 b) The packet is added into VSW as a potential reference after it has
 been sent out. The compressor then invokes the Algorithm SEQ and
 Algorithm ACK to track the congestion windows of the two one-way
 traffics with different directions in a TCP connection. Suppose
 that the estimated congestion windows are cwnd_seq and cwnd_ack,
 while the estimated slow start thresholds are ssthresh_seq and
 ssthresh_ack, respectively. Let W(cwnd_seq, ssthresh_seq, cwnd_ack,
 ssthresh_ack) = K*MAX(MAX(cwnd_seq, 2*ssthresh_seq), MAX(cwnd_ack,
 2*ssthresh_ack)). If the size of VSW is larger than W(cwnd_seq,
 ssthresh_seq, cwnd_ack, ssthresh_ack), the VSW can be shrunk. K is
 also an implementation parameter, which can be set to the same
 value as in the IR state.

 c) If the VSW contains only one packet, which means there is a long
 jump in the packet sequence number or acknowledge number, the
 compressor will transit to the IR state and re-initialize the
 algorithm for tracking TCP congestion window. Here, a segment
 causes a long jump when the distance between its sequence number
 (or acknowledgment number) and CMAXSN (or CMAXACK) is larger than
 the estimated congestion window size, i.e.,

 |sequence number (acknowledgement number) CMAXSN (CMAXACK)| >
 estimated congestion window size.

 d) If the compressor finds that the payload size of consecutive
 packets is a constant value and one of such packets has been
 removed from the VSW, which means the decompressor has known the
 exact value of the constant size, it may transit to the SO state.

 e) If the static context of transfers changed, the compressor will

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 transit to the IR state and re-initialize the algorithms for
 tracking TCP congestion window.

5.3.3. SO state

Liao, et al. [Page 16]

draft-ietf-rohc-tcp-taroc-04.txt

 The operations of the compressor in the SO state can be summarized
 as follows:

 a) Upon receiving a packet, if it falls behind the VSW, i.e. it is
 older than all the packets in VSW; the compressor transits to IR
 state. Otherwise, the compressor compresses it using fixed-payload
 encoding and sends it.

 b) The packet is added into VSW as a potential reference after it has
 been sent out. The compressor then invokes the Algorithm SEQ and
 Algorithm ACK to track the congestion windows of the two one-way
 traffics with different directions in a TCP connection. Suppose
 that the estimated congestion windows are cwnd_seq and cwnd_ack,
 while the estimated slow start thresholds are ssthresh_seq and
 ssthresh_ack, respectively. Let W(cwnd_seq, ssthresh_seq, cwnd_ack,
 ssthresh_ack) = K*MAX(MAX(cwnd_seq, 2*ssthresh_seq), MAX(cwnd_ack,
 2*ssthresh_ack)). If the size of VSW is larger than W(cwnd_seq,
 ssthresh_seq, cwnd_ack, ssthresh_ack), the VSW can be shrunk. K is
 an implementation parameter, which can be set to the same value as
 in the IR state.

 c) If the VSW contains only one packet, which means there is a long
 jump in the packet sequence number or acknowledge number, the
 compressor will transit to the IR state and re-initialize the
 algorithms for tracking TCP congestion window.

 d) If the payload size of the packets in VSW doesn't keep constant,
 the compressor transits to the FO state.

 e) If the static context of transfers changed, the compressor will
 transit to the IR state and re-initialize the algorithms for
 tracking TCP congestion window.

5.4. Decompressor logic in TAROC-C

 The logic of the decompressor is simpler compared to the compressor.

5.4.1. No Context State

 The decompressor starts in this state. Upon receiving an IR or IR-
 DYN packet, the decompressor should verify the correctness of its
 header by TCP checksum. If the verification succeeds, the
 decompressor will update the context and use this packet as the
 reference packet. After that, the decompressor will pass it to the
 system's network layer and transit to Full Context State. Conformed
 to ROHC framework [10], only IR or IR-DYN packets may be
 decompressed in No Context state.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

5.4.2. Full Context State

Liao, et al. [Page 17]

draft-ietf-rohc-tcp-taroc-04.txt

 The operations of decompressor in Full Context state can be
 summarized as follows:

 a) Upon receiving an IR or IR-DYN packet, the decompressor should
 verify the correctness of its header by TCP checksum. If the
 verification succeeds, the decompressor will update the context and
 use this packet as the reference packet. Consequently, the
 decompressor will convert the packet into the original packet and
 pass it to the network layer of the system.

 b) Upon receiving the other type of packet, the decompressor will
 decompress it. After that, the decompressor MUST verify the
 correctness of the decompressed packet by the TCP checksum. If the
 verification succeeds, the decompressor passes it to the system's
 network layer. Then the decompressor will use it as the reference
 value if this packet is not older than the current reference packet.

 c) If consequent N packets fail to be decompressed, the decompressor
 should transit downwards to No Context State. N is an implementation
 parameter that will be further discussed in Section 5.6.

5.5. Modes of operation

 There are three modes in ROHC framework, called Unidirectional, Bi-
 directional Optimistic, and Bi-directional Reliable mode,
 respectively. The mode transitions are conformed to ROHC framework.
 However, the operations of each mode are different.

5.5.1. Unidirectional mode -- U-mode

 When in U-mode, packets are sent in one direction only: from
 compressor to decompressor. Therefore, feedbacks from decompressor
 to the compressor are unavailable under this mode.

 In the U-mode, the compressor and decompressor logic is the same as
 the discussion in section 5.3 and 5.4.

5.5.2. Bi-directional Optimistic mode -- O-mode

 When in O-mode, a feedback channel is used to send error recovery
 requests and (optionally) acknowledgments of significant context
 updates from the decompressor to the compressor. In this mode, the
 VSW will be shrunk more efficiently.

5.5.2.1. Compressor states and logic (O-mode)

 Following rules should be combined with the action defined in
section 5.3.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 In the IR state, the compressor can transit to the FO or SO state
 once it receives a valid ACK(O) for an IR packet sent (an ACK(O) can
 only be valid if it refers to a packet sent earlier). If the packet

Liao, et al. [Page 18]

draft-ietf-rohc-tcp-taroc-04.txt

 referred by the feedback is in the VSW, the compressor will remove
 the packets older than the referred packet from the VSW window.
 Because ACK(O) means that the packet referred by ACK(O) has been the
 reference of the decompressor, the compressor doesn't need to keep
 older packets.

 If the compressor is in the FO or SO state, it will remove the
 packets older than the referred packet from the VSW window.

 Upon receiving an NACK(O), the compressor transits back to IR state.

5.5.2.2. Decompressor states and logic (O-mode)

 The decompression states and the state transition logic are the same
 as in the Unidirectional case (see section 5.5.1.). What differs is
 the feedback logic.

 Below, rules are defined stating which feedback to use when.

 When an IR packet passes the verification, send an ACK(O). When an
 IR-DYN packet or other packet is correctly decompressed, optionally
 send an ACK(O). When any packet fails the verification, send an
 NACK(O).

5.5.3. Bi-directional Reliable mode -- R-mode

 The R-mode are a more intensive usage of the feedback channel and a
 stricter logic at both the compressor and the decompressor that
 prevents loss of context synchronization between the compressor and
 decompressor except for very high residual bit error rates. Feedback
 is sent to acknowledge all context updates. In this mode, the VSW
 will be shrunk with the highest efficiency.

5.5.3.1. Compressor states and logic (R-mode)

 Following rules should be reparation to the action defined in
section 5.3.

 In IR state, the compressor should transit to the FO or SO state
 only when it receives a valid ACK(R) for an IR or IR-DYN packet sent
 (an ACK(R) can only be valid if it refers to an packet sent earlier).
 If the packet referred by the feedback is in the VSW, the compressor
 will remove the packets older than the referred packet from the VSW
 window. Because ACK(R) means that the packet referred by ACK(R) has
 been the reference of the decompressor; the compressor doesn't need
 to keep older packets.

 If the compressor is in the FO or SO state, when it receives a valid
 ACK(R), it will remove the packets older than the referred packet

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 from the VSW window. In this mode, the compressor need not use
 window tracking, because feedback can shrink VSW efficiently and
 robustly.

Liao, et al. [Page 19]

draft-ietf-rohc-tcp-taroc-04.txt

 Upon receiving an NACK(O), the compressor transits back to IR state.

5.5.3.2. Decompressor states and logic (R-mode)

 Below, rules are defined stating which feedback to use when.

 . When a packet is correctly decompressed and updates the context,
 send an ACK(R).

 . When any packet fails the verification, send a NACK(R).

 The frequency of updating context will be discussed in section 5.6.

5.6. Implementation issues

5.6.1. Determine the value K

 As mentioned above, the VSW SHOULD be shrunk when its size gets
 larger than K*MAX(MAX(cwnd_seq, 2*ssthresh_seq), MAX(cwnd_ack,
 2*ssthresh_ack)). Since the Fast Recovery algorithm was introduced
 in TCP, several TCP variants had been proposed, which are different
 only in the behaviors of Fast Recovery. Some of them need several
 RTTs to be recovered from multiple losses in a window. Ideally, they
 may send L*W/2 packets in this stage, where L is the number of lost
 packets and W is the size of the congestion window where error
 occurs. Some recent work [15] on improving TCP performance allows to
 transmit packets even when receiving duplicate acknowledgments. Due
 to the above concerns, it'd better keep K large enough so as to
 prevent shrinking VSW without enough confidence that corresponding
 packets had been successfully received.

 Considering the bandwidth-limited environments and the limited
 receiver buffer, a practical range of K is around 1~2. From the
 simulation results, K=1 is good enough for most cases.

5.6.2. Determine the value N

 We should distinguish out of synchronization from the packet errors
 cause by the link. So considering the error condition of the link, N
 should be higher than the packet burst error length, a practical
 range of N is around 8~10.

5.6.3. Determine the frequency of updating context

 The choice of the frequency of updating context, ACK(R), is a
 balance between the efficiency and robustness, i.e. sending ACK(R)
 more frequently improves the compression robustness but adds more
 system overhead, and the vice versa. From a practical view, the

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 ACK(R) SHOULD be sent for every 4~8 successfully decompressed
 packets.

Liao, et al. [Page 20]

draft-ietf-rohc-tcp-taroc-04.txt

6. Coding scheme and compressed packet header format

 Following the requirement of TCP/IP header compression [15], TAROC
 should fit into the ROHC framework. Thus, TAROC will conform to the
 general format and the reserved packet types defined in [10]. A
 compressed header format had been discussed in [20] in our past work.
 As stated in [19], EPIC-LITE is a generic encoding scheme which can
 automatically generate efficient packet format for the compressed
 header. In this draft, TAROC adopts EPIC-LITE as the coding
 framework. To use the EPIC-LITE coding framework, a suitable TCP/IP
 profile is also needed as the input. In the following of this
 section, we will discuss that in detail.

6.1. Window-based LSB encoding and fixed-payload encoding

 As stated above, the change patterns of several TCP fields (for
 example, Sequence Number, Acknowledgement Number, Window, etc.) are
 completely different from the ones of RTP, and are very hard to
 predict. Thus, Window-based LSB encoding, which does not assume the
 linear changing pattern of the target header fields, is used in
 TAROC to encode those TCP fields both efficiently and robustly.

 The Window-based LSB encoding (W-LSB encoding) used in TAROC is a
 slightly modified version of [10]. The major modifications can be
 summarized as follows:

 - For reference selection, the decompressor always choose the
 one which is the last received non-retransmission value or
 uncompressed value that had passed the TCP checksum successfully.

 - After sending a value v (compressed or uncompressed), the
 compressor always adds v into the VSW since each TCP segment is
 protected by the TCP checksum.

 The W-LSB encoding will be applied to several fields, such as IP-ID,
 Sequence Number, Acknowledgment Number, Window fields, TCP Timestamp
 option, etc.

 For some applications, such as bulk data transferring, etc., the
 payload size of each packet is usually a constant value, e.g. 1460
 bytes. In such a case, the sequence number and acknowledgment number
 can be represented as the following equation:

 SEQ (or ACK) = m * MTU + n.

 If all the packets in VSW have the same 'n', only 'm' need be
 transmitted to the decompressor. The decompressor can obtain the
 sequence number or acknowledgment number after correctly decoding
 'm', and use them as the reference values. This encoding method is

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 called fixed-payload encoding.

6.2. The framework of EPIC-LITE scheme

Liao, et al. [Page 21]

draft-ietf-rohc-tcp-taroc-04.txt

 The detailed information about EPIC-LITE, include the structure of
 the EPIC-LITE compressed headers, the overview of the input language
 for EPIC-LITE, the packet types available to EPIC-LITE, the library
 of EPIC-LITE encoding methods, and how to create a new ROHC profile,
 are described in [19].

6.3. ROHC Profile for compression of TCP/IP

 This session describes a ROHC profile for the compression of TCP/IP.

 Note that the probabilities listed for each encoding method are
 initial estimates only. These need to be refined with more accurate
 values from genuine TCP/IP streams.

 The profile for TCP/IP compression is given below:

 only uses the following toolbox methods:
 - STATIC-KNOWN
 - STATIC-UNKNOWN
 - STATIC
 - IRREGULAR
 - LSB
 - VALUE
 - MSN-IRREGULAR
 - MSN-LSB
 - C

 profile_identifier 0xFFFF
 max_formats 200
 max_sets 1
 bit_alignment 8
 npatterns 224
 CO_packet TCP-IP

 TCP-IP = IPv4-header
 TCP-header
 msn

 msn = C(MSN-LSB(4,-1,90%)) | C(MSN-LSB(7,-1,9%)) |
 MSN-IRREGULAR(16,1%)

 IPv4-header = version
 header_len
 tos
 ecn

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 length
 ip-id
 rf_flag
 df_flag

Liao, et al. [Page 22]

draft-ietf-rohc-tcp-taroc-04.txt

 mf_flag
 offset
 ttl
 protocol
 ip_chksum
 src_address
 dst_address

 version = STATIC-KNOWN(4,4)

 header_len = STATIC-KNOWN(4,5)

 tos = C(STATIC(99%)) | IRREGULAR(6,1%)

 ecn = IRREGULAR(2,100%)

 length = IRREGULAR(16)

 ip-id = C(LSB(4,-1,90%)) | C(LSB(6,-1,8%)) |
 C(LSB(8,-1,1%)) | IRREGULAR(16,1%)

 rf_flag = VALUE(1,0,100%)

 df_flag = IRREGULAR(1,100%)

 mf_flag = VALUE(1,0,99%) | VALUE(1,1,1%)

 offset = C(STATIC(99%)) | IRREGULAR(13,1%)

 ttl = C(STATIC(99%)) | IRREGULAR(8,1%)

 protocol = STATIC-KNOWN(8,6)

 ip_chksum = IRREGULAR(16,100%)

 src_address = STATIC-UNKNOWN(32)

 dst_address = STATIC-UNKNOWN(32)

 TCP-header = source_port
 dest_port
 seqno
 ackno
 data_offset
 flags
 window
 tcp_chksum
 urg_ptr

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 source_port = STATIC-UNKNOWN(16)

 dest_port = STATIC-UNKNOWN(16)

Liao, et al. [Page 23]

draft-ietf-rohc-tcp-taroc-04.txt

 seqno = C(LSB(8,63,80%)) | C(LSB(14,127,10%)) |
 C(LSB(20,1023,5%)) | IRREGULAR(32,5%)

 ackno = C(LSB(8,-1,80%)) | C(LSB(14,-1,10%)) |
 C(LSB(20,-1,5%)) | IRREGULAR(32,5%)

 data_offset = IRREGULAR(4,100%)

 window = C(STATIC(80%)) | C(LSB(12,63,10%)) |
 IRREGULAR(16,10%)

 tcp_chksum = IRREGULAR(16,100%)

 urg_ptr = C(STATIC(99%)) | IRREGULAR(16,1%)

 flags = reserved
 cwr
 ece
 urg
 ack
 psh
 rst
 syn
 fin

 reserved = C(STATIC(90%)) | IRREGULAR(4,10%)

 cwr = VALUE(1,0,80%) | VALUE(1,1,20%)

 ece = VALUE(1,0,80%) | VALUE(1,1,20%)

 urg = VALUE(1,0,99%) | VALUE(1,1,1%)

 ack = VALUE(1,1,99%) | VALUE(1,0,1%)

 psh = IRREGULAR(1,100%)

 rst = VALUE(1,0,99%) | VALUE(1,1,1%)

 syn = VALUE(1,0,99%) | VALUE(1,1,1%)

 fin = VALUE(1,0,95%) | VALUE(1,1,5%)

7. Conclusions

 Based on the requirements proposed in [16] and [17], a robust header

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 compression scheme should be of transparency, ubiquity, and
 efficiency. It must be able to support both IPv4 and Ipv6 packet and
 tolerate error propagation. Different types of link delay and the

Liao, et al. [Page 24]

draft-ietf-rohc-tcp-taroc-04.txt

 misordering of packets should be addressed. In addition, multiple
 links and unidirectional link should be supported in the proposed
 header compression scheme. Particularly for TCP/IP, the header
 compression scheme should compress TCP SACK and Timestamp options.

 From the above analysis, it can be seen that all these requirements
 can be satisfied in our proposed TAROC.

 Considering the behavior of TCP protocol itself, even the packets
 misordering occurs between the compressor and the decompressor, a
 good performance can still be achieved in TAROC.

 Note that in our scheme, we need to select a packet with correct
 checksum of the whole packet as a reference. In this way, it does
 not require link layer to treat the header and payload of the packet
 separately.

 Simulations results (Appendix A) demonstrate the effectiveness of
 control mechanism TAROC-C and corresponding header compression
 scheme, TAROC of TAROC.

8. Acknowledgments

 When designing this protocol, earlier header compression ideas
 described in [2], [3] and [10] have been import sources of knowledge.

 This draft also benefited from discussion on the ROHC mailing list
 about the TAROC-C mechanism.

9. Security considerations

 Security issues are not considered in this memo.

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 25]

draft-ietf-rohc-tcp-taroc-04.txt

10. Authors' addresses

 HongBin Liao Tel: +86 10 62617711-3156
 Email: i-hbliao@microsoft.com

 Qian Zhang Tel: +86 10 62617711-3135
 Email: qianz@microsoft.com

 Wenwu Zhu Tel: +86 10 62617711-5405
 Email: wwzhu@microsoft.com

 Ya-Qin Zhang Tel: +86 10 62617711
 Email: yzhang@microsoft.com

 Microsoft Research Asia
 Beijing Sigma Center
 No.49, Zhichun Road, Haidian District
 Beijing 100080, P.R.C.

 Richard Price Tel: +44 1794 833681
 Email: richard.price@roke.co.uk

 Robert Hancock Tel: +44 1794 833601
 Email: robert.hancock@roke.co.uk

 Stephen McCann Tel: +44 1794 833341
 Email: stephen.mccann@roke.co.uk

 Mark A West Tel: +44 1794 833311
 Email: mark.a.west@roke.co.uk

 Abigail Surtees Tel: +44 1794 833131
 Email: abigail.surtees@roke.co.uk

 Paul Ollis Tel: +44 1794 833168
 Email: paul.ollis@roke.co.uk

 Roke Manor Research Ltd
 Romsey, Hants, SO51 0ZN
 United Kingdom

11. References

 1 S. Bradner, "The Internet Standards Process -- Revision 3", BCP 9,
RFC 2026, October 1996.

 2 V. Jacobson, "Compressing TCP/IP headers for low-speed serial

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026

 links", RFC 1144, February 1990.

 3 M. Degermark, B. Nordgren, and S. Pink, "IP Header Compression",
RFC 2507, February 1999.

Liao, et al. [Page 26]

https://datatracker.ietf.org/doc/html/rfc1144
https://datatracker.ietf.org/doc/html/rfc2507

draft-ietf-rohc-tcp-taroc-04.txt

 4 M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, "TCP Selective
 Acknowledgment Options", RFC 2018, October 1996.

 5 S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, "An Extension
 to the Selective Acknowledgement (SACK) Option for TCP", RFC 2883,
 July 2000.

 6 V. Jacobson, R. Braden, and D. Borman, "TCP Extensions for High
 Performance", RFC 1323, May 1992.

 7 S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 8 V. Jacobson, "Fast Retransmit", Message to the end2end-interest
 mailing list, April 1990.

 9 M. Degermark, M. Engan, B. Nordgren, and Stephen Pink, " Low-loss
 TCP/IP header compression for wireless networks", In the
 Proceedings of MobiCom, 1996.

 10 Bormann (ed.), et al., "RObust Header Compression (ROHC)", RFC
3095, July 2001.

 11 V. Jacobson, "Congestion avoidance and control", In ACM SIGCOMM
 '88, 1988.

 12 M. Allman, V. Paxson, and W. R. Stevens, "TCP Congestion Control",
RFC 2581, April 1999.

 13 K. Ramakrishnan, S. Floyd, "A Proposal to add Explicit Congestion
 Notification (ECN) to IP", RFC 2481, January 1999.

 14 K. K. RamaKrishnan, Sally Floyd, D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", Internet Draft
 (work in progress), June, 2001. <draft-ietf-tsvwg-ecn-04.txt>

 15 L-E. Jonsson, "Requirements for ROHC IP/TCP header compression",
 Internet Draft (work in progress), June 20, 2001.

 16 M. Allman, H. Balakrishnan, and S. Floyd, "Enhancing TCP's Loss
 Recovery Using Limited Transmit", Internet Draft (work in
 progress), August 2000. <draft-ietf-tsvwg-limited-xmit-00.txt>

 17 M. Degermark, "Requirements for robust IP/UDP/RTP header
 compression", RFC 3096, July 2001.

 18 M. Allman, S. Floyd, and C. Partridge, "Increasing TCP's Initial
 Window", Internet Draft (work in progress), May 2001. <draft-

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2481
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-limited-xmit-00.txt
https://datatracker.ietf.org/doc/html/rfc3096
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-initwin-00.txt

ietf-tsvwg-initwin-00.txt>

 19 Richard Price et al, "Framework for EPIC-LITE", <draft-ietf-rohc-
epic-lite-00.txt>, Internet Draft (work in progress), Oct. 2001.

Liao, et al. [Page 27]

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-initwin-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rohc-epic-lite-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rohc-epic-lite-00.txt

draft-ietf-rohc-tcp-taroc-04.txt

 20 H. Liao, Q. Zhang, W. Zhu, and Y.-Q. Zhang, TCP-Aware RObust
 Header Compression (TAROC)÷, Internet Draft (work in progress),
 Nov. 2001. <draft-ietf-rohc-taroc-03.txt>

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rohc-taroc-03.txt

Liao, et al. [Page 28]

12. Intellectual property considerations

 The TCP-Aware Robust header Compression Control mechanism, TAROC-C,
 and the Efficient Protocol Independent Compression scheme, EPIC-LITE,
 do not have an IPR statement.

Appendix A - Simulation results

 To study the performance of various TCP/IP header compression
 schemes, we have simulated VJHC, IPHC and TAROC schemes on NS-2
 network simulator. The simulation result in gained by the TAROC
 coding scheme discussed in [20].

A.1. Simulation topology

 +------------+ +--------+ +-------------+
	------------>		------------>	
Fixed Host	8Mb 100ms	Router	Wireless link	Mobile Host
	<------------		<------------	
 +------------+ +--------+ +-------------+

 In this scenario, a fixed host is connected to the router with a WAN
 link (8Mb, 100ms). The queue size on the router is 6. The
 communication channel between the mobile host and the router
 simulates the wireless link, which has a wide range of bandwidth
 from 384kb to 9.6kb and a delay of 100ms. The bit error rate (BER)
 on this wireless link is from 1e-7 to 1e-3. TCP traffic is conveyed
 from the fixed host to the mobile host.

 It is known that, in wireless link under a high bit-error-rate
 situation, a smaller MTU is better in terms of the increasing chance
 of successful transmission. So different MTUs are selected under
 different BER conditions in our simulation.

A.2. Tested header compression schemes
 Five header compression schemes in our simulation:

 NONE This scheme refers to the situation when no header
 compression is employed on the wireless link.

 VJHC This scheme employs RFC1144 on the wireless link. It
 assumes that the compressed header size is 4.

 IPHC This scheme employs RFC2507 on the wireless link, but
 without TWICE algorithm. The characteristics of the
 feedback channel are the same as the forward wireless
 link. It assumes that the compressed header size is 5.

https://datatracker.ietf.org/doc/html/rfc1144
https://datatracker.ietf.org/doc/html/rfc2507

Liao, et al. [Page 29]

draft-ietf-rohc-tcp-taroc-04.txt

 TAROC It refers to the scheme proposed in this Internet Draft.
 The compressed header size is determined by the scheme
 described in this draft.

 IDEAL This scheme simulates the situation where header
 compression does not introduce additional errors. It
 assumes that the compressed header size is 4, the same one
 as in the VJHC.

A.3. Simulations and results

 Based upon these configurations, enormous simulations have been
 tested. The followings are the results of several TCP variants,
 Tahoe, Reno and Sack on the wireless link with wide range of
 bandwidth, BER and MTU.

 Wireless link characteristics:

 * Bandwidth: 384kb, 114kb, 64kb, 9.6kb

 * Delay: 100ms

 * BER: 1e-8, 3e-8, 1e-7, 3e-7, 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4

 TCP Variants: Tahoe, Reno, Sack

 Header compression schemes: NONE, VJHC, IPHC, TAROC, IDEAL

 The following lists some of the results: 384kb for Tahoe, 114kb for
 Sack, 64kb for Reno, and 9.6kb for Sack.

A.3.1. 384kb

 Tahoe
 +----+------+-----------+-----+------+------+-----+-----+
 |BER |MTU |Performance|NONE | VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-8|576 |Throughput |25470| 25457| 25179|25587|25603|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-0.05 |-1.14 |0.46 |0.52 |
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-8|576 |Throughput |25770| 25764| 25696|25819|25839|
 | | | (Byte/s) | | | | | |

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | -0.02| -0.29| 0.19|0.27 |
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+

Liao, et al. [Page 30]

draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+-----+------+------+-----+-----+
 |BER |MTU |Performance|NONE | VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-7|576 |Throughput |24564| 24185| 23550|24687|24717|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | -1.54| -4.12| 0.50| 0.62|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-7|576 |Throughput |22256| 21240| 20216|22365|22407|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | -4.56| -9.17| 0.50| 0.68|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-6|576 |Throughput |16703| 14638| 13840|16930|17027|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-12.36|-17.14| 1.36| 1.94|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-6|576 |Throughput | 9895| 7987 | 8086 |10255|10266|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-19.04|-18.03| 3.95| 4.06|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-5|296 |Throughput | 3531| 2803 | 2950 | 3825| 3826|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-20.62|-16.45| 8.33| 8.35|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-5|296 |Throughput | 1731| 1181 | 1317 | 1900| 1901|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-31.77|-23.92| 9.76| 9.82|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-4|168 |Throughput | 504 | 342 | 366| 635| 636|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-32.14|-27.38|25.99|26.19|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-4| 96 |Throughput | 97 | 80 | 91 | 202| 203|
 | | | (Byte/s) | | | | | |

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-17.53| -6.19|108.2|109.3|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+

Liao, et al. [Page 31]

draft-ietf-rohc-tcp-taroc-04.txt

A.3.2. 114kb

 Sack
 +----+------+-----------+-----+------+------+-----+-----+
 |BER |MTU |Performance|NONE | VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-8|576 |Throughput |12105| 12636| 12605|12660|12662|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | 4.39| 4.13 | 4.58| 4.60|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-8|576 |Throughput |12083| 12565|12474 |12642|12643|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | 3.99 | 3.24 | 4.63| 4.63|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-7|576 |Throughput |12030| 12329| 12165|12582|12587|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | 2.49 | 1.12 | 4.59| 4.63|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-7|576 |Throughput |11856| 11687|11326 |12392|12411|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 | -1.43| -4.47| 4.52| 4.68|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-6|576 |Throughput |11213| 9871 | 9177 |11737|11740|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-11.97|-18.16| 4.63| 4.70|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-6|576 |Throughput | 9258| 6578 | 6206 | 9719| 9784|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-28.95|-32.97| 4.98| 5.68|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-5|296 |Throughput | 3883| 2622 | 2587 | 4236| 4239|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-32.47|-33.38| 9.09| 9.17|
 | | | (%s) | | | | | |

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+-----+------+------+-----+-----+

Liao, et al. [Page 32]

draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+-----+------+------+-----+-----+
 |BER |MTU |Performance|NONE | VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-5|296 |Throughput | 1786| 1111 | 1214 | 2000| 2012|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-37.79|-32.03|11.98|12.65|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |1e-4|168 |Throughput | 489 | 325 | 361 | 640| 652|
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-33.54|-26.18|30.88|33.33|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+
 |3e-4| 96 |Throughput | 92 | 81 | 88 | 202 | 203 |
 | | | (Byte/s) | | | | | |
 | | |-----------+-----+------+------+-----+-----+
 | | |Improvement| 0 |-11.96| -4.35|119.6|120.7|
 | | | (%s) | | | | | |
 +----+------+-----------+-----+------+------+-----+-----+

A.3.3. 64kb

 Reno
 +----+------+-----------+----+------+------+-----+-----+
 |BER |MTU |Performance|NONE| VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-8|576 |Throughput |7317| 7743 | 7698 | 7763| 7764|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 5.82 | 5.21 | 6.10| 6.11|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-8|576 |Throughput |7312| 7716 | 7672 | 7756| 7757|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 5.53| 4.92 | 6.07| 6.09|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-7|576 |Throughput |7288| 7615 | 7556 | 7727| 7728|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 4.49| 3.68 | 6.02| 6.04|
 | | | (%s) | | | | | |

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+----+------+------+-----+-----+

Liao, et al. [Page 33]

draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+----+------+------+-----+-----+
 |BER |MTU |Performance|NONE| VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-7|576 |Throughput |7213| 7351 | 7222 | 7648| 7649|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 1.91| 0.12 | 6.03| 6.04|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-6|576 |Throughput |6966| 6612 | 6286 | 7387| 7398|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| -5.08| -9.76| 6.04| 6.20|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-6|576 |Throughput |6206| 5070 | 4746 | 6562| 6580|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-18.30|-23.53| 5.74| 6.03|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-5|296 |Throughput |3377| 2470 | 2312 | 3633| 3667|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-26.86|-31.54| 7.58| 8.59|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-5|296 |Throughput |1576| 1065 | 1122 | 1755| 1773|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-32.42|-28.81|11.36|12.50|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-4|168 |Throughput | 465| 319 | 340 | 595| 597|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-31.40|-26.88|27.96|28.39|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-4| 96 |Throughput | 87| 79| 86 | 190| 194|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| -9.20| -1.15|118.4|123.0|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 34]

draft-ietf-rohc-tcp-taroc-04.txt

A.3.4. 9.6kb

 Sack
 +----+------+-----------+----+------+------+-----+-----+
 |BER |MTU |Performance|NONE| VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-8|576 |Throughput |1116| 1187 | 1185 | 1190| 1191|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 6.36| 6.18 | 6.63| 6.72|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-8|576 |Throughput |1116| 1188 | 1186 | 1191| 1192|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 6.45| 6.27 | 6.72| 6.81|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-7|576 |Throughput |1116| 1183 | 1181 | 1190| 1191|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 6.00| 5.82 | 6.63| 6.72|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-7|576 |Throughput |1114| 1173 | 1172 | 1188| 1190|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 5.30 | 5.21 | 6.64| 6.82|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-6|576 |Throughput |1110| 1133 | 1144 | 1183| 1184|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| 2.07| 3.06 | 6.58| 6.67|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-6|576 |Throughput |1089| 1036 | 1070 | 1164| 1167|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0| -4.87|-1.74 | 6.89| 7.16|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-5|296 |Throughput | 979| 855 | 935 | 1122| 1123|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-12.67|-4.49 |14.61|14.71|
 | | | (%s) | | | | | |

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+----+------+------+-----+-----+

Liao, et al. [Page 35]

draft-ietf-rohc-tcp-taroc-04.txt

 +----+------+-----------+----+------+------+-----+-----+
 |BER |MTU |Performance|NONE| VJHC | IPHC |TAROC|IDEAL|
 | |(Byte)| | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-5|296 |Throughput | 759| 500 | 600 | 900 | 908 |
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-34.12|-20.95|18.58|19.63|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |1e-4|168 |Throughput | 341| 224| 252 | 455| 465|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-34.31|-26.10|33.43|36.36|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+
 |3e-4| 96 |Throughput | 78| 67| 72 | 172| 173|
 | | | (Byte/s) | | | | | |
 | | |-----------+----+------+------+-----+-----+
 | | |Improvement| 0|-14.10|-7.69 |120.5|121.8|
 | | | (%s) | | | | | |
 +----+------+-----------+----+------+------+-----+-----+

https://datatracker.ietf.org/doc/html/draft-ietf-rohc-tcp-taroc-04.txt

Liao, et al. [Page 36]

