
Workgroup: ROLL

Published: 3 January 2023

Intended Status: Standards Track

Expires: 7 July 2023

Authors: P. Thubert, Ed.

Cisco Systems

R.A. Jadhav

Huawei Tech

M. Richardson

Sandelman

Root initiated routing state in RPL

Abstract

This document extends RFC 6550, RFC 6553, and RFC 8138 to enable a

RPL Root to install and maintain Projected Routes within its DODAG,

along a selected set of nodes that may or may not include itself,

for a chosen duration. This potentially enables routes that are more

optimized or resilient than those obtained with the classical

distributed operation of RPL, either in terms of the size of a

Routing Header or in terms of path length, which impacts both the

latency and the packet delivery ratio.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Requirements Language

2.2. References

2.3. Glossary

2.4. Domain Terms

2.4.1. Projected Route

2.4.2. Projected DAO

2.4.3. Path

2.4.4. Routing Stretch

2.4.5. Track

3. Context and Goal

3.1. RPL Applicability

3.2. Multi-Topology Routing and Loop Avoidance

3.3. Requirements

3.3.1. Loose Source Routing

3.3.2. East-West Routes

3.4. On Tracks

3.4.1. Building Tracks With RPL

3.4.2. Tracks and RPL Instances

3.5. Serial Track Signaling

3.5.1. Using Storing Mode Segments

3.5.2. Using Non-Storing Mode joining Tracks

3.6. Complex Tracks

3.7. Scope and Expectations

3.7.1. External Dependencies

3.7.2. Positioning vs. Related IETF Standards

4. Extending existing RFCs

4.1. Extending RFC 6550

4.1.1. Projected DAO

4.1.2. Projected DAO-ACK

4.1.3. Via Information Option

4.1.4. Sibling Information Option

4.1.5. P-DAO Request

4.1.6. Amending the RPI

4.1.7. Additional Flag in the RPL DODAG Configuration Option

4.2. Extending RFC 6553

4.3. Extending RFC 8138

5. New RPL Control Messages and Options

5.1. New P-DAO Request Control Message

5.2. New PDR-ACK Control Message

5.3. Via Information Options

5.4. Sibling Information Option

¶

6. Root Initiated Routing State

6.1. RPL Network Setup

6.2. Requesting a Track

6.3. Identifying a Track

6.4. Installing a Track

6.4.1. Signaling a Projected Route

6.4.2. Installing a Track Segment with a Storing Mode P-Route

6.4.3. Installing a Track Lane with a Non-Storing Mode P-Route

6.5. Tearing Down a P-Route

6.6. Maintaining a Track

6.6.1. Maintaining a Track Segment

6.6.2. Maintaining a Track Lane

6.7. Encapsulating and Forwarding Along a Track

6.8. Compression of the RPL Artifacts

7. Lesser Constrained Variations

7.1. Storing Mode main DODAG

7.2. A Track as a Full DODAG

8. Profiles

9. Backwards Compatibility

10. Security Considerations

11. IANA Considerations

11.1. RPL DODAG Configuration Option Flag

11.2. Elective 6LoWPAN Routing Header Type

11.3. Critical 6LoWPAN Routing Header Type

11.4. Registry For The RPL Option Flags

11.5. RPL Control Codes

11.6. RPL Control Message Options

11.7. SubRegistry for the Projected DAO Request Flags

11.8. SubRegistry for the PDR-ACK Flags

11.9. Registry for the PDR-ACK Acceptance Status Values

11.10. Registry for the PDR-ACK Rejection Status Values

11.11. SubRegistry for the Via Information Options Flags

11.12. SubRegistry for the Sibling Information Option Flags

11.13. Destination Advertisement Object Flag

11.14. Destination Advertisement Object Acknowledgment Flag

11.15. New ICMPv6 Error Code

11.16. RPL Rejection Status values

12. Acknowledgments

13. Normative References

14. Informative References

Authors' Addresses

1. Introduction

RPL, the "Routing Protocol for Low Power and Lossy Networks" [RPL]

(LLNs), is an anisotropic Distance Vector protocol that is well-

suited for application in a variety of low energy Internet of Things

(IoT) networks where stretched P2P paths are acceptable vs. the

signaling and state overhead involved in maintaining the shortest

paths across.

RPL forms Destination Oriented Directed Acyclic Graphs (DODAGs) in

which the Root often acts as the Border router to connect the RPL

domain to the IP backbone. Routers inside the DODAG route along that

graph up towards the Root for the default route and down towards

destinations in the RPL domain for more specific routes. This

specification expects as a pre-requisite a pre-existing RPL Instance

with an associated DODAG and RPL Root, which are referred to as main

Instance, main DODAG and main Root respectively. The main Instance

is operated in RPL Non-Storing Mode of Operation (MOP).

With this specification, an abstract routing function called a Path

Computation Element [PCE] (e.g., located in an central controller or

collocated with the main Root) interacts with the main Root to

compute Peer-to-Peer (P2P) paths within the main Instance. In Non-

Storing Mode, the base topological information to be passed to the

PCE, that is the knowledge of the main DODAG, is already available

at the Root. This specification introduces protocol extensions that

enrich the topological information available to the Root with

sibling relationships that are usable but not leveraged to form the

main DODAG.

Based on usage, path length, and knowledge of available resources

such as battery levels and reservable buffers in the nodes, the PCE

with a global visibility of the system can optimize the computed

routes for the application needs, including the capability to

provide path redundancy. This specification also introduces protocol

extensions that enable the Root to translate the computed paths into

RPL and install them as Projected Routes (aka P-Routes) inside the

DODAG on behalf of a PCE.

A P-Route may be installed in either Storing and Non-Storing Mode,

potentially resulting in hybrid situations where the Mode in which

the P-Route operates is different from that of the RPL main

Instance. P-Routes can be used as stand-alone Segments meant to

reduce the size of the source routing headers, leveraging loose

source routing operations down the main RPL DODAG. P-Routes can also

be combined with other P-Routes to form a Track signaled as a RPL

Instance, and that provides underlay shortcuts in an existing main

Instance, each with its own RIB.

2. Terminology

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

¶

¶

¶

¶

¶

CMO:

DAO:

DAG:

DODAG:

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

In addition, the terms "Extends" and "Amends" are used as per

[I-D.kuehlewind-update-tag] section 3.

2.2. References

In this document, readers will encounter terms and concepts that are

discussed in the "Routing Protocol for Low Power and Lossy Networks"

[RPL], the "6TiSCH Architecture" [RFC9030], the "Deterministic

Networking Architecture" [RFC8655], the "Reliable and Available

Wireless (RAW) Architecture" [RAW-ARCHI], and "Terminology in Low

power And Lossy Networks" [RFC7102]. Both architecture documents

define the concept of Track in a compatible fashion. This documents

only builds Tracks that are DODAGs, meaning that all links are

oriented From Ingress to Egress. This specification also utilizes

the terms Segment and Lane that are also defined in the RAW

Architecture.

As opposed to routing trees, RPL DODAGs are typically constructed to

provide redundancy and dynamically adapt the forwarding operation to

the state of the LLN links. Note that the plain forwarding operation

over DODAGs does not provide redundancy for all nodes, since at

least the node nearest to the Root does not have an alternate

feasible successor.

RAW solves that problem by defining Protection Paths that can be

fully non-congruent and can be activated dynamically upon failures.

This requires additional control to take the routing decision early

enough along the Track to route around the failure.

RAW only uses single-ended DODAGs, meaning that they can be reversed

in another DODAG by reversing all the links. The Ingress of the

Track is the Root of the DODAG, whereas the Egress is the Root of

the reversed DODAG. From the RAW perspective, single-ended DODAGs

are special Tracks that only have East-West links, and that can be

leveraged to provide Protection services by defining destination-

oriented Protection Paths within the DODAG.

2.3. Glossary

This document often uses the following acronyms:

Control Message Option

Destination Advertisement Object

Directed Acyclic Graph

Destination-Oriented Directed Acyclic Graph; A DAG with only

one vertex (i.e., node) that has no outgoing edge (i.e., link)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

GUA:

LLN:

MOP:

P-DAO:

P-Route:

PDR:

RAN:

RAL:

RH:

RIB:

RPI:

RTO:

RUL:

SIO:

ULA:

NSM-VIO:

SLO:

TIO:

SM-VIO:

VIO:

IPv6 Global Unicast Address

Low-Power and Lossy Network

RPL Mode of Operation

Projected DAO

Projected Route

P-DAO Request

RPL-Aware Node (either a RPL router or a RPL-Aware Leaf)

RPL-Aware Leaf

Routing Header

Routing Information Base, aka the routing table.

RPL Packet Information

RPL Target Option

RPL-Unaware Leaf

RPL Sibling Information Option

IPv6 Unique Local Address

A Source-Routed Via Information Option, used in Non-

Storing Mode P-DAO messages

Service Level Objective

RPL Transit Information Option

A strict Via Information Option, used in Storing Mode P-DAO

messages

A Via Information Option; it can be an SM-VIO or a NSM-VIO

2.4. Domain Terms

This specification uses the following terminology:

2.4.1. Projected Route

A RPL P-Route is a RPL route that is computed remotely by a PCE, and

installed and maintained by a RPL Root on behalf of the PCE. It is

installed as a state that signals that destinations (aka Targets)

are reachable along a sequence of nodes.

2.4.2. Projected DAO

A DAO message used to install a P-Route.

2.4.3. Path

Quoting section 1.1.3 of [INT-ARCHI]:

At a given moment, all the IP datagrams from a particular source

host to a particular destination host will typically traverse the

same sequence of gateways. We use the term "path" for this sequence.

Note that a path is uni-directional; it is not unusual to have

different paths in the two directions between a given host pair.

Section 2 of [I-D.irtf-panrg-path-properties] points to a longer,

more modern definition of path, which begins as follows:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A sequence of adjacent path elements over which a packet can be

transmitted, starting and ending with a node. A path is

unidirectional. Paths are time-dependent, i.e., the sequence of path

elements over which packets are sent from one node to another may

change. A path is defined between two nodes.

It follows that the general acceptance of a path is a linear

sequence of nodes, as opposed to a multi-dimensional graph. In the

context of this document, a path is observed by following one copy

of a packet that is injected in a Track and possibly replicated

within.

2.4.4. Routing Stretch

RPL is anisotropic, meaning that it is directional, or more exactly

polar. RPL does not behave the same way "downwards" (root towards

leaves) with multicast DIO messages that form the DODAG and

"upwards" (leaves towards root) with unicast DAO messages that

follow the DODAG. This is in contrast with traditional IGPs that

operate the same way in all directions and are thus called

isotropic.

The term Routing Stretch denotes the length of a path, in comparison

to the length of the shortest path, which can be an abstract concept

in RPL when the metrics are statistical and dynamic, and the concept

of distance varies with the Objective Function.

The RPL DODAG optimizes the P2MP (Point-to-MultiPoint) (from the

Root) and MP2P (MultiPoint-to-Point) (towards the Root) paths, but

the P2P (Point-to-Point) traffic has to follow the same DODAG.

Following the DODAG, the RPL datapath passes via a common parent in

Storing Mode and via the Root in Non-Storing Mode. This typically

involves more hops and more latency than the minimum possible for a

direct P2P path that an isotropic protocol would compute. We refer

to this elongated path as stretched.

2.4.5. Track

The concept of Track is defined in the RAW Architecture" [RAW-ARCHI]

as a networking graph that can be followed to transport packets with

equivalent treatment; as opposed to the definition of a path above,

a Track is not necessarily linear. It may contain multiple paths

that may fork and rejoin, and may enable the RAW Packet ARQ,

Replication, Elimination, and Overhearing (PAREO) operations.

Figure 1 illustrates the mapping of the DODAG with the generic

concept of a Track, with the DODAG Root acting as Ingress for the

Track, and the mapping of Lanes and Segments, and only East-West

Segments, meaning that they are directional and progressing towards

the destination.

¶

¶

¶

¶

¶

¶

¶

Figure 1: A Track and its Components

This specification builds Tracks that are DODAGs oriented towards a

Track Ingress, and the forward direction for packets (aka East-West)

is from the Track Ingress to one of the possibly multiple Track

Egress Nodes, which is also down the DODAG.

The Track may be strictly connected, meaning that the vertices are

adjacent, or loosely connected, meaning that the vertices are

connected using Segments that are associated to the same Track.

2.4.5.1. TrackID

A RPL InstanceID (typically of a Local Instance) that identifies a

Track using the namespace owned by the Track Ingress. For Local

Instances, the TrackID is associated with the IPv6 Address of the

Track Ingress that is used as DODAGID, and together they form a

unique identification of the Track (see the definition of DODAGID in

section 2 of [RPL].

2.4.5.2. Namespace

The term namespace is used to refer to the scope of the TrackID. The

TrackID is locally significant within its namespace. For Local

Instances, the namespace is identified by the DODAGID for the Track

and the tuple (DODAGID, TrackID) is globally unique. For Global

Instances, the namespace is the whole RPL domain.

2.4.5.3. Serial Track

A Track that has only one path from Ingress to Egress.

North East North West

 A ==> B ==> C -=- F ==> G ==> H T1 I: Ingress

 / \ / \ / E: Egress

 I O E -=- T2 T1, T2, T3:

 \ / \ / \ External

 P ==> Q ==> R -=- T ==> U ==> V T3 Targets

South East South West

 I ==> A ==> B ==> C : a Segment to targets F and O

 I --> F --> E : a Lane to targets T1, T2, T3

 I, A, B, C, F, G, H, E : a path to T1, T2, T3

¶

¶

¶

¶

¶

2.4.5.4. Complex Track

A Track that can be traversed via more than one path (e.g., a

DODAG).

2.4.5.5. Stand-Alone

Refers to a Segment or a Lane that is installed with a single P-DAO

and fully defines a Serial Track, e.g., a Stand-Alone Segment

installed with a single Storing Mode Via Information option (SM-VIO)

all the way between Ingress and Egress.

2.4.5.6. Stitching

This specification uses the term stitching to indicate that a track

is piped to another one, meaning that traffic out of the first track

is injected into the other track.

2.4.5.7. Lane

The concept of Lane is defined in the RAW Architecture" [RAW-ARCHI]

as an end-to-end East-West serial path. With this specification, a

Lane is installed by the Root of the main DODAG using a Non-Storing

Mode P-DAO message, e.g., I --> F --> E in Figure 1.

As the Non-Storing Mode Via Information option (NSM-VIO) can only

signal sequences of nodes, it takes one Non-Storing Mode P-DAO

message per Lane to signal the structure of a complex Track.

Each NSM-VIO for the same TrackId but with a different Segment ID

signals a different Lane that the Track Ingress adds to the

topology.

2.4.5.8. Segment

A serial path formed by a strict sequence of nodes, along which a P-

Route is installed, e.g., I ==> A ==> B ==> C in Figure 1. With this

specification, a Segment is typically installed by the Root of the

main DODAG using Storing Mode P-DAO messages. A Segment is used as

the topological edge of a Track joining the loose steps along the

Lanes that form the structure of a complex Track. The same Segment

may be leveraged by more than one Lane where the Lanes overlap.

Since this specification builds only DODAGs, all Segments are

oriented from Ingress (East) to Egress (West), as opposed to the

general Track model in the RAW Architecture [RAW-ARCHI], which

allows North/South Segments that can be bidirectional as well.

¶

¶

¶

¶

¶

¶

¶

¶

2.4.5.8.1. Section of a Segment

A continuous subset of a Segment that may be replaced while the

Segment remains. For instance, in Segment A=>B=>C=>D=>E=>F, say that

the link C to D might be misbehaving. The section B=>C=>D=>E in the

Segment may be replaced by B=>C'=>D'=>E to route around the problem.

The Segment becomes A=>B=>C'=>D'=>E=>F.

2.4.5.8.2. Segment Routing and SRH

The terms Segment Routing and SRH refer to using source-routing to

hop over Segments. In a Non-Storing mode RPL domain, the SRH is

typically a RPL Source Route Header (the IPv6 RH of type 3) as

defined in [RFC6554].

If the network is a 6LoWPAN Network, the expectation is that the SRH

is compressed and encoded as a 6LoWPAN Routing Header (6LoRH), as

specified in section 5 of [RFC8138].

On the other hand, if the RPL Network is less constrained and

operated in Storing Mode, as discussed in Section 7.1, the Segment

Routing operation and the SRH could be as specified in [RFC8754].

This specification applies equally to both forms of source routing

and SRH.

3. Context and Goal

3.1. RPL Applicability

RPL is optimized for situations where the power is scarce, the

bandwidth is constrained and the transmissions are unreliable. This

matches the use case of an IoT LLN where RPL is typically used

today, but also situations of high relative mobility between the

nodes in the network (aka swarming), e.g., within a variable set of

vehicles with a similar global motion, or a platoon of drones.

To reach this goal, RPL is primarily designed to minimize the

control plane activity, that is the relative amount of routing

protocol exchanges vs. data traffic, and the amount of state that is

maintained in each node. RPL does not need to converge, and provides

connectivity to most nodes most of the time.

RPL may form multiple topologies called instances. Instances can be

created to enforce various optimizations through objective

functions, or to reach out through different Root Nodes. The concept

of objective function allows to adapt the activity of the routing

protocol to the use case, e.g., type, speed, and quality of the LLN

links.

¶

¶

¶

¶

¶

¶

¶

RPL instances operate as ships passing in the night, unbeknownst of

one another. The RPL Root is responsible for selecting the RPL

Instance that is used to forward a packet coming from the Backbone

into the RPL domain and for setting the related RPL information in

the packets. Each Instance creates its own routing table (RIB) in

participating nodes, and the RIB associated to the instance must be

used end to end in the RPL domain. To that effect, RPL tags the

packets with the Instance ID in a Hop-by-Hop extension Header.

6TiSCH leverages RPL for its distributed routing operations.

To reduce the routing exchanges, RPL leverages an anisotropic

Distance Vector approach, which does not need a global knowledge of

the topology, and only optimizes the routes to and from the RPL

Root, allowing P2P paths to be stretched. Although RPL installs its

routes proactively, it only maintains them lazily, in reaction to

actual traffic, or as a slow background activity.

This is simple and efficient in situations where the traffic is

mostly directed from or to a central node, such as the control

traffic between routers and a controller of a Software Defined

Networking (SDN) infrastructure or an Autonomic Control Plane (ACP).

But stretch in P2P routing is counter-productive to both reliability

and latency as it introduces additional delay and chances of loss.

As a result, [RPL] is not a good fit for the use cases listed in the

RAW use cases document [USE-CASES], which demand high availability

and reliability, and as a consequence require both short and diverse

paths.

3.2. Multi-Topology Routing and Loop Avoidance

RPL first forms a default route in each node towards the Root, and

those routes together coalesce as a Directed Acyclic Graph oriented

upwards. RPL then constructs routes to destinations signaled as

Targets in the reverse direction, down the same DODAG. To do so, a

RPL Instance can be operated either in RPL Storing or Non-Storing

Mode of Operation (MOP). The default route towards the Root is

maintained aggressively and may change while a packet progresses

without causing loops, so the packet will still reach the Root.

In Non-Storing Mode, each node advertises itself as a Target

directly to the Root, indicating the parents that may be used to

reach itself. Recursively, the Root builds and maintains an image of

the whole DODAG in memory, and leverages that abstraction to compute

source route paths for the packets to their destinations down the

DODAG. When a node changes its point(s) of attachment to the DODAG,

it takes a single unicast packet to the Root along the default route

to update it, and the connectivity to the node is restored

immediately; this mode is preferable for use cases where internet

¶

¶

¶

¶

¶

connectivity is dominant, or when the Root controls the network

activity in the nodes, which is the case of this draft.

In Storing Mode, the routing information percolates upwards, and

each node maintains the routes to the subDAG of its descendants down

the DODAG. The maintenance is lazy, either reactive upon traffic or

as a slow background process. Packets flow via the common parent and

the routing stretch is reduced compared to Non-Storing MOP, for

better P2P connectivity. However, a new route takes a longer time to

propagate to the Root, since it takes time for the Distance-Vector

protocol to operate hop-by-hop, and the connectivity from the

internet to the node is restored more slowly upon node movement.

Either way, the RPL routes are injected by the Target nodes, in a

distributed fashion. To complement RPL and eliminate routing

stretch, this specification introduces a hybrid mode that combines

Storing and Non-Storing operations to build and project routes onto

the nodes where they should be installed. This specification uses

the term Projected Route (P-Route) to refer to those routes.

In the simplest mode of this specification, Storing-Mode P-Routes

can be deployed to join the dots of a loose source routing header

(SRH) in the main DODAG. In that case, all the routes (source routed

and P-Routes) belong to the Routing Information base (RIB)

associated with the main Instance. Storing-Mode P-Routes are

referred to as Segments in this specification.

A set of P-Routes can also be projected to form a dotted-line

underlay of the main Instance and provide Traffic Engineered paths

for an application. In that case, the P-Routes are installed in Non-

Storing Mode and the set of P-Routes is called a Track. A Track is

associated with its own RPL Instance, and, as any RPL Instance, with

its own Routing Information base (RIB). As a result, each Track

defines a routing topology in the RPL domain. As for the main DODAG,

Segments associated to the Track Instance may be deployed to join

the dots using Storing-Mode P-Routes.

Routing in a multi-topology domain may cause loops unless strict

rules are applied. This specification defines two strict orders to

ensure loop avoidance when projected routes are used in a RPL

domain, one between forwarding methods and one between RPL

Instances, seen as routing topologies. The possible forwarding

methods are to a direct next hop, to an indirect neighbor via a

common neighbor, along a Segment, and along a Track. The methods are

strictly ordered as listed above. A forwarding method may leverage

any of the lower order ones, but never one with a higher order; for

instance, when forwarding a packet along a Segment, the router may

use direct or indirect neighbors but cannot use a Track. The lower

order methods have a strict precedence, so the router will always

¶

¶

¶

¶

¶

prefer a direct neighbor over an indirect one, or a Segment within

the current RPL Instance vs. another Track. The second strict and

partial order is between RPL Instances. That order must be defined

by the administrator for his RPL domain and defines a DODAG of

underlays with the main Instance as Root. A RPL Instance may

leverage another as underlay if and only if that other Instance is

higher in that order, that is farther to the main Instance in that

graph; as an example, a packet that is being forwarded along the

main Instance may be encapsulated in any Track, but a packet that is

forwarded along a Track may never continue along the main Instance.

3.3. Requirements

3.3.1. Loose Source Routing

A RPL implementation operating in a very constrained LLN typically

uses the Non-Storing Mode of Operation as represented in Figure 2.

In that mode, a RPL node indicates a parent-child relationship to

the Root, using a destination Advertisement Object (DAO) that is

unicast from the node directly to the Root, and the Root typically

builds a source routed path to a destination down the DODAG by

recursively concatenating this information.

Figure 2: RPL Non-Storing Mode of operation

Based on the parent-children relationships expressed in the Non-

Storing DAO messages, the Root possesses topological information

about the whole network, though this information is limited to the

structure of the DODAG for which it is the destination. A packet

that is generated within the domain will always reach the Root,

which can then apply a source routing information to reach the

destination if the destination is also in the DODAG. Similarly, a

packet coming from the outside of the domain for a destination that

is expected to be in a RPL domain reaches the Root. This results in

the wireless bandwidth near the Root being the limiting factor for

¶

¶

 +-----+

 | | Border router

 | | (RPL Root)

 +-----+ ^ | |

 | | DAO | ACK |

 o o o o | | | Strict

 o o o o o o o o o | | | Source

 o o o o o o o o o o | | | Route

 o o o o o o o o o | | |

 o o o o o o o o | v v

 o o o o

 LLN

all transmissions towards or within the domain, and that the Root is

a single point of failure for all connectivity to nodes within its

domain.

The RPL Root must add a source routing header to all downward

packets. As a network grows, the size of the source routing header

increases with the depth of the network. In some use cases, a RPL

network forms long lines along physical structures such as streets

for lighting. Limiting the packet size is directly beneficial to the

energy budget, but, mostly, it reduces the chances of frame loss and

packet fragmentation, which are highly detrimental to the LLN

operation. A limited amount of well-targeted routing state would

allow the source routing operation to be loose as opposed to strict,

and reduce the overhead of routing information in packets. Because

the capability to store routing state in every node is limited, the

decision of which route is installed where can only be optimized

with global knowledge of the system, knowledge that the Root or an

associated PCE may possess by means that are outside the scope of

this specification.

Being on-path for all packets in Non-Storing mode, the Root may

determine the number of P2P packets in its RPL domain per source and

destination, the latency incurred, and the amount of energy and

bandwidth that is consumed to reach itself and then back down,

including possible fragmentation when encapsulating larger packets.

Enabling a shorter path that would not traverse the Root for select

P2P source/destinations may improve the latency, lower the

consumption of constrained resources, free bandwidth at the

bottleneck near the Root, improve the delivery ratio and reduce the

latency for those P2P flows with a global benefit for all flows by

reducing the load at the Root.

To limit the need for source route headers in deep networks, one

possibility is to store a routing state associated with the main

DODAG in select RPL routers down the path. The Root may elide the

sequence of routers that is installed in the network from its source

route header, which therefore becomes loose, in contrast to being

strict in [RPL].

3.3.2. East-West Routes

[RPL] optimizes Point-to-Multipoint (P2MP) routes from the Root,

Multipoint-to-Point (MP2P) routes to the DODAG Root, and Internet

access when the Root also serves as Border Router. All routes are

installed North-South (aka up/down) along the RPL DODAG. Peer to

Peer (P2P) East-West routes in a RPL network will generally

experience elongated (stretched) paths versus direct (optimized)

paths, since routing between two nodes always happens via a common

parent, as illustrated in Figure 3:

¶

¶

¶

¶

¶

Figure 3: Routing Stretch between S and D via common parent X along

North-South Paths

As described in [RFC9008], the amount of stretch depends on the Mode

of Operation:

in Non-Storing Mode, all packets routed within the DODAG flow all

the way up to the Root of the DODAG. If the destination is in the

same DODAG, the Root must encapsulate the packet to place an RH

that has the strict source route information down the DODAG to

the destination. This will be the case even if the destination is

relatively close to the source and the Root is relatively far

off.

In Storing Mode, unless the destination is a child of the source,

the packets will follow the default route up the DODAG as well.

If the destination is in the same DODAG, they will eventually

reach a common parent that has a route to the destination; at

worse, the common parent may also be the Root. From that common

parent, the packet will follow a path down the DODAG that is

optimized for the Objective Function that was used to build the

DODAG.

It turns out that it is often beneficial to enable East-West P2P

routes, either if the RPL route presents a stretch from the shortest

path, or if the new route is engineered with a different objective,

and this is even more critical in Non-Storing Mode than it is in

Storing Mode, because the routing stretch is wider. For that reason,

earlier work at the IETF introduced the "Reactive Discovery of

Point-to-Point Routes in Low Power and Lossy Networks" [RFC6997],

which specifies a distributed method for establishing optimized P2P

routes. This draft proposes an alternative based on centralized

route computation.

 ------+---------

 | Internet

 +-----+

 | | Border router

 | | (RPL Root)

 +-----+

 X

 ^ v o o

 ^ o o v o o o o o

 ^ o o o v o o o o o

 ^ o o v o o o o o

 S o o o D o o o

 o o o o

 LLN

¶

*

¶

*

¶

¶

Figure 4: More direct East-West Route between S and D

The requirement is to install additional routes in the RPL routers,

to reduce the stretch of some P2P routes and maintain the

characteristics within a given SLO, e.g., in terms of latency and/or

reliability.

3.4. On Tracks

3.4.1. Building Tracks With RPL

The concept of a Track was introduced in the "6TiSCH Architecture"

[RFC9030], as a collection of potential paths that leverage

redundant forwarding solutions along the way. This can be a DODAG or

a more complex structure that is only partially acyclic (e.g., per

packet).

With this specification, a Track is shaped as a DODAG, and following

the directed edges leads to a Track Ingress. Storing Mode P-DAO

messages follow the direction of the edges to set up routes for

traffic that flows the other way, towards the Track Egress(es). If

there is a single Track Egress, then the Track is reversible to form

another DODAG by reversing the direction of each edge. A node at the

Ingress of more than one Segment in a Track may use one or more of

these Segments to forward a packet inside the Track.

A RPL Track is a collection of (one or more) parallel loose source

routed sequences of nodes ordered from Ingress to Egress, each

forming a Track Lane. The nodes that are directly connected,

reachable via existing Tracks as illustrated in Section 3.5.2.3 or

joined with strict Segments of other nodes as shown in

Section 3.5.1.3. The Lanes are expressed in RPL Non-Storing Mode and

require an encapsulation to add a Source Route Header, whereas the

Segments are expressed in RPL Storing Mode.

 +-----+

 | | Border router

 | | (RPL Root)

 +-----+

 |

 o o o o

 o o o o o o o o o

 o o o o o o o o o o

 o o o o o o o o o

 S>>A>>>B>>C>>>D o o o

 o o o o

 LLN

¶

¶

¶

¶

A Serial Track provides only one path between Ingress and Egress. It

comprises at most one Lane. A Stand-Alone Segment implicitly defines

a Serial Track from its Ingress to Egress.

A complex Track forms a graph that provides a collection of

potential paths to provide redundancy for the packets, either as a

collection of Lanes that may be parallel or cross at certain points,

or as a more generic DODAG.

3.4.2. Tracks and RPL Instances

Section 5.1. of [RPL] describes the RPL Instance and its encoding.

There can be up to 128 Global RPL Instances, for which there can be

one or more DODAGs, and there can be 64 local RPL Instances, with a

namespace that is indexed by a DODAGID, where the DODAGID is a

Unique Local Address (ULA) or a Global Unicast Address (GUA) of the

Root of the DODAG. Bit 0 (most significant) is set to 1 to signal a

Local RPLInstanceID, as shown in Figure 5. By extension, this

specification expresses the value of the RPLInstanceID as a single

integer between 128 and 191, representing both the Local

RPLInstanceID in 0..63 in the rightmost bits and Bit 0 set.

Figure 5: Local RPLInstanceID Encoding

A Track typically forms an underlay to the main Instance, and is

associated with a Local RPL Instance wherein the RPLInstanceID is

used as the TrackID; the encapsulating source IP address and RPI

Instance are set to the Track Ingress IP address and local

RPLInstanceID, respectively, more in Section 6.3.

A Track Lane may also be used as an alternative to a Segment in the

main DODAG, causing an extra encapsulation to signal a source-routed

path between loose hops in the encapsulated source routing header.

In that case, the TrackID in the outer header remains that of the

global RPLInstanceID of the main DODAG, which suffices to identify

the routing topology. As opposed to local RPL instances, the Track

Ingress that encapsulates the packets over the Track Lane is not a

Root of the instance, and the source address of the encapsulated

packet is not used to determine the Track.

3.5. Serial Track Signaling

This specification enables setting up a P-Route along either a Track

Lane or a Segment. A P-Route is installed and maintained by the Root

¶

¶

¶

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |1|D| ID | Local RPLInstanceID in 0..63

 +-+-+-+-+-+-+-+-+

¶

¶

of the main DODAG using an extended RPL DAO message called a

Projected DAO (P-DAO), and a Track is composed of the combination of

one or more P-Routes.

A P-DAO message for a Track signals the TrackID in the RPLInstanceID

field. In the case of a local RPL Instance, the address of the Track

Ingress is used as source to encapsulate packets along the Track.

The Track is signaled in the DODAGID field of the Projected DAO Base

Object, see Figure 8.

This specification introduces the Via Information Option (VIO) to

signal a sequence of hops in a Lane or a Segment in the P-DAO

messages, either in Storing Mode (SM-VIO) or Non-Storing Mode (NSM-

VIO). One P-DAO message contains a single VIO, associated to one or

more RPL Target Options that signal the destination IPv6 addresses

that can reached along the Track (more in Section 5.3).

Before diving deeper into Track Lanes and Segments signaling and

operation, this section provides examples of how route projection

works through variations of a simple example. This simple example

illustrates the case of host routes, though RPL Targets can also be

prefixes.

Say we want to build a Serial Track from node A to E in Figure 6, so

A can route packets to E's neighbors F and G along A, B, C, D and E

as opposed to via the Root:

Figure 6: Reference Track

Conventionally we use ==> to represent a strict hop and --> for a

loose hop. We use "-to-", such as in C==>D==>E-to-F to represent

coma-separated Targets, e.g., F is a Target for Segment C==>D==>E.

In this example, A is the Track Ingress and E is the Track Egress. C

is a stitching point. F and G are "external" Targets for the Track,

and become reachable from A via the Track A (Ingress) to E (Egress

and implicit Target in Non-Storing Mode) leading to F and G

(explicit Targets).

In a general manner the desired outcome is as follows:

Targets are E, F, and G

P-DAO 1 signals C==>D==>E

¶

¶

¶

¶

¶

 /===> F

A ===> B ===> C ===> D===> E <

 \===> G

¶

¶

* ¶

* ¶

P-DAO 2 signals A==>B==>C

P-DAO 3 signals F and G via the A-->E Track

P-DAO 3 may be ommitted if P-DAO 1 and 2 signal F and G as Targets.

Loose sequences of hops must be expressed in Non-Storing Mode, so P-

DAO 3 contains a NSM-VIO. With this specification, the DODAGID to be

used by the Ingress as source address is signaled if needed in the

DAO base object, the via list starts at the first loose hop and

matches the source route header, and the Egress of a Non-Storing

Mode P-DAO is an implicit Target that is not listed in the RPL

Target Options.

Note well: by design, the list of nodes in a VIO in Non-Storing Mode

is exactly the list that shows in the encapsulation SRH. So in the

cases detailed below, if the Mode of the P-DAO is Non-Storing, then

the VIO row can be read as indicating the SRH as well.

3.5.1. Using Storing Mode Segments

A==>B==>C and C==>D==>E are Segments of the same Track. Note that

the Storing Mode signaling imposes strict continuity in a Segment,

since the P-DAO is passed hop by hop, as a classical DAO is, along

the reverse datapath that it signals. One benefit of strict routing

is that loops are avoided along the Track.

3.5.1.1. Stitched Segments

In this formulation:

P-DAO 1 signals C==>D==>E-to-F,G

P-DAO 2 signals A==>B==>C-to-F,G

Storing Mode P-DAO 1 is sent to E and when it is successfully

acknowledged, Storing Mode P-DAO 2 is sent to C, as follows:

Field P-DAO 1 to E P-DAO 2 to C

Mode Storing Storing

Track Ingress A A

(DODAGID, TrackID) (A, 129) (A, 129)

SegmentID 1 2

VIO C, D, E A, B, C

Targets F, G F, G

Table 1: P-DAO Messages

As a result the RIBs are set as follows:

* ¶

* ¶

¶

¶

¶

¶

¶

* ¶

* ¶

¶

¶

Node Destination Origin Next Hop(s) TrackID

E F, G P-DAO 1 Neighbor (A, 129)

D E P-DAO 1 Neighbor (A, 129)

" F, G P-DAO 1 E (A, 129)

C D P-DAO 1 Neighbor (A, 129)

" F, G P-DAO 1 D (A, 129)

B C P-DAO 2 Neighbor (A, 129)

" F, G P-DAO 2 C (A, 129)

A B P-DAO 2 Neighbor (A, 129)

" F, G P-DAO 2 B (A, 129)

Table 2: RIB setting

Packets originating at A going to F or G do not require

encapsulation as the RPI can be placed in the native header chain.

For packets that it routes, A must encapsulate to add the RPI that

signals the trackID; the outer headers of the packets that are

forwarded along the Track have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer A F or G (A, 129)

Inner Any but A F or G N/A

Table 3: Packet Header Settings

As an example, say that A has a packet for F. Using the RIB above:

From P-DAO 2: A forwards to B and B forwards to C.

From P-DAO 1: C forwards to D and D forwards to E.

From Neighbor Cache Entry: E delivers the packet to F.

3.5.1.2. External routes

In this example, we consider F and G as destinations that are

external to the Track as a DODAG, as discussed in section 4.1.1. of

[RFC9008]. We then apply the directives for encapsulating in that

case (more in Section 6.7).

In this formulation, we set up the Track Lane explicitly, which

creates less routing state in intermediate hops at the expense of

larger packets to accommodate source routing:

P-DAO 1 signals C==>D==>E-to-E

P-DAO 2 signals A==>B==>C-to-E

P-DAO 3 signals F and G via the A-->E-to-F,G Track

¶

¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

Storing Mode P-DAO 1 and 2, and Non-Storing Mode P-DAO 3, are sent

to E, C and A, respectively, as follows:

P-DAO 1 to E P-DAO 2 to C P-DAO 3 to A

Mode Storing Storing Non-Storing

Track Ingress A A A

(DODAGID, TrackID) (A, 129) (A, 129) (A, 129)

SegmentID 1 2 3

VIO C, D, E A, B, C E

Targets E E F, G

Table 4: P-DAO Messages

Note in the above that E is not an implicit Target in Storing mode,

so it must be added in the RTO.

As a result the RIBs are set as follows:

Node Destination Origin Next Hop(s) TrackID

E F, G P-DAO 1 Neighbor (A, 129)

D E P-DAO 1 Neighbor (A, 129)

C D P-DAO 1 Neighbor (A, 129)

" E P-DAO 1 D (A, 129)

B C P-DAO 2 Neighbor (A, 129)

" E P-DAO 2 C (A, 129)

A B P-DAO 2 Neighbor (A, 129)

" E P-DAO 2 B (A, 129)

" F, G P-DAO 3 E (A, 129)

Table 5: RIB setting

Packets from A to E do not require an encapsulation. The outer

headers of the packets that are forwarded along the Track have the

following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer A E (A, 129)

Inner X E if(X != A), F, or G N/A

Table 6: Packet Header Settings

As an example, say that A has a packet for F. Using the RIB above:

From P-DAO 3: A encapsulates the packet and sends it down the

Track signaled by P-DAO 3, with the outer header above. Now the

packet destination is E.

From P-DAO 2: A forwards to B and B forwards to C.

¶

¶

¶

¶

¶

*

¶

* ¶

From P-DAO 1: C forwards to D and D forwards to E; E decapsulates

the packet.

From Neighbor Cache Entry: E delivers packets to F or G.

3.5.1.3. Segment Routing

In this formulation Track Lanes are leveraged to combine Segments

and form a Graph. The packets are source routed from a Segment to

the next to adapt the path. As such, this can be seen as a form of

Segment Routing [RFC8402]:

P-DAO 1 signals C==>D==>E-to-E

P-DAO 2 signals A==>B-to-B,C

P-DAO 3 signals F and G via the A-->C-->E-to-F,G Track

Storing Mode P-DAO 1 and 2, and Non-Storing Mode P-DAO 3, are sent

to E, B and A, respectively, as follows:

P-DAO 1 to E P-DAO 2 to B P-DAO 3 to A

Mode Storing Storing Non-Storing

Track Ingress A A A

(DODAGID, TrackID) (A, 129) (A, 129) (A, 129)

SegmentID 1 2 3

VIO C, D, E A, B C, E

Targets E C F, G

Table 7: P-DAO Messages

Note in the above that the Segment can terminate at the loose hop as

used in the example of P-DAO 1 or at the previous hop as done with

P-DAO 2. Both methods are possible on any Segment joined by a loose

Track Lane. P-DAO 1 generates more signaling since E is the Segment

Egress when D could be, but has the benefit that it validates that

the connectivity between D and E still exists.

As a result the RIBs are set as follows:

Node Destination Origin Next Hop(s) TrackID

E F, G P-DAO 1 Neighbor (A, 129)

D E P-DAO 1 Neighbor (A, 129)

C D P-DAO 1 Neighbor (A, 129)

" E P-DAO 1 D (A, 129)

B C P-DAO 2 Neighbor (A, 129)

A B P-DAO 2 Neighbor (A, 129)

" C P-DAO 2 B (A, 129)

*

¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

Node Destination Origin Next Hop(s) TrackID

" E, F, G P-DAO 3 C, E (A, 129)

Table 8: RIB setting

Packets originated at A to E do not require an encapsulation, but

carry a SRH via C. The outer headers of the packets that are

forwarded along the Track have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer A C until C then E (A, 129)

Inner X E if(X != A), F, or G N/A

Table 9: Packet Header Settings

As an example, say that A has a packet for F. Using the RIB above:

From P-DAO 3: A encapsulates the packet the Track signaled by P-

DAO 3, with the outer header above. Now the destination in the

IPv6 Header is C, and a SRH signals the final destination is E.

From P-DAO 2: A forwards to B and B forwards to C.

From P-DAO 3: C processes the SRH and sets the destination in the

IPv6 Header to E.

From P-DAO 1: C forwards to D and D forwards to E; E decapsulates

the packet.

From the Neighbor Cache Entry: E delivers packets to F or G.

3.5.2. Using Non-Storing Mode joining Tracks

In this formulation:

P-DAO 1 signals C==>D==>E-to-F,G

P-DAO 2 signals A==>B==>C-to-E,F,G

A==>B==>C and C==>D==>E are Tracks expressed as Non-Storing P-DAOs.

3.5.2.1. Stitched Tracks

Non-Storing Mode P-DAO 1 and 2 are sent to C and A respectively, as

follows:

P-DAO 1 to C P-DAO 2 to A

Mode Non-Storing Non-Storing

Track Ingress C A

(DODAGID, TrackID) (C, 131) (A, 131)

¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

¶

* ¶

* ¶

¶

¶

P-DAO 1 to C P-DAO 2 to A

SegmentID 1 1

VIO D, E B, C

Targets F, G E, F, G

Table 10: P-DAO Messages

As a result the RIBs are set as follows:

Node Destination Origin Next Hop(s) TrackID

E F, G ND Neighbor Any

D E ND Neighbor Any

C D ND Neighbor Any

" E, F, G P-DAO 1 D, E (C, 131)

B C ND Neighbor Any

A B ND Neighbor Any

" C, E, F, G P-DAO 2 B, C (A, 131)

Table 11: RIB setting

Packets originated at A to E, F and G do not require an

encapsulation, though it is preferred that A encapsulates and C

decapsulates. Either way, they carry a SRH via B and C, and C needs

to encapsulate to E, F, or G to add an SRH via D and E. The

encapsulating headers of packets that are forwarded along the Track

between C and E have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer C D until D then E (C, 131)

Inner X E, F, or G N/A

Table 12: Packet Header Settings between C and E

As an example, say that A has a packet for F. Using the RIB above:

From P-DAO 2: A encapsulates the packet with destination of F in

the Track signaled by P-DAO 2. The outer header has source A,

destination B, an SRH that indicates C as the next loose hop, and

a RPI indicating a TrackId of 131 from A's namespace, which is

distinct from TrackId of 131 from C's.

From the SRH: Packets forwarded by B have source A, destination

C, a consumed SRH, and a RPI indicating a TrackId of 131 from A's

namespace. C decapsulates.

From P-DAO 1: C encapsulates the packet with destination of F in

the Track signaled by P-DAO 1. The outer header has source C,

destination D, an SRH that indicates E as the next loose hop, and

a RPI indicating a TrackId of 131 from C's namespace. E

decapsulates.

¶

¶

¶

*

¶

*

¶

*

¶

3.5.2.2. External routes

In this formulation:

P-DAO 1 signals C==>D==>E-to-E

P-DAO 2 signals A==>B==>C-to-C,E

P-DAO 3 signals F and G via the A-->E-to-F,G Track

Non-Storing Mode P-DAO 1 is sent to C and Non-Storing Mode P-DAO 2

and 3 are sent to A, as follows:

P-DAO 1 to C P-DAO 2 to A P-DAO 3 to A

Mode Non-Storing Non-Storing Non-Storing

Track Ingress C A A

(DODAGID, TrackID) (C, 131) (A, 129) (A, 141)

SegmentID 1 1 1

VIO D, E B, C E

Targets E E F, G

Table 13: P-DAO Messages

As a result the RIBs are set as follows:

Node Destination Origin Next Hop(s) TrackID

E F, G ND Neighbor Any

D E ND Neighbor Any

C D ND Neighbor Any

" E P-DAO 1 D, E (C, 131)

B C ND Neighbor Any

A B ND Neighbor Any

" C, E P-DAO 2 B, C (A, 129)

" F, G P-DAO 3 E (A, 141)

Table 14: RIB setting

The encapsulating headers of packets that are forwarded along the

Track between C and E have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer C D until D then E (C, 131)

Middle A E (A, 141)

Inner X E, F or G N/A

Table 15: Packet Header Settings

¶

* ¶

* ¶

* ¶

¶

¶

¶

As an example, say that A has a packet for F. Using the RIB above:

From P-DAO 3: A encapsulates the packet with destination of F in

the Track signaled by P-DAO 3. The outer header has source A,

destination E, and a RPI indicating a TrackId of 141 from A's

namespace. This recurses with:

From P-DAO 2: A encapsulates the packet with destination of E in

the Track signaled by P-DAO 2. The outer header has source A,

destination B, an SRH that indicates C as the next loose hop, and

a RPI indicating a TrackId of 129 from A's namespace.

From the SRH: Packets forwarded by B have source A, destination C

, a consumed SRH, and a RPI indicating a TrackId of 129 from A's

namespace. C decapsulates.

From P-DAO 1: C encapsulates the packet with destination of E in

the Track signaled by P-DAO 1. The outer header has source C,

destination D, an SRH that indicates E as the next loose hop, and

a RPI indicating a TrackId of 131 from C's namespace. E

decapsulates.

3.5.2.3. Segment Routing

In this formulation:

P-DAO 1 signals C==>D==>E-to-E

P-DAO 2 signals A==>B-to-C

P-DAO 3 signals F and G via the A-->C-->E-to-F,G Track

Non-Storing Mode P-DAO 1 is sent to C and Non-Storing Mode P-DAO 2

and 3 are sent to A, as follows:

P-DAO 1 to C P-DAO 2 to A P-DAO 3 to A

Mode Non-Storing Non-Storing Non-Storing

Track Ingress C A A

(DODAGID, TrackID) (C, 131) (A, 129) (A, 141)

SegmentID 1 1 1

VIO D, E B C, E

Targets C F, G

Table 16: P-DAO Messages

As a result the RIBs are set as follows:

Node Destination Origin Next Hop(s) TrackID

E F, G ND Neighbor Any

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

¶

¶

Node Destination Origin Next Hop(s) TrackID

D E ND Neighbor Any

C D ND Neighbor Any

" E P-DAO 1 D, E (C, 131)

B C ND Neighbor Any

A B ND Neighbor Any

" C P-DAO 2 B, C (A, 129)

" E, F, G P-DAO 3 C, E (A, 141)

Table 17: RIB setting

The encapsulating headers of packets that are forwarded along the

Track between A and B have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer A B until D then E (A, 129)

Middle A C (A, 141)

Inner X E, F or G N/A

Table 18: Packet Header Settings

The encapsulating headers of packets that are forwarded along the

Track between B and C have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer A C (A, 141)

Inner X E, F or G N/A

Table 19: Packet Header Settings

The encapsulating headers of packets that are forwarded along the

Track between C and E have the following settings:

Header IPv6 Source Addr. IPv6 Dest. Addr. TrackID in RPI

Outer C D until D then E (C, 131)

Middle A E (A, 141)

Inner X E, F or G N/A

Table 20: Packet Header Settings

As an example, say that A has a packet for F. Using the RIB above:

From P-DAO 3: A encapsulates the packet with destination of F in

the Track signaled by P-DAO 3. The outer header has source A,

destination C, an SRH that indicates E as the next loose hop, and

a RPI indicating a TrackId of 141 from A's namespace. This

recurses with:

From P-DAO 2: A encapsulates the packet with destination of C in

the Track signaled by P-DAO 2. The outer header has source A,

¶

¶

¶

¶

*

¶

*

destination B, and a RPI indicating a TrackId of 129 from A's

namespace. B decapsulates forwards to C based on a sibling

connected route.

From the SRH: C consumes the SRH and makes the destination E.

From P-DAO 1: C encapsulates the packet with destination of E in

the Track signaled by P-DAO 1. The outer header has source C,

destination D, an SRH that indicates E as the next loose hop, and

a RPI indicating a TrackId of 131 from C's namespace. E

decapsulates.

3.6. Complex Tracks

To increase the reliability of the P2P transmission, this

specification enables building a collection of Lanes between the

same Ingress and Egress Nodes and combining them within the same

TrackID, as shown in Figure 7. Lanes may cross at the edges of loose

hops or remain parallel.

The Segments that join the loose hops of a Lane are installed with

the same TrackID as the Lane. But each individual Lane and Segment

has its own P-RouteID which allows it to be managed separately. 2

Lanes of the same Track may cross at a common node that participates

to a Segment of Each Lane. In that case the common node has more

than one next hop in its RIB associated to the Track, but no

specific signal in the packet to indicate which Segment is being

followed. A next hop that can reach the loose hop is selected.

¶

* ¶

*

¶

¶

¶

Figure 7: Segments and Tracks

Note that while this specification enables building both Segments

inside a Lane (aka East-West), such as Segment 2 above which is

within Lane 1, and Inter-Lane Segments (aka North-South), such as

Segment 5 above which joins Lane 1 and Lane 2, it does not signal to

the Ingress which Inter-Lane Segments are available, so the use of

North-South Segments and associated PAREO functions is curently

limited. The only possibility available at this time is to define

overlapping Lanes as illustrated in Figure 7, with Lane 3 that is

 CPF CPF CPF CPF

 Southbound API

 -.-

 -.-

 +----------+

 | RPL Root |

 +----------+

 ()

 ()

 (DODAG)

 ()

 ()

)

 <- Lane 1 B, E ->

 <--- Segment 1 A,B ---> <------- Segment 2 C,D,E ------->

 FWD --z Relay --z FWD --z FWD Target 1

 z-- Node z-- Node z-- Node z-- Node --z /

 --z (A) (B) \ (C) (D) z-- /

Track \ Track

Ingress Segment 5 Egress - Tgt 2

 (I) \ (E)

 --z \ z-- \

 z-- FWD --z FWD --z Relay --z FWD --z \

 Node z-- Node z-- Node z-- Node Target 3

 (F) (G) (H) (J)

 <------ Segment 3 F,G,H ------> <---- Segment 4 J,E ---->

 <- Lane 2 H, E ->

 <--- Segment 1 A,B ---> <- S5-> <---- Segment 4 J,E ---->

 <- Lane 3 B, H, E ->

)

 (

 ()

congruent with Lane 1 until node B and congruent with Lane 2 from

node H on, abstracting Segment 5 as an East-West Segment.

3.7. Scope and Expectations

3.7.1. External Dependencies

This specification expects that the main DODAG is operated in RPL

Non-Storing Mode to sustain the exchanges with the Root. Based on

its comprehensive knowledge of the parent-child relationship, the

Root can form an abstracted view of the whole DODAG topology. This

document adds the capability for nodes to advertise additional

sibling information to complement the topological awareness of the

Root to be passed on to the PCE, and enable the PCE to build more /

better paths that traverse those siblings.

P-Routes require resources such as routing table space in the

routers and bandwidth on the links; the amount of state that is

installed in each node must be computed to fit within the node's

memory, and the amount of rerouted traffic must fit within the

capabilities of the transmission links. The methods used to learn

the node capabilities and the resources that are available in the

devices and in the network are out of scope for this document. The

method to capture and report the LLN link capacity and reliability

statistics are also out of scope. They may be fetched from the nodes

through network management functions or other forms of telemetry

such as OAM.

3.7.2. Positioning vs. Related IETF Standards

3.7.2.1. Extending 6TiSCH

The "6TiSCH Architecture" [RFC9030] leverages a centralized model

that is similar to that of "Deterministic Networking Architecture"

[RFC8655], whereby the device resources and capabilities are exposed

to an external controller which installs routing states into the

network based on its own objective functions that reside in that

external entity.

3.7.2.2. Mapping to DetNet

DetNet Forwarding Nodes only understand the simple 1-to-1 forwarding

sublayer transport operation along a Segment whereas the more

sophisticated Relay nodes can also provide service sublayer

functions such as Replication and Elimination.

One possible mapping between DetNet and this specification is to

signal the Relay Nodes as the hops of a Lane and the forwarding

Nodes as the hops in a Segment that join the Relay nodes as

illustrated in Figure 7.

¶

¶

¶

¶

¶

¶

3.7.2.3. Leveraging PCE

With DetNet and 6TiSCH, the component of the controller that is

responsible of computing routes is a PCE. The PCE computes its

routes based on its own objective functions such as described in

[RFC4655], and typically controls the routes using the PCE Protocol

(PCEP) by [RFC5440]. While this specification expects a PCE and

while PCEP might effectively be used between the Root and the PCE,

the control protocol between the PCE and the Root is out of scope.

This specification also expects a single PCE with a full view of the

network. Distributing the PCE function for a large network is out of

scope. This specification uses the RPL Root as a proxy to the PCE.

The PCE may be collocated with the Root, or may reside in an

external Controller. In that case, the protocol between the Root and

the PCE is out of scope and abstracted by / mapped to RPL inside the

DODAG; one possibility is for the Root to transmit the RPL DAOs with

the SIOs that detail the parent/child and sibling information.

The algorithm to compute the paths, the protocol used by the PCE and

the metrics and link statistics involved in the computation are also

out of scope. The effectiveness of the route computation by the PCE

depends on the quality of the metrics that are reported from the RPL

network. Which metrics are used and how they are reported is out of

scope, but the expectation is that they are mostly of a long-term,

statistical nature, and provide visibility on link throughput,

latency, stability and availability over relatively long periods.

3.7.2.4. Providing for RAW

The RAW Architecture [RAW-ARCHI] extends the definition of Track, as

being composed of East-West directional Segments and North-South

bidirectional Segments, to enable additional path diversity, using

Packet ARQ, Replication, Elimination, and Overhearing (PAREO)

functions over the available paths, to provide a dynamic balance

between the reliability and availability requirements of the flows

and the need to conserve energy and spectrum. This specification

prepares for RAW by setting up the Tracks, but only forms DODAGs,

which are composed of aggregated end-to-end loose source routed

Lanes, joined by strict routed Segments, all oriented East-West.

The RAW Architecture defines a dataplane extension of the PCE called

the Path Selection Engine (PSE), that adapts the use of the path

redundancy within a Track to defeat the diverse causes of packet

loss. The PSE controls the forwarding operation of the packets

within a Track. This specification can use but does not impose a PSE

and does not provide the policies that would select which packets

are routed through which path within a Track, in other words, how

the PSE may use the path redundancy within the Track. By default,

¶

¶

¶

¶

the use of the available redundancy is limited to simple load

balancing, and all the Segments are East-West unidirectional only.

A Track may be set up to reduce the load around the Root, or to

enable urgent traffic to flow more directly. This specification does

not provide the policies that would decide which flows are routed

through which Track. In a Non-Storing Mode RPL Instance, the main

DODAG provides a default route via the Root, and the Tracks provide

more specific routes to the Track Targets.

4. Extending existing RFCs

This section explains which changes are extensions to existing

specifications, and which changes are amendments to existing

specifications. It is expected that extensions to existing

specifications do not cause existing code on legacy 6LRs to

malfunction, as the extensions will simply be ignored. New code is

required for an extension. Those 6LRs will be unable to participate

in the new mechanisms, but may also cause projected DAOs to be

impossible to install. Amendments to existing specifications are

situations where there are semantic changes required to existing

code, and which may require new unit tests to confirm that legacy

operations will continue unaffected.

4.1. Extending RFC 6550

This specification Extends RPL [RPL] to enable the Root to install

East-West routes inside a main DODAG that is operated as Non-Storing

Mode. The Root issues a Projected DAO (P-DAO) message (see

Section 4.1.1) to the Track Ingress; the P-DAO message contains a

new Via Information Option (VIO) that installs a strict or a loose

sequence of hops to form a Track Segment or a Track Lane,

respectively.

The P-DAO Request (PDR) is a new message detailed in Section 5.1. As

per [RPL] section 6, if a node receives this message and it does not

understand this new Code, it then discards the message. When the

Root initiates communication to a node that it has not communicated

with before and which it has not ascertained to implement this

specification (by means such as capabilities), then the Root SHOULD

request a PDR-ACK.

A P-DAO Request (PDR) message enables a Track Ingress to request the

Track from the Root. The resulting Track is also a DODAG for which

the Track Ingress is the Root, the owner the address that serves as

DODAGID and authoritative for the associated namespace from which

the TrackID is selected. In the context of this specification, the

installed route appears as a more specific route to the Track

¶

¶

¶

¶

¶

Targets, and the Track Ingress forwards the packets towards the

Targets via the Track using the longest match as normal.

To ensure that the PDR and P-DAO messages can flow at most times, it

is RECOMMENDED that the nodes involved in a Track maintain multiple

parents in the main DODAG, advertise them all to the Root, and use

them in turn to retry similar packets. It is also RECOMMENDED that

the Root uses diverse source route paths to retry similar messages

to the nodes in the Track.

4.1.1. Projected DAO

Section 6 of [RPL] introduces the RPL Control Message Options (CMO),

including the RPL Target Option (RTO) and Transit Information Option

(TIO), which can be placed in RPL messages such as the destination

Advertisement Object (DAO). A DAO message signals routing

information to one or more Targets indicated in RTOs, providing one

hop information at a time in the TIO.

This document Amends the specification of the DAO to create the P-

DAO message. This Amended DAO is signaled with a new "Projected DAO"

(P) flag, see Figure 8.

A Projected DAO (P-DAO) is a special DAO message generated by the

Root to install a P-Route formed of multiple hops in its DODAG. This

provides a RPL-based method to install the Tracks as expected by the

6TiSCH Architecture [RFC9030] as a collection of multiple P-Routes.

The Root MUST source the P-DAO message with its address that serves

as DODAGID for the main DODAG. The receiver MUST NOT accept a P-DAO

message that is not sent by the Root of its DODAG and MUST ignore

such messages silently.

The 'P' flag is encoded in bit position 2 (to be confirmed by IANA)

of the Flags field in the DAO Base Object. The Root MUST set it to 1

in a Projected DAO message. Otherwise it MUST be set to 0. It is set

to 0 in Legacy implementations as specified respectively in Sections

20.11 and 6.4 of [RPL].

The P-DAO is a part of control plane signaling and should not be

stuck behind high traffic levels. The expectation is that the P-DAO

message is sent at high QoS level, above that of data traffic,

typically with the Network Control precedence.

¶

¶

¶

¶

¶

¶

¶

¶

TrackID:

P:

Figure 8: Projected DAO Base Object

New fields:

The local or global RPLInstanceID of the DODAG that serves

as Track (more in Section 6.3).

1-bit flag (position to be confirmed by IANA).

The 'P' flag is set to 1 by the Root to signal a Projected DAO,

and it is set to 0 otherwise.

The D flag is set to one to signal that the DODAGID field is

present. It may be set to zero if and only if the destination

address of the P-DAO-ACK message is set to the IPv6 address that

serves as DODAGID and it MUST be set to one otherwise, meaning that

the DODAGID field MUST then be present.

In RPL Non-Storing Mode, the TIO and RTO are combined in a DAO

message to inform the DODAG Root of all the edges in the DODAG,

which are formed by the directed parent-child relationships. The DAO

message signals to the Root that a given parent can be used to reach

a given child. The P-DAO message generalizes the DAO to signal to

the Track Ingress that a Track for which it is Root can be used to

reach children and siblings of the Track Egress. In both cases,

options may be factorized and multiple RTOs may be present to signal

a collection of children that can be reached through the parent or

the Track, respectively.

4.1.2. Projected DAO-ACK

This document also Amends the DAO-ACK message. The new P flag

signals the projected form.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| TrackID |K|D|P| Flags | Reserved | DAOSequence |

+-+

| |

+ +

| DODAGID field set to the |

+ IPv6 Address of the Track Ingress +

| used to source encapsulated packets |

+ +

| |

+-+

| Option(s)...

+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

TrackID:

P:

The format of the P-DAO-ACK message is thus as illustrated in

Figure 9:

Figure 9: Projected DAO-ACK Base Object

New fields:

The local or global RPLInstanceID of the DODAG that serves

as Track (more in Section 6.3).

1-bit flag (position to be confirmed by IANA).

The 'P' flag is set to 1 by the Root to signal a Projected DAO,

and it is set to 0 otherwise.

The D flag is set to one to signal that the DODAGID field is

present. It may be set to zero if and only if the source address of

the P-DAO-ACK message is set to the IPv6 address that serves as

DODAGID and it MUST be set to one otherwise, meaning that the

DODAGID field MUST then be present.

4.1.3. Via Information Option

This document Extends the CMO to create new objects called the Via

Information Options (VIO). The VIOs are the multihop alternative to

the TIO (more in Section 5.3). One VIO is the stateful Storing Mode

VIO (SM-VIO); an SM-VIO installs a strict hop-by-hop P-Route called

a Track Segment. The other is the Non-Storing Mode VIO (NSM-VIO);

the NSM-VIO installs a loose source-routed P-Route called a Track

Lane at the Track Ingress, which uses that state to encapsulate a

packet IPv6_in_IPv6 with a new Routing Header (RH) to the Track

Egress (more in Section 6.7).

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| TrackID |D|P| Reserved | DAOSequence | Status |

+-+

| |

+ +

| DODAGID field set to the |

+ IPv6 Address of the Track Ingress +

| used to source encapsulated packets |

+ +

| |

+-+

| Option(s)...

+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

A P-DAO contains one or more RTOs to indicate the Target

(destinations) that can be reached via the P-Route, followed by

exactly one VIO that signals the sequence of nodes to be followed

(more in Section 6). There are two modes of operation for the P-

Routes, the Storing Mode and the Non-Storing Mode, see Section 6.4.2

and Section 6.4.3 respectively for more.

4.1.4. Sibling Information Option

This specification Extends the CMO to create the Sibling Information

Option (SIO). The SIO is used by a RPL Aware Node (RAN) to advertise

a selection of its candidate neighbors as siblings to the Root (more

in Section 5.4). The SIO is placed in DAO messages that are sent

directly to the main Root, including multicast DAO (see section 9.10

of [RPL]).

This draft AMENDS the multicast DAO operation as follows:

A multicast DAO message MUST be used only to advertise

information about the node (using the Target Option), and

direct Link Neighbors such as learned by Neighbor Discovery

(using the Sibling Information Option).

The multicast DAO may be used to enable direct and indirect

(via a common neighbor) P2P communication without needing the

DODAG to relay the packets. The multicast DAO exposes the

sender's addresses as Targets in RTOs and the sender's

neighbors addresses as siblings in SIOs.

4.1.5. P-DAO Request

The set of RPL Control Messages is Extended to include the P-DAO

Request (PDR) and P-DAO Request Acknowledgement (PDR-ACK). These two

new RPL Control Messages enable an RPL-Aware Node to request the

establishment of a Track between itself as the Track Ingress Node

and a Track Egress. The node makes its request by sending a new P-

DAO Request (PDR) Message to the Root. The Root confirms with a new

PDR-ACK message back to the requester RAN, see Section 5.1 for more.

4.1.6. Amending the RPI

Sending a Packet within a RPL Local Instance requires the presence

of the abstract RPL Packet Information (RPI) described in section

11.2. of [RPL] in the outer IPv6 Header chain (see [RFC9008]). The

RPI carries a local RPLInstanceID which, in association with either

the source or the destination address in the IPv6 Header, indicates

the RPL Instance that the packet follows.

This specification Amends [RPL] to create a new flag that signals

that a packet is forwarded along a P-Route.

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

Projected-Route 'P':
1-bit flag. It is set to 1 in the RPI that is

added in the encapsulation when a packet is sent over a Track. It

is set to 0 when a packet is forwarded along the main DODAG (as a

Track), including when the packet follows a Segment that joins

loose hops of the main DODAG. The flag is not mutable en-route.

The encoding of the 'P' flag in native format is shown in

Section 4.2 while the compressed format is indicated in Section 4.3.

4.1.7. Additional Flag in the RPL DODAG Configuration Option

The DODAG Configuration Option is defined in Section 6.7.6 of [RPL].

Its purpose is extended to distribute configuration information

affecting the construction and maintenance of the DODAG, as well as

operational parameters for RPL on the DODAG, through the DODAG. This

Option was originally designed with 4 bit positions reserved for

future use as Flags.

Figure 10: DODAG Configuration Option (Partial View)

This specification Amends the specification to define a new flag

"Projected Routes Support" (D). The 'D' flag is encoded in bit

position 0 of the reserved Flags in the DODAG Configuration Option

(this is the most significant bit)(to be confirmed by IANA but

there's little choice). It is set to 0 in legacy implementations as

specified respectively in Sections 20.14 and 6.7.6 of [RPL].

The 'D' flag is set to 1 to indicate that this specification is

enabled in the network and that the Root will install the requested

Tracks when feasible upon a PDR message.

Section 4.1.2. of [RFC9008] Amends [RPL] to indicate that the

definition of the Flags applies to Mode of Operation values from

zero (0) to six (6) only. For a MOP value of 7, the implementation

MUST consider that the Root accepts PDR messages and will install

Projected Routes.

The RPL DODAG Configuration option is typically placed in a DODAG

Information Object (DIO) message. The DIO message propagates down

the DODAG to form and then maintain its structure. The DODAG

Configuration option is copied unmodified from parents to children.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 0x04 |Opt Length = 14|D| | | |A| ... |

+-+ +

 |4 bits |

¶

¶

¶

¶

Option Type:

Opt Data Len:

'O', 'R' and 'F' flags:

Projected-Route 'P':

RPLInstanceID:

SenderRank:

[RPL] states that:

Nodes other than the DODAG root MUST NOT modify this information

when propagating the DODAG Configuration option.

Therefore, a legacy parent propagates the 'D' flag as set by the

root, and when the 'D' flag is set to 1, it is transparently flooded

to all the nodes in the DODAG.

4.2. Extending RFC 6553

"The RPL Option for Carrying RPL Information in Data-Plane

Datagrams" [RFC6553] describes the RPL Option for use among RPL

routers to include the abstract RPL Packet Information (RPI)

described in section 11.2. of [RPL] in data packets.

The RPL Option is commonly referred to as the RPI though the RPI is

really the abstract information that is transported in the RPL

Option. [RFC9008] updated the Option Type from 0x63 to 0x23.

This specification Amends the RPL Option to encode the 'P' flag as

follows:

Figure 11: Amended RPL Option Format

0x23 or 0x63, see [RFC9008]

See [RFC6553]

See [RFC6553]. Those flags MUST be set to 0

by the sender and ignored by the receiver if the 'P' flag is set.

1-bit flag as defined in Section 4.1.6.

See [RFC6553]. Indicates the TrackId if the 'P' flag

is set, as discussed in Section 4.1.1.

See [RFC6553]. This field MUST be set to 0 by the

sender and ignored by the receiver if the 'P' flag is set.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Option Type | Opt Data Len |

+-+

|O|R|F|P|0|0|0|0| RPLInstanceID | SenderRank |

+-+

| (sub-TLVs) |

+-+

¶

¶

¶

¶

¶

¶

Type:

4.3. Extending RFC 8138

The 6LoWPAN Routing Header [RFC8138] specification introduces a new

IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)

[RFC6282] dispatch type for use in 6LoWPAN route-over topologies,

which initially covers the needs of RPL data packet compression.

Section 4 of [RFC8138] presents the generic formats of the 6LoWPAN

Routing Header (6LoRH) with two forms, one Elective that can be

ignored and skipped when the router does not understand it, and one

Critical which causes the packet to be dropped when the router

cannot process it. The 'E' Flag in the 6LoRH indicates its form. In

order to skip the Elective 6LoRHs, their format imposes a fixed

expression of the size, whereas the size of a Critical 6LoRH may be

signaled in variable forms to enable additional optimizations.

When the [RFC8138] compression is used, the Root of the main DODAG

that sets up the Track also constructs the compressed routing header

(SRH-6LoRH) on behalf of the Track Ingress, which saves the

complexities of optimizing the SRH-6LoRH encoding in constrained

code. The SRH-6LoRH is signaled in the NSM-VIO, in a fashion that it

is ready to be placed as is in the packet encapsulation by the Track

Ingress.

Section 6.3 of [RFC8138] presents the formats of the 6LoWPAN Routing

Header of type 5 (RPI-6LoRH) that compresses the RPI for normal RPL

operation. The format of the RPI-6LoRH is not suited for P-Routes

since the O,R,F flags are not used and the Rank is unknown and

ignored.

This specification extends [RFC8138] to introduce a new 6LoRH, the

P-RPI-6LoRH that can be used in either Elective or Critical 6LoRH

form, see Table 22 and Table 23 respectively. The new 6LoRH MUST be

used as a Critical 6LoRH, unless an SRH-6LoRH is present and

controls the routing decision, in which case it MAY be used in

Elective form.

The P-RPI-6LoRH is designed to compress the RPI along RPL P-Routes.

Its format is as follows:

Figure 12: P-RPI-6LoRH Format

¶

¶

¶

¶

¶

¶

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 +-+

 |1|0|E| Length | 6LoRH Type | RPLInstanceID |

 +-+

Elective 'E':

RPLInstanceID :

IANA is requested to define the same value of the type for both

Elective and Critical forms. A type of 8 is suggested.

See [RFC8138]. The 'E' flag is set to 1 to indicate

an Elective 6LoRH, meaning that it can be ignored when

forwarding.

In the context of this specification, the

RPLInstanceID field signals the TrackID, see Section 3.4 and

Section 6.3 .

Section 6.8 details how a Track Ingress leverages the P-RPI-6LoRH

Header as part of the encapsulation of a packet to place it into a

Track.

5. New RPL Control Messages and Options

5.1. New P-DAO Request Control Message

The P-DAO Request (PDR) message is sent by a Node in the main DODAG

to the Root. It is a request to establish or refresh a Track where

this node is Track Ingress, and signals whether an acknowledgment

called PDR-ACK is requested or not. A positive PDR-ACK indicates

that the Track was built and that the Root commits to maintaining

the Track for the negotiated lifetime.

The main Root MAY indicate to the Track Ingress that the Track was

terminated before its time and to do so, it MUST use an asynchronous

PDR-ACK with a negative status. A status of "Transient Failure" (see

Section 11.10) is an indication that the PDR may be retried after a

reasonable time that depends on the deployment. Other negative

status values indicate a permanent error; the attempt must be

abandoned until a corrective action is taken at the application

layer or through network management.

The source IPv6 address of the PDR signals the Track Ingress to-be

of the requested Track, and the TrackID is indicated in the message

itself. At least one RPL Target Option MUST be present in the

message. If more than one RPL Target Option is present, the Root

will provide a Track that reaches the first listed Target and a

subset of the other Targets; the details of the subset selection are

out of scope. The RTO signals the Track Egress (more in

Section 6.2).

The RPL Control Code for the PDR is 0x09, to be confirmed by IANA.

The format of PDR Base Object is as follows:

¶

¶

¶

¶

¶

¶

¶

¶

TrackID:

K:

R:

Flags:

ReqLifetime:

PDRSequence:

Figure 13: New P-DAO Request Format

8-bit field. In the context of this specification, the

TrackID field signals the RPLInstanceID of the DODAG formed by

the Track, see Section 3.4 and Section 6.3. To allocate a new

Track, the Ingress Node must provide a value that is not in use

at this time.

The 'K' flag is set to indicate that the recipient is expected

to send a PDR-ACK back.

The 'R' flag is set to request a Complex Track for redundancy.

Reserved. The Flags field MUST be initialized to zero by the

sender and MUST be ignored by the receiver.

8-bit unsigned integer. The requested lifetime for the

Track expressed in Lifetime Units (obtained from the DODAG

Configuration option). The value of 255 (0xFF) represents

infinity.

A PDR with a fresher PDRSequence refreshes the lifetime, and a

PDRLifetime of 0 indicates that the Track should be destroyed,

e.g., when the application that requested the Track terminates.

8-bit wrapping sequence number, obeying the operation

in section 7.2 of [RPL]. The PDRSequence is used to correlate a

PDR-ACK message with the PDR message that triggered it. It is

incremented at each PDR message and echoed in the PDR-ACK by the

Root.

5.2. New PDR-ACK Control Message

The new PDR-ACK is sent as a response to a PDR message with the 'K'

flag set. The RPL Control Code for the PDR-ACK is 0x0A, to be

confirmed by IANA. Its format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | TrackID |K|R| Flags | ReqLifetime | PDRSequence |

 +-+

 | Option(s)...

 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

TrackID:

Flags:

Track Lifetime:

PDRSequence:

PDR-ACK Status:

E:

R:

Status Value:

Reserved:

Figure 14: New PDR-ACK Control Message Format

Set to the TrackID indicated in the TrackID field of the

PDR messages that this replies to.

Reserved. The Flags field MUST be initialized to zero by the

sender and MUST be ignored by the receiver.

Indicates the remaining Lifetime for the Track,

expressed in Lifetime Units; The value of 255 (0xFF) represents

infinity. The value of zero (0x00) indicates that the Track was

destroyed or not created.

8-bit wrapping sequence number. It is incremented at

each PDR message and echoed in the PDR-ACK.

8-bit field indicating the completion. The PDR-ACK

Status is substructured as indicated in Figure 15:

Figure 15: PDR-ACK status Format

1-bit flag. Set to indicate a rejection. When not set, the

value of 0 indicates Success/Unqualified Acceptance and other

values indicate "not an outright rejection".

1-bit flag. Reserved, MUST be set to 0 by the sender and

ignored by the receiver.

6-bit unsigned integer. Values depending on the

setting of the 'E' flag, see Table 28 and Table 29.

The Reserved field MUST be initialized to zero by the

sender and MUST be ignored by the receiver.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| TrackID | Flags | Track Lifetime| PDRSequence |

+-+

| PDR-ACK Status| Reserved |

+-+

| Option(s)...

+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |E|R| Value |

 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

5.3. Via Information Options

A VIO signals the ordered list of IPv6 Via Addresses that

constitutes the hops of either a Lane (using Non-Storing Mode) or a

Segment (using Storing mode) of a Track. A Storing Mode P-DAO

contains one Storing Mode VIO (SM-VIO) whereas a Non-Storing Mode P-

DAO contains one Non-Storing Mode VIO (NSM-VIO).

The duration of the validity of a VIO is indicated in a Segment

Lifetime field. A P-DAO message that contains a VIO with a Segment

Lifetime of zero is referred as a No-Path P-DAO.

The VIO contains one or more SRH-6LoRH header(s), each formed of a

SRH-6LoRH head and a collection of compressed Via Addresses, except

in the case of a Non-Storing Mode No-Path P-DAO where the SRH-6LoRH

header is not present.

In the case of a SM-VIO, or if [RFC8138] is not used in the data

packets, then the Root MUST use only one SRH-6LoRH per Via

Information Option, and the compression is the same for all the

addresses, as shown in Figure 16, for simplicity.

In case of an NSM-VIO and if [RFC8138] is in use in the main DODAG,

the Root SHOULD optimize the size of the NSM-VIO if using different

SRH-6LoRH Types would make the VIO globally shorter; this means that

more than one SRH-6LoRH may be present.

The format of the Via Information Option is as follows:

¶

¶

¶

¶

¶

¶

Option Type:

Option Length:

Flags:

P-RouteID:

Segment Sequence:

Figure 16: VIO format

0x0E for SM-VIO, 0x0F for NSM-VIO (to be confirmed by

IANA) (see Table 26).

8-bit unsigned integer, representing the length in

octets of the option, not including the Option Type and Length

fields (see section 6.7.1. of [RPL]); the Option Length is

variable, depending on the number of Via Addresses and the

compression applied.

8-bit field. No flag is defined in this specification. The

field MUST be set to 0 by the sender and ignored by the receiver.

8-bit field that identifies a component of a Track or

the main DODAG as indicated by the TrackID field. The value of 0

is used to signal a Serial Track, i.e., made of a single Segment/

Lane. In an SM-VIO, the P-RouteID indicates an actual Segment. In

an NSM-VIO, it indicates a Lane, that is a serial Track that is

added to the overall topology of the Track.

8-bit unsigned integer. The Segment Sequence

obeys the operation in section 7.2 of [RPL] and the lollipop

starts at 255.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Option Type | Option Length | Flags | P-RouteID |

 +-+

 |Segm. Sequence | Seg. Lifetime | SRH-6LoRH head |

 +-+

 | |

 . Via Address 1 (compressed by RFC 8138) .

 | |

 +-+

 | |

 | |

 +-+

 | |

 . Via Address n (compressed by RFC 8138) .

 | |

 +-+

 | |

 . Additional SRH-6LoRH Header(s) .

 | |

¶

¶

¶

¶

¶

Segment Lifetime:

SRH-6LoRH head:

Via Address:

When the Root of the DODAG needs to refresh or update a Segment

in a Track, it increments the Segment Sequence individually for

that Segment.

The Segment information indicated in the VIO deprecates any state

for the Segment indicated by the P-RouteID within the indicated

Track and sets up the new information.

A VIO with a Segment Sequence that is not as fresh as the current

one is ignored.

A VIO for a given DODAGID with the same (TrackID, P-RouteID,

Segment Sequence) indicates a retry; it MUST NOT change the

Segment and MUST be propagated or answered as the first copy.

8-bit unsigned integer. The length of time in

Lifetime Units (obtained from the Configuration option) that the

Segment is usable.

The period starts when a new Segment Sequence is seen. The value

of 255 (0xFF) represents infinity. The value of zero (0x00)

indicates a loss of reachability.

The first 2 bytes of the (first) SRH-6LoRH as shown

in Figure 6 of [RFC8138]. As an example, a 6LoRH Type of 4 means

that the VIA Addresses are provided in full with no compression.

An IPv6 ULA or GUA of a node along the Segment. The

VIO contains one or more IPv6 Via Addresses listed in the

datapath order from Ingress to Egress. The list is expressed in a

compressed form as signaled by the preceding SRH-6LoRH header.

In a Storing Mode P-DAO that updates or removes a section of an

already existing Segment, the list in the SM-VIO may represent

only the section of the Segment that is being updated; at the

extreme, the SM-VIO updates only one node, in which case it

contains only one IPv6 address. In all other cases, the list in

the VIO MUST be complete.

In the case of an SM-VIO, the list indicates a sequential

(strict) path through direct neighbors, the complete list starts

at Ingress and ends at Egress, and the nodes listed in the VIO,

including the Egress, MAY be considered as implicit Targets.

In the case of an NSM-VIO, the complete list can be loose and

excludes the Ingress node, starting at the first loose hop and

ending at a Track Egress; the Track Egress MUST be considered as

an implicit Target, so it MUST NOT be signaled in a RPL Target

Option.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.4. Sibling Information Option

The Sibling Information Option (SIO) provides information about

siblings that could be used by the Root to form P-Routes. One or

more SIO(s) may be placed in the DAO messages that are sent to the

Root in Non-Storing Mode.

To advertise a neighbor node, the router MUST have an active Address

Registration from that sibling using [RFC8505], for an address (ULA

or GUA) that serves as identifier for the node. If this router also

registers an address to that sibling, and the link has similar

properties in both directions, only the router with the lowest

Interface ID in its registered address needs to report the SIO, with

the B flag set, and the Root will assume symmetry.

The SIO carries a flag (B) that is set when similar performance can

be expected in both directions, so the routing can consider that the

information provided for one direction is valid for both. If the SIO

is effectively received from both sides then the B flag MUST be

ignored. The policy that describes the performance criteria, and how

they are asserted is out of scope. In the absence of an external

protocol to assert the link quality, the flag SHOULD NOT be set.

The format of the SIO is as follows:

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Option Length |S|B|Flags|Comp.| Opaque |

 +-+

 | Step in Rank | Reserved |

 +-+

 | |

 + +

 . .

 . Sibling DODAGID (if the D flag not set) .

 . .

 + +

 | |

 +-+

 | |

 + +

 . .

 . Sibling Address .

 . .

 + +

 | |

 +-+

Option Type:

Option Length:

Reserved for Flags:

B:

S:

Flags:

Opaque:

Compression Type:

Step in Rank:

Reserved:

Sibling DODAGID:

Figure 17: Sibling Information Option Format

0x10 for SIO (to be confirmed by IANA) (see Table 26).

8-bit unsigned integer, representing the length in

octets of the option, not including the Option Type and Length

fields (see section 6.7.1. of [RPL]).

MUST be set to zero by the sender and MUST be

ignored by the receiver.

1-bit flag that is set to indicate that the connectivity to the

sibling is bidirectional and roughly symmetrical. In that case,

only one of the siblings may report the SIO for the hop. If 'B'

is not set then the SIO only indicates connectivity from the

sibling to this node, and does not provide information on the hop

from this node to the sibling.

1-bit flag that is set to indicate that sibling belongs to the

same DODAG. When not set, the Sibling DODAGID is indicated.

Reserved. The Flags field MUST be initialized to zero by the

sender and MUST be ignored by the receiver.

MAY be used to carry information that the node and the Root

understand, e.g., a particular representation of the Link

properties such as a proprietary Link Quality Information for

packets received from the sibling. In some scenarios such as the

case of an Industrial Alliances that uses RPL for a particular

use / environment, this field MAY be redefined to fit the needs

of that case.

3-bit unsigned integer. This is the SRH-6LoRH

Type as defined in figure 7 in section 5.1 of [RFC8138] that

corresponds to the compression used for the Sibling Address and

its DODAGID if present. The Compression reference is the Root of

the main DODAG.

16-bit unsigned integer. This is the Step in Rank

[RPL] as computed by the Objective Function between this node and

the sibling, that reflects the abstract Rank increment that would

be computed by the OF if the sibling was the preferred parent.

The Reserved field MUST be initialized to zero by the

sender and MUST be ignored by the receiver

2 to 16 bytes, the DODAGID of the sibling in a

[RFC8138] compressed form as indicated by the Compression Type

field. This field is present if and only if the D flag is not

set.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Sibling Address:
2 to 16 bytes, an IPv6 Address of the sibling,

with a scope that MUST be make it reachable from the Root, e.g.,

it cannot be a Link Local Address. The IPv6 address is encoded in

the [RFC8138] compressed form indicated by the Compression Type

field.

An SIO MAY be immediately followed by a DAG Metric Container. In

that case the DAG Metric Container provides additional metrics for

the hop from the Sibling to this node.

6. Root Initiated Routing State

6.1. RPL Network Setup

To avoid the need of Path MTU Discovery, 6LoWPAN links are normally

defined with a MTU of 1280 (see section 4 of [6LoWPAN]). Injecting

packets in a Track typically involves an IP-in-IP encapsulation and

additional IPv6 Extension Headers. This may cause fragmentation if

the resulting packets exceeds the MTU that is defined for the RPL

domain.

Though fragmentation is possible in a 6LoWPAN LLN, e.g., using

[6LoWPAN], [RFC8930], and/or [RFC8931], it is RECOMMENDED to allow

an MTU that is larger than 1280 in the main DODAG and which allows

for the additional headers while exposing only 1280 to the 6LoWPAN

Nodes.

6.2. Requesting a Track

This specification introduces the PDR message, used by an LLN node

to request the formation of a new Track for which this node is the

Ingress. Note that the namespace for the TrackID is owned by the

Ingress node, and in the absence of a PDR, there must be some

procedure for the Root to assign TrackIDs in that namespace while

avoiding collisions (more in Section 6.3).

The PDR signals the desired TrackID and the duration for which the

Track should be established. Upon a PDR, the Root MAY install the

Track as requested, in which case it answers with a PDR-ACK

indicating the granted Track Lifetime. All the Segments MUST be of a

same mode, either Storing or Non-Storing. All the Segments MUST be

created with the same TrackID and the same DODAGID signaled in the

P-DAO.

The Root designs the Track as it sees best, and updates / changes

the Segments over time to serve the Track as needed. Note that there

is no protocol element to notify to the requesting Track Ingress

when changes happen deeper down the Track, so they are transparent

to the Track Ingress. If the main Root cannot maintain an expected

¶

¶

¶

¶

¶

¶

service level, then it needs to tear down the Track completely. The

Segment Lifetime in the P-DAO messages does not need to be aligned

to the Requested Lifetime in the PDR, or between P-DAO messages for

different Segments. The Root may use shorter lifetimes for the

Segments and renew them faster than the Track is, or longer

lifetimes in which case it will need to tear down the Segments if

the Track is not renewed.

When the Track Lifetime that was returned in the PDR-ACK is close to

elapse - vs. the trip time from the node to the Root, the requesting

node SHOULD resend a PDR using the TrackID in the PDR-ACK to extend

the lifetime of the Track, else the Track will time out and the Root

will tear down the whole structure.

If the Track fails and cannot be restored, the Root notifies the

requesting node asynchronously with a PDR-ACK with a Track Lifetime

of 0, indicating that the Track has failed, and a PDR-ACK Status

indicating the reason of the fault.

6.3. Identifying a Track

RPL defines the concept of an Instance to signal an individual

routing topology, and multiple topologies can coexist in the same

network. The RPLInstanceID is tagged in the RPI of every packet to

signal which topology the packet actually follows.

This draft leverages the RPL Instance model as follows:

The main Root MAY use P-DAO messages to add better routes in the

main Instance in conformance with the routing objectives in that

Instance.

To achieve this, the main Root MAY install a Segment along a path

down the main DODAG, which is operated in Non-Storing Mode. This

enables a loose source routing and reduces the size of the

Routing Header, see Section 3.3.1. The main Root MAY also install

a Track Lane across the main DODAG to complement the routing

topology.

When adding a P-Route to the RPL main DODAG, the main Root MUST

set the RPLInstanceID field of the P-DAO Base Object (see section

6.4.1. of [RPL]) to the RPLInstanceID of the main DODAG, and MUST

NOT use the DODAGID field. A P-Route provides a longer match to

the Target Address than the default route via the main Root, so

it is preferred.

The main Root MAY also use P-DAO messages to install a Track as

an independent routing topology (say, Traffic Engineered) to

achieve particular routing characteristics from an Ingress to

Egress Endpoints. To achieve this, the main Root MUST set up a

¶

¶

¶

¶

¶

*

¶

¶

¶

*

Local RPL Instance (see section 5 of [RPL]), and the Local

RPLInstanceID serves as the TrackID. The TrackID MUST be unique

for the IPv6 ULA or GUA of the Track Ingress that serves as

DODAGID for the Track.

This way, a Track is uniquely identified by the tuple (DODAGID,

TrackID) where the TrackID is always represented with the D flag

set to 0 (see also section 5.1. of [RPL]), indicating when used

in an RPI that the source address of the IPv6 packet signals the

DODAGID.

The P-DAO Base Object MUST indicate the tuple (DODAGID, TrackID)

that identifies the Track as shown in Figure 8, and the P-RouteID

that identifies the P-Route MUST be signaled in the VIO as shown

in Figure 16.

The Track Ingress is the Root of the DODAG ID formed by the local

RPL Instance. It owns the namespace of its TrackIDs, so it can

pick any unused value to request a new Track with a PDR. In a

particular deployment where PDRs are not used, a portion of the

namespace can be administratively delegated to the main Root,

meaning that the main Root is authoritative for assigning the

TrackIDs for the Tracks it creates.

With this specification, the main Root is aware of all the active

Tracks, so it can also pick any unused value to form Tracks

without a PDR. To avoid a collision of the main Root and the

Track Ingress picking the same value at the same time, it is

RECOMMENDED that the Track Ingress starts allocating the ID value

of the Local RPLInstanceID (see section 5.1. of [RPL]) used as

TrackIDs with the value 0 incrementing, while the Root starts

with 63 decrementing.

6.4. Installing a Track

A Serial Track can be installed by a single P-Route that signals the

sequence of consecutive nodes, either in Storing Mode as a single-

Segment Track, or in Non-Storing Mode as a single-Lane Track. A

single-Lane Track can be installed as a loose Non-Storing Mode P-

Route, in which case the next loose entry must recursively be

reached over a Serial Track.

A Complex Track can be installed as a collection of P-Routes with

the same DODAGID and Track ID. The Ingress of a Non-Storing Mode P-

Route is the owner and Root of the DODAGID. The Ingress of a Storing

Mode P-Route must be either the owner of the DODAGID, or a hop of a

Lane of the same Track. In the latter case, the Targets of the P-

Route must include the next hop of the Lane if there is one, to

ensure forwarding continuity. In the case of a Complex Track, each

¶

¶

¶

¶

¶

¶

Segment is maintained independently and asynchronously by the Root,

with its own lifetime that may be shorter, the same, or longer than

that of the Track.

A route along a Track for which the TrackID is not the RPLInstanceID

of the main DODAG MUST be installed with a higher precedence than

the routes along the main DODAG, meaning that:

Longest match MUST be the prime comparison for routing.

In case of equal length match, the route along the Track MUST be

preferred vs. the one along the main DODAG.

There SHOULD NOT be 2 different Tracks leading to the same Target

from same Ingress node, unless there's a policy for selecting

which packets use which Track; such a policy is out of scope.

A packet that was routed along a Track MUST NOT be routed along

the main DODAG again; if the destination is not reachable as a

neighbor by the node where the packet exits the Track then the

packet MUST be dropped.

6.4.1. Signaling a Projected Route

This draft adds a capability whereby the Root of a main DODAG

installs a Track as a collection of P-Routes, using a Projected-DAO

(P-DAO) message for each individual Track Lane or Segment. The P-DAO

signals a collection of Targets in the RPL Target Option(s) (RTO).

Those Targets can be reached via a sequence of routers indicated in

a VIO.

Like a classical DAO message, a P-DAO causes a change of state only

if it is "new" per section 9.2.2. "Generation of DAO Messages" of

the RPL specification [RPL]; this is determined using the Segment

Sequence information from the VIO as opposed to the Path Sequence

from a TIO. Also, a Segment Lifetime of 0 in a VIO indicates that

the P-Route associated to the Segment is to be removed. There are

two Modes of operation for the P-Routes, the Storing and the Non-

Storing Modes.

A P-DAO message MUST be sent from the address of the Root that

serves as DODAGID for the main DODAG. It MUST contain either exactly

one sequence of one or more RTOs followed one VIO, or any number of

sequences of one or more RTOs followed by one or more TIOs. The

former is the normal expression for this specification, where as the

latter corresponds to the variation for lesser constrained

environments described in Section 7.2.

A P-DAO that creates or updates a Track Lane MUST be sent to a GUA

or a ULA of the Ingress of the Lane; it must contain the full list

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

of hops in the Lane unless the Lane is being removed. A P-DAO that

creates a new Track Segment MUST be sent to a GUA or a ULA of the

Segment Egress and MUST signal the full list of hops in Segment; a

P-DAO that updates (including deletes) a section of a Segment MUST

be sent to the first node after the modified Segment and signal the

full list of hops in the section starting at the node that

immediately precedes the modified section.

In Non-Storing Mode, as discussed in Section 6.4.3, the Root sends

the P-DAO to the Track Ingress where the source-routing state is

applied, whereas in Storing Mode, the P-DAO is sent to the last node

on the installed path and forwarded in the reverse direction,

installing a Storing Mode state at each hop, as discussed in

Section 6.4.2. In both cases the Track Ingress is the owner of the

Track, and it generates the P-DAO-ACK when the installation is

successful.

If the 'K' Flag is present in the P-DAO, the P-DAO must be

acknowledged using a DAO-ACK that is sent back to the address of the

Root from which the P-DAO was received. In most cases, the first

node of the Lane, Segment, or updated section of the Segment is the

node that sends the acknowledgment. The exception to the rule is

when an intermediate node in a Segment fails to forward a Storing

Mode P-DAO to the previous node in the SM-VIO.

In a No-Path Non-Storing Mode P-DAO, the SRH-6LoRH MUST NOT be

present in the NSM-VIO; the state in the Ingress is erased

regardless. In all other cases, a VIO MUST contain at least one Via

Address, and a Via Address MUST NOT be present more than once, which

would create a loop.

A node that processes a VIO MAY verify whether any of these

conditions happen, and when one does, it MUST ignore the P-DAO and

reject it with a RPL Rejection Status of "Error in VIO" in the DAO-

ACK, see Section 11.16.

Other errors than those discussed explicitly that prevent the

installation of the route are acknowledged with a RPL Rejection

Status of "Unqualified Rejection" in the DAO-ACK.

6.4.2. Installing a Track Segment with a Storing Mode P-Route

As illustrated in Figure 18, a Storing Mode P-DAO installs a route

along the Segment signaled by the SM-VIO towards the Targets

indicated in the Target Options. The Segment is to be included in a

DODAG indicated by the P-DAO Base Object, that may be the one formed

by the main DODAG, or a Track associated with a local RPL Instance.

¶

¶

¶

¶

¶

¶

¶

Figure 18: Projecting a route

In order to install the relevant routing state along the Segment ,

the Root sends a unicast P-DAO message to the Track Egress router of

the routing Segment that is being installed. The P-DAO message

contains a SM-VIO with the strict sequence of Via Addresses. The SM-

VIO follows one or more RTOs indicating the Targets to which the

Track leads. The SM-VIO contains a Segment Lifetime for which the

state is to be maintained.

The Root sends the P-DAO directly to the Egress node of the Segment.

In that P-DAO, the destination IP address matches the last Via

Address in the SM-VIO. This is how the Egress recognizes its role.

In a similar fashion, the Segment Ingress node recognizes its role

because it matches the first Via Address in the SM-VIO.

The Egress node of the Segment is the only node in the path that

does not install a route in response to the P-DAO; it is expected to

be already able to route to the Target(s) based on its existing

tables. If one of the Targets is not known, the node MUST answer to

the Root with a DAO-ACK listing the unreachable Target(s) in an RTO

and a rejection status of "Unreachable Target".

If the Egress node can reach all the Targets, then it forwards the

P-DAO with unchanged content to its predecessor in the Segment as

indicated in the list of Via Information options, and recursively

the message is propagated unchanged along the sequence of routers

indicated in the P-DAO, but in the reverse order, from Egress to

Ingress.

The address of the predecessor to be used as destination of the

propagated DAO message is found in the Via Address list, at the

 ------+---------

 | Internet

 |

 +-----+

 | | Border router

 | | (RPL Root)

 +-----+ | ^ |

 | | DAO | ACK |

 o o o o | | |

 o o o o Ingress o o o | ^ | Projected .

 o o o o o \\ o o o | | DAO | Route .

 o o o o \\ o o o o | ^ | .

 o o o o o Egress o o v | DAO v .

 o o LLN o o o |

 o o o o o Loose Source Route Path |

 o o o o v

¶

¶

¶

¶

position preceeding the one that contains the address of the

propagating node, which is used as source of the message.

Upon receiving a propagated DAO, all except the Egress router MUST

install a route towards the DAO Target(s) via their successor in the

SM-VIO. A router that cannot store the routes to all the Targets in

a P-DAO MUST reject the P-DAO by sending a DAO-ACK to the Root with

a Rejection Status of "Out of Resources" as opposed to forwarding

the DAO to its predecessor in the list. The router MAY install

additional routes towards the Via Addresses that appear in the SM-

VIO after its own address, if any, but in case of a conflict or a

lack of resource, the route(s) to the Target(s) are the ones that

must be installed in priority.

If a router cannot reach its predecessor in the SM-VIO, the router

MUST send the DAO-ACK to the Root with a Rejection Status of

"Predecessor Unreachable".

The process continues until the P-DAO is propagated to the Ingress

router of the Segment, which answers with a DAO-ACK to the Root. The

Root always expects a DAO-ACK, either from the Track Ingress with a

positive status or from any node along the Segment with a negative

status. If the DAO-ACK is not received, the Root may retry the DAO

with the same TID, or tear down the route.

6.4.3. Installing a Track Lane with a Non-Storing Mode P-Route

As illustrated in Figure 19, a Non-Storing Mode P-DAO installs a

source-routed path within the Track indicated by the P-DAO Base

Object, towards the Targets indicated in the Target Options. The

source-routed path requires a Source-Routing header which implies an

IP-in-IP encapsulation to add the SRH to an existing packet. It is

sent to the Track Ingress which creates a tunnel associated with the

Track, and connected routes over the tunnel to the Targets in the

RTO. The tunnel encapsulation MUST incorporate a routing header via

the list addresses listed in the VIO in the same order. The content

of the NSM-VIO starting at the first SRH-6LoRH header MUST be used

verbatim by the Track Ingress when it encapsulates a packet to

forward it over the Track.

¶

¶

¶

¶

¶

Figure 19: Projecting a Non-Storing Route

The next entry in the source-routed path must be either a neighbor

of the previous entry, or reachable as a Target via another P-Route,

either Storing or Non-Storing, which implies that the nested P-Route

has to be installed before the loose sequence is, and that P-Routes

must be installed from the last to the first along the datapath. For

instance, a Segment of a Track must be installed before the Lane(s)

of the same Track that use it, and stitched Segments must be

installed in order from the last that reaches to the Targets to the

first.

If the next entry in the loose sequence is reachable over a Storing

Mode P-Route, it MUST be the Target of a Segment and the Ingress of

a next Segment, both already setup; the Segments are associated with

the same Track, which avoids the need of an additional

encapsulation. For instance, in Section 3.5.1.3, Segments A==>B-to-C

and C==>D==>E-to-F must be installed with Storing Mode P-DAO

messages 1 and 2 before the Track A-->C-->E-to-F that joins them can

be installed with Non-Storing Mode P-DAO 3.

Conversely, if it is reachable over a Non-Storing Mode P-Route, the

next loose source-routed hop of the inner Track is a Target of a

previously installed Track and the Ingress of a next Track, which

requires a de- and a re-encapsulation when switching the outer

Tracks that join the loose hops. This is examplified in

Section 3.5.2.3 where Non-Storing Mode P-DAO 1 and 2 install strict

Tracks that Non-Storing Mode P-DAO 3 joins as a super Track. In such

a case, packets are subject to double IP-in-IP encapsulation.

 ------+---------

 | Internet

 |

 +-----+

 | | Border router

 | | (RPL Root)

 +-----+ | P ^ ACK

 | Track | DAO |

 o o o o Ingress X V | X

 o o o o o o o X o X Source

 o o o o o o o o X o o X Routed

 o o ° o o o o X o X Segment

 o o o o o o o o X Egress X

 o o o o o |

 Target

 o o LLN o o

 o o o o

¶

¶

¶

6.5. Tearing Down a P-Route

A P-DAO with a lifetime of 0 is interpreted as a No-Path DAO and

results in cleaning up existing state as opposed to refreshing an

existing one or installing a new one. To tear down a Track, the Root

must tear down all the Track Segments and Lanes that compose it one

by one.

Since the state about a Lane of a Track is located only on the

Ingress Node, the Root cleans up the Lane by sending an NSM-VIO to

the Ingress indicating the TrackID and the P-RouteID of the Lane

being removed, a Segment Lifetime of 0 and a newer Segment Sequence.

The SRH-6LoRH with the Via Addresses in the NSM-VIO are not needed;

it SHOULD NOT be placed in the message and MUST be ignored by the

receiver. Upon that NSM-VIO, the Ingress node removes all state for

that Track if any, and replies positively anyway.

The Root cleans up a section of a Segment by sending an SM-VIO to

the last node of the Segment, with the TrackID and the P-RouteID of

the Segment being updated, a Segment Lifetime of zero (0) and a

newer Segment Sequence. The Via Addresses in the SM-VIO indicates

the section of the Segment being modified, from the first to the

last node that is impacted. This can be the whole Segment if it is

totally removed, or a sequence of one or more nodes that have been

bypassed by a Segment update.

The No-Path P-DAO is forwarded normally along the reverse list, even

if the intermediate node does not find a Segment state to clean up.

This results in cleaning up the existing Segment state if any, as

opposed to refreshing an existing one or installing a new one.

6.6. Maintaining a Track

Repathing a Track Segment or Lane may cause jitter and packet

misordering. For critical flows that require timely and/or in-order

delivery, it might be necessary to deploy the PAREO functions

[RAW-ARCHI] over a highly redundant Track. This specification allows

to use more than one Lane for a Track, and 1+N packet redundancy.

This section provides the steps to ensure that no packet is lost due

to the operation itself. This is ensured by installing the new

section from its last node to the first, so when an intermediate

node installs a route along the new section, all the downstream

nodes in the section have already installed their own. The disabled

section is removed when the packets in-flight are forwarded along

the new section as well.

¶

¶

¶

¶

¶

¶

6.6.1. Maintaining a Track Segment

To modify a section of a Segment between a first node and a second,

downstream node (which can be the Ingress and Egress, respectively),

while retaining those nodes in the Segment, the Root sends an SM-VIO

to the second node indicating the sequence of nodes in the new

section of the Segment. The SM-VIO indicates the TrackID and the P-

RouteID of the Segment being updated, and a newer Segment Sequence.

The P-DAO is propagated from the second to the first node and on the

way, it updates the state on the nodes that are common to the old

and the new section of the Segment and creates a state in the new

nodes.

When the state is updated in an intermediate node, that node might

still receive packets that were in flight from the Ingress to self

over the old section of the Segment. Since the remainder of the

Segment is already updated, the packets are forwarded along the new

version of the Segment from that node on.

After a reasonable time to enable the deprecated sections to drain

their traffic, the Root tears down the remaining section(s) of the

old Segments as described in Section 6.5.

6.6.2. Maintaining a Track Lane

This specification allows the Root to add Lanes to a Track by

sending a Non-Storing Mode P-DAO to the Ingress associated to the

same TrackID, and a new Segment ID. If the Lane is loose, then the

Segments that join the hops must be created first. It makes sense to

add a new Lane before removing one that is becoming excessively

lossy, and switch to the new Lane before removing the old. Dropping

a Track before the new one is installed would reroute the traffic

via the root; this may increase the latency beyond acceptable

thresholds, and overload the network near the root. This may also

cause loops in the case of stitched Tracks: the packets that cannot

be injected in the second Track might be routed back and reinjected

at the Ingress of the first.

It is also possible to update a Track Lane by sending a Non-Storing

Mode P-DAO to the Ingress with the same Segment ID, an incremented

Segment Sequence, and the new complete list of hops in the NSM-VIO.

Updating a live Lane means changing one or more of the intermediate

loose hops, and involves laying out new Segments from and to the new

loose hops before the NSM-VIO for the new Lane is issued.

Packets that are in flight over the old version of the Track Lane

still follow the old source route path over the old Segments. After

a reasonable time to enable the deprecated Segments to drain their

¶

¶

¶

¶

¶

traffic, the Root tears down those Segments as described in

Section 6.5.

6.7. Encapsulating and Forwarding Along a Track

When injecting a packet in a Track, the Ingress router must

encapsulate the packet using IP-in-IP to add the Source Routing

Header with the final destination set to the Track Egress.

All properties of a Track operations are inherited form the main

Instance that is used to install the Track. For instance, the use of

compression per [RFC8138] is determined by whether it is used in the

RPL main DODAG, e.g., by setting the "T" flag [RFC9035] in the RPL

configuration option.

The Track Ingress that places a packet in a Track encapsulates it

with an IP-in-IP header, a Routing Header, and an IPv6 Hop-by-Hop

Option Header that contains the RPL Packet Information (RPI) as

follows:

In the uncompressed form, the source of the packet is the address

that this router uses as DODAGID for the Track, the destination

is the first Via Address in the NSM-VIO, and the RH is a Source

Routing Header (SRH) [RFC6554] that contains the list of the

remaining Via Addresses, ending with the Track Egress.

The preferred alternative in a network where 6LoWPAN Header

Compression [RFC6282] is used is to leverage "IPv6 over Low-Power

Wireless Personal Area Network (6LoWPAN) Paging Dispatch"

[RFC8025] to compress the RPL artifacts as indicated in

[RFC8138].

In that case, the source routed header is the exact copy of the

(chain of) SRH-6LoRH found in the NSM-VIO, also ending with the

Track Egress. The RPI-6LoRH is appended next, followed by an IP-

in-IP 6LoRH Header that indicates the Ingress router in the

Encapsulator Address field, see as a similar case Figure 20 of

[RFC9035].

To signal the Track in the packet, this specification leverages the

RPL Forwarding model as follows:

In the data packets, the Track DODAGID and the TrackID MUST be

respectively signaled as the IPv6 Source Address and the

RPLInstanceID field of the RPI that MUST be placed in the outer

chain of IPv6 Headers.

The RPI carries a local RPLInstanceID called the TrackID, which,

in association with the DODAGID, indicates the Track along which

the packet is forwarded.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

¶

The D flag in the RPLInstanceID MUST be set to 0 to indicate that

the source address in the IPv6 header is set to the DODAGID (more

in Section 6.3).

This draft conforms to the principles of [RFC9008] with regards

to packet forwarding and encapsulation along a Track, as follows:

With this draft, the Track is a RPL DODAG. From the

perspective of that DODAG, the Track Ingress is the Root, the

Track Egress is a RPL-Aware 6LR, and neighbors of the Track

Egress that can be reached via the Track, but are external to

it, are external destinations and treated as RPL-Unaware

Leaves (RULs). The encapsulation rules in [RFC9008] apply.

If the Track Ingress is the originator of the packet and the

Track Egress is the destination of the packet, there is no

need for an encapsulation.

So the Track Ingress must encapsulate the traffic that it did

not originate, and add an RPI.

A packet that is being routed over the RPL Instance associated to

a first Non-Storing Mode Track MAY be placed (encapsulated) in a

second Track to cover one loose hop of the first Track as

discussed in more details Section 3.5.2.3. On the other hand, a

Storing Mode Segment must be strict and a packet that it placed

in a Storing Mode Segment MUST follow that Segment till the

Segment Egress.

The forwarding of a packet along a track will fail if the Track

continuity is broken, e.g.:

When forwarding along a Segment, if the next strict hop in the

RIB for the destination of the packet is a direct Neighbor, the

packet MUST be forwarded to that neighbor. Otherwise the packet

MUST be dropped.

When forwarding along a Track, if the next hop in the source

route header is a direct Neighbor, the packet MUST be forwarded

to that neighbor; else, the packet can be forwarded in the

following case:

the previous next hop has a common Neighbor that can relay

to the next loose hop (e.g., learned through a SIO in a

multicast DAO message, see Section 4.1.4), in which case the

packet MUST be forwarded to that neighbor,

else the previous next hop is the Ingress of a Segment of

the same Track for which the loose next hop is a target, in

which case the Segment MUST be used,

¶

*

¶

-

¶

-

¶

-

¶

¶

¶

*

¶

*

¶

1.

¶

2.

¶

else the previous next hop is the Ingress of a (nested)

Track to the loose next hop, in which case the (nested)

Track MUST be used; another encapsulation takes place and

the process may recurse.

Otherwise the packet MUST be dropped to avoid loops; as an

example, forwarding the packet along the main DODAG is disallowed

since it may cause such a loop.

In case of a failure forwarding a packet along a Segment, e.g., the

next hop is unreachable, the node that discovers the fault MUST send

an ICMPv6 Error message [RFC4443] to the Root, with a new Code

"Error in P-Route" (See Section 11.15). The Root can then repair by

updating the broken Segment and/or Tracks, and in the case of a

broken Segment, remove the leftover sections of the Segment using

SM-VIOs with a lifetime of 0 indicating the section to one or more

nodes being removed (See Section 6.6).

In case of a permanent forwarding error along a Source Route path,

the node that fails to forward SHOULD send an ICMP error with a code

"Error in Source Routing Header" back to the source of the packet,

as described in section 11.2.2.3. of [RPL]. Upon receiving this

message, the encapsulating node SHOULD stop using the source route

path for a reasonable period of time which depends on the

deployment, and it SHOULD send an ICMP message with a Code "Error in

P-Route" to the Root. Failure to follow these steps may result in

packet loss and wasted resources along the source route path that is

broken.

Either way, the ICMP message MUST be throttled in case of

consecutive occurrences. It MUST be sourced at the ULA or a GUA that

is used in this Track for the source node, so the Root can establish

where the error happened.

The portion of the invoking packet that is sent back in the ICMP

message SHOULD record at least up to the RH if one is present, and

this hop of the RH SHOULD be consumed by this node so that the

destination in the IPv6 header is the next hop that this node could

not reach. If a 6LoWPAN Routing Header (6LoRH) [RFC8138] is used to

carry the IPv6 routing information in the outer header then that

whole 6LoRH information SHOULD be present in the ICMP message.

6.8. Compression of the RPL Artifacts

When using [RFC8138] in the main DODAG operated in Non-Storing Mode

in a 6LoWPAN LLN, a typical packet that circulates in the main DODAG

is formatted as shown in Figure 20, representing the case where an

IPv6-in-IPv6 encapsulation is needed (see Table 19 of [RFC9008]):

3.

¶

¶

¶

¶

¶

¶

¶

Figure 20: A Packet as Forwarded along the main DODAG

Since there is no page switch between the encapsulated packet and

the encapsulation, the first octet of the compressed packet that

acts as page selector is actually removed at encapsulation, so the

inner packet used in the descriptions below starts with the

SRH-6LoRH, and is exactly the packet represented in Figure 20, from

the second octet onward.

When encapsulating that inner packet to place it in the Track, the

first header that the Ingress appends at the head of the inner

packet is an IP-in-IP 6LoRH Header; in that header, the encapsulator

address, which maps to the IPv6 source address in the uncompressed

form, contains a GUA or ULA IPv6 address of the Ingress node that

serves as DODAG ID for the Track, expressed in the compressed form

and using the DODAGID of the main DODAG as compression reference. If

the address is compressed to 2 bytes, the resulting value for the

Length field shown in Figure 21 is 3, meaning that the SRH-6LoRH as

a whole is 5-octets long.

Figure 21: The IP-in-IP 6LoRH Header

At the head of the resulting sequence of bytes, the track Ingress

then adds the RPI that carries the TrackID as RPLinstanceID as a P-

RPI-6LoRH Header, as illustrated in Figure 12, using the TrackID as

RPLInstanceID. Combined with the IP-in-IP 6LoRH Header, this allows

to identify the Track without ambiguity.

The SRH-6LoRH is then added at the head of the resulting sequence of

bytes as a verbatim copy of the content of the SR-VIO that signaled

the selected Track Lane.

+-+ ... -+- ... -+- ... -+-+- ... +-+-+-+ ... +-+-+ ... -+ ... +-...

|11110001| SRH- | RPI- | IP-in-IP | NH=1 |11110CPP| UDP | UDP

| Page 1 | 6LoRH | 6LoRH | 6LoRH |LOWPAN_IPHC| UDP | hdr |Payld

+-+ ... -+- ... -+- ... -+-+- ... +-+-+-+ ... +-+-+ ... -+ ... +-...

 <= RFC 6282 =>

 <================ Inner packet ==================== = =

¶

¶

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

+- ... -+

|1|0|1| Length | 6LoRH Type 6 | Hop Limit | Track DODAGID |

+- ... -+

¶

¶

Figure 22: The SRH 6LoRH Header

The format of the resulting encapsulated packet in [RFC8138]

compressed form is illustrated in Figure 23:

Figure 23: A Packet as Forwarded along a Track

7. Lesser Constrained Variations

7.1. Storing Mode main DODAG

This specification expects that the main DODAG is operated in Non-

Storing Mode. The reasons for that limitation are mostly related to

LLN operations, power and spectrum conservation:

In Non-Storing Mode, the Root already knowns the DODAG topology,

so the additional topological information is reduced to the

siblings.

The downward routes are updated with unicast messages to the

Root, which ensures that the Root can reach back to the LLN nodes

after a repair faster than in the case of Storing Mode. Also the

Root can control the use of the path diversity in the DODAG to

reach the LLN nodes. For both reasons, Non-Storing Mode provides

better capabilities for the Root to maintain the P-Routes.

When the main DODAG is operated in Non-Storing Mode, P-Routes

enable loose Source Routing, which is only an advantage in that

mode. Storing Mode does not use Source Routing Headers, and does

not derive the same benefits from this capability.

On the other hand, since RPL is a Layer-3 routing protocol, its

applicability extends beyond LLNs to a generic IP network. RPL

requires less resources than alternative IGPs like OSPF, ISIS,

EIGRP, BABEL or RIP at the expense of a route stretch vs. the

shortest path routes to a destination that those protocols compute.

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+- -+ ... +- -+

|1|0|0| Size |6LoRH Type 0..4| Hop1 | Hop2 | | HopN |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+- -+ ... +- -+

 Where N = Size + 1

¶

+-+ ... -+-+-+- ... -+-+-+- ... -+-+-+-+-+- ... +-+-+-+-+-+-+- ...

| Page 1 | SRH-6LoRH | P-RPI-6LoRH | IP-in-IP 6LoRH | Inner Packet

+-+ ... -+-+-+- ... -+-+-+- ... -+-+-+-+-+- ... +-+-+-+-+-+-+- ...

 Signals : Loose Hops : TrackID : Track DODAGID :

¶

*

¶

*

¶

*

¶

P-Routes add the capability to install shortest and/or constrained

routes to special destinations such as discussed in section A.9.4.

of the ANIMA ACP [RFC8994].

In a powered and wired network, when enough memory to store the

needed routes is available, the RPL Storing Mode proposes a better

trade-off than the Non-Storing, as it reduces the route stretch and

lowers the load on the Root. In that case, the control path between

the Root and the LLN nodes is highly available compared to LLNs, and

the nodes can be reached to maintain the P-Routes at most times.

This section specifies the additions that are needed to support

Projected Routes when the main DODAG is operated in Storing Mode. As

long as the RPI can be processed adequately by the dataplane, the

changes to this specification are limited to the DAO message. The

Track structure, routes and forwarding operations remain the same.

Since there is no capability negotiation, the expectation is that

all the nodes in the network support this specification in the same

fashion, or are configured the same way through management.

In Storing Mode, the Root misses the Child to Parent relationship

that forms the main DODAG, as well as the sibling information. To

provide that knowledge the nodes in the network MUST send additional

DAO messages that are unicast to the Root just like Non-Storing DAO

messages are.

In the DAO message, the originating router advertises a set of

neighbor nodes using Sibling Information Options (SIO)s, regardless

of the relative position in the DODAG of the advertised node vs.

this router.

The DAO message MUST be formed as follows:

The originating router is identified by the source address of the

DAO. That address MUST be the one that this router registers to

neighbor routers so the Root can correlate the DAOs from those

routers when they advertise this router as their neighbor. The

DAO contains one or more sequences of one Transit Information

Option and one or more Sibling Information Options. There is no

RPL Target Option so the Root is not confused into adding a

Storing Mode route to the Target.

The TIO is formed as in Storing Mode, and the Parent Address is

not present. The Path Sequence and Path Lifetime fields are

aligned with the values used in the Address Registration of the

node(s) advertised in the SIO, as explained in Section 9.1. of

[RFC9010]. Having similar values in all nodes allows factorising

the TIO for multiple SIOs as done with [RPL].

¶

¶

¶

¶

¶

¶

*

¶

*

¶

The TIO is followed by one or more SIOs that provide an address

(ULA or GUA) of the advertised neighbor node.

But the RPL routing information headers may not be supported on all

type of routed network infrastructures, especially not in high-speed

routers. When the RPI is not supported in the dataplane, there

cannot be local RPL Instances and RPL can only operate as a single

topology (the main DODAG). The RPL Instance is that of the main

DODAG and the Ingress node that encapsulates is not the Root. The

routes along the Tracks are alternate routes to those available

along the main DODAG. They MAY conflict with routes to children and

MUST take precedence in the routing table. The Targets MUST be

adjacent to the Track Egress to avoid loops that may form if the

packet is reinjected in the main DODAG.

7.2. A Track as a Full DODAG

This specification builds parallel or crossing Track Lanes as

opposed to a more complex DODAG with interconnections at any place

desirable. The reason for that limitation is related to constrained

node operations, and the capability to store large amount of

topological information and compute complex paths:

With this specification, the node in the LLN has no topological

awareness, and does not need to maintain dynamic information

about the link quality and availability.

The Root has a complete topological information and statistical

metrics that allow it or its PCE to perform a global optimization

of all Tracks in its DODAG. Based on that information, the Root

computes the Track Lane and produces the source route paths.

The node merely selects one of the proposed paths and applies the

associated pre-computed routing header in the encapsulation. This

alleviates both the complexity of computing a path and the

compressed form of the routing header.

The RAW Architecture [RAW-ARCHI] actually expects the PSE at the

Track Ingress to react to changes in the forwarding conditions along

the Track, and reroute packets to maintain the required degree of

reliability. To achieve this, the PSE needs the full richness of a

DODAG to form any path that could meet the Service Level Objective

(SLO).

This section specifies the additions that are needed to turn the

Track into a full DODAG and enable the main Root to provide the

necessary topological information to the Track Ingress. The

expectation is that the metrics that the PSE uses are of an order

other than that of the PCE, because of the difference of time scale

between routing and forwarding, more in [RAW-ARCHI]. It follows that

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

Profile 0

Profile 1 (Storing Mode P-Route Segments along the main DODAG)

the PSE will learn the metrics it needs from an alternate source,

e.g., OAM frames.

To pass the topological information to the Ingress, the Root uses a

P-DAO messages that contains sequences of Target and Transit

Information options that collectively represent the Track, expressed

in the same fashion as in classical Non-Storing Mode. The difference

is that the Root is the source as opposed to the destination, and

can report information on many Targets, possibly the full Track,

with one P-DAO.

Note that the Path Sequence and Lifetime in the TIO are selected by

the Root, and that the Target/Transit information tuples in the P-

DAO are not those received by the Root in the DAO messages about the

said Targets. The Track may follow sibling routes and does not need

to be congruent with the main DODAG.

8. Profiles

This document provides a set of tools that may or may not be needed

by an implementation depending on the type of application it serves.

This sections described profiles that can be implemented separately

and can be used to discriminate what an implementation can and

cannot do. This section describes profiles that enable implementing

only a portion of this specification to meet a particular use case.

Profiles 0 to 2 operate in the main Instance and do not require the

support of local RPL Instances or the indication of the RPL Instance

in the data plane. Profile 3 and above leverage Local RPL Instances

to build arbitrary Tracks Rooted at the Track Ingress and using its

namespace for TrackID.

Profiles 0 and 1 are REQUIRED by all implementations that may be

used in LLNs; Profile 1 leverages Storing Mode to reduce the size of

the Source Route Header in the most common LLN deployments. Profile

2 is RECOMMENDED in high speed / wired environment to enable traffic

Engineering and network automation. All the other profile /

environment combinations are OPTIONAL.

Profile 0 is the Legacy support of [RPL] Non-Storing

Mode, with default routing Northwards (up) and strict source

routing Southwards (down the main DODAG). It provides the minimal

common functionality that must be implemented as a prerequisite

to all the Track-supporting profiles. The other Profiles extend

Profile 0 with selected capabilities that this specification

introduces on top.

Profile 1 does not create new paths; compared to Profile 0, it

combines Storing and Non-Storing Modes to balance the size of the

¶

¶

¶

¶

¶

¶

¶

Profile 2 (Non-Storing Mode P-Route Segments along the main DODAG)

Profile 3

Profile 4

Profile 5

Profile 6

Profile 7

Profile 8

Routing Header in the packet and the amount of state in the

intermediate routers in a Non-Storing Mode RPL DODAG.

Profile 2 extends Profile 0 with Strict Source-Routing Non-

Storing Mode P-Routes along the main DODAG, which is the same as

Profile 1 but using NSM VIOs as opposed to SM VIOs. Profile 2

provides the same capability to compress the SRH in packets down

the main DODAG as Profile 1, but it requires an encapsulation, in

order to insert an additional SRH between the loose source

routing hops. In that case, the Tracks MUST be installed as

subTracks of the main DODAG, the main Instance MUST be used as

TrackID. Note that the Ingress node encapsulates but is not the

Root, as it does not own the DODAGID.

In order to form the best path possible, this Profile

requires the support of Sibling Information Option to inform the

Root of additional possible hops. Profile 3 extends Profile 1

with additional Storing Mode P-Routes that install Segments that

do not follow the main DODAG. If the Segment Ingress (in the SM-

VIO) is the same as the IPv6 Address of the Track Ingress (in the

projected DAO base Object), the P-DAO creates an implicit Track

between the Segment Ingress and the Segment Egress.

Profile 4 extends Profile 2 with Strict Source-Routing

Non-Storing Mode P-Routes to form East-West Tracks that are

inside the main DODAG but do not necessarily follow it. A Track

is formed as one or more strict source routed paths between the

Root that is the Track Ingress, and the Track Egress that is the

last node.

Profile 5 Combines Profile 4 with Profile 1 and enables

loose source routing between the Ingress and the Egress of the

Track. As in Profile 1, Storing Mode P-Routes form the

connections in the loose source route.

Profile 6 Combines Profile 4 with Profile 2 and also

enables loose source routing between the Ingress and the Egress

of the Track.

Profile 7 implements Profile 5 in a main DODAG that is

operated in Storing Mode as presented in Section 7.1. As in

Profile 1 and 2, the TrackID is the RPLInstanceID of the main

DODAG. Longest match rules decide whether a packet is sent along

the main DODAG or rerouted in a track.

Profile 8 is offered in preparation of the RAW work, and

for use cases where an arbitrary node in the network can afford

the same code complexity as the RPL Root in a traditional

¶

¶

¶

¶

¶

¶

¶

Profile 9

deployment. It offers a full DODAG visibility to the Track

Ingress as specified in Section 7.2 in a Non-Storing Mode main

DODAG.

Profile 9 combines profiles 7 and 8, operating the Track

as a full DODAG within a Storing Mode main DODAG, using only the

main DODAG RPLInstanceID as TrackID.

9. Backwards Compatibility

This specification can operate in a mixed network where some nodes

support it and some do not. There are restrictions, though. All

nodes that need to process a P-DAO MUST support this specification.

As discussed in Section 3.7.1, how the root knows the node

capabilities and whether they support this specification is out of

scope.

This specification defines the 'D' flag in the RPL DODAG

Configuration Option (see Section 4.1.7) to signal that the RPL

nodes can request the creation of Tracks. The requester may not know

whether the Track can effectively be constructed, and whether enough

nodes along the preferred paths support this specification.

Therefore, it makes sense to only set the 'D' flags in the DIO when

the conditions of success are in place, in particular when all the

nodes that could be on the path of tracks are upgraded.

10. Security Considerations

It is worth noting that with [RPL], every node in the LLN is RPL-

aware and can inject any RPL-based attack in the network. This draft

uses messages that are already present in RPL [RPL] with optional

secured versions. The same secured versions may be used with this

draft, and whatever security is deployed for a given network also

applies to the flows in this draft.

The LLN nodes depend on the 6LBR and the RPL participants for their

operation. A trust model is necessary to ensure that the right

devices are acting in these roles, so as to avoid threats such as

black-holing, (see [RFC7416] section 7). This trust model could be

at a minimum based on a Layer-2 Secure joining and the Link-Layer

security. This is a generic 6LoWPAN requirement, see Req5.1 in

Appendix B.5 of [RFC8505].

In a general manner, the Security Considerations in [RPL], and

[RFC7416] apply to this specification as well. The Link-Layer

security is needed in particular to prevent Denial-Of-Service

attacks whereby a rogue router creates a high churn in the RPL

network by constantly injecting forged P-DAO messages and using up

all the available storage in the attacked routers.

¶

¶

¶

¶

¶

¶

¶

With this specification, only the Root may generate P-DAO messages.

PDR messages may only be sent to the Root. This specification

expects that the communication with the Root is authenticated but

does not enforce which method is used.

Additionally, the trust model could include a role validation (e.g.,

using a role-based authorization) to ensure that the node that

claims to be a RPL Root is entitled to do so. That trust should

propagate from Egress to Ingress in the case of a Storing Mode P-

DAO.

This specification suggests some validation of the VIO to prevent

basic loops by avoiding that a node appears twice. But that is only

a minimal protection. Arguably, an attacker that can inject P-DAOs

can reroute any traffic and deplete critical resources such as

spectrum and battery in the LLN rapidly.

11. IANA Considerations

11.1. RPL DODAG Configuration Option Flag

IANA is requested to assign a flag from the "DODAG Configuration

Option Flags for MOP 0..6" [RFC9010] registry under the heading

"Routing Protocol for Low Power and Lossy Networks (RPL)" as

follows:

Bit Number Capability Description Reference

0 (suggested) Projected Routes Support (D) THIS RFC

Table 21: New DODAG Configuration Option Flag

IANA is requested to add [THIS RFC] as a reference for MOP 7 in the

RPL Mode of Operation registry.

11.2. Elective 6LoWPAN Routing Header Type

IANA is requested to update the "Elective 6LoWPAN Routing Header

Type" registry that was created for [RFC8138] under the heading

"Routing Protocol for Low Power and Lossy Networks (RPL)" and assign

the following value:

Value Description Reference

8 (Suggested) P-RPI-6LoRH THIS RFC

Table 22: New Elective 6LoWPAN Routing

Header Type

¶

¶

¶

¶

¶

¶

11.3. Critical 6LoWPAN Routing Header Type

IANA is requested to update the "Critical 6LoWPAN Routing Header

Type" registry that was created for [RFC8138] under the heading

"Routing Protocol for Low Power and Lossy Networks (RPL)" and assign

the following value:

Value Description Reference

8 (Suggested) P-RPI-6LoRH THIS RFC

Table 23: New Critical 6LoWPAN Routing

Header Type

11.4. Registry For The RPL Option Flags

IANA is requested to create a registry for the 8-bit "RPL Option

Flags" field, as detailed in Figure 11, under the heading "Routing

Protocol for Low Power and Lossy Networks (RPL)". The bits are

indexed from 0 (leftmost) to 7. Each bit is tracked with the

following qualities:

Bit number (counting from bit 0 as the most significant bit)

Indication When Set

Reference

Registration procedure is "Standards Action" [RFC8126]. The initial

allocation is as indicated in Table 24:

Bit number Indication When Set Reference

0 Down 'O' [RFC6553]

1 Rank-Error (R) [RFC6553]

2 Forwarding-Error (F) [RFC6553]

3 (Suggested) Projected-Route (P) THIS RFC

4..255 Unassigned

Table 24: Initial PDR Flags

11.5. RPL Control Codes

IANA is requested to update the "RPL Control Codes" registry under

the heading "Routing Protocol for Low Power and Lossy Networks

(RPL)" as indicated in Table 25:

Code Description Reference

0x09 (Suggested) Projected DAO Request (PDR) THIS RFC

0x0A (Suggested) PDR-ACK THIS RFC

¶

¶

* ¶

* ¶

* ¶

¶

¶

Table 25: New RPL Control Codes

11.6. RPL Control Message Options

IANA is requested to update the "RPL Control Message Options"

registry under the heading "Routing Protocol for Low Power and Lossy

Networks (RPL)" as indicated in Table 26:

Value Meaning Reference

0x0E (Suggested) Stateful VIO (SM-VIO) THIS RFC

0x0F (Suggested) Source-Routed VIO (NSM-VIO) THIS RFC

0x10 (Suggested) Sibling Information option THIS RFC

Table 26: RPL Control Message Options

11.7. SubRegistry for the Projected DAO Request Flags

IANA is requested to create a registry for the 8-bit "Projected DAO

Request (PDR)" field under the heading "Routing Protocol for Low

Power and Lossy Networks (RPL)". The bits are indexed from 0

(leftmost) to 7. Each bit is tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Reference

Registration procedure is "Standards Action" [RFC8126]. The initial

allocation is as indicated in Table 27:

Bit number Capability description Reference

0 PDR-ACK request (K) THIS RFC

1 Requested path should be redundant (R) THIS RFC

2..255 Unassigned

Table 27: Initial PDR Flags

11.8. SubRegistry for the PDR-ACK Flags

IANA is requested to create a registry for the 8-bit "PDR-ACK Flags"

field under the heading "Routing Protocol for Low Power and Lossy

Networks (RPL)". The bits are indexed from 0 (leftmost) to 7. Each

bit is tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Reference

¶

¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

Registration procedure is "Standards Action" [RFC8126]. No bit is

currently assigned for the PDR-ACK Flags.

11.9. Registry for the PDR-ACK Acceptance Status Values

IANA is requested to create a registry for the 8-bit "PDR-ACK

Acceptance Status Values" under the heading "Routing Protocol for

Low Power and Lossy Networks (RPL)". Each value is tracked with the

following qualities:

Value

Meaning

Reference

the possible values are expressed as a 6-bit unsigned integer

(0..63). the registration procedure is "Standards Action" [RFC8126].

The (suggected) initial allocation is as indicated in Table 28:

Value Meaning Reference

0 Unqualified Acceptance THIS RFC

1..63 Unassigned

Table 28: Acceptance values of the PDR-ACK

Status

11.10. Registry for the PDR-ACK Rejection Status Values

IANA is requested to create a registry for the 6-bit "PDR-ACK

Rejection Status Values" under the heading "Routing Protocol for Low

Power and Lossy Networks (RPL)". Each value is tracked with the

following qualities:

Value

Meaning

Reference

the possible values are expressed as a 6-bit unsigned integer

(0..63). the registration procedure is "Standards Action" [RFC8126].

The (suggected) initial allocation is as indicated in Table 29:

Value Meaning Reference

0 Unqualified Rejection THIS RFC

1 Transient Failure THIS RFC

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

Value Meaning Reference

2..63 Unassigned

Table 29: Rejection values of the PDR-ACK

Status

11.11. SubRegistry for the Via Information Options Flags

IANA is requested to create a registry for the 8-bit "Via

Information Options (VIO) Flags" field under the heading "Routing

Protocol for Low Power and Lossy Networks (RPL)". The bits are

indexed from 0 (leftmost) to 7. Each bit is tracked with the

following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Reference

Registration procedure is "Standards Action" [RFC8126]. No bit is

currently assigned for the VIO Flags, more in Section 5.3.

11.12. SubRegistry for the Sibling Information Option Flags

IANA is requested to create a registry for the 5-bit "Sibling

Information Option (SIO) Flags" field under the heading "Routing

Protocol for Low Power and Lossy Networks (RPL)". The bits are

indexed from 0 (leftmost) to 4. Each bit is tracked with the

following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Reference

Registration procedure is "Standards Action" [RFC8126]. The initial

allocation is as indicated in Table 30, more in Figure 17:

Bit number Capability description Reference

0 (Suggested) "S" flag: Sibling in same DODAG as Self THIS RFC

1..4 Unassigned

Table 30: Initial SIO Flags

11.13. Destination Advertisement Object Flag

IANA is requested to update the "Destination Advertisement Object

(DAO) Flags" registry created in Section 20.11 of [RPL] under the

¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

¶

heading "Routing Protocol for Low Power and Lossy Networks (RPL)" as

indicated in Table 31, more in Section 4.1.1:

Bit Number Capability Description Reference

2 (Suggested) Projected DAO (P) THIS RFC

Table 31: New Destination Advertisement Object

(DAO) Flag

11.14. Destination Advertisement Object Acknowledgment Flag

IANA is requested to update the "Destination Advertisement Object

(DAO) Acknowledgment Flags" registry created in Section 20.12 of

[RPL] under the heading "Routing Protocol for Low Power and Lossy

Networks (RPL)" as indicated in Table 32, more in Section 4.1.2:

Bit Number Capability Description Reference

1 (Suggested) Projected DAO-ACK (P) THIS RFC

Table 32: New Destination Advertisement Object

Acknowledgment Flag

11.15. New ICMPv6 Error Code

In some cases RPL will return an ICMPv6 error message when a message

cannot be forwarded along a P-Route.

IANA has defined an ICMPv6 "Code" Fields Registry for ICMPv6 Message

Types. ICMPv6 Message Type 1 describes "Destination Unreachable"

codes. This specification requires that a new code is allocated from

the ICMPv6 Code Fields Registry for ICMPv6 Message Type 1, for

"Error in P-Route", with a suggested code value of 8, to be

confirmed by IANA.

11.16. RPL Rejection Status values

IANA is requested to update the "RPL Rejection Statuss" registry

under the heading "Routing Protocol for Low Power and Lossy Networks

(RPL)" as indicated in Table 33:

Value Meaning Reference

2 (Suggested) Out of Resources THIS RFC

3 (Suggested) Error in VIO THIS RFC

4 (Suggested) Predecessor Unreachable THIS RFC

5 (Suggested) Unreachable Target THIS RFC

6..63 Unassigned

Table 33: Rejection values of the RPL Status

¶

¶

¶

¶

¶

[INT-ARCHI]

[RFC2119]

[RFC4443]

[RFC4655]

[RFC6282]

[RPL]

12. Acknowledgments

The authors wish to acknowledge JP Vasseur, Remy Liubing, James

Pylakutty, and Patrick Wetterwald for their contributions to the

ideas developed here. Many thanks to Dominique Barthel and SVR Anand

for their global contribution to 6TiSCH, RAW and this RFC, as well

as text suggestions that were incorporated. Also special thanks to

Remous-Aris Koutsiamanis, Li Zhao, Dominique Barthel, and Toerless

Eckert for their in-depth reviews, with many excellent suggestions

that improved the readability and well as the content of the

specification. Many thanks to Remous-Aris Koutsiamanis for his

review during WGLC.

13. Normative References

Braden, R., Ed. and RFC Publisher, "Requirements for

Internet Hosts - Communication Layers", STD 3, RFC 1122,

DOI 10.17487/RFC1122, October 1989, <https://www.rfc-

editor.org/info/rfc1122>.

Bradner, S. and RFC Publisher, "Key words for use in RFCs

to Indicate Requirement Levels", BCP 14, RFC 2119, DOI

10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

Conta, A., Deering, S., Gupta, M., Ed., and RFC

Publisher, "Internet Control Message Protocol (ICMPv6)

for the Internet Protocol Version 6 (IPv6)

Specification", STD 89, RFC 4443, DOI 10.17487/RFC4443,

March 2006, <https://www.rfc-editor.org/info/rfc4443>.

Farrel, A., Vasseur, J.-P., Ash, J., and RFC Publisher,

"A Path Computation Element (PCE)-Based Architecture",

RFC 4655, DOI 10.17487/RFC4655, August 2006, <https://

www.rfc-editor.org/info/rfc4655>.

Hui, J., Ed., Thubert, P., and RFC Publisher,

"Compression Format for IPv6 Datagrams over IEEE

802.15.4-Based Networks", RFC 6282, DOI 10.17487/RFC6282,

September 2011, <https://www.rfc-editor.org/info/

rfc6282>.

Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,

Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,

JP., Alexander, R., and RFC Publisher, "RPL: IPv6 Routing

Protocol for Low-Power and Lossy Networks", RFC 6550, DOI

10.17487/RFC6550, March 2012, <https://www.rfc-

editor.org/info/rfc6550>.

¶

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4655
https://www.rfc-editor.org/info/rfc4655
https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6550

[RFC6553]

[RFC6554]

[RFC8126]

[RFC8138]

[RFC8174]

[RFC8754]

[RFC9008]

[RFC9030]

[RAW-ARCHI]

Hui, J., Vasseur, JP., and RFC Publisher, "The Routing

Protocol for Low-Power and Lossy Networks (RPL) Option

for Carrying RPL Information in Data-Plane Datagrams",

RFC 6553, DOI 10.17487/RFC6553, March 2012, <https://

www.rfc-editor.org/info/rfc6553>.

Hui, J., Vasseur, JP., Culler, D., Manral, V., and RFC

Publisher, "An IPv6 Routing Header for Source Routes with

the Routing Protocol for Low-Power and Lossy Networks

(RPL)", RFC 6554, DOI 10.17487/RFC6554, March 2012,

<https://www.rfc-editor.org/info/rfc6554>.

Cotton, M., Leiba, B., Narten, T., and RFC Publisher,

"Guidelines for Writing an IANA Considerations Section in

RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017,

<https://www.rfc-editor.org/info/rfc8126>.

Thubert, P., Ed., Bormann, C., Toutain, L., Cragie, R.,

and RFC Publisher, "IPv6 over Low-Power Wireless Personal

Area Network (6LoWPAN) Routing Header", RFC 8138, DOI

10.17487/RFC8138, April 2017, <https://www.rfc-

editor.org/info/rfc8138>.

Leiba, B. and RFC Publisher, "Ambiguity of Uppercase vs

Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI

10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/

info/rfc8174>.

Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy,

J., Matsushima, S., Voyer, D., and RFC Publisher, "IPv6

Segment Routing Header (SRH)", RFC 8754, DOI 10.17487/

RFC8754, March 2020, <https://www.rfc-editor.org/info/

rfc8754>.

Robles, M.I., Richardson, M., Thubert, P., and RFC

Publisher, "Using RPI Option Type, Routing Header for

Source Routes, and IPv6-in-IPv6 Encapsulation in the RPL

Data Plane", RFC 9008, DOI 10.17487/RFC9008, April 2021,

<https://www.rfc-editor.org/info/rfc9008>.

Thubert, P., Ed. and RFC Publisher, "An Architecture for

IPv6 over the Time-Slotted Channel Hopping Mode of IEEE

802.15.4 (6TiSCH)", RFC 9030, DOI 10.17487/RFC9030, May

2021, <https://www.rfc-editor.org/info/rfc9030>.

Thubert, P., "Reliable and Available Wireless

Architecture", Work in Progress, Internet-Draft, draft-

ietf-raw-architecture-11, 7 December 2022, <https://

https://www.rfc-editor.org/info/rfc6553
https://www.rfc-editor.org/info/rfc6553
https://www.rfc-editor.org/info/rfc6554
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8138
https://www.rfc-editor.org/info/rfc8138
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8754
https://www.rfc-editor.org/info/rfc8754
https://www.rfc-editor.org/info/rfc9008
https://www.rfc-editor.org/info/rfc9030
https://www.ietf.org/archive/id/draft-ietf-raw-architecture-11.txt

[6LoWPAN]

[RFC5440]

[RFC6997]

[RFC7102]

[RFC7416]

[RFC8025]

[RFC8402]

[RFC8505]

www.ietf.org/archive/id/draft-ietf-raw-

architecture-11.txt>.

14. Informative References

Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.,

and RFC Publisher, "Transmission of IPv6 Packets over

IEEE 802.15.4 Networks", RFC 4944, DOI 10.17487/RFC4944,

September 2007, <https://www.rfc-editor.org/info/

rfc4944>.

Vasseur, JP., Ed., Le Roux, JL., Ed., and RFC Publisher,

"Path Computation Element (PCE) Communication Protocol

(PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009,

<https://www.rfc-editor.org/info/rfc5440>.

Goyal, M., Ed., Baccelli, E., Philipp, M., Brandt, A.,

Martocci, J., and RFC Publisher, "Reactive Discovery of

Point-to-Point Routes in Low-Power and Lossy Networks",

RFC 6997, DOI 10.17487/RFC6997, August 2013, <https://

www.rfc-editor.org/info/rfc6997>.

Vasseur, JP. and RFC Publisher, "Terms Used in Routing

for Low-Power and Lossy Networks", RFC 7102, DOI

10.17487/RFC7102, January 2014, <https://www.rfc-

editor.org/info/rfc7102>.

Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano,

A., Richardson, M., Ed., and RFC Publisher, "A Security

Threat Analysis for the Routing Protocol for Low-Power

and Lossy Networks (RPLs)", RFC 7416, DOI 10.17487/

RFC7416, January 2015, <https://www.rfc-editor.org/info/

rfc7416>.

Thubert, P., Ed., Cragie, R., and RFC Publisher, "IPv6

over Low-Power Wireless Personal Area Network (6LoWPAN)

Paging Dispatch", RFC 8025, DOI 10.17487/RFC8025,

November 2016, <https://www.rfc-editor.org/info/rfc8025>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., Shakir, R., and RFC

Publisher, "Segment Routing Architecture", RFC 8402, DOI

10.17487/RFC8402, July 2018, <https://www.rfc-editor.org/

info/rfc8402>.

Thubert, P., Ed., Nordmark, E., Chakrabarti, S., Perkins,

C., and RFC Publisher, "Registration Extensions for IPv6

over Low-Power Wireless Personal Area Network (6LoWPAN)

https://www.ietf.org/archive/id/draft-ietf-raw-architecture-11.txt
https://www.ietf.org/archive/id/draft-ietf-raw-architecture-11.txt
https://www.rfc-editor.org/info/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://www.rfc-editor.org/info/rfc5440
https://www.rfc-editor.org/info/rfc6997
https://www.rfc-editor.org/info/rfc6997
https://www.rfc-editor.org/info/rfc7102
https://www.rfc-editor.org/info/rfc7102
https://www.rfc-editor.org/info/rfc7416
https://www.rfc-editor.org/info/rfc7416
https://www.rfc-editor.org/info/rfc8025
https://www.rfc-editor.org/info/rfc8402
https://www.rfc-editor.org/info/rfc8402

[RFC8655]

[RFC8930]

[RFC8931]

[RFC8994]

[RFC9010]

[RFC9035]

[USE-CASES]

[I-D.kuehlewind-update-tag]

[I-D.irtf-panrg-path-properties]

Neighbor Discovery", RFC 8505, DOI 10.17487/RFC8505,

November 2018, <https://www.rfc-editor.org/info/rfc8505>.

Finn, N., Thubert, P., Varga, B., Farkas, J., and RFC

Publisher, "Deterministic Networking Architecture", RFC

8655, DOI 10.17487/RFC8655, October 2019, <https://

www.rfc-editor.org/info/rfc8655>.

Watteyne, T., Ed., Thubert, P., Ed., Bormann, C., and RFC

Publisher, "On Forwarding 6LoWPAN Fragments over a Multi-

Hop IPv6 Network", RFC 8930, DOI 10.17487/RFC8930,

November 2020, <https://www.rfc-editor.org/info/rfc8930>.

Thubert, P., Ed. and RFC Publisher, "IPv6 over Low-Power

Wireless Personal Area Network (6LoWPAN) Selective

Fragment Recovery", RFC 8931, DOI 10.17487/RFC8931,

November 2020, <https://www.rfc-editor.org/info/rfc8931>.

Eckert, T., Ed., Behringer, M., Ed., Bjarnason, S., and

RFC Publisher, "An Autonomic Control Plane (ACP)", RFC

8994, DOI 10.17487/RFC8994, May 2021, <https://www.rfc-

editor.org/info/rfc8994>.

Thubert, P., Ed., Richardson, M., and RFC Publisher,

"Routing for RPL (Routing Protocol for Low-Power and

Lossy Networks) Leaves", RFC 9010, DOI 10.17487/RFC9010,

April 2021, <https://www.rfc-editor.org/info/rfc9010>.

Thubert, P., Ed., Zhao, L., and RFC Publisher, "A Routing

Protocol for Low-Power and Lossy Networks (RPL)

Destination-Oriented Directed Acyclic Graph (DODAG)

Configuration Option for the 6LoWPAN Routing Header", RFC

9035, DOI 10.17487/RFC9035, April 2021, <https://www.rfc-

editor.org/info/rfc9035>.

Bernardos, C. J., Papadopoulos, G. Z., Thubert, P., and

F. Theoleyre, "RAW Use-Cases", Work in Progress,

Internet-Draft, draft-ietf-raw-use-cases-08, 22 October

2022, <https://www.ietf.org/archive/id/draft-ietf-raw-

use-cases-08.txt>.

Kühlewind, M. and S. Krishnan,

"Definition of new tags for relations between RFCs", Work

in Progress, Internet-Draft, draft-kuehlewind-update-

tag-04, 12 July 2021, <https://www.ietf.org/archive/id/

draft-kuehlewind-update-tag-04.txt>.

Enghardt, R. and C. Krähenbühl, "A

Vocabulary of Path Properties", Work in Progress,

Internet-Draft, draft-irtf-panrg-path-properties-06, 22

https://www.rfc-editor.org/info/rfc8505
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8930
https://www.rfc-editor.org/info/rfc8931
https://www.rfc-editor.org/info/rfc8994
https://www.rfc-editor.org/info/rfc8994
https://www.rfc-editor.org/info/rfc9010
https://www.rfc-editor.org/info/rfc9035
https://www.rfc-editor.org/info/rfc9035
https://www.ietf.org/archive/id/draft-ietf-raw-use-cases-08.txt
https://www.ietf.org/archive/id/draft-ietf-raw-use-cases-08.txt
https://www.ietf.org/archive/id/draft-kuehlewind-update-tag-04.txt
https://www.ietf.org/archive/id/draft-kuehlewind-update-tag-04.txt

[PCE]

September 2022, <https://www.ietf.org/archive/id/draft-

irtf-panrg-path-properties-06.txt>.

IETF, "Path Computation Element", <https://

dataTracker.ietf.org/doc/charter-ietf-pce/>.

Authors' Addresses

Pascal Thubert (editor)

Cisco Systems, Inc

Building D

45 Allee des Ormes - BP1200

06254 Mougins - Sophia Antipolis

France

Phone: +33 497 23 26 34

Email: pthubert@cisco.com

Rahul Arvind Jadhav

Huawei Tech

Kundalahalli Village, Whitefield,

Bangalore 560037

Karnataka

India

Phone: +91-080-49160700

Email: rahul.ietf@gmail.com

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

https://www.ietf.org/archive/id/draft-irtf-panrg-path-properties-06.txt
https://www.ietf.org/archive/id/draft-irtf-panrg-path-properties-06.txt
https://dataTracker.ietf.org/doc/charter-ietf-pce/
https://dataTracker.ietf.org/doc/charter-ietf-pce/
tel:+33%20497%2023%2026%2034
mailto:pthubert@cisco.com
tel:+91-080-49160700
mailto:rahul.ietf@gmail.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/

	Root initiated routing state in RPL
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Requirements Language
	2.2. References
	2.3. Glossary
	2.4. Domain Terms
	2.4.1. Projected Route
	2.4.2. Projected DAO
	2.4.3. Path
	2.4.4. Routing Stretch
	2.4.5. Track
	2.4.5.1. TrackID
	2.4.5.2. Namespace
	2.4.5.3. Serial Track
	2.4.5.4. Complex Track
	2.4.5.5. Stand-Alone
	2.4.5.6. Stitching
	2.4.5.7. Lane
	2.4.5.8. Segment
	2.4.5.8.1. Section of a Segment
	2.4.5.8.2. Segment Routing and SRH

	3. Context and Goal
	3.1. RPL Applicability
	3.2. Multi-Topology Routing and Loop Avoidance
	3.3. Requirements
	3.3.1. Loose Source Routing
	3.3.2. East-West Routes

	3.4. On Tracks
	3.4.1. Building Tracks With RPL
	3.4.2. Tracks and RPL Instances

	3.5. Serial Track Signaling
	3.5.1. Using Storing Mode Segments
	3.5.1.1. Stitched Segments
	3.5.1.2. External routes
	3.5.1.3. Segment Routing

	3.5.2. Using Non-Storing Mode joining Tracks
	3.5.2.1. Stitched Tracks
	3.5.2.2. External routes
	3.5.2.3. Segment Routing

	3.6. Complex Tracks
	3.7. Scope and Expectations
	3.7.1. External Dependencies
	3.7.2. Positioning vs. Related IETF Standards
	3.7.2.1. Extending 6TiSCH
	3.7.2.2. Mapping to DetNet
	3.7.2.3. Leveraging PCE
	3.7.2.4. Providing for RAW

	4. Extending existing RFCs
	4.1. Extending RFC 6550
	4.1.1. Projected DAO
	4.1.2. Projected DAO-ACK
	4.1.3. Via Information Option
	4.1.4. Sibling Information Option
	4.1.5. P-DAO Request
	4.1.6. Amending the RPI
	4.1.7. Additional Flag in the RPL DODAG Configuration Option

	4.2. Extending RFC 6553
	4.3. Extending RFC 8138

	5. New RPL Control Messages and Options
	5.1. New P-DAO Request Control Message
	5.2. New PDR-ACK Control Message
	5.3. Via Information Options
	5.4. Sibling Information Option

	6. Root Initiated Routing State
	6.1. RPL Network Setup
	6.2. Requesting a Track
	6.3. Identifying a Track
	6.4. Installing a Track
	6.4.1. Signaling a Projected Route
	6.4.2. Installing a Track Segment with a Storing Mode P-Route
	6.4.3. Installing a Track Lane with a Non-Storing Mode P-Route

	6.5. Tearing Down a P-Route
	6.6. Maintaining a Track
	6.6.1. Maintaining a Track Segment
	6.6.2. Maintaining a Track Lane

	6.7. Encapsulating and Forwarding Along a Track
	6.8. Compression of the RPL Artifacts

	7. Lesser Constrained Variations
	7.1. Storing Mode main DODAG
	7.2. A Track as a Full DODAG

	8. Profiles
	9. Backwards Compatibility
	10. Security Considerations
	11. IANA Considerations
	11.1. RPL DODAG Configuration Option Flag
	11.2. Elective 6LoWPAN Routing Header Type
	11.3. Critical 6LoWPAN Routing Header Type
	11.4. Registry For The RPL Option Flags
	11.5. RPL Control Codes
	11.6. RPL Control Message Options
	11.7. SubRegistry for the Projected DAO Request Flags
	11.8. SubRegistry for the PDR-ACK Flags
	11.9. Registry for the PDR-ACK Acceptance Status Values
	11.10. Registry for the PDR-ACK Rejection Status Values
	11.11. SubRegistry for the Via Information Options Flags
	11.12. SubRegistry for the Sibling Information Option Flags
	11.13. Destination Advertisement Object Flag
	11.14. Destination Advertisement Object Acknowledgment Flag
	11.15. New ICMPv6 Error Code
	11.16. RPL Rejection Status values

	12. Acknowledgments
	13. Normative References
	14. Informative References
	Authors' Addresses

