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Abstract

This document specifies the Routing Protocol for Low Power and Lossy
Networks (RPL), in accordance with the requirements described in
[I-D.ietf-roll-building-routing-reqs] (Martocci, J., Riou, N., Mil, P.,

and W. Vermeylen, “Building Automation Routing Requirements in Low
Power and Lossy Networks,” February 2009.),
[I-D.ietf-roll-home-routing-regs] (Porcu, G., “Home Automation Routing
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Requirements in Low Power and Lossy Networks,” November 2008.),

[I-D.ietf-roll-indus-routing-reqs] (Networks, D., Thubert, P., Dwars,
S., and T. Phinney, “Industrial Routing Requirements in Low Power and
Lossy Networks,” June 2009.), and [RFC5548] (Dohler, M., Watteyne, T.,

Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power
and Lossy Networks,” May 2009.).

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Table of Contents

Introduction

1.1. Design Principles
Terminology

Protocol Model

3.1. Problem

3.2. Protocol Properties Overview
.2.1. 1IPv6 Architecture

.2.2. Path Properties for LLN Traffic Flows

.2.3. Constraint Based Routing

S A

W (W |w

.2.4. Autonomous Operation
3.3. Protocol Operation
.3.1. DAG Construction

.3.2. Source Routing

.3.3. Destination Advertisement
3.4. Other Considerations
.4.1. DAG Depth and Loop Avoidance

DAG Parent Selection, Stability, and Greediness
Merging DAGs
Local and Temporary Routing Decision
Scalability

3.4.6. Maintenance of Routing Adjacency
Constraint Based Routing in LLNs
4.1. Routing Metrics
4.2. Routing Constraints
4.3. Constraint Based Routing
Specification of Core Protocol
5.1. DAG Information Option

5.1.1. DIO base option
5.2. Neighbor Discovery

5.2.1. RA-DIO Reception

w

W (W W

W W W W W
B L
o |k (W N

>

o



5.2.2. RA-DIO Transmission

5.2.3. Trickle Timer for RA Transmission
5.3. DAG Discovery
5.3.1. DAG Selection

5.3.2. Administrative depth

5.3.3. DRL entries states and stability
5.4. Establishing Routing State Outward Along the DAG
5.4.1. Destination Advertisement Message Formats

5.4.2. Destination Advertisement Operation
5.5. Maintenance of Routing Adjacency
5.6. Expectations of Link Layer Behavior
Protocol Extensions
Manageability Considerations
Security Considerations
IANA Considerations
9.1. DAG Information Option
9.2. Destination Advertisement Option
Acknowledgements
Contributors
References
12.1. Normative References
12.2. Informative References
Appendix A. Deferred Requirements
Appendix B. Examples
B.1. Moving Down a DAG
B.2. Link Removed
B.3. Link Added
B.4. Node Removed
B.5. New LBR Added
B.6. Destination Advertisement
Appendix C. Additional Examples
§ Authors' Addresses

gl

[ TN
N R @

1. Introduction TOC

The defining characteristics of Low Power and Lossy Networks (LLNs)
offer unique challenges to a routing solution. The IETF ROLL Working
Group has defined application-specific routing requirements for a Low
Power and Lossy Network (LLN) routing protocol
[I-D.ietf-roll-building-routing-reqs] (Martocci, J., Riou, N., Mil, P.,

and W. Vermeylen, “Building Automation Routing Requirements in Low
Power and Lossy Networks,” February 2009.)
[I-D.ietf-roll-home-routing-regs] (Porcu, G., “Home Automation Routing
Requirements in Low Power and Lossy Networks,” November 2008.)
[I-D.ietf-roll-indus-routing-reqs] (Networks, D., Thubert, P., Dwars,




S., and T. Phinney, “Industrial Routing Requirements in Low Power and
Lossy Networks,” June 2009.) [RFC5548] (Dohler, M., Watteyne, T.,
Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power
and Lossy Networks,” May 2009.). RPL is a new routing protocol designed
to meet these requirements.

1.1. Design Principles TOC

RPL was designed with the objective to meet the requirements spelled
out in [I-D.jietf-roll-building-routing-reqs] (Martocci, J., Riou, N.,
Mil, P., and W. Vermeylen, “Building Automation Routing Requirements in
Low Power and Lossy Networks,” February 2009.),
[I-D.ietf-roll-home-routing-reqs] (Porcu, G., “Home Automation Routing
Requirements in Low Power and Lossy Networks,” November 2008.),
[I-D.ietf-roll-indus-routing-reqs] (Networks, D., Thubert, P., Dwars,
S., and T. Phinney, “Industrial Routing Requirements in Low Power and
Lossy Networks,” June 2009.), and [RFC5548] (Dohler, M., Watteyne, T.,
Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power
and Lossy Networks,” May 2009.). Because those requirements are
heterogeneous and sometimes incompatible in nature, the approach is
first taken to design a protocol capable of supporting a core set of
functionalities corresponding to the intersection of the requirements.
(Note: it is intended that as this design evolves optional features may
be added to address some application specific requirements). All "MUST"
application requirements that cannot be satisfied by RPL will be
specifically listed in the Appendix A, accompanied by a justification.
The core set of functionalities is to be capable of operating in the
most severely constrained environments, with minimal requirements for
memory, energy, processing, communication, and other consumption of
limited resources from nodes. Trade-offs inherent in the provisioning
of protocol features will be exposed to the implementer in the form of
configurable parameters, such that the implementer can further tweak
and optimize the operation of RPL as appropriate to a specific
application and implementation. Finally, RPL is designed to consult
implementation specific policies to determine, for example, the
evaluation of routing metrics.

A set of companion documents to this specification will provide further
guidance in the form of applicability statements specifying a set of
operating points appropriate to the Building Automation, Home
Automation, Industrial, and Urban application scenarios.

T0C



2. Terminology

The terminology used in this document is consistent with and
incorporates that described in “Terminology in Low power And LoOssy
Networks' [I-D.ietf-roll-terminology] (Vasseur, J., “Terminology in Low
power And Lossy Networks,” March 2010.). The terminology is extended in
this document as follows:

Autonomous: Refers to the ability of a routing protocol to
independently function without requiring any external influence
or guidance. Includes self-organization capabilities.

DAG: Directed Acyclic Graph- A directed graph having the property
that all edges are oriented in such a way that no cycles exist.
In the RPL context, all edges are contained in paths oriented
toward and terminating at a root node (a DAG root, or sink-
typically a LBR).

DAGID: DAG Identifier- A globally unique identifier for a DAG. All
nodes who are members of a DAG have knowledge of the DAGID. This
knowledge is used to identify peer nodes within the DAG in order
to coordinate DAG Maintenance while avoiding loops.

DAG Parent: A parent of a node within a DAG is one of the immediate
successors of the node on a path towards the DAG root. For each
DAGID that a node is a member of, the node will maintain a set
containing one or more DAG Parents. If a node is a member of
multiple DAGs then it must conceptually maintain a set of DAG
Parents for each DAGID.

DAG Sibling: A sibling of a node within a DAG is defined to be any
neighboring node which is located at the same depth, or rank,
within a DAG. Note that siblings defined in this manner do not
necessarily share a common parent. For each DAGID that a node is
a member of, the node will maintain a set of DAG Siblings. If a
node is a member of multiple DAGs then it must conceptually
maintain a set of DAG Siblings for each DAGID.

DAG Root: A DAG root is a sink within the DAG graph. All paths in
the DAG terminate at a DAG root, and all DAG edges contained in
the paths terminating at a DAG root are oriented toward the DAG
root. There must be at least one DAG Root per DAGID, and in some
cases there may be more than one. In many use cases, source-sink
represents a dominant traffic flow, where the sink is a DAG root.
Maintaining default routing towards DAG roots is therefore a
prominent functionality for RPL.

Grounded: A DAG is grounded if it contains a DAG Root offering a
default route.



Floating:
A DAG is floating if it contains a DAG root that does not
offer a default route.

Inward: In the context of RPL, inward refers to the direction from
leaf nodes towards DAG roots, following the orientation of the
edges within the DAG.

Outward: In the context of RPL, outward refers to the direction
from DAG roots towards leaf nodes, going against the orientation
of the edges within the DAG.

P2P: Point-to-point. This refers to traffic exchanged between two
nodes.

P2MP: Point-to-Multipoint. This refers to traffic between one node
and a set of nodes. This is similar to the P2MP concept in
Multicast or MPLS Traffic Engineering ([RFC4461] (Yasukawa, S.,
“Signaling Requirements for Point-to-Multipoint Traffic-
Engineered MPLS Label Switched Paths (LSPs),” April 2006.) and
[REC4875] (Aggarwal, R., Papadimitriou, D., and S. Yasukawa,
“Extensions to Resource Reservation Protocol - Traffic
Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched
Paths (LSPs),” May 2007.)).

MP2P: Multipoint-to-Point; used to describe a particular traffic
pattern. A common RPL use case involves MP2P flows collecting
information from many nodes in the DAG, flowing inwards towards
DAG roots. Note that a DAG root may not be the ultimate
destination of the information, but it is a common transit node.

OCP: Objective Code Point. In RPL, the Objective Code Point (OCP)
indicates which routing metrics, optimization objectives, and
related functions are in use in a DAG. It is recommended that a
companion document define instances of the Objective Code Point
and request the creation of a registry to manage them.

Note that in this document, the terms “node' and "LLN router' are used
interchangeably.

3. Protocol Model TOC

The aim of this section is to describe RPL in the spirit of [RFC4101
(Rescorla, E. and IAB, “Writing Protocol Models,” June 2005.). An
architectural protocol overview (the big picture of the protocol) is
provided in this section. Protocol details can be found in further
sections.




3.1. Problem TOC

Some well-defined LLN application-specific scenarios are Building
Automation, Home Automation, Industrial, and Urban; for which the
unique routing requirements have been detailed respectively in
[I-D.ietf-roll-building-routing-reqs] (Martocci, J., Riou, N., Mil, P.,

and W. Vermeylen, “Building Automation Routing Requirements in Low
Power and Lossy Networks,” February 2009.),
[I-D.ietf-roll-home-routing-regs] (Porcu, G., “Home Automation Routing
Requirements in Low Power and Lossy Networks,” November 2008.),
[I-D.ietf-roll-indus-routing-reqs] (Networks, D., Thubert, P., Dwars,
S., and T. Phinney, “Industrial Routing Requirements in Low Power and
Lossy Networks,” June 2009.), and [RFC5548] (Dohler, M., Watteyne, T.,
Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power
and Lossy Networks,” May 2009.). Within these application-specific
scenarios there are some common elements required of routing. RPL
intends to address the requirements of these application-specific
scenarios, and it is further intended to be flexible enough to extend
to other application scenarios.

3.2. Protocol Properties Overview TOC

RPL demonstrates the following properties, consistent with the
requirements specified by the requirements documents.

3.2.1. IPv6 Architecture TOC

RPL is strictly compliant with layered IPv6 architecture.

Further, RPL is designed with consideration to the practical support
and implementation of IPv6 architecture on devices which may operate
under severe resource constraints, including but not limited to memory,
processing power, energy, and communication. The RPL design does not
presume high quality reliable links, and should be able to operate over
lossy links (usually low bandwidth with low packet delivery success
rate).

T0C



3.2.2. Path Properties for LLN Traffic Flows

Multipoint-to-point (MP2P) and Point-to-multipoint (P2MP) traffic flows
from nodes within the LLN from and to egress points are very common in
LLNs. Low power and lossy network Border Router (LBR) nodes may
typically be at the root of such flows, although such flows are not
exclusively rooted at LBRs as determined on an application-specific
basis.

As required by the aforementioned routing requirements documents, RPL
supports the installation of multiple paths. The use of multiple paths
include sending duplicated traffic along diverse paths, as well as to
support advanced features such as Class of Service (CoS) based routing,
or simple load balancing among a set of paths (which could be useful
for the LLN to spread traffic load and avoid fast energy depletion on
some nodes).

3.2.3. Constraint Based Routing TOC

The RPL design supports constraint based routing, based on a set of
routing metrics. The routing metrics supported by RPL are specified in
a companion document to this specification,
[I-D.ietf-roll-routing-metrics] (Vasseur, J., Kim, M., Networks, D.,
and H. Chong, “Routing Metrics used for Path Calculation in Low Power
and Lossy Networks,” April 2010.). RPL signals the metrics and related
objective functions in use in a particular implementation by means of
an Objective Code Point (OCP).

RPL supports the computation and installation of different paths in
support of and optimized for a set of application and implementation
specific constraints, as guided by an OCP. Traffic may subsequently be
directed along the appropriate constrained path based on traffic
marking within the IPv6 header. For more details on the approach
towards constraint-based routing, see Section 4 (Constraint Based
Routing in LLNSs).

3.2.4. Autonomous Operation TOC
Nodes running RPL are able to independently and autonomously discover a

network topology and compute and install routes, without requiring
further administrative interaction.

T0C



3.3. Protocol Operation

LLN nodes running RPL will construct Directed Acyclic Graphs (DAGs)
rooted at designated nodes that generally provide default routes. The
DAG is sufficient to support inward MP2P traffic flows, flowing inward
along the LLN towards a sink (DAG Root), which is one of the dominant
traffic flows described in the requirements documents
([I-D.jetf-roll-building-routing-reqs] (Martocci, J., Riou, N., Mil,
P., and W. Vermeylen, “Building Automation Routing Requirements in Low
Power and Lossy Networks,” February 2009.),
[I-D.ietf-roll-home-routing-reqs] (Porcu, G., “Home Automation Routing
Requirements in Low Power and Lossy Networks,” November 2008.),
[I-D.ietf-roll-indus-routing-reqs] (Networks, D., Thubert, P., Dwars,
S., and T. Phinney, “Industrial Routing Requirements in Low Power and
Lossy Networks,” June 2009.), and [RFC5548] (Dohler, M., Watteyne, T.,
Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power
and Lossy Networks,” May 2009.)).

By utilizing a DAG for dominant MP2P flows, RPL allows each node to
select and maintain potentially multiple successors capable of
forwarding traffic inwards towards the root. The DAG does not present
as many single points of failure as a tree, and in addition can offer a
node a set of pre-computed successors in support of, e.g. local route
repair in case of a temporary failure, load balancing, or short term
fluctuations in link characteristics.

A DAG also serves to restrict the routing problem on the nodes when it
is used as a reference topology. This allows nodes to determine their
positions in a DAG relative to each other and provides a means to
coordinate route repair in a way that endeavors to avoid loops. These
mechanisms will be described in more detail later in this
specification.

As DAGs are organized, RPL will use a Destination Advertisement
mechanism to build up routing state in support of outward P2MP traffic
flows. This mechanism, using the DAG as a reference, “paints' the
underlying LLN graph, guided along the DAG, such that the routes toward
destination prefixes in the outward direction may be set up. As the DAG
undergoes modification during DAG maintenance, the Destination
Advertisement mechanism can be triggered to update the outward routing
state.

Arbitrary P2P traffic MAY flow inward along the DAG until a common
parent is reached who has stored routing state and is capable of
directing the traffic outward along the correct outward path. In the
present specification RPL does not specify nor preclude any additional
mechanisms that may be capable to compute and install more optimal
routes into LLN nodes in support of arbitrary P2P traffic. (Note that
in some application scenarios it may be important to support arbitrary
P2P traffic along more optimal paths “across' the DAG). This
functionality is to be investigated further in a future revision.

This section further describes the high level operation of RPL.




3.3.1. DAG Construction TOC

3.3.1.1. Overview of a Typical Case TOC

RPL constructs one or more base routing topologies, in the form of
DAGs, over gradients defined by optimizing cost metrics along paths
rooted at designated nodes.

DAGs may be grounded, in which case the DAG Root is offering a default
route. A typical goal for a node participating in DAG Construction will
be to find and join a grounded DAG.

In the context of a particular LLN application one or more nodes will
be capable of offering a default route and thus be provisioned to act
as DAG roots. These nodes will begin the process of constructing a
grounded DAG by occasionally emitting Router Advertisements containing
the necessary information for neighboring nodes to evaluate the DAG
Root as a potential DAG parent. This information will include a DAGID
and an Objective Code Point (OCP). The OCP provides information as to
which metrics and optimization goals are being employed across the DAG.
Note that a single DAG Root may conceptually root different DAGs with
different OCPs as required to support different sets of routing
constraints. Note that if multiple DAG roots are rooting the same DAG,
i.e. presenting the same DAGID, then they must have some means of
coordinating with each other when emitting Router Advertisements. This
is described further below.

Nodes who hear Router Advertisements, advertising a specific DAGID and
OCP, will take into consideration several criteria when processing the
extracted DAG information. A node may seek a DAG advertising a specific
OCP, reflecting the implementation specific routing constraints
understood by the node. In particular, a node will be seeking to find a
least cost path satisfying some objective function as indicated by the
OCP according to some routing metrics defined in
[I-D.ietf-roll-routing-metrics] (Vasseur, J., Kim, M., Networks, D.,
and H. Chong, “Routing Metrics used for Path Calculation in Low Power
and Lossy Networks,” April 2010.). For example, the least cost path may
be determined in part by minimizing energy along a path, or latency, or
avoiding the use of battery powered nodes. Based on the evaluation of
such criteria, a node may determine if the node who emitted the Router
Advertisement should be considered as a potential DAG parent. If so,
then the node may add the advertising node to its set of DAG parents
for the advertised DAGID, and can be considered to have joined the DAG
designated by DAGID.

When a node adds the first DAG parent to the set of DAG parents for a
particular DAGID, the node is said to have joined, or attached to, the
DAG designated by DAGID. Adding additional DAG parents beyond the first




simply increases path diversity inwards toward the DAG root. When a
node removes the last DAG Parent from the set of DAG parents for a
particular DAGID, the node is said to have left, or detached from, the
DAG designated by DAGID. RPL will coordinate the joining, leaving, and
movement of nodes within a DAGID in such a way so as to avoid the
formation of loops, as described further below.

As nodes join the DAG they are able advertise the fact by beginning to
multicast the DAG information in Router Advertisements. In this way,
nodes are able to join the DAG at ever-increasing depths outward from
the DAG root. As nodes continue to receive DAG multicasts they may
continue to expand their set of DAG parents, while employing loop
avoidance strategies as describe below, in order to build path
diversity inwards toward the DAG root.

Using the information conveyed in the metrics of its most preferred DAG
parent, its own metrics, and the conventions and functions indicated by
the OCP, a node is able to compute a depth value within the DAG which
it will use to coordinate its DAG maintenance.

In addition to identifying DAG parents, a node also may hear the Router
Advertisements of other neighboring nodes at the same depth within the
DAG. In this way a node can discover DAG Siblings.

A node may order its set of DAG parents according to some
implementation specific preference. To this 1list the node may also
append a similarly ordered set of DAG siblings. By forwarding traffic
intended for the default destination towards the DAG parents, the node
is able to support the main Multipoint-to-point (MP2P) traffic flows
required by a typical LLN application. By using the ordered set of DAG
parents and DAG siblings the node is able to take advantage of path
diversity. For example, preferring to forward traffic towards parents
guarantees to get the traffic inwards, closer to the DAG root, by
definition, regardless of which parent is selected. In this example, if
forwarding towards parents is not possible, perhaps due to a transient
phenomena, then a node may then choose to forward traffic towards
siblings, moving across the DAG at the same level (neither inwards or
outwards). When receiving traffic forwarded from a sibling, the traffic
should not be forwarded back to the same sibling in order to avoid a 2-
node loop. In a further example, a forwarding implementation may choose
to decrease the hop limit more quickly when forwarding along sibling
paths than along parent paths. A forwarding engine may behave in a
manner similar to these examples, however the specific implementation
of a forwarding engine and related path diversity strategies is beyond
the scope of this specification.

Note that the further interaction of the routing solution and the
forwarding engine, in particular how they utilize and react to changes
in metrics, and how the forwarding engine may use the constrained set
of successors provided by the routing engine based on L2 triggers and
metrics, is under investigation.

By employing this procedure, the LLN is able to set up a path-
constrained DAG, rooted at designated nodes, with other nodes organized
along paths leading inward toward the DAG root. MP2P traffic intended



for the default destination flows inward along the DAG towards the
root, and nodes forwarding traffic are able to leverage the path
diversity of the DAG as necessary.

The DAG is then used by RPL as a reference topology, constraining the
LLN routing problem, on which to build additional routing mechanisms.

3.3.1.2. Further Operation TOC

The sub-DAG of a node is the set of other nodes of greater depth in the
DAG that might use a path towards the DAG root that contains this node.
Depth in the DAG is defined such that nodes contained in the sub-DAG of
a specific node should tend to have a greater depth than the node.
Paths through siblings are not contained in this set.

As a further illustration, consider the DAG examples in Appendix B
(Examples). Consider Node (24) in the DAG Example depicted in Figure 12
(Example DAG). In this example, the sub-DAG of Node (24) is comprised
of Nodes (34), (44), and (45).

A DAG may also be floating, in which case the node rooting the DAG is
not offering a default route. Floating DAGs may be encountered, for
example, during coordinated reconfigurations of the network topology
wherein a node and its sub-DAG breaks off the DAG, temporarily becomes
a floating DAG, and reattaches to a grounded DAG at a different (more
optimal) location. (Such coordination endeavors to avoid the
construction of transient loops in the LLN). A DAG, or a sub-DAG, may
also become floating because of a network element failure.

A node will generally join at least one DAG, typically (but not
necessarily) to or through a LBR. This specification does not preclude
a node from joining multiple DAGs. In one such case, a particular
application may require the node to maintain membership in multiple
DAGs in order to satisfy competing constraints, for example to support
different types of traffic, similar to the concept of MTR (Multi-
topology routing) as supported by other routing protocols such as IS-IS
[REC5120] (Przygienda, T., Shen, N., and N. Sheth, “M-ISIS: Multi
Topology (MT) Routing in Intermediate System to Intermediate Systems
(IS-1Ss),” February 2008.) or OSPF [RFC4915] (Psenak, P., Mirtorabi,
S., Roy, A., Nguyen, L., and P. Pillay-Esnault, “Multi-Topology (MT)
Routing in OSPF,” June 2007.), although the RPL mechanisms will
significantly differ from the ones specified for these protocols. (Note
that not all constrained traffic cases may require multiple DAGs). In
support of such cases the RPL implementation must independently
maintain requisite information and state for each DAG in parallel. In
cases where a competing constraints must be satisfied toward the same
DAG root, the OCP should differ by definition and may serve to
coordinate the maintenance of the multiple DAGs.




3.3.1.3. Router Advertisement - DAG Information Option (RA- TOC
DIO)

The IPv6 Router Advertisement mechanism (as specified in [RFC4861
(Narten, T., Nordmark, E., Simpson, W., and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” September 2007.)) is used by RPL in
order to build and maintain a DAG.

The IPv6 Router Advertisement message is augmented with a DAG
Information Option (DIO) in order to facilitate the formation and
maintenance of DAGs. The information conveyed in the DIO includes the
following:

*A DAGID used to identify the DAG as sourced from the DAG Root.
Typically the (potentially compressed) IPv6 address of the DAG
Root. May be tested for equality.

*Objective Code Point (OCP) as described below.

*Depth information used by nodes to determine their relationships
in the DAG relative to each other, i.e. parents, siblings, or
children. This is not a metric, although its derivation is
typically closely related to one or more metrics as specified by
the OCP. Used to support loop avoidance strategies and in support
of ordering alternate successors when engaged in path
maintenance.

*Sequence number originated from the DAG root, used to aid in
identification of dependent sub-DAGs and coordinate topology
changes in a manner so as to avoid loops.

*Indications for the DAG, e.g. grounded or floating.
*DAG configuration parameters

*A vector of path metrics. As discussed in
[I-D.ietf-roll-routing-metrics] (Vasseur, J., Kim, M., Networks,
D., and H. Chong, “Routing Metrics used for Path Calculation in
Low Power and Lossy Networks,” April 2010.) such metrics may be
cumulative, may report a maximum, minimum, or average scalar
value, or a link property.

*List of additional destinations prefixes reachable via the DAG
root.

The Router Advertisements are issued whenever a change is detected to
the DAG such that a node is able to determine that a region of the DAG
has become inconsistent. As the DAG stabilizes the period at which
Router Advertisements occur is configured to taper off, reducing the
steady-state overhead of DAG maintenance. The periodic issue of Router



Advertisements, along with the triggered Router Advertisements in
response to inconsistency, is one feature that enables RPL to operate
in the presence of unreliable links.

The RA-DIO and related mechanisms are described in more detail in
Section 5 (Specification of Core Protocol).

3.3.1.4. Objective Code Point (OCP) TOC

The OCP is seeded by the DAG Root and serves to convey and control the
optimization functions used within the DAG. The OCP is envisaged to
serve as an reference into a TBA Registry. Each instance of an
allocated OCP MUST indicate:

*The set of metrics used within the DAG

*The objective functions used to determine the least cost
constrained paths in order to optimize the DAG

*The function used to compute DAG Depth

*The functions used to construct derived metrics for propagation
within a DIO

For example, and objective code point might indicate that the DAG is
using ETX, that the optimization goal is to minimize ETX, that DAG
Depth is equivalent to ETX, and that DIO propagation entails adding the
advertised ETX of the most preferred parent to the ETX of the link to
the most preferred parent.

By using defined OCPs that are understood by all nodes in a particular
implementation, and by conveying them in the DIO, RPL nodes may work to
build optimized LLN using a variety of application and implementation
specific metrics and goals.

NOTE: A NULL OCP MUST be specified with a well-defined default
behavior. The NULL code point will subsequently be used to define RPL
behaviors in the case where a node encounters a DIO containing a code
point that it does not support.

3.3.1.5. Selection of Feasible DAG Parents TOC

The decision for a node to join a DAG may be optimized according to
implementation specific policy functions on the node as indicated by
one or more specific OCP values. For example, a node may be configured
for one goal to optimize a bandwidth metric (OCP-1), and with a
parallel goal to optimize for a reliability metric (OCP-2). Thus two



DAGs in parallel may be constructed and maintained in the LLN, DAG-1
would be optimized according to OCP-1, whereas DAG-2 would be optimized
according to OCP-2. A node may then maintain two parallel sets of DAG
parents. Note that in such a case traffic may directed along the
appropriate constrained DAG based on traffic marking within the IPv6
header.

As a node hears RAs from its neighbors it may process their DIOs. At
this time the node may be able to take into consideration, for example,
the following:

*Is the neighboring node heard reliably enough, and are the
metrics stable enough, that a local degree of confidence may be
established with respect to the neighboring node? Should the
neighboring node be considered in the set of candidate neighbors?

*In consultation with implementation specific policy (OCP goal),
is the neighboring node a feasible parent from a constrained-path
perspective?

*According to the implementation specific policy (OCP), does the
neighboring node offer a better optimized position into the DAG?

*Is the neighboring node a peer (sibling) within the DAG?

Based on such considerations, the node may incorporate the neighboring
node into the set of DAG parents.

When the node inserts the first DAG parent into the empty DAG parent
set, it is able to join the DAG. After the DAG parent set is updated,
the node will consult a depth computation function indicated by the OCP
for the DAG in order to determine its depth value, which it will
subsequently advertise when it emits its own DIOs. A general property
of the depth value presented by the node is that it should be greater
than that presented by any of its DAG parents. It is recommended that a
node maintain its DAG Parent set such that its most preferred parent
from the OCP goals also has the greatest depth value in the DAG parent
set. All reliable neighboring nodes of a lesser depth then the node may
then be considered as potential DAG parents. All neighboring nodes of
equal depth may come to be considered as siblings within the DAG (even
though they may not have parents in common, they may still provide path
diversity towards the DAG root).

The computation of depth, and related properties, are further described
in Section 3.4.1 (DAG Depth and Loop Avoidance).

3.3.1.5.1. Example TOC

For example, suppose that a node (N) is not attached to any DAG, and
that it is in range of nodes (A), (B), (C), (D), and (E). Let all nodes



be configured to use an OCP which defines a policy such that ETX is to
be minimized and paths with the attribute "Blue' should be avoided. Let
the depth computation indicated by the OCP simply reflect the ETX
aggregated along the path. Let the links between node (N) and its
neighbors (A-E) all have an ETX of 1 (which is learned by node (N)
through some implementation specific method). Let node (N) be
configured to send Router Solicitations to probe for nearby DAGs.

*Node (N) transmits a Router Solicitation.

*Node (B) responds. Node (N) investigates the DIO, and learns that
Node (B) is a member of DAGID 1 at depth 4, and not "Blue'. Node
(N) takes note of this, but is not yet confident.

*Similarly, Node (N) hears from Node (A) at depth 9, Node (C) at
depth 5, and Node (E) at depth 4.

*Node (D) responds. Node (D) has a DIO that indicates that it is a
member of DAGID 1 at depth 2, but it carries the attribute
"Blue'. Node (N)'s policy function rejects Node (D), and no
further consideration is given.

*This process continues until Node (N), based on implementation
specific policy, builds up enough confidence to trigger a
decision to join DAGID 1. Let Node (N) determine its most
preferred parent to be Node (E).

*Node (N) adds Node (E) (depth 4) to its set of DAG Parents for
DAGID 1. Following the mechanisms specified by the 0OCP, and given
that the ETX is 1 for the link between (N) and (E), Node (N) is
now at depth 5 in DAGID. 1.

*Node (N) adds Node (B) (depth 4) to its set of DAG Parents for
DAGID 1.

*Node (N) is a sibling of Node (C), both are at depth 5.

*Node (N) may now forward traffic intended for the default
destination inward along DAGID 1 via nodes (B) and (E). In some
cases, e.g. if nodes (B) and (E) are tried and fail, node (N) may
also choose to forward traffic to its sibling node (C), without
making inward progress but with the intention that node (C) or a
following successor can make inward progress.

TOC



3.3.1.6. DAG Maintenance

When a node moves within a DAG, the move is defined as updating the set
of DAG Parents for a particular DAGID, i.e. adding or deleting DAG
Parents. Not all moves entail changes in depth.

A jump in the context of a DAG is attaching to a new DAGID, in such a
way that an old DAGID is replaced by the new DAGID. In particular, when
an old DAGID is left, all associated parents are no longer feasible,
and a new DAGID is joined.

When a node in a DAG follows a DAG parent, it means that the DAG parent
has changed its DAGID (e.g. by joining a new DAG) and that the node
updates its own DAGID in order to keep the DAG parent.

A frozen sub-DAG is a subset of nodes in the sub-DAG of a node who have
been informed of a change to the node, and choose to follow the node in
a manner consistent with the change, for example in preparation for a
coordinated move. Nodes in the sub-DAG who hear of a change and have
other options than to follow the node do not have to become part of the
frozen sub-DAG, for example such a node may be able to remain attached
to the original DAG through a different DAG Parent. A further example
may be found in Section 3.4.1.1 (Example).

When the node encounters new candidate neighbors that offer higher
positions in the DAG, it may incorporate them directly into its set of
DAG parents. In this case the node may update its choice of most
preferred parent, discarding a deeper node and possibly causing its own
advertised depth to decrease. This case is "moving inwards along the
DAG' and does not require any additional coordination for loop
avoidance.

If the DAG parent set of the node becomes completely depleted, the node
will have detached from the DAG, and will become the root of its own
floating DAG (thus establishing the frozen sub-DAG), and then may
reattach to the original DAG at a lower point if it is able.

When the node encounters candidate parents that are in a different DAG,
and decides to leave the current DAG in order to join the different
DAG, it may do so safely without regard to loop avoidance. However, it
may not return immediately to the current DAG as such movement may
trigger the creation of loops.

When a node, and perhaps a related frozen sub-DAG, jumps to a different
DAG, the move is coordinated by a DAG Hop timer. The DAG Hop timer
allows the nodes who will attach closer to the sink of the new DAG to
“jump' first, and then drag dependent nodes behind them, thus
endeavoring to efficiently coordinate the attachment of the frozen sub-
DAG into the new DAG. A further illustration of this mechanism may be
found in Section 3.4.3 (Merging DAGS).

Section 5 (Specification of Core Protocol) contains more detail on the
processes and rules used for DAG discovery and maintenance.

Appendix B (Examples) provides additional examples of DAG discovery and
maintenance.




3.3.2. Source Routing TOC

A Source Routing mechanism for RPL is currently under investigation.

3.3.3. Destination Advertisement TOC

As RPL constructs DAGs, nodes are able to learn a set of default routes
in order to send traffic to the sink. However, this mechanism alone
does is not sufficient to support P2MP traffic flowing outward along
the DAG from the DAG root toward nodes. A Destination Advertisement
mechanism is employed by RPL to build up routing state in support of
these outward flows.

3.3.3.1. Destination Advertisement Option (DAO) TOC

A Destination Advertisement Option (DAO) is used to convey the
Destination information inward along the DAG toward the DAG root.
The information conveyed in the DAO includes the following:

*A lifetime and sequence counter to determine the freshness of the
Destination Advertisement.

*Depth information used by nodes to determine how far away the
destination (the source of the Destination Advertisement) is

*Prefix information to identify the destination, which may be a
prefix, an individual host, or multicast listeners

*Reverse Route information to record the nodes visited (along the
outward path) when the intermediate nodes along the path cannot
support storing state for Hop-By-Hop routing.

3.3.3.2. Destination Advertisement Operation TOC

As the DAG is constructed and maintained, nodes will emit messages
containing Destination Advertisement Options to a subset of their DAG
Parents. The selection of this subset is according to an implementation
specific policy.



Note that further details of the message and its triggers are still
under investigation, including whether or not the DAO should be a IPv6
Hop-By-Hop option or a Neighbor Discovery option.

When a DAO reaches a node capable of storing routing state, the node
extracts information from the DAO and updates its local database with a
record of the DAO and who it was received from. When the node later
propagates DAOs, it selects the best (least depth) information for each
destination and conveys this information again in the form of DAOs to a
subset of its own DAG parents. At this time the node may perform route
aggregation if it is able, thus reducing the overall number of DAOs.
When a DAO reaches a node incapable of storing additional state, the
node MUST append its own address to a Reverse Route Stack carried
within the DAO. The node then passes the DAO on to one or more of its
DAG parents without storing any additional state.

When a node that is capable of storing routing state encounters a DAO
with a Reverse Route Stack that has been populated, the node knows that
the DAO has traversed a region of nodes that did not record any routing
state. The node is able to detach and store the Reverse Route State and
associate it with the destination described by the DAO. Subsequently
the node may use this information to construct a source route in order
to bridge the region of nodes that are unable to support Hop-By-Hop
routing to reach the destination.

In this way the Destination Advertisement mechanism is able to
provision routing state in support of P2MP traffic flows outward along
the DAG, and as according to the available resources in the LLN nodes.
Further aggregations of DAOs by destinations are possible in order to
support additional scalability.

A further example of the operation of the Destination Advertisement
mechanism is available in Appendix B.6 (Destination Advertisement)

3.4. Other Considerations TOC

3.4.1. DAG Depth and Loop Avoidance TOC

When nodes select DAG Parents, they should select the most preferred
parent according to their implementation specific objectives, using the
cost metrics conveyed in the DIOs along the DAG in conjunction with the
related objective functions as specified by the OCP.

Based on this selection, the metrics conveyed by the most preferred DAG
parent, the nodes own metrics and configuration, and a related function
defined by the objective code point, a node will be able to compute a
value for its depth as a consequence of selecting a most preferred DAG
parent.



It is important to note that the DAG Depth is not itself a metric,
although its value is derived from and influenced by the use of metrics
to select DAG parents and take up a position in the DAG. The
computation of the DAG Depth MUST be done in such a way so as to
maintain the following properties for any nodes M and N who are
neighbors in the LLN:

For a node N, and its most preferred parent M, DAGDepth(N) >
DAGDepth(M) must hold. Further, all parents in the DAG parent set
must be of a depth less than or equal to DAGDepth(M). (This
mechanism serves to avoid loops in the case where an alternate
parent is used- if no alternate parent is deeper than the preferred
parent then loops are avoided. The risk of loops occurs when an
alternate parent goes deeper, and traffic then makes backwards
progress and comes back to the node again).

If DAGDepth(M) < DAGDepth(N), then M is located in a more optimum
position than N in the DAG with respect to the metrics and
optimizations defined by the objective code point. Node M may safely
be a DAG Parent for Node N without risk of creating a loop.

If DAGDepth(M) == DAGDepth(N), then M and N are located positions of
relatively the same optimality within the DAG. In some cases, Node M
may be used as a successor by Node N, but with related chance of
creating a loop that must be detected and broken by some other
means.

If DAGDepth(M) > DAGDepth(N), then node M is located in a less
optimum position than N in the DAG with respect to the metrics and
optimizations defined by the objective code point. Further, Node (M)
may in fact be in Node (N)'s sub-DAG. There is no advantage to Node
(N) selecting Node (M) as a DAG Parent, and such a selection may
create a loop.

For example, the DAG Depth could be computed in such a way so as to
closely track ETX when the objective function is to minimize ETX, or
latency when the objective function is to minimize latency, or in a
more complicated way as appropriate to the objective code point being
used within the DAG.

The DAG depth is subsequently used to restrict the options a node has
for movement within the DAG and to coordinate movements in order to
avoid the creation of loops.

A node may safely move “up' in the DAG, causing its DAG depth to
decrease and moving closer to the DAG root without risking the
formation of a loop.

A node may not consider to move “down' the DAG, causing its DAG depth
to increase and moving further from the DAG root. Such a move will
entail moving to a less optimum position in the DAG in all cases, as
defined by the objective code point. In the case where a node looses



connectivity to the DAG, it must first leave the DAG before it may then
rejoin at a deeper point.

Any neighboring nodes of lesser or equal depth are eligible to be
considered as DAG parents.

3.4.1.1. Example TOC
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Figure 1: DAG Maintenance

Consider the example depicted in Figure 1 (DAG Maintenance)-1. In this
example, Node (A) is attached to a DAG at some depth d. Node (A) is a
DAG Parent of Nodes (B) and (C). Node (C) is a DAG Parent of Node (D).
There is also an undirected sibling link between Nodes (B) and (C).

In this example, Node (C) may safely forward to Node (A) without
creating a loop. Node (C) may not safely forward to Node (D), contained
within it's own sub-DAG, without creating a loop. Node (C) may forward
to Node (B) in some cases, e.g. the link (C)->(A) is temporarily
unavailable, but with some chance of creating a loop and requiring the
intervention of additional mechanisms to detect and break the loop.
Consider the case where Node (C) hears a DIO from a Node (Z) at a
lesser depth and superior position in the DAG than node (A). Node (C)




may safely undergo the process to evict node (A) from its DAG Parent

set and attach directly to Node (Z) without creating a loop, because

its depth will decrease.

Consider the case where the link (C)->(A) becomes nonviable, and node
(C) must move to a deeper depth within the DAG:

*Node (C) must first detach from the DAG by removing Node (A) from
its DAG Parent set, leaving an empty DAG Parent set. Node (C)
becomes the root of its own floating DAG.

*Node (D), hearing a modified RA-DIO from Node (C), follows Node
(C) into the floating DAG. This is depicted in Figure 1 (DAG
Maintenance)-2. In general, any node with no other options in the
sub-DAG of Node (C) will follow Node (C) into the floating DAG,
maintaining the structure of the sub-DAG.

*Node (C) hears a RA-DIO from Node (B) and determines it is able
to rejoin the grounded DAG by reattaching at a deeper depth to
Node (B). Node (C) starts a DAG Hop timer to coordinate this
move.

*The timer expires and Node (C) adds Node (B) to its DAG Parent
set. Node (C) has now safely moved deeper within the grounded DAG
without creating any loops. Node (D), and any other sub-DAG of
Node (C), will hear the modified RA-DIO sourced from Node (C) and
follow Node (C) in a coordinated manner to reattach to the
grounded DAG. The final DAG is depicted in Figure 1 (DAG
Maintenance)-3

3.4.2. DAG Parent Selection, Stability, and Greediness TOC

If a node is greedy and attempts to move deeper in the DAG, beyond its
most preferred parent, in order to increase the size of the DAG Parent
set, then an instability can result. This is illustrated in Figure 2
(Greedy DAG Parent Selection).

Suppose a node is willing to receive and process a RA-DIOs from a node
in its own sub-DAG, and in general a node deeper than it. In such cases
a chance exists to create a feedback loop, wherein two or more nodes
continue to try and move in the DAG in order to optimize against each
other. In some cases this will result in an instability. It is for this
reason that RPL recommends that a node MUST NOT receive and process RA-
DIOs from deeper nodes. This rule creates an “event horizon', whereby a
node cannot be influenced into an instability by the action of nodes
that may be in its own sub-DAG.




3.4.2.1. Example TOC
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Figure 2: Greedy DAG Parent Selection

Consider the example depicted in Figure 2 (Greedy DAG Parent
Selection). A DAG is depicted in 3 different configurations. A usable
link between (B) and (C) exists in all 3 configurations. In Figure 2
(Greedy DAG Parent Selection)-1, Node (A) is a DAG Parent for Nodes (B)
and (C), and (B)--(C) is a sibling link. In Figure 2 (Greedy DAG Parent
Selection)-2, Node (A) is a DAG Parent for Nodes (B) and (C), and Node
(B) is also a DAG Parent for Node (C). In Figure 2 (Greedy DAG Parent
Selection)-3, Node (A) is a DAG Parent for Nodes (B) and (C), and Node
(C) is also a DAG Parent for Node (B).

If a RPL node is too greedy, in that it attempts to optimize for an
additional number of parents beyond its preferred parent, then an
instability can result. Consider the DAG illustrated in Figure 2
(Greedy DAG Parent Selection)-1. In this example, Nodes (B) and (C) may
most prefer Node (A) as a DAG Parent, but are operating under the
greedy condition that will try to optimize for 2 parents.

*Let Figure 2 (Greedy DAG Parent Selection)-1 be the initial
condition.

*Suppose Node (C) first is able to leave the DAG and rejoin at a
lower depth, taking both Nodes (A) and (B) as DAG parents as
depicted in Figure 2 (Greedy DAG Parent Selection)-2. Now Node
(C) is deeper than both Nodes (A) and (B), and Node (C) is
satisfied to have 2 DAG parents.




*Suppose Node (B), in its greediness, is willing to receive and

process a DIO from Node (C) (against the rules
Node (B) leaves the DAG and rejoins at a lower
Nodes (A) and (C) as DAG Parents. Now Node (B)
both Nodes (A) and (C) and is satisfied with 2

*Then Node (C) will leave and rejoin deeper, to
parents

*Then Node (B) will leave and rejoin deeper, to
parents

of RPL), and then
depth, taking both
is deeper than

DAG parents.

again get 2

again get 2

*The process will repeat, and the DAG will oscillate between
Figure 2 (Greedy DAG Parent Selection)-2 and Figure 2 (Greedy DAG

Parent Selection)-3 until the nodes count to infinity and restart

the cycle again.

*This cycle can be averted through mechanisms in RPL:

-Nodes (B) and (C) stick at a depth sufficient to attach to
their most preferred parent (A) and don't go for any deeper
(worse) alternate parents (Nodes are not greedy)

-Nodes (B) and (C) don't process DIOs from nodes deeper than

themselves (possibly in their own sub-DAGs)

3.4.3. Merging DAGs

T0C

The merging of DAGs is coordinated in a way such as to try and merge
two DAGs cleanly, preserving as much DAG structure as possible, and in
the process effecting a clean merge with minimal likelihood of forming

transient loops

3.4.3.1. Example

T0C



Figure 3: Merging DAGs

Consider the example depicted in Figure 3 (Merging DAGs). Nodes (A),
(B), and (C) are part of some larger grounded DAG, where Node (A) is at
a depth of d, Node (B) at d+1, and Node (C) at d+2. The DAG comprised
of Nodes (D), (E), and (F) is a floating DAG, with Node (D) as the DAG
root. This floating DAG may have been formed, for example, in the
absence of a grounded DAG or when Node (D) had to detach from a
grounded DAG and (E) and (F) followed. All nodes are using compatible
objective code points.

Nodes (D), (E), and (F) would rather join the grounded DAG if they are
able than to remain in the floating DAG.

Next, let links (C)--(D) and (A)--(E) become viable. The following
sequence of events may then occur in a typical case:

*Node (D) will receive and process a RA-DIO from Node (C) on link
(C)--(D). Node (D) will consider Node (C) a candidate neighbor,
will note that Node (C) is in a grounded DAG at depth d+2, and
will begin the process to join the grounded DAG at depth d+3.
Node (D) will start a DAG Hop timer, logically associated with
the grounded DAG at Node (C), to coordinate the jump. The DAG Hop
timer will have a duration proportional to d+2.

*Similarly, Node (E) will receive and process a RA-DIO from Node
(A) on link (A)--(E). Node (E) will consider Node (A) a candidate
neighbor, will note that Node (A) is in a grounded DAG at depth
d, and will begin the process to join the grounded DAG at depth
d+1. Node (E) will start a DAG Hop timer, logically associated
with the grounded DAG at Node (A), to coordinate the jump. The
DAG Hop timer will have a duration proportional to d.

*Node (F) takes no action, for Node (F) has observed nothing new
to act on.



*Node (E)'s DAG Hop timer for the grounded DAG at Node (A) expires
first. Node (E), upon the DAG Hop timer expiry, is removes Node
(D), thus emptying the DAG parent set for the floating DAG and
leaving the floating DAG. Node (E) then jumps to the grounded DAG
by entering Node (A) into the set of DAG Parents for the grounded
DAG. Node (E) is now in the grounded DAG at depth d+1. Node (E),
by jumping into the grounded DAG, has created an inconsistency
and will begin to emit RA-DIOs more frequently.

*Node (F) will receive and process a RA-DIO from Node (E). Node
(F) will observe that Node (E) has changed its DAGID and will
directly follow Node (E) into the grounded DAG. Node (F) is now a
member of the grounded DAG at depth d+2. Note that any additional
sub-DAG of Node (E) would continue to join into the grounded DAG
in this coordinated manner.

*Node (D) will receive a RA-DIO from Node (E). Since Node (E) is
now in a different DAG, Node (D) may process the RA-DIO from Node
(E). Node (D) will observe that, via node (E), it could attach to
the grounded DAG at depth d+2. Node (D) will start another DAG
Hop timer, logically associated with the grounded DAG at Node
(E), with a duration proportional to d+1. Node (D) now is running
two DAG hop timers, one which was started with duration
proportional to d+1 and one proportional to d+2.

*Generally, Node (D) will expire the timer associated with the
jump to the grounded DAG at node (E) first. Node (D) may then
jump to the grounded DAG by entering Node (E) into its DAG Parent
set for the grounded DAG. Node (D) is now in the grounded DAG at
depth d+2.

*In this way RPL has coordinated a merge between the grounded DAG
and the floating DAG, such that the nodes within the two DAGs
come together in a generally ordered manner, avoiding the
formation of loops in the process.

3.4.4. Local and Temporary Routing Decision TOC

Although implementation specific, it is worth noting that a node may
decide to implement some local routing decision based on some metrics,
as observed locally or reported in the DIO. For example, the routing
may reflect a set of successors (next-hop), along with various
aggregated metrics used to load balance the traffic according to some
local policy. Such decisions are local and implementation specific.
Routing stability is crucial in a LLN: in the presence of unstable
links, the first option consists of removing the link from the DAG and



triggering a DAG recomputation across all of the nodes affected by the
removed link. Such a naive approach could unavoidably lead to frequent
and undesirable changes of the DAG, routing instability, and high-
energy consumption. The alternative approach adopted by RPL relies on
the ability to temporarily not use a link toward a successor marked as
valid, with no change on the DAG structure. If the link is perceived as
non-usable for some period of time (locally configurable), this
triggers a DAG recomputation, through the DAG Discovery mechanism
further detailed in Section 5.3 (DAG Discovery), after reporting the
link failure. Note that this concept may be extended to take into
account other link characteristics: for the sake of illustration, a
node may decide to send a fixed number of packets to a particular
successor (because of limited buffering capability of the successor)
before starting to send traffic to another successor.

According to the local policy function, it is possible for the node to
order the DAG parent set from "most preferred' to “least preferred'. By
constructing such an ordered set, and by appending the set with
siblings, the node is able to construct an ordered list of preferred
next hops to assist in local and temporary routing decisions. The use
of the ordered list by a forwarding engine is loosely constrained, and
may take into account the dynamics of the LLN. Further, a forwarding
engine implementation may decide to perform load balancing functions
using hash-based mechanisms to avoid packet re-ordering. Note however,
that specific details of a forwarding engine implementation are beyond
the scope of this document.

These decisions may be local and/or temporary with the objective to
maintain the DAG shape while preserving routing stability.

3.4.5. Scalability TOC

As each node selects DAG Parents according to implementation specific
objectives, RPL is able to dynamically partition an LLN network into
different regions, each anchored by a DAG root. Multiple DAG roots may
be deployed in accordance with an implementation specific policy
designed to limit the size of a partition, e.g. for performance or
other reasons.

A further example is illustrated in Appendix C (Additional Examples).

3.4.6. Maintenance of Routing Adjacency TOC

In order to relieve the LLN of the overhead of periodic keepalives, RPL
MAY employ an as-needed mechanism of NS/NA in order to verify routing
adjacencies just prior to forwarding data. Pending the outcome of



verifying the routing adjacency, the packet may either be forwarded or
an alternate next-hop may be selected.

4. Constraint Based Routing in LLNs TOC

This aim of this section is to make a clear distinction between routing
metrics and constraints and define the term constraint based routing as
used in this document.

4.1. Routing Metrics TOC

Routing metrics are used by the routing protocol to compute the
shortest path according to one of more defined metrics. IGPs such as
IS-IS ([RFC5120] (Przygienda, T., Shen, N., and N. Sheth, “M-ISIS:
Multi Topology (MT) Routing in Intermediate System to Intermediate
Systems (IS-ISs),” February 2008.)) and OSPF ([RFC4915] (Psenak, P.,
Mirtorabi, S., Roy, A., Nguyen, L., and P. Pillay-Esnault, “Multij-
Topology (MT) Routing in OSPF,” June 2007.)) compute the shortest path
according to a Link State Data Base (LSDB) using link metrics
configured by the network administrator. Such metrics can represent the
link bandwidth (in which case the metric is usually inversely
proportional to the bandwidth), delay, etc. Note that in some cases the
metric is a polynomial function of several metrics defining different
link characteristics. The resulting shortest path cost is equal to the
sum (or multiplication) of the link metrics along the path: such
metrics are said to be additive or multiplicative metrics.

Some routing protocols support more than one metric: in the vast
majority of the cases, one metric is used per (sub)topology. Less
often, a second metric may be used as a tie breaker in the presence of
ECMP (Equal Cost Multiple Paths). The optimization of multiple metrics
is known as an NP complete problem and is sometimes supported by some
centralized path computation engine.

In the case of RPL, it is virtually impossible to define *the* metric,
or even a composite, that will fit it all:

*Some information apply to path setup time, other apply to packet
forwarding time.

*Some values are aggregated hop-by-hop, others are triggers from
L2.

*Some properties are very stable, others vary rapidly.

*Some data are useful in a given scenario and useless in another.



*Some arguments are scalar, others statistical.

For that reason, the RPL protocol core is agnostic to the logic that
handles metrics. A node will be configured with some external logic to
use and prioritize certain metrics for a specific scenario. As new
heterogeneous devices are installed to support the evolution of a
network, or as networks form in a totally ad-hoc fashion, it will
happen that nodes that are programmed with antagonistic logics and
conflicting or orthogonal priorities end up participating in the same
network. It is thus RECOMMENDED to use consistent parent selection
policy, as per Objective Code Points (OCP), to ensure consistent
optimized paths.

RPL is designed to survive and still operate, though in a somewhat
degraded fashion, when confronted to such heterogeneity. The key design
point is that each node is solely responsible for setting the vector of
metrics that it sources in the DAG, derived in part from the metrics
sourced from its preferred parent. As a result, the DAG is not broken
if another node makes its decisions in as antagonistic fashion, though
an end-to-end path might not fully achieve any of the optimizations
that nodes along the way expect. The to-be-defined NULL OCP and related
behaviors will further clarify this point.

4.2. Routing Constraints TOC

A constraint is a link or a node characteristic that must be satisfied
by the computed path (using boolean values or lower/upper bounds) and
is by definition neither additive nor multiplicative. Examples of links
constraints are "available bandwidth", "administrative values (e.g.
link coloring)", "protected versus non-protected links", "link quality"
whereas a node constraint can be the level of battery power, CPU
processing power, etc.

4.3. Constraint Based Routing TOC

The notion of constraint based routing consists of finding the shortest
path according to some metrics satisfying a set of constraints. A
technique consists of first filtering out all links and nodes that
cannot satisfy the constraints (resulting in a sub-topology) and then
computing the shortest path.

Example 1:

Link Metric: Bandwidth



Link Constraint: Blue
Node Constraint: Mains-powered node

Objective function 1:
"Find the shortest path (path with lowest cost where the path
cost is the sum of all link costs (Bandwidth)) along the path
such that all links are colored "Blue' and that only traverses
Mains-powered nodes."

Example 2:
Link Metric: Delay
Link Constraint: Bandwidth

Objective function 2:
"Find the shortest path (path with lowest cost where the path

cost is the sum of all link costs (Delay)) along the path such
that all links provide at least X Bit/s of reservable bandwidth."

5. Specification of Core Protocol TOC

5.1. DAG Information Option TOC

The DAG Information Option carries a number of metrics and other

information that allows a node to discover a DAG, select its DAG

parents, and identify its siblings while employing loop avoidance
strategies.

5.1.1. DIO base option TOC

The DAG Information Option is a container option, which might contain a
number of suboptions. The base option regroups the minimum information
set that is mandatory in all cases.
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Figure 4: DIO Base Option

Type: 8-bit unsigned identifying the DIO base option. The value 1is
to be assigned by the IANA.

Length: 8-bit unsigned integer set to 4 when there is no suboption.
The length of the option (including the type and length fields
and the suboptions) in units of 8 octets.

Grounded (G): The Grounded (G) flag is set when the DAG root is
offering a default route.

Destination Advertisement (D): The Destination Advertisement (D)
flag is set when the DAG root or another node in the successor
chain decides to trigger the sending of Destination
Advertisements in order to update routing state for the outward
direction along the DAG, as further detailed in Section 5.4
(Establishing Routing State Outward Along the DAG). Note that the
use and semantics of this flag are still under investigation.

Reserved: 6-bit unsigned integer set to © by the DAG root and left
unchanged by nodes propagating the DIO.



Sequence Number:
8-bit unsigned integer set by the DAG root,

incremented with each new DIO it sends on a link, and propagated
with no change outwards along the DAG.

DAGPreference: 8-bit unsigned integer set by the DAG root to its
preference and unchanged at propagation. Default is 0 (lowest
preference). The DAG preference provides an administrative
mechanism to engineer the self-organization of the LLN, for
example indicating the most preferred LBR.

BootTimeRandom: A random value computed at boot time and recomputed
in case of a duplication with another node. The concatenation of
the NodePreference and the BootTimeRandom is a 32-bit extended
preference that is used to resolve collisions. It is set by each
node at propagation time.

NodePreference: The administrative preference of that LLN Node.
Default is 0. 255 is the highest possible preference. Set by each
LLN Node at propagation time. Forms a collision tiebreaker in
combination with BootTimeRandom.

DAGDepth: 8-bit unsigned integer. The DAG depth of the DAG root is
0. The DAG Depth of a node attached to the DAG should be greater
than depth of its deepest DAG parent, as computed by an
implementation specific routine. All nodes in the DAG advertise
their DAG depth in the DAG Information Options that they append
to the RA messages over their LLN interfaces as part of the
propagation process.

DAGDelay: 16-bit unsigned integer set by the DAG root indicating
the delay before changing the DAG configuration, in TBD-units. A
default value is TBD. It is expected to be an order of magnitude
smaller than the RA-interval. It is also expected to be an order
of magnitude longer than the typical propagation delay inside the
LLN.

DIOIntervalDoublings: 8-bit unsigned integer. Used to configure the
trickle timer governing when RA-DIO should be sent within the
DAG. DIOIntervalDoublings is the number of times that the
DIOIntervalMin is allowed to be doubled during the trickle timer
operation, i.e. DIOIntervalMax = DIOIntervalMin *
27N (DIOIntervalDoublings).

DIOIntervalMin: 8-bit unsigned integer. Used to configure the
trickle timer governing when RA-DIO should be sent within the
DAG. The minimum configured interval for the RA-DIO trickle timer
in units of ms is 2ADIOIntervalMin. For example, a DIOIntervalMin
value of 16ms is expressed as 4.



DAGObjectiveCodePoint:

The DAG Objective Code Point is used to
indicate the cost metrics, objective functions, and methods of
computation and comparison for DAGDepth in use in the DAG. The
DAG OCP is set by the DAG Root. (Note: this specification
recommends that another document, e.g.
[I-D.ietf-roll-routing-metrics] (Vasseur, J., Kim, M., Networks,
D., and H. Chong, “Routing Metrics used for Path Calculation in
Low Power and Lossy Networks,” April 2010.), define Objective
Code Points and recommend a registry to manage them)

PathDigest: 32-bit unsigned integer CRC, updated by each LLN Node.
This is the result of a CRC-32c computation on a bit string
obtained by appending the received value and the ordered set of
DAG parents at the LLN Node. DAG roots use a 'previous value' of
zeroes to initially set the PathDigest. Used to determine when
something in the set of successor paths has changed.

DAGID: 128-bit unsigned integer which uniquely identify a DAG. This
value is set by the DAG root. The global IPv6 address of the DAG
root can be used.

The following values MUST NOT change during the propagation of the DIO
outwards along the DAG: Type, Length, G, DAGPreference, DAGDelay and
DAGID. All other fields of the DIO are updated at each hop of the
propagation.

5.1.1.1. DIO suboptions TOC

In addition to the minimum options presented in the base option, a
number of suboptions are defined for the DIO:

5.1.1.1.1. Format T0C

0 1 2 3
012345678901 23456789012345678901
totototototototototototototototototototototot-tototot-t-t-F-F-+-+

| Subopt. Type | Subopt Length | Suboption Data...
B s e R S b b o T T R Sy S S S S S Sy S S



Figure 5: DIO Suboption Generic Format

Suboption Type: 8-bit identifier of the type of suboption. When
processing a DIO containing a suboption for which the Suboption
Type value is not recognized by the receiver, the receiver MUST
silently ignore and skip over the suboption, correctly handling
any remaining options in the message.

Suboption Length: 8-bit unsigned integer, representing the length
in octets of the suboption, not including the suboption Type and
Length fields.

Suboption Data: A variable length field that contains data specific
to the option.

The following subsections specify the DIO suboptions which are
currently defined for use in the DAG Information Option.
Implementations MUST silently ignore any DIO suboptions options that
they do not understand.

DIO suboptions may have alignment requirements. Following the
convention in IPv6, these options are aligned in a packet such that
multi-octet values within the Option Data field of each option fall on
natural boundaries (i.e., fields of width n octets are placed at an
integer multiple of n octets from the start of the header, for n = 1,
2, 4, or 8).

5.1.1.1.2. Pad1l TOC

The Padl suboption does not have any alignment requirements. Its format
is as follows:

0
1234567
+ot-t-t-t-t-+-+-+
| Type =0 I
+-t-F-F-t-F-F-+-+

Figure 6: Pad 1

NOTE! the format of the Padl option is a special case - it has neither
Option Length nor Option Data fields.



The Padl option is used to insert one octet of padding in the DIO to
enable suboptions alignment. If more than one octet of padding is
required, the PadN option, described next, should be used rather than
multiple Padl options.

5.1.1.1.3. PadN T0C

The PadN option does not have any alignment requirements. Its format is
as follows:

(C] 1
0123456789012345
+-+-+-F+-+-+-F-F-+-F-F-F-+-F-F-F-+- - - - - - - - -
| Type = 1 | Subopt Length | Subopt Data
+-t-d-t-t-F-F-t-t-F-F-F-tF-F-F-F-+- - - - - - - - -

Figure 7: Pad N

The PadN option is used to insert two or more octets of padding in the
DIO to enable suboptions alignment. For N (N > 1) octets of padding,
the Option Length field contains the value N-2, and the Option Data
consists of N-2 zero-valued octets. PadN Option data MUST be ignored by
the receiver.

5.1.1.1.4. DAG Metric Container TOC

The DAG Metric Container suboption may be aligned as necessary to
support its contents. Its format is as follows:

0 1
0123456789012345
e D e S S e T T T T T

| Type = 2 | Container Len | DAG Metric Data
tot-t-t-F-totot-t-t-t-t-F-F-F-F-F- - - - - - o - -

Figure 8: DAG Metric Container



The DAG Metric Container is used to report aggregated path metrics
along the DAG. The DAG Metric Container may contain a number of
discrete node, link, and aggregate path metrics as chosen by the
implementer. The Container Length field contains the length in octets
of the DAG Metric Data. The order, content, and coding of the DAG
Metric Container data is as specified in
[I-D.ietf-roll-routing-metrics] (Vasseur, J., Kim, M., Networks, D.,
and H. Chong, “Routing Metrics used for Path Calculation in Low Power
and Lossy Networks,” April 2010.).

The processing and propagation of the DAG Metric Container is governed
by implementation specific policy functions.

5.1.1.1.5. Destination Prefix TOC

The Destination Prefix suboption has an alignment requirement of 4n+1.
Its format is as follows:

(0] 1 2 3

012345678901 23456789012345678901
e T e ol SPEE S Oy Sy b ST PP S S g e s e
| Type = 3 | Length | Prefix Length |Resvd|Prf|Resvd]|
Fototototot-tototodtototototot-tot-totototot-tot-tot-t-t-t-F-t-+-+
| Destination Prefix (Variable Length) |
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Figure 9: DAG Destination Prefix

The Destination Prefix suboption is used when the DAG root needs to
indicate that it offers connectivity to destination prefixes other than
the default. This may be useful in cases where more than one LBR is
operating within the LLN and offering connectivity to different
administrative domains, e.g. a home network and a utility network.
(Note that a grounded DIO offers the default route without any other
qualification needed). In such cases, upon observing the Destination
Prefixes offered by a particular DAG root, a node MAY decide to join
multiple DAGs in support of a particular application. Note that



Destination Prefixes specified in this manner inherit the Router
Lifetime of their parent RA.

The Length is coded as the length of the suboption in octets, excluding
the Type and Length fields. The Prefix Length is an 8-bit unsigned
integer that indicates the number of leading bits in the destination
prefix. Prf is the Route Preference as in [RFC4191] (Draves, R. and D.
Thaler, “Default Router Preferences and More-Specific Routes,”

November 2005.). The Destination Prefix contains Prefix Length
significant bits of the destination prefix. The remaining bits of the
Destination Prefix, as required to complete the trailing octet, are set
to 0.

In the event that a DAG root may need to specify that it offers
connectivity to more than one destination, the Destination Prefix
suboption may be repeated.

5.2. Neighbor Discovery TOC

5.2.1. RA-DIO Reception TOC

An node will come to discover its link layer neighbors by a combination
of link layer mechanisms and by hearing the multicast RA messages from
the neighbors. Through these mechanisms a node is able to construct a
set of known neighbors.

When receiving and processing the RA-DIO messages from known neighbors,
in addition to link layer states and characteristics, the node will
come to determine that a neighbor is of particular interest. As the LLN
node periodically observes the neighbor and determines its behavior to
be reliable beyond a certain threshold, the node may select the
neighbor to be part of the candidate neighbor set and begin to maintain
a local confidence value with respect to the neighbor.

As RA-DIOs are received from candidate neighbors, the DIO information
will be consulted to determine, for example:

1. Does the candidate neighbor offer a position in a different
DAG, or a better position in the current DAG? Is the OCP of the
candidate neighbor compatible with the goals of this node? Do
the related path metrics pass the criteria of a implementation
specific policy function such that the candidate neighbor is
considered feasible? If so then consider the candidate neighbor
as a candidate parent. The decision to move up the DAG is a
policy decision and a node may choose not to move up the DAG if
the path metric is not significantly better than the current
one.



2. Does the candidate neighbor exist at the same depth in the
current DAG as this node? Do the related path metrics pass the
criteria of a implementation specific policy function such that
the candidate neighbor is feasible? If so then consider the
candidate neighbor as a DAG sibling.

3. Otherwise, ignore the candidate neighbor. Ignored neighbors may
periodically be re-evaluated to see if their situation has
improved.

The implementation SHOULD provide the ability to bound the size of the
candidate neighbor set, and a scheme SHOULD be applied to add and/or
evict neighbors from the candidate neighbor set as necessary so as not
to exceed the bounds.

As candidate parents are identified, they may subsequently be promoted
to DAG parents by following the rules of DAG Discovery as described
below. When a node adds another node to its set of candidate parents,
the node becomes attached to the DAG through the parent node.

In the DAG Discovery implementation, the most preferred parent should
be used to restrict which other nodes may become DAG parents. All nodes
in the DAG Parent set should be of a depth less than or equal to the
most preferred DAG parent.

5.2.2. RA-DIO Transmission TOC

Each node maintains a timer that governs when to multicast RAs. This
timer is implemented as a trickle timer operating over a variable
interval. Trickle timers are further detailed in Section 5.2.3 (Trickle
Timer for RA Transmission). The governing parameters for the timer
should be configured consistently across the DAG, and are provided by
the DAG root in the DIO. In addition to periodic RAs, each LLN node
will respond to Router Solicitation messages according to [RFC4861
(Narten, T., Nordmark, E., Simpson, W., and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” September 2007.).

*When a node detects an inconsistency, it may reset the interval
of the trickle timer to a minimum value, causing RAs to be
emitted more frequently as part of a strategy to quickly correct
the inconsistency. Such inconsistencies may be, for example, an
update to a key parameter (e.g. sequence number) in the DIO or a
point-to-point loop detected when a node located inwards along
the DAG forwards traffic intended for the default destination.
Inconsistencies are further detailed in Section 5.2.3.2
(Determination of Inconsistency).

*When a node enters a mode of consistent operation within a DAG,
it may begin to open up the interval of the trickle timer towards



a maximum value, causing RAs to be emitted less frequently, thus
reducing network maintenance overhead and saving energy
consumption (which is of utmost importance for battery-operated
nodes).

*When a node is initialized, it may choose to remain silent and
not multicast any RAs until it has encountered and joined a DAG
(perhaps initially probing for a nearby DAG with an RS).
Alternately, it may choose to root its own floating DAG and begin
multicasting RAs using a default trickle configuration. The
second case may be advantageous if it is desired for independent
nodes to begin aggregating into scattered floating DAGs in the
absence of a grounded node, for example in support of LLN
installation and commissioning.

Note that if multiple DAG roots are participating in the same DAG, i.e.
offering DIOs with the same DAGID, then they must coordinate with each
other to ensure that their DIOs are consistent when they emit RA-DIOs.
In particular the Sequence number must be identical from each DAG root,
regardless of which of the multiple DAG roots issues the DIO, and
changes to the Sequence number should be issued at the same time. The
specific mechanism of this coordination is beyond the scope of this
specification.

5.2.3. Trickle Timer for RA Transmission TOC

RPL treats the construction of a DAG as a consistency problem, and uses
a trickle timer [Levis®©8] (Levis, P., Brewer, E., Culler, D., Gay, D.,
Madden, S., Patel, N., Polastre, J., Shenker, S., Szewczyk, R., and A.
Woo, “The Emergence of a Networking Primitive in Wireless Sensor
Networks,” July 2008.) to control the rate of control broadcasts. The
operation of this timer is in support of the procedures further
discussed in Section 5.3 (DAG Discovery)

For each DAG that a node is part of, the node must maintain a single
trickle timer. The required state contains the following conceptual
items:

I: The current length of the communication interval

T: A timer with a duration set to a random value in the range [I/2,
I]

C: Redundancy Counter
I min: The smallest communication interval in milliseconds. This

value is learned from the DIO as (2ADIOIntervalMin)ms. The
default value is DEFAULT_DIO_INTERVAL_MIN.



I_doublings:

The number of times I_min should be doubled before
maintaining a constant rate, i.e. I_max = I_min * 2AI_doublings.
This value is learned from the DIO as DIOIntervalDoublings. The
default value is DEFAULT_DIO_INTERVAL_DOUBLINGS.

5.2.3.1. Resetting the Trickle Timer TOC

The trickle timer for a DAGID is reset by:

1. Setting I_min and I_doublings to the values learned from the
RA-DIO.

2. Setting C to zero.

3. Setting I to I_min.

4. Setting T to a random value as described above.

5. Restarting the trickle timer to expire after a duration T

When an LLN learns about a DAG through a RA and makes the decision to
join it, it initializes the state of the trickle timer by resetting the
trickle timer and listening. Each time it hears an RA for this DAG, it
increments C.

When the timer fires at time T, the node compares C to the redundancy
constant, DEFAULT_DIO_REDUNDANCY_CONSTANT. If C is less than that
value, the node generates a new RA and broadcasts it. When the
communication interval I expires, the node doubles the interval I so
long as it has previously doubled it fewer then I_doubling times,
resets C, and chooses a new T value.

5.2.3.2. Determination of Inconsistency TOC

The trickle timer is reset whenever an inconsistency is detected within
the DAG, for example:

*The node joins a new DAGID
*The node moves within a DAGID

*The node receives a modified DIO from a DAG parent



*A DAG parent forwards a packet intended for the default route,
indicating an inconsistency and possible loop.

*A metric communicated in the DIO is determined to be
inconsistent, as according to a implementation specific path
metric selection engine.

*The depth of a DAG parent has changed.

5.3. DAG Discovery TOC

DAG Discovery is a form of distance vector protocol for use in LLNs.
DAG Discovery locates the nearest sink and forms a Directed Acyclic
Graph towards that sink, by identifying a set of DAG parents. During
this process DAG Discovery also identifies siblings, which may be used
later to provide additional path diversity towards the DAG root. DAG
Discovery enables nodes to implement different policies for selecting
their DAG parents in the DAG by using implementation specific policy
functions. DAG Discovery specifies a set of rules to be followed by all
implementations in order to ensure interoperation. DAG Discovery also
standardizes the format that is used to advertise the most common
information that is used in order to select DAG parents.

One of these information, the DAG depth, is used by DAG Discovery to
provide loop avoidance even if nodes implement different policies. The
DAG Depth is computed as specified by the Objective Code Point in use
by the DAG, demonstrating the properties described in Section 3.4.1
(DAG Depth and Loop Avoidance). The depth should be computed in such a
way so as to provide a comparable basis with other nodes which may not
use the same metric at all. (The to-be-defined NULL OCP and related
behaviors will clarify this point).

In order to organize and maintain loopless structure, the DAG Discovery
implementation in the nodes MUST obey to the following rules and
definitions:

1. A node that does not have any DAG parents in a DAG is the root
of its own floating DAG. It's depth is 1. A node will end up in
that situation when it looses all of its current feasible
parents, i.e. the set of DAG parents becomes depleted. In that
case, the node SHOULD remember the DAGID and the sequence
counter in the DIO of the lost parents for a period of time
which covers multiple DIO.

2. A LLN Node that is attached to an infrastructure that does not
support DIO, is the DAG root of its own grounded DAG. It's
depth is 1.



3. A router sending a RA without DIO is considered a grounded

infrastructure at depth 0. (For example, a router that is in
communication with an LLN node but not running RPL such as a
backbone router in communication with an LBR)

The DAG root exposes the DAG in the Router Advertisement DAG
Information Option and nodes propagate the DIO outwards along
the DAG with the RAs that they forward over their LLN links.

. A node MAY move at any time, with no delay, within its DAG as
long as such a move does not increase its own DAG depth, as per
the depth calculation indicated by the OCP. If a node is
required to move such that it cannot stay within the DAG
without a depth increase, then it needs to first leave the DAG.
In other words a A node that is already part of a DAG MAY move
or follow a DAG parent at any time and with no delay in order
to be closer, or stay as close, to the DAG root of its current
DAG as it already is. But a node MUST NOT move outwards along
the DAG that it is attached, except in the special case when
choosing to follow the last DAG parent in the set of DAG
parents. RAs received from other routers located higher in the
same DAG may be considered as coming from candidate parents.
RAs received from other routers located at the same depth in
the same DAG may be considered as coming from siblings. Nodes
MUST ignore RAs that are received from other routers located
deeper within the same DAG.

. A node may jump from its current DAG into any different DAG if
it is preferred for reasons of connectivity, configured
preference, free medium time, size, security, bandwidth, DAG
depth, or whatever metrics the LLN cares to use. A node may
jump at any time and to whatever depth it reaches in the new
DAG, but it may have to wait for a DAG Hop timer to elapse in
order to do so. This allows the new higher parts (closer to the
sink) of the DAG to move first, thus allowing stepped DAG
reconfigurations and limiting relative movements. A node SHOULD
NOT join a previous DAG (identified by its DAGID) unless the
sequence number in the DIO has incremented since the node left
that DAG. A newer sequence number indicates that the candidate
parents were not attached behind this node, as they kept
getting subsequent DIOs with new sequence numbers from the same
DAG. In the event that old sequence numbers (two or more behind
the present value) are encountered they are considered stale
and the corresponding parent SHOULD be removed from the set.

If a node has selected a new set of DAG parents but has not
moved yet (because it is waiting for DAG Hop timer to elapse),
the node is unstable and refrains from sending Router
Advertisement - DAG Information Options.



8. If a node receives a Router Advertisement - DAG Information
Option from one of its DAG parents, and if the parent contains
a different DAGID, indicating that the parent has left the DAG,
and if the node can remain in the current DAG through an
alternate DAG parent, then the node should remove the DAG
parent which has joined the new DAG from its DAG parent set and
remain in the original DAG. If the node was the last DAG parent
then the node SHOULD follow that parent.

9. When a node detects or causes a DAG inconsistency, as described
in Section 5.2.3.2 (Determination of Inconsistency), then the
node sends an unsolicited Router Advertisement message to its
one-hop neighbors. The RA contains a DIO that propagates the
new DAG information. Such an event will also cause the trickle
timer governing the periodic RAs to be reset.

10. If a DAG parent increases its depth such that the node depth
would have to change, and if the node does not wish to follow
(e.g. it has alternate options), then the DAG parent should be
evicted from the DAG parent set. If the DAG parent is the last
in the DAG parent set, then the node may chose to follow it.

5.3.1. DAG Selection TOC

The DAG selection is implementation and algorithm dependent. Nodes
SHOULD prefer to join DAGs advertising OCPs compatible with their
implementation specific objectives. In order to limit erratic
movements, and all metrics being equal, nodes SHOULD keep their
previous selection. Also, nodes SHOULD provide a means to filter out a
candidate parent whose availability is detected as fluctuating, at
least when more stable choices are available. Nodes MAY place the
failed candidate parent in a Hold Down mode that ensures that the
candidate parent will not be reused for a given period of time.

The known DAGs are associated with the candidate parents that advertise
them and kept in a list by extending the Default Router List (DRL). DRL
entries are extended to store the information received from the last
DIO. The DRL MAY need to be modified in order to keep track of
membership to multiple DAGs simultaneously. The DRL entries are managed
by states and timers described in the next section.

When connection to a fixed network is not possible or preferable for
security or other reasons, scattered DAGs MAY aggregate as much as
possible into larger DAGs in order to allow connectivity within the
LLN. How to balance these DAGs is implementation dependent, and MAY use
a specific visitor-counter suboption in the DIO.



A node SHOULD verify that bidirectional connectivity and adequate link
quality is available with a candidate neighbor before it considers that
candidate as a DAG parent.

5.3.2. Administrative depth TOC

When the DAG is formed under a common administration, or when a node
performs a certain role within a community, it might be beneficial to
associate a range of acceptable depth with that node. For instance, a
node that has limited battery should be a leaf unless there is no other
choice, and may then augment the depth computation specified by the OCP
in order to expose an exaggerated depth.

5.3.3. DRL entries states and stability TOC

Candidate parents in the DRL may or may not be usable for forwarding
traffic inward along the DAG toward the root depending on runtime
conditions. The following states are defined:

Current This candidate parent is in the set of DAG parents and may
be used for forwarding traffic inward along the DAG.

Held-Up This parent can not be used until the DAG hop timer
elapses.

Held-Down This candidate parent can not be used till hold down
timer elapses. At the end of the hold-down period, the candidate
is removed from the DRL, and may be reinserted if it appears

again with a RA.

Collision This candidate parent can not be used till its next RA.

5.3.3.1. Held-Up T0C

This state is managed by the DAG Hop timer, it serves 2 purposes:

Delay the reattachment of a sub-DAG that has been forced to detach.
This is not as safe as the use of the sequence, but still covers
that when a sub-DAG has detached, the Router Advertisement - DAG
Information Option that is initiated by the new DAG root has a



chance to spread outward along the sub-DAG so that two different
DAGs have formed.

Limit Router Advertisement - DAG Information Option storms when two
DAGs collide/merge. The idea is that between the nodes from DAG A
that decide to move to DAG B, those that see the highest place
(closer to the DAG root) in DAG B will move first and advertise
their new locations before other nodes from DAG A actually move.

A new DAG is discovered upon a router advertisement message with or
without a Router Advertisement - DAG Information Option. The node joins
the DAG by selecting the source of the RA message as a DAG parent (and
possible default gateway) and propagating the DIO accordingly.

When a new DAG is discovered, the candidate parent that advertises the
new DAG is placed in a held up state for the duration of a DAG Hop
timer. If the resulting new set of DAG parents is more preferable than
the current one, or if the node is intending to maintain a membership
in the new DAG in addition to its current DAG, the node expects to jump
and becomes unstable.

A node that is unstable may discover other candidate parents from the
same new DAG during the instability phase. It needs to start a new DAG
Hop timer for all these. The first timer that elapses for a given new
DAG clears them all for that DAG, allowing the node to jump to the
highest position available in the new DAG.

The duration of the DAG Hop timer depends on the DAG Delay of the new
DAG and on the depth of candidate parent that triggers it: (candidates
depth + random) * candidate's DAG_delay (where 0 <= random < 1). It is
randomized in order to limit collisions and synchronizations.

5.3.3.2. Held-Down TOC

When a neighboring node is 'removed' from the Default Router List, it
is actually held down for a hold down timer period, in order to prevent
flapping. This happens when a node disappears (upon expiration timer).
An node that is held down is not considered for the purpose of
forwarding traffic inward along the DAG toward the root. When the hold
down timer elapses, the node is removed from the DRL.

5.3.3.3. Collision TOC

A race condition occurs if 2 nodes send RA-DIO at the same time and
then attempt to join each other. This might happen, for example,
between nodes which act as DAG root of their own DAGs. In order to
detect the situation, LLN Nodes time stamp the sending of RA-DIO. Any



RA-DIO received within a short link-layer-dependent period introduces a
risk. To resolve the collision, a 32bits extended preference is
constructed from the DIO by concatenating the NodePreference with the
BootTimeRandom.

A node that decides to add a candidate to its DAG parents will do so
between (candidate depth) and (candidate depth + 1) times the candidate
DAG Delay. But since a node is unstable as soon as it receives the RA-
DIO from the desired candidate, it will restrain from sending a RA-DIO
between the time it receives the RA and the time it actually jumps. So
the crossing of RA may only happen during the propagation time between
the candidate and the node, plus some internal queuing and processing
time within each machine. It is expected that one DAG delay normally
covers that interval, but ultimately it is up to the implementation and
the configuration of the candidate parent to define the duration of
risk window.

There is risk of a collision when a node receives an RA, for another
candidate that is more preferable than the current candidate, within
the risk window. In the face of a potential collision, the node with
lowest extended preference processes the RA-DIO normally, while the
router with the highest extended preference places the other in
collision state, does not start the DAG hop timer, and does not become
instable. It is expected that next RAs between the two will not cross
anyway .

5.3.3.4. Instability TOC

A node is instable when it is prepared to shortly replace a set of DAG
parents in order to jump to a different DAGID. This happens typically
when the node has selected a more preferred candidate parent in a
different DAG and has to wait for the DAG hop timer to elapse before
adjusting the DAG parent set. Instability may also occur when the
entire current DAG parent set is lost and the next best candidates are
still held up. Instability is resolved when the DAG hop timer of all
the candidate(s) causing instability elapse. Such candidates then
change state to Current or Held- Down.

Instability is transient (in the order of DAG hop timers). When a node
is unstable, it MUST NOT send RAs with DIO. This avoids loops when node
A decides to attach to node B and node B decides to attach to node A.
Unless RAs cross (see Collision section), a node receives DIO from
stable candidate parents, which do not plan to attach to the node, so
the node can safely attach to them.

T0C



5.4. Establishing Routing State Outward Along the DAG

The Destination Advertisement mechanism supports the dissemination of
routing state required to support traffic flows outward along the DAG,
from the DAG root toward nodes.

Note that some aspects of the Destination Advertisement mechanism are
still under investigation.

As a result of Destination Advertisement operation:

*DAG Discovery establishes a DAG oriented toward a DAG root using
extended Neighbor Discovery RS/RA flows, along which inward
routes toward the DAG root are set up.

*Destination Advertisement extends Neighbor Discovery in order to
establish outward routes along the DAG, along paths containing DA
parents. Such paths consist of:

-Hop-By-Hop routing state within islands of “stateful' nodes.
-Source Routing “bridges' across nodes who do not retain state.

Destinations disseminated with the Destination Advertisement mechanism
may be prefixes, individual hosts, or multicast listeners. The
mechanism supports nodes of varying capabilities as follows:

*When nodes are capable of storing routing state, they may inspect
Destination Advertisements and learn hop-by-hop routing state
toward destinations. In this process they may also learn
necessary piecewise source routes to traverse regions of the LLN
that do not maintain routing state. They may perform route
aggregation on known destinations before emitting Destination
Advertisements.

*When nodes are incapable of storing routing state, they may
forward Destination Advertisements, recording the reverse route
as the go in order to support the construction of piecewise
source routes.

Nodes that are capable of storing routing state, and finally the DAG
roots, are able to learn which destinations are contained in the sub-
DAG below the node, and via which next-hop neighbors. The dissemination
and installation of this routing state into nodes allows for Hop-By-Hop
routing from the DAG root outwards along the DAG. The mechanism is
further enhance by supporting the construction of source routes across
stateless “gaps' in the DAG, where nodes are incapable of storing
additional routing state. An adaptation of this mechanism allows for
the implementation of loose-source or landmark (waypoint) routing.

The design choice behind this is not to synchronize the parent and
children databases along the DAG, but instead to update them regularly
to cover from the loss of packets. The rationale for that choice is



time variations in connectivity across unreliable links. If the
topology can be expected to change frequently, synchronization might be
an excessive goal in terms of exchanges and protocol complexity. The
approach used here results in a simple protocol with no real peering.
The Destination Advertisement mechanism hence provides for periodic
updates of the derivative routing state, as cued by occasional RAs and
other mechanisms.

5.4.1. Destination Advertisement Message Formats TOC

5.4.1.1. DAO Option T0C

RPL extends Neighbor Discovery [RFC4861] (Narten, T., Nordmark, E.,
Simpson, W., and H. Soliman, “Neighbor Discovery for IP version 6
(IPv6),"” September 2007.) and RFC4191 [RFC4191] (Draves, R. and D.
Thaler, “Default Router Preferences and More-Specific Routes,”
November 2005.) to allow a node to include a Destination Advertisement
option, which includes prefix information, in the Neighbor
Advertisements (NAs). A prefix option is normally present in Router
Advertisements (RAs) only, but the NA is augmented with this option in
order to propagate destination information inwards along the DAG. The
option is named the Destination Advertisement Option (DAO), and an NA
containing this option may be referred to as a Destination
Advertisement. The RPL use of Destination Advertisements allows the
nodes in the DAG to build up routing state for nodes contained in the
sub-DAG in support of traffic flowing outward along the DAG.
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Figure 10: Destination Advertisement Option (DAO)

Type: 8-bit unsigned identifying the Destination Advertisement
option. The value is to be assigned by the IANA.

Length: 8-bit unsigned integer. The length of the option (including
the Type and Length fields) in units of 8 octets.

Prefix Length: Number of valid leading bits in the IPv6 Prefix.

RRCount: 8-bit unsigned integer. This counter is used to count the
number of entries in the Reverse Route Stack. A value of "0'
indicates that no Reverse Route Stack is present.

DAO Lifetime: 32-bit unsigned integer. The length of time in
seconds (relative to the time the packet is sent) that the prefix
is valid for route determination. A value of all one bits
(OXFFFFFFFF) represents infinity. A value of all zero bits
(Ox000EOOE0) indicates a loss of reachability.

Route Tag: 32-bit unsigned integer. The Route Tag may be used to
give a priority to prefixes that should be stored. This may be
useful in cases where intermediate nodes are capable of storing a



limited amount of routing state. The further specification of
this field and its use is under investigation.

DAO Depth: Set to © by the node that owns the prefix and first
issues the DAO. Incremented by all LLN nodes that propagate the
DAO.

Reserved: 8-bit unused field. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.

DAO Sequence: Incremented by the node that owns the prefix for each
new DAO for that prefix.

Prefix: Variable-length field containing an IPv6 address or a
prefix of an IPv6 address. The Prefix Length field contains the
number of valid leading bits in the prefix. The bits in the
prefix after the prefix length (if any) are reserved and MUST be
initialized to zero by the sender and ignored by the receiver.

Reverse Route Stack: Variable-length field containing a sequence of
RRCount (possibly compressed) IPv6 addresses. A node who adds on
to the Reverse Route Stack will append to the list and increment
the RRCount.

5.4.2. Destination Advertisement Operation TOC

5.4.2.1. Overview TOC

Note that some aspects of the Destination Advertisement mechanism are
still under investigation

According to implementation specific policy, a subset or all of the
feasible parents in the DAG may be selected to receive prefix
information from the Destination Advertisement mechanism. This subset
of DAG parents shall be designated the set of DA parents.

RPL takes advantage of the DAG structure and allows a node capable of
storing sufficient routing state to autonomously discover the
destinations below itself through the operation of the Destination
Advertisement mechanism. This allows participating nodes to build up
routing state to support traffic flowing outwards along the DAG.
Destination Advertisement messages convey the necessary information to
learn the destinations.



As Destination Advertisements for particular destinations move inwards
along the DAG, a sequence counter is used to guarantee their freshness.
The sequence counter is incremented by the source of the DAO (the node
that owns the prefix), each time it issues a DAO for its prefix. Nodes
who receive the DAO and, if scope allows, will be forwarding a DAO for
the unmodified destination inwards along the DAG, will leave the
sequence number unchanged. Intermediate nodes will check the sequence
counter before processing a DAO, and if the DAO is unchanged (the
sequence counter has not changed), then the DAO will be discarded
without additional processing. Further, if the DAO appears to be out of
synch (the sequence counter is 2 or more behind the present value) then
the DAO state is considered to be stale and may be purged, and the DAO
is discarded. A depth is also added for tracking purposes; the depth is
incremented at each hop as the DAO is propagated up the DAG. Nodes who
are storing routing state may use the depth to determine which possible
next-hops for the destination are more optimal.

If Destination Advertisements are activated in the DIO as indicated by
the "'D' bit, the node sends unicast Destination Advertisements to its
DA parents, and only accepts unicast Destination Advertisements from
any nodes BUT those contained in the DA parent subset.

Every NA to a DA parent MAY contain one or more DAOS. Receiving a DAG
Discovery RA-DIO with the D' Destination Advertisement bit set from a
DAG parent stimulates the sending of a delayed Destination
Advertisement back, with the collection of all known prefixes (that is
the prefixes learned via Destination Advertisements for nodes lower in
the DAG, and any connected prefixes). A Destination Advertisement is
also sent to a DAG parent once it has been added to the DA parent set
after a movement, or when the list of advertised prefixes has changed.
Destination Advertisements may also be scheduled for sending when the
PathDigest of the DIO has changed, indicating that some aspect of the
inwards paths along the DAG has been modified.

Destination Advertisements may advertise positive (prefix is present)
or negative (removed) DAOs. A no-DAO is stimulated by the disappearance
of a prefix below. This is discovered by timing out after a request (a
RA-DIO) or by receiving a no-DAO. A no-DAO is a conveyed as a DAO with
a DAO Lifetime of 0.

A node who is capable of recording the state information conveyed in a
DAO will do so upon receiving and processing the DAO, thus building up
routing state concerning destinations below it in the DAG. If a node
capable of recording state information receives a DAO containing a
Reverse Route Stack, then the node knows that the DAO has traversed one
or more nodes that did not retain any routing state as it traversed the
path from the DAO source to the node. The node may then extract the
Reverse Route Stack and retain the included state in order to specify
Source Routing instructions along the return path towards the
destination. The node MUST set the RRCount back to zero and clear the
Reverse Route Stack prior to passing the DAO information on.

A node who is unable to record the state information conveyed in the
DAO will append the next-hop address to the Reverse Route Stack,



increment the RRCount, and then pass the Destination Advertisement on
without recording any additional state. In this way the Reverse Route
Stack will come to contain a vector of next hops that must be traversed
along the reverse path that the DAO has traveled. The vector will be
ordered such that the node closest to the destination will appear first
in the list. In such cases the node may choose to convey the
Destination Advertisement to one or more DAG Parents in order of
preference as guided by an implementation specific policy.

In hybrid cases, some nodes along the path a Destination Advertisement
follows inward along the DAG may store state and some may not. The
Destination Advertisement mechanism allows for the provisioning of
routing state such that when a packet is traversing outwards along the
DAG, some nodes may be able to directly forward to the next hop, and
other nodes may be able to specify a piecewise source route in order to
bridge spans of stateless nodes within the path on the way to the
desired destination.

In the degenerate case, no node is able to store any routing state as
Destination Advertisements pass by, and the DAG sink ends up with DAOs
that contain a completely specified route back to the originating node
in the form of the inverted Reverse Route Stack.

Information learned through Destination Advertisements can be
redistributed in a routing protocol, MANET or IGP. But the MANET or the
IGP SHOULD NOT be redistributed into Destination Advertisements. This
creates a hierarchy of routing protocols where DA routes stand
somewhere between connected and IGP routes.

The Destination Advertisement mechanism requires stateful nodes to
maintain lists of known prefixes. A prefix entry contains the following
abstract information:

*A reference to the ND entry that was created for the advertising
neighbor.

*The IPv6 address and interface for the advertising neighbor.

*The logical equivalent of the full Destination Advertisement
information (including the prefixes, depth, and Reverse Route
Stack, if any).

*A 'reported' Boolean to keep track whether this prefix was
reported already, and to which of the DA parents.

*A counter of retries to count how many RA-DIOs were sent on the
interface to the advertising neighbor without reachability
confirmation for the prefix.

Note that nodes may receive multiple information from different

neighbors for a specific destination, as different paths through the
DAG may be propagating information inwards along the DAG for the same
destination. A node who is recording routing state will keep track of



the information from each neighbor independently, and when it comes
time to propagate the DAO for a particular prefix to the DA parents,
then the DAO information will be selected from among the advertising
neighbors who offer the least depth to the destination.

The Destination Advertisement mechanism stores the prefix entries in
one of 3 abstract lists; the Connected, the Reachable and the
Unreachable lists.

The Connected list corresponds to the prefixes owned and managed by the
local node.

The Reachable list contains prefixes for which the node keeps receiving
DAOs, and for those prefixes which have not yet timed out.

The Unreachable list keeps track of prefixes which are no longer valid
and in the process of being destroyed, in order to send no-DAOs to the
DA parents.

The Destination Advertisement mechanism requires 2 timers; the DelayNA
timer and the DestroyTimer.

*The DelayNA timer is armed upon a stimulation to send a
Destination Advertisement (such as a DIO from a DA parent). When
the timer is armed, all entries in the Reachable list as well as
all entries for Connected list are set to not reported yet for
that particular DA parent.

*The DelayNA timer has a duration that is DEF_NA_LATENCY divided
by a multiple of the DAG depth. The intention is that nodes
located deeper in the DAG should have a shorter DelayNA timer,
allowing DAOs a chance to be reported from deeper in the DAG and
potentially aggregated by sub-DAGs before propagating further
inwards.

*The DestroyTimer is armed when at least one entry has exhausted
its retries, which means that a number of RA-DIO were sent toward
the reporting neighbor but that the entry was not confirmed with
a DAO. When the destroy timer elapses, for all exhausted entries,
the associated route is removed, and the entry is scheduled to be
destroyed.

*The Destroy timer has a duration of min (MAX_DESTROY_INTERVAL,
RA_INTERVAL).

5.4.2.2. Unicast Destination Advertisement messages from child TOC
to parent

When sending a Destination Advertisement to a DA parent, a LLN Node
includes the DAOs about not already reported prefix entries in the
Reachable and Connected lists, as well as no-DAOs for all the entries



in the Unreachable list. Depending on its policy and ability to retain
routing state, the receiving node SHOULD keep a record of the reported
DAO. If the DAO offers the best route to the prefix as determined by
policy and other prefix records, the node SHOULD install a route to the
prefix in the DAO via the 1link local address of the reporting neighbor
and it SHOULD further propagate the information, either as a DAO or by
means of redistribution into a routing protocol.

The RA-DIO from the DAG root is used to synchronize the whole DAG,
including the periodic reporting of Destination Advertisements back up
the DAG. Its period is expected to vary, depending on the configuration
of the trickle timer that governs the RAs.

When a node receives a RA-DIO over an LLN interface from a DA parent,
the DelayNA is armed to force a full update.

When the node broadcasts a RA-DIO on an LLN interface, for all entries
on that interface:

*If the entry is CONFIRMED, it goes PENDING with the retry count
set to 0.

*If the entry is PENDING, the retry count is incremented. If it
reaches a maximum threshold, the entry goes ELAPSED If at least
one entry is ELAPSED at the end of the process: if the Destroy
timer is not running then it is armed with a jitter.

Since the DelayNA has a duration that decreases with the depth, it is
expected to receive all DAOs from all children before the timer elapses
and the full update is sent to the DA parents.

Once the Destroy timer is elapsed, the prefix entry is scheduled to be
destroyed and moved to the Unreachable list if there are any DA parents
that need to be informed of the change in status for the prefix,
otherwise the prefix entry is cleaned up right away. The prefix entry
is removed from the Unreachable list when no more DA parents need to be
informed. This condition may be satisfied when a no-DAO is sent to all
current DA parents indicating the loss of the prefix, and noting that
in some cases parents may have been removed from the set of DA parents.

5.4.2.3. Other events TOC

Finally, the Destination Advertisement mechanism responds to a series
of events, such as:

*Destination Advertisement operation stopped: All entries in the
abstract lists are freed. All the routes learned from DAOs are
destroyed.



*Interface going down: for all entries in the Reachable 1list on
that interface, the associated route is removed, and the entry is
scheduled to be destroyed.

*Loss of routing adjacency: When the routing adjacency for a
neighbor is lost, as per the procedures described in Section 5.5
(Maintenance of Routing Adjacency), and if the associated entries
are in the Reachable list, the associated routes are removed, and
the entries are scheduled to be destroyed.

*Changes to DA parent set: All entries in the Reachable list are
set to not 'reported' and DelayNA is armed.

5.4.2.4. Aggregation of prefixes by a node _TOC _

There may be number of cases where a aggregation may be shared within a
platoon of nodes. In such a case, it is possible to use aggregation
techniques with Destination Advertisements and improve scalability. For
example, consider a platoon formed by firefighters and their commander.
Specifically, the commander may be configured as the Destination
Advertisement aggregator for a group prefix. At run time, the commander
absorbs the individual DAO information received from the platoon
members down its sub-DAG and only reports the aggregation up the DAG.
This works fine when the whole platoon is attached within the
commander's sub-DAG.

Other cases might occur for which additional support is required:

1. The commander is attached within the sub-DAG of one of its
platoon members.

2. A platoon member is somewhere else within the DAG.
3. A platoon member is somewhere else in the LLN.

In all those cases, a node situated above the commander in the DAG but
not above the platoon member will see the advertisements for the
aggregation owned by the commander but not that of the individual
platoon member prefix. So it will route all the packets for the platoon
member towards the commander, but the commander will have no route to
the individual platoon member and will fail to forward.

Additional protocols may be applied beyond the scope of this
specification to dynamically elect/provision a commander and platoon in
order to provide route summarization for a sub-DAG.



5.4.2.5. Default Vvalues TOC

DEF_NA_LATENCY = To Be Determined
MAX_DESTROY_INTERVAL = To Be Determined

5.5. Maintenance of Routing Adjacency TOC

The selection of successors, along the default paths inward along the
DAG, or along the paths learned from Destination Advertisements outward
along the DAG, leads to the formation of routing adjacencies that
require maintenance.

In IGPs such as OSPF [RFC4915] (Psenak, P., Mirtorabi, S., Roy, A.,
Nguyen, L., and P. Pillay-Esnault, “Multi-Topology (MT) Routing in
OSPF,"” June 2007.) or IS-IS [RFC5120] (Przygienda, T., Shen, N., and N.

Sheth, “M-ISIS: Multi Topology (MT) Routing in Intermediate System to
Intermediate Systems (IS-ISs),” February 2008.), the maintenance of a
routing adjacency involves the use of Keepalive mechanisms (Hellos) or
other protocols such as BFD ([I-D.ietf-bfd-base] (Katz, D. and D. Ward,

“Bidirectional Forwarding Detection,” February 2009.)) and MANET
Neighborhood Discovery Protocol (NHDP [I-D.ietf-manet-nhdp] (Clausen,
T., Dearlove, C., and J. Dean, “MANET Neighborhood Discovery Protocol
(NHDP),” July 2009.)). Unfortunately, such an approach is not desirable
in constrained environments such as LLN and would lead to excessive
control traffic in light of the data traffic with a negative impact on
both 1link loads and nodes resources. Overhead to maintain the routing
adjacency should be minimized. Furthermore, it is not always possible
to rely on the link or transport layer to provide information of the
associated link state. The network layer needs to fall back on its own
mechanism.

Thus RPL makes use of a different approach consisting of probing the
neighbor using a Neighbor Solicitation message (see [RFC4861] (Narten,
T., Nordmark, E., Simpson, W., and H. Soliman, “Neighbor Discovery for
IP version 6 (IPv6),” September 2007.)). The reception of a Neighbor
Advertisement (NA) message with the "Solicited Flag" set is used to
verify the validity of the routing adjacency. Such mechanism MAY be
used prior to sending a data packet. This allows for detecting whether
or not the routing adjacency is still valid, and should it not be the
case, select another feasible successor to forward the packet.

5.6. Expectations of Link Layer Behavior TOC

This specification does not rely on any particular features of a
specific link layer technologies. It is anticipated that an implementer



should be able to operate RPL over a variety of different low power
wireless or PLC (Power Line Communication) link layer technologies.
Implementers may find REC 3819 (Karn, P., Bormann, C., Fairhurst, G.,

Grossman, D., Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and

L. Wood, “Advice for Internet Subnetwork Designers,” July 2004.)
[RFC3819] a useful reference when designing a link layer interface
between RPL and a particular link layer technology.

6. Protocol Extensions _ToC
7. Manageability Considerations _ToC
8. Security Considerations _TOC _
9. IANA Considerations _TOC _
9.1. DAG Information Option _ToC

IANA is requested to allocate a new Neighbor Discovery Option Type from

the IPv6 Neighbor Discovery Option Formats Registry in order to
represent the DAG Information Option as described in Section 5.1 (DAG
Information Option)

9.2. Destination Advertisement Option TOC

IANA is requested to allocate a new Neighbor Discovery Option Type from

the IPv6 Neighbor Discovery Option Formats Registry in order to
represent the Destination Advertisement Option as described in
Section 5.4.1.1 (DAO Option)
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Appendix B. Examples

Consider the example LLN physical topology in Figure 11 (Example LLN
Topology). In this example the links depicted are all usable L2 links.
Suppose that all links are equally usable, and that the implementation
specific policy function is simply to minimize hops. This LLN physical
topology then yields the DAG depicted in Figure 12 (Example DAG), where
the links depicted are the edges toward DAG parents. This topology
includes one DAG, rooted by an LBR node (LBR) at depth 1. The LBR node
will issue RAs containing DIO, as governed by a trickle timer. Nodes
(11), (12), (13), have selected (LBR) as their only parent, attached to
the DAG at depth 2, and periodically advertise RA-DIO multicasts. Node
(22) has selected (11) and (12) in its DAG parent set, and advertises
itself at depth 3. Node (22) thus has a set of DAG parents {(11), (12)}
and siblings {((21), (23)}.

(LBR)
/ 1\
R | ————
/ | \
(11)------ (12)------ (13)
I\ I\ I\
[REEE T RPN ISR
| \| \ \
(21)------ (22)------ (23) (24)
| /| /| |
| L e |
|/ W | |
(31)------ (32)------ (33)------ (34)
| /1 \ I\ I\
TR IR [ R
|/ | \ \ \
e (41) (42) (43)------ (44)------ (45)
/ / /1 \ I\
R —— - ——— - | ——— | D,
/ / / | \| \
(51)------ (52)------ (53)------ (54)------ (55)------ (56)

Note that the links depicted represent the usable L2 connectivity
available in the LLN. For example, Node (31) can communicate directly
with its neighbors, Nodes (21), (22), (32), and (41). Node (31) cannot
communicate directly with any other nodes, e.g. (33), (23), (42). In
this example these links offer bidirectional communication, and “bad'
links are not depicted.



Figure 11: Example LLN Topology
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Note that the links depicted represent directed links in the DAG
overlaid on top of the physical topology depicted in Figure 11 (Example
LLN Topology). As such, the depicted edges represent the relationship
between nodes and their DAG parents, wherein all depicted edges are
directed and oriented “up' on the page toward the DAG root (LBR). The
DAG provides the default routes within the LLN, and serves as the
foundation on which RPL builds further routing structure, e.g. through

the Destination Advertisement mechanism.

Figure 12: Example DAG
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B.1. Moving Down a DAG

Consider node (56) in the example of Figure 11 (Example LLN Topology).
In the unmodified example, node (56) is at depth 6 with one DAG parent,
{(43)}, and one sibling (55). Suppose, for example, that node (56)
wished to expand its DAG parent set to contain node (55), as {(43),
(55)}. Such a change would require node (56) to detach from the DAG, to
defer reattachment until a loop avoidance algorithm has completed, and
to then reattach to the DAG with {(43), (55)} as it's DAG parents. When
node (56) detaches from the DAG, it is able to act as the root of its
own floating DAG and establish its frozen sub-DAG (which is empty).
Node (56) can then observe that Node (55) is still attached to the
original DAG, that its sequence number is able to increment, and deduce
that Node (55) is safely not behind Node (56). There is then little
change for a loop, and Node (56) may safely reattach to the DAG, with
parents {(43), (55)}. At reattachment time, node (56) would present
itself with a depth deeper than that of its deepest DAG parent (node
(55) at depth 6), depth 7.

B.2. Link Removed TOC

Consider the example of Figure 11 (Example LLN Topology) when link
(13)-(24) goes down.

*Node (24) will detach and become the root of its own floating DAG

*Node (34) will learn that its DAG parent is now part of its own
floating DAG, will consider that it can remain a part of the DAG
rooted at node (LBR) via node (33), and will initiate procedures
to detach from DAG (LBR) in order to re-attach at a lower depth.

*Node (45) will similarly make preparations to remain attached to
the DAG rooted at (LBR) by detaching from Node (34) and re-
attaching at a lower depth to node (44).

*Node (34) will complete re-attachment to Node (33) first, since
it is able to attach closer to the root of the DAG.

*Node (45) will cancel plans to detach/reattach, keep node (34) as
a DAG parent, and update its dependent depth accordingly.

*Node (45) may now anyway add node (44) to its set of DAG parents,
as such an addition does not require any modification to its own
depth.



*Node (24) will observe that it may reattach to the DAG rooted at
node (LBR) by selecting node (34) as its DAG parent, thus
reversing the relationship that existed in the initial state.

B.3. Link Added TOC

Consider the example of Figure 11 (Example LLN Topology) when link
(12)-(42) appears.

*Node (42) will see a chance to get closer to the LBR by adding
(12) to its set of DAG parents, {(32), (12)}

*Node (42) may be content to leave its advertised depth at 5,
reflecting a depth deeper than its deepest parent (32).

*Node (42) may now choose to remain where it is, with two parents
{(12), (32)}. Should there be a reason for Node (42) to evict
Node (32) from its set of DAG parents, Node (42) would then
advertise itself at depth 2, thus moving up the DAG. In this
case, Node (53), (54), and (55) may similarly follow and
advertise themselves at depth 3.

B.4. Node Removed TOC

Consider the example of Figure 11 (Example LLN Topology) when node (41)
disappears.

*Node (51) and (52) will now have empty DAG parent sets and be
detached from the DAG rooted by (LBR), advertising themselves as
the root of their own floating DAGS.

*Node (52) would observe a chance to reattach to the DAG rooted at
(LBR) by adding Node (53) to its set of DAG parents, after an
appropriate delay to avoid creating loops. Node (52) will then
advertise itself in the DAG rooted at (LBR) at depth 7.

*Node (51) will then be able to reattach to the DAG rooted at
(LBR) by adding Node (52) to its set of DAG parents and
advertising itself at depth 8.



B.5. New LBR Added TOC

Consider the example of Figure 11 (Example LLN Topology) when a new
LBR, (LBR2) appears, with connectivity (LBR2)-(52), (LBR2)-(53).

*Nodes (52) and Node (53) will see a chance to join a new DAG
rooted at (LBR2) with a depth of 2. Node (52) and (53) may take
this chance immediately, as there is no risk of forming loops
when joining a DAG that has never before been encountered. Note
that the nodes may choose to join the new DAG rooted at (LBR2) if
and only if (LBR2) offers more optimum properties in line with
the implementation specific local policy.

*Nodes (52) and (53) begin to send RA-DIO advertising themselves
at depth 2 in the DAGID (LBR2).

*Nodes (51), (41), (42), and (54) may then choose to join the new
DAG at depth 3, possibly to get closer to the DAG root. Note that
in a more advanced case, these nodes also remain members of the
DAG rooted at (LBR), for example in support of different
constraints for different types of traffic.

*Node (55) may then join the new DAG at depth 4, possibly to get
closer to the DAG root.

*The remaining nodes may choose to remain in their current

positions within the DAG rooted at node (LBR), since there is no
clear advantage to be gained by moving to DAG (LBR2).

B.6. Destination Advertisement TOC

Consider the example DAG depicted in Figure 12 (Example DAG). Suppose
that Nodes (22) and (32) are unable to record routing state. Suppose
that Node (42) is able to perform prefix aggregation on behalf of Nodes
(53), (54), and (55).

*Node (53) would send a DAO to Node (42), indicating the
availability of destination (53).

*Node (54) and Node (55) would similarly send DAOs to Node (42)
indicating their own destinations.

*Node (42) would collect and store the routing state for
destinations (53), (54), and (55).



*In this example, Node (42) may then be capable of representing
destinations (42), (53), (54), and (55) in the aggregation (42').

*Node (42) sends a DAO advertising destination (42') to Node 32.

*Node (32) does not want to maintain any routing state, so it adds
onto to the Reverse Route Stack in the DAO and passes it on to
Node (22) as (42'):[(42)]. It may send a separate DAO to indicate
destination (32).

*Node (22) does not want to maintain any routing state, so it adds
on to the Reverse Route Stack in the DAO and passes it on to Node
(12) as (42'):[(42), (32)]. It also relays the DAO containing
destination (32) to Node 12 as (32):[(32)], and finally may send
a DAO for itself indicating destination (22).

*Node (12) is capable to maintain routing state again, and
receives the DAOs from Node (22). Node (12) then learns:

-Destination (22) is available via Node (22)

-Destination (32) is available via Node (22) and the piecewise
source route to (32)

-Destination (42') is available via Node (22) and the piecewise
source route to (32), (42').

*Node (12) sends DAOs to (LBR), allowing (LBR) to learn routes to
the destinations (12), (22), (32), and (42'). (42), (53), (54),
and (55) are available via the aggregation (42'). It is not
necessary for Node (12) to propagate the piecewise source routes
to (LBR).

Appendix C. Additional Examples TOC

Consider the expanded example LLN physical topology in Figure 13
(Expanded LLN Topology). In this example an additional LBR is added.
Suppose that all nodes are configured with an implementation specific
policy function that aims to minimize the number of hops, and that both
LBRs are configured to root different DAGIDs. We may now walk through
the formation of the two DAGs.
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Figure 13: Expanded LLN Topology
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Figure 14: DAG Construction Step 1
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Figure 15: DAG Construction Step 2

(34)

(44)

(56)

(LBR2)
/ \
\
I
(15)
/|
-0
I
(25)
(45)



(LBR)
/ |\
DU

/ |
(11) (12)
I\ I\
e

I \
(21) (22)

I /|

e B

|/ |/
(31) (32)
(41) (42)
(51) (52) (53) (54)

\

(13)

(23)

(33)

(43)

(55)

Figure 16: DAG Construction Step 3
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Figure 17: DAG Construction Step 4
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Figure 18: DAG Construction Step 5
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