
ROLL T. Winter, Ed.

Internet-Draft P. Thubert, Ed.

Intended status: Standards Track Cisco Systems

Expires: September 15, 2011 A. Brandt

Sigma Designs

T. Clausen

LIX, Ecole Polytechnique

J. Hui

Arch Rock Corporation

R. Kelsey

Ember Corporation

P. Levis

Stanford University

K. Pister

Dust Networks

R. Struik

JP. Vasseur

Cisco Systems

March 14, 2011

RPL: IPv6 Routing Protocol for Low power and Lossy Networks

draft-ietf-roll-rpl-19

Abstract

Low power and Lossy Networks (LLNs) are a class of network in which

both the routers and their interconnect are constrained. LLN routers

typically operate with constraints on processing power, memory, and

energy (battery power). Their interconnects are characterized by high

loss rates, low data rates, and instability. LLNs are comprised of

anything from a few dozen and up to thousands of routers. Supported

traffic flows include point-to-point (between devices inside the LLN),

point-to-multipoint (from a central control point to a subset of

devices inside the LLN), and multipoint-to-point (from devices inside

the LLN towards a central control point). This document specifies the

IPv6 Routing Protocol for LLNs (RPL), which provides a mechanism

whereby multipoint-to-point traffic from devices inside the LLN towards

a central control point, as well as point-to-multipoint traffic from

the central control point to the devices inside the LLN, is supported.

Support for point-to-point traffic is also available.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Design Principles

1.2. Expectations of Link Layer Type

2. Terminology

3. Protocol Overview

3.1. Topology

3.1.1. Constructing Topologies

3.1.2. RPL Identifiers

3.1.3. Instances, DODAGs, and DODAG Versions

3.2. Upward Routes and DODAG Construction

3.2.1. Objective Function (OF)

3.2.2. DODAG Repair

3.2.3. Security

3.2.4. Grounded and Floating DODAGs

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3.2.5. Local DODAGs

3.2.6. Administrative Preference

3.2.7. Datapath Validation and Loop Detection

3.2.8. Distributed Algorithm Operation

3.3. Downward Routes and Destination Advertisement

3.4. Local DODAGs Route Discovery

3.5. Rank Properties

3.5.1. Rank Comparison (DAGRank())

3.5.2. Rank Relationships

3.6. Routing Metrics and Constraints Used By RPL

3.7. Loop Avoidance

3.7.1. Greediness and Instability

3.7.1.1. Example: Greedy Parent Selection and Instability

3.7.2. DODAG Loops

3.7.3. DAO Loops

4. Traffic Flows Supported by RPL

4.1. Multipoint-to-Point Traffic

4.2. Point-to-Multipoint Traffic

4.3. Point-to-Point Traffic

5. RPL Instance

5.1. RPL Instance ID

6. ICMPv6 RPL Control Message

6.1. RPL Security Fields

6.2. DODAG Information Solicitation (DIS)

6.2.1. Format of the DIS Base Object

6.2.2. Secure DIS

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

6.2.3. DIS Options

6.3. DODAG Information Object (DIO)

6.3.1. Format of the DIO Base Object

6.3.2. Secure DIO

6.3.3. DIO Options

6.4. Destination Advertisement Object (DAO)

6.4.1. Format of the DAO Base Object

6.4.2. Secure DAO

6.4.3. DAO Options

6.5. Destination Advertisement Object Acknowledgement (DAO-ACK)

6.5.1. Format of the DAO-ACK Base Object

6.5.2. Secure DAO-ACK

6.5.3. DAO-ACK Options

6.6. Consistency Check (CC)

6.6.1. Format of the CC Base Object

6.6.2. CC Options

6.7. RPL Control Message Options

6.7.1. RPL Control Message Option Generic Format

6.7.2. Pad1

6.7.3. PadN

6.7.4. Metric Container

6.7.5. Route Information

6.7.6. DODAG Configuration

6.7.7. RPL Target

6.7.8. Transit Information

6.7.9. Solicited Information

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

6.7.10. Prefix Information

6.7.11. RPL Target Descriptor

7. Sequence Counters

7.1. Sequence Counter Overview

7.2. Sequence Counter Operation

8. Upward Routes

8.1. DIO Base Rules

8.2. Upward Route Discovery and Maintenance

8.2.1. Neighbors and Parents within a DODAG Version

8.2.2. Neighbors and Parents across DODAG Versions

8.2.2.1. DODAG Version

8.2.2.2. DODAG Roots

8.2.2.3. DODAG Selection

8.2.2.4. Rank and Movement within a DODAG Version

8.2.2.5. Poisoning

8.2.2.6. Detaching

8.2.2.7. Following a Parent

8.2.3. DIO Message Communication

8.2.3.1. DIO Message Processing

8.3. DIO Transmission

8.3.1. Trickle Parameters

8.4. DODAG Selection

8.5. Operation as a Leaf Node

8.6. Administrative Rank

9. Downward Routes

9.1. Destination Advertisement Parents

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

9.2. Downward Route Discovery and Maintenance

9.2.1. Maintenance of Path Sequence

9.2.2. Generation of DAO Messages

9.3. DAO Base Rules

9.4. Structure of DAO Messages

9.5. DAO Transmission Scheduling

9.6. Triggering DAO Messages

9.7. Non-storing Mode

9.8. Storing Mode

9.9. Path Control

9.9.1. Path Control Example

9.10. Multicast Destination Advertisement Messages

10. Security Mechanisms

10.1. Security Overview

10.2. Joining a Secure Network

10.3. Installing Keys

10.4. Consistency Checks

10.5. Counters

10.6. Transmission of Outgoing Packets

10.7. Reception of Incoming Packets

10.7.1. Timestamp Key Checks

10.8. Coverage of Integrity and Confidentiality

10.9. Cryptographic Mode of Operation

10.9.1. CCM Nonce

10.9.2. Signatures

11. Packet Forwarding and Loop Avoidance/Detection

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

11.1. Suggestions for Packet Forwarding

11.2. Loop Avoidance and Detection

11.2.1. Source Node Operation

11.2.2. Router Operation

11.2.2.1. Instance Forwarding

11.2.2.2. DAG Inconsistency Loop Detection

11.2.2.3. DAO Inconsistency Detection and Recovery

12. Multicast Operation

13. Maintenance of Routing Adjacency

14. Guidelines for Objective Functions

14.1. Objective Function Behavior

15. Suggestions for Interoperation with Neighbor Discovery

16. Summary of Requirements for Interoperable Implementations

16.1. Common Requirements

16.2. Operation as a RPL Leaf Node (only)

16.3. Operation as a RPL Router

16.3.1. Support for Upward Routes only

16.3.2. Support for Upward Routes and Downward Routes in Non-

Storing mode

16.3.3. Support for Upward Routes and Downward Routes in Storing

mode

16.3.3.1. Optional support for basic multicast scheme

16.4. Items for Future Specification

17. RPL Constants and Variables

18. Manageability Considerations

18.1. Introduction

18.2. Configuration Management

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

18.2.1. Initialization Mode

18.2.1.1. DIS mode of operation upon boot-up

18.2.2. DIO and DAO Base Message and Options Configuration

18.2.3. Protocol Parameters to be configured on every router in

the LLN

18.2.4. Protocol Parameters to be configured on every non-DODAG-

root router in the LLN

18.2.5. Parameters to be configured on the DODAG root

18.2.6. Configuration of RPL Parameters related to DAO-based

mechanisms

18.2.7. Configuration of RPL Parameters related to Security

mechanisms

18.2.8. Default Values

18.3. Monitoring of RPL Operation

18.3.1. Monitoring a DODAG parameters

18.3.2. Monitoring a DODAG inconsistencies and loop detection

18.4. Monitoring of the RPL data structures

18.4.1. Candidate Neighbor Data Structure

18.4.2. Destination Oriented Directed Acyclic Graph (DAG) Table

18.4.3. Routing Table and DAO Routing Entries

18.5. Fault Management

18.6. Policy

18.7. Fault Isolation

18.8. Impact on Other Protocols

18.9. Performance Management

18.10. Diagnostics

19. Security Considerations

19.1. Overview

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

20. IANA Considerations

20.1. RPL Control Message

20.2. New Registry for RPL Control Codes

20.3. New Registry for the Mode of Operation (MOP)

20.4. RPL Control Message Option

20.5. Objective Code Point (OCP) Registry

20.6. New Registry for the Security Section Algorithm

20.7. New Registry for the Security Section Flags

20.8. New Registry for Per-KIM Security Levels

20.9. New Registry for the DIS (DODAG Informational Solicitation)

Flags

20.10. New Registry for the DODAG Information Object (DIO) Flags

20.11. New Registry for the Destination Advertisement Object

(DAO) Flags

20.12. New Registry for the Destination Advertisement Object

(DAO) Acknowledgement Flags

20.13. New Registry for the Consistency Check (CC) Flags

20.14. New Registry for the DODAG Configuration Option Flags

20.15. New Registry for the RPL Target Option Flags

20.16. New Registry for the Transit Information Option Flags

20.17. New Registry for the Solicited Information Option Flags

20.18. ICMPv6: Error in Source Routing Header

20.19. Link-Local Scope multicast address

21. Acknowledgements

22. Contributors

23. References

23.1. Normative References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

23.2. Informative References

Appendix A. Example Operation

Appendix A.1. Example Operation in Storing Mode With Node-owned

Prefixes

Appendix A.1.1. DIO messages and PIO

Appendix A.1.2. DAO messages

Appendix A.1.3. Routing Information Base

Appendix A.2. Example Operation in Storing Mode With Subnet-wide

Prefix

Appendix A.2.1. DIO messages and PIO

Appendix A.2.2. DAO messages

Appendix A.2.3. Routing Information Base

Appendix A.3. Example Operation in Non-Storing Mode With Node-

owned Prefixes

Appendix A.3.1. DIO messages and PIO

Appendix A.3.2. DAO messages

Appendix A.3.3. Routing Information Base

Appendix A.4. Example Operation in Non-Storing Mode With Subnet-

wide Prefix

Appendix A.4.1. DIO messages and PIO

Appendix A.4.2. DAO messages

Appendix A.4.3. Routing Information Base

Appendix A.5. Example with External Prefixes

Authors' Addresses

1. Introduction

Low power and Lossy Networks (LLNs) consist of largely of constrained

nodes (with limited processing power, memory, and sometimes energy when

they are battery operated or energy scavenging). These routers are

interconnected by lossy links, typically supporting only low data

rates, that are usually unstable with relatively low packet delivery

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

rates. Another characteristic of such networks is that the traffic

patterns are not simply point-to-point, but in many cases point-to-

multipoint or multipoint-to-point. Furthermore such networks may

potentially comprise up to thousands of nodes. These characteristics

offer unique challenges to a routing solution: the IETF ROLL Working

Group has defined application-specific routing requirements for a Low

power and Lossy Network (LLN) routing protocol, specified in [RFC5867],

[RFC5826], [RFC5673], and [RFC5548].

This document specifies the IPv6 Routing Protocol for Low power and

lossy networks (RPL). Note that although RPL was specified according to

the requirements set forth in the aforementioned requirement documents,

its use is in no way limited to these applications.

1.1. Design Principles

RPL was designed with the objective to meet the requirements spelled

out in [RFC5867], [RFC5826], [RFC5673], and [RFC5548].

A network may run multiple instances of RPL concurrently. Each such

instance may serve different and potentially antagonistic constraints

or performance criteria. This document defines how a single instance

operates.

In order to be useful in a wide range of LLN application domains, RPL

separates packet processing and forwarding from the routing

optimization objective. Examples of such objectives include minimizing

energy, minimizing latency, or satisfying constraints. This document

describes the mode of operation of RPL. Other companion documents

specify routing objective functions. A RPL implementation, in support

of a particular LLN application, will include the necessary objective

function(s) as required by the application.

RPL operations require bidirectional links. In some LLN scenarios those

links may exhibit asymmetric properties. It is required that the

reachability of a router is verified before the router can be used as a

parent. RPL expects an external mechanism to be triggered during the

parent selection phase in order to verify link properties and neighbor

reachability. Neighbor Unreachability Detection (NUD) is such a

mechanism, but alternates are possible, including Bidirectional

Forwarding Detection [RFC5881] and hints from lower layers via L2

triggers like [RFC5184]. In a general fashion, a detection mechanism

that is reactive to traffic is favored in order to minimize the cost of

monitoring links that are not being used.

RPL also expects an external mechanism to access and transport some

control information, referred to as the "RPL Packet Information", in

data packets. The RPL Packet Information is defined in Section 11.2 and

enables the association of a data packet with a RPL instance and the

validation of RPL routing states. The IPv6 Hop-by-Hop RPL Option [I-

D.ietf-6man-rpl-option] is an example of such mechanism. The mechanism

is required for all packets except when strict source routing is used

(that is for packets going downward in non-storing mode as detailed

further in Section 9), which by nature prevents endless loops and

alleviates the need for the RPL Packet Information. Future companion

specifications may propose alternate ways to carry the RPL Packet

Information in the IPv6 packets and may extend the RPL Packet

Information to support additional features.

RPL provides a mechanism to disseminate information over the

dynamically-formed network topology. The dissemination enables minimal

configuration in the nodes, allowing nodes to operate mostly

autonomously. This mechanism uses trickle [I-D.ietf-roll-trickle] to

optimize the dissemination as described in Section 8.3.

In some applications, RPL assembles topologies of routers that own

independent prefixes. Those prefixes may or may not be aggregatable

depending on the origin of the routers. A prefix that is owned by a

router is advertised as on-link.

RPL also introduces the capability to bind a subnet together with a

common prefix and to route within that subnet. A source can inject

information about the subnet to be disseminated by RPL, and that source

is authoritative for that subnet. Because many LLN links have non-

transitive properties, a common prefix that RPL disseminates over the

subnet must not be advertised as on-link.

RPL may in particular disseminate IPv6 Neighbor Discovery (ND)

information such as the [RFC4861] Prefix Information Option (PIO) and

the [RFC4191] Route Information Option (RIO). ND information that is

disseminated by RPL conserves all its original semantics for router to

host, with limited extensions for router to router, though it is not to

be confused with routing advertisements and it is never to be directly

redistributed in another routing protocol. A RPL node often combines

host and router behaviors. As a host, it will process the options as

specified in [RFC4191], [RFC4861], [RFC4862] and [RFC3775]. As a

router, the RPL node may advertise the information from the options as

required for the specific link, for instance in a ND RA message, though

the exact operation is out of scope.

A set of companion documents to this specification will provide further

guidance in the form of applicability statements specifying a set of

operating points appropriate to the Building Automation, Home

Automation, Industrial, and Urban application scenarios.

1.2. Expectations of Link Layer Type

In compliance with the layered architecture of IP, RPL does not rely on

any particular features of a specific link layer technology. RPL is

designed to be able to operate over a variety of different link layers,

including ones that are constrained, potentially lossy, or typically

utilized in conjunction with highly constrained host or router devices,

such as but not limited to, low power wireless or PLC (Power Line

Communication) technologies.

Implementers may find [RFC3819] a useful reference when designing a

link layer interface between RPL and a particular link layer

technology.

DAG:

DAG root:

Destination Oriented DAG (DODAG):

DODAG root:

Virtual DODAG root:

Up:

Down:

Rank:

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

Additionally, this document uses terminology from [I-D.ietf-roll-

terminology], and introduces the following terminology:

Directed Acyclic Graph. A directed graph having the property that

all edges are oriented in such a way that no cycles exist. All edges

are contained in paths oriented toward and terminating at one or

more root nodes.

A DAG root is a node within the DAG that has no outgoing

edge. Because the graph is acyclic, by definition all DAGs must have

at least one DAG root and all paths terminate at a DAG root.

A DAG rooted at a single

destination, i.e. at a single DAG root (the DODAG root) with no

outgoing edges.

A DODAG root is the DAG root of a DODAG. The DODAG root

may act as a border router for the DODAG, and in particular it may

aggregate routes in the DODAG, and may redistribute DODAG routes

into other routing protocols.

A Virtual DODAG root is the result of two or more

RPL routers, for instance 6LoWPAN Border Routers (6LBRs),

coordinating to synchronize DODAG state and act in concert as if

they are a single DODAG root (with multiple interfaces), with

respect to the LLN. The coordination most likely occurs between

powered devices over a reliable transit link, and the details of

that scheme are out of scope for this specification (to be defined

in future companion specifications).

Up refers to the direction from leaf nodes towards DODAG roots,

following DODAG edges. This follows the common terminology used in

graphs and depth-first-search, where vertices further from the root

are "deeper," or "down," and vertices closer to the root are

"shallower," or "up".

Down refers to the direction from DODAG roots towards leaf

nodes, in the reverse direction of DODAG edges. This follows the

common terminology used in graphs and depth-first-search, where

vertices further from the root are "deeper," or "down," and vertices

closer to the root are "shallower," or "up".

A node's Rank defines the node's individual position relative to

other nodes with respect to a DODAG root. Rank strictly increases in

Objective Function (OF):

Objective Code Point (OCP):

RPLInstanceID:

RPL Instance:

DODAGID:

DODAG Version:

DODAGVersionNumber:

Goal:

Grounded:

Floating:

the Down direction and strictly decreases in the Up direction. The

exact way Rank is computed depends on the DAG's Objective Function

(OF). The Rank may analogously track a simple topological distance,

may be calculated as a function of link metrics, and may consider

other properties such as constraints.

Defines how routing metrics, optimization

objectives, and related functions are used to compute Rank.

Furthermore, the OF dictates how parents in the DODAG are selected

and thus the DODAG formation.

An identifier that indicates which

Objective Function the DODAG uses.

A unique identifier within a network. DODAGs with the

same RPLInstanceID share the same Objective Function.

A set of one or more DODAGs that share a RPLInstanceID.

A RPL node can belong to at most one DODAG in a RPL Instance. Each

RPL Instance operates independently of other RPL Instances. This

document describes operation within a single RPL Instance.

The identifier of a DODAG root. The DODAGID is unique within

the scope of a RPL Instance in the LLN. The tuple (RPLInstanceID,

DODAGID) uniquely identifies a DODAG.

A specific iteration ("Version") of a DODAG with a

given DODAGID.

A sequential counter that is incremented by the

root to form a new Version of a DODAG. A DODAG Version is identified

uniquely by the (RPLInstanceID, DODAGID, DODAGVersionNumber) tuple.

The Goal is an application specific goal that is defined outside

the scope of RPL. Any node that roots a DODAG will need to know

about this Goal to decide if the Goal can be satisfied or not. A

typical Goal is to construct the DODAG according to a specific

objective function and to keep connectivity to a set of hosts (e.g.

to use an objective function that minimizes a metric and to be

connected to a specific database host to store the collected data).

A DODAG is grounded when the DODAG root can satisfy the

Goal.

A DODAG is floating if it is not Grounded. A floating DODAG

is not expected to have the properties required to satisfy the goal.

DODAG parent:

Sub-DODAG

Local DODAG:

Global DODAG:

DIO:

DAO:

DIS:

CC:

It may, however, provide connectivity to other nodes within the

DODAG.

A parent of a node within a DODAG is one of the

immediate successors of the node on a path towards the DODAG root. A

DODAG parent's Rank is lower than the node's. (See Section 3.5.1).

The sub-DODAG of a node is the set of other nodes whose

paths to the DODAG root pass through that node. Nodes in the sub-

DODAG of a node have a greater Rank than that node. (See Section

3.5.1).

Local DODAGs contain one and only one root node, and

allows that single root node to allocate and manage a RPL Instance,

identified by a local RPLInstanceID, without coordination with other

nodes. This is typically done in order to optimize routes to a

destination within the LLN. (See Section 5).

A Global DODAG uses a global RPLInstanceID that may be

coordinated among several other nodes. (See Section 5).

DODAG Information Object (See Section 6.3)

Destination Advertisement Object (See Section 6.4)

DODAG Information Solicitation (See Section 6.2)

Consistency Check (See Section 6.6)

As they form networks, LLN devices often mix the roles of 'host' and

'router' when compared to traditional IP networks. In this document,

'host' refers to an LLN device that can generate but does not forward

RPL traffic, 'router' refers to an LLN device that can forward as well

as generate RPL traffic, and 'node' refers to any RPL device, either a

host or a router.

3. Protocol Overview

The aim of this section is to describe RPL in the spirit of [RFC4101].

Protocol details can be found in further sections.

3.1. Topology

This section describes the basic RPL topologies that may be formed, and

the rules by which these are constructed, i.e. the rules governing

DODAG formation.

3.1.1. Constructing Topologies

LLNs, such as Radio Networks, do not typically have a predefined

topologies, for example those imposed by point to point wires, so RPL

has to discover links and then select peers sparingly.

Because in many cases layer 2 ranges overlap only partially, RPL forms

non-transitive/NBMA network topologies upon which it computes routes.

RPL routes are optimized for traffic to or from one or more roots that

act as sinks for the topology. As a result, RPL organizes a topology as

a Directed Acyclic Graph (DAG) that is partitioned into one or more

Destination Oriented DAGS (DODAGs), one DODAG per sink. If the DAG has

multiple roots, then it is expected that the roots are federated by a

common backbone such as a transit link.

3.1.2. RPL Identifiers

RPL uses four values to identify and maintain a topology:

The first is a RPLInstanceID. A RPLInstanceID identifies a set of

one or more Destination Oriented DAGs (DODAGs). A network may

have multiple RPLInstanceIDs, each of which defines an

independent set of DODAGs, which may be optimized for different

Objective Functions (OFs) and/or applications. The set of DODAGs

identified by a RPLInstanceID is called a RPL Instance. All

DODAGs in the same RPL Instance use the same OF.

The second is a DODAGID. The scope of a DODAGID is a RPL

Instance. The combination of RPLInstanceID and DODAGID uniquely

identifies a single DODAG in the network. A RPL Instance may have

multiple DODAGs, each of which has an unique DODAGID.

The third is a DODAGVersionNumber. The scope of a

DODAGVersionNumber is a DODAG. A DODAG is sometimes reconstructed

from the DODAG root, by incrementing the DODAGVersionNumber. The

combination of RPLInstanceID, DODAGID, and DODAGVersionNumber

uniquely identifies a DODAG Version.

The fourth is Rank. The scope of Rank is a DODAG Version. Rank

establishes a partial order over a DODAG Version, defining

individual node positions with respect to the DODAG root.

3.1.3. Instances, DODAGs, and DODAG Versions

A RPL Instance contains one or more DODAG roots. A RPL Instance may

provide routes to certain destination prefixes, reachable via the DODAG

roots or alternate paths within the DODAG. These roots may operate

independently, or may coordinate over a network that is not necessarily

as constrained as a LLN.

A RPL Instance may comprise:

*

*

*

*

a single DODAG with a single root

For example, a DODAG optimized to minimize latency rooted at a

single centralized lighting controller in a home automation

application.

multiple uncoordinated DODAGs with independent roots (differing

DODAGIDs)

For example, multiple data collection points in an urban data

collection application that do not have suitable connectivity

to coordinate with each other, or that use the formation of

multiple DODAGs as a means to dynamically and autonomously

partition the network.

a single DODAG with a virtual root that coordinates LLN sinks

(with the same DODAGID) over a backbone network.

For example, multiple border routers operating with a reliable

transit link, e.g. in support of a 6LowPAN application, that

are capable to act as logically equivalent interfaces to the

sink of the same DODAG.

a combination of the above as suited to some application

scenario.

Each RPL packet is associated with a particular RPLInstanceID (see

Section 11.2) and therefore RPL Instance (Section 5). The provisioning

or automated discovery of a mapping between a RPLInstanceID and a type

or service of application traffic is out of scope for this

specification (to be defined in future companion specifications).

Figure 1 depicts an example of a RPL Instance comprising three DODAGs

with DODAG Roots R1, R2, and R3. Each of these DODAG Roots advertises

the same RPLInstanceID. The lines depict connectivity between parents

and children.

Figure 2 depicts how a DODAG Version number increment leads to a new

DODAG Version. This depiction illustrates a DODAG Version number

increment that results in a different DODAG topology. Note that a new

DODAG Version does not always imply a different DODAG topology. To

accommodate certain topology changes requires a new DODAG Version, as

described later in this specification.

Please note that in the following examples tree-like structures are

depicted for simplicity, although the DODAG structure allows for each

node to have multiple parents when the connectivity supports it.

*

-

*

-

*

-

*

 +--+

 | |

 | +--------------+ |

 | | | |

 | | (R1) | (R2) (R3) |

 | | / \ | /| \ / | \ |

 | | / \ | / | \ / | \ |

 | | (A) (B) | (C) | (D) ... (F) (G) (H) |

 | | /|\ |\ | / | / |\ |\ | | |

 | | : : : : : | : (E) : : : `: : |

 | | | / \ |

 | +--------------+ : : |

 | DODAG |

 | |

 +--+

 RPL Instance

 +----------------+ +----------------+

 | | | |

 | (R1) | | (R1) |

 | / \ | | / |

 | / \ | | / |

 | (A) (B) | \ | (A) |

 | /|\ / |\ | ------\ | /|\ |

 | : : (C) : : | \ | : : (C) |

 | | / | \ |

 | | ------/ | \ |

 | | / | (B) |

 | | | |\ |

 | | | : : |

 | | | |

 +----------------+ +----------------+

 Version N Version N+1

3.2. Upward Routes and DODAG Construction

RPL provisions routes Up towards DODAG roots, forming a DODAG optimized

according to an Objective Function (OF). RPL nodes construct and

maintain these DODAGs through DODAG Information Object (DIO) messages.

3.2.1. Objective Function (OF)

The Objective Function (OF) defines how RPL nodes select and optimize

routes within a RPL Instance. The OF is identified by an Objective Code

Point (OCP) within the DIO Configuration option. An OF defines how

nodes translate one or more metrics and constraints, which are

themselves defined in [I-D.ietf-roll-routing-metrics], into a value

called Rank, which approximates the node's distance from a DODAG root.

An OF also defines how nodes select parents. Further details may be

found in Section 14, [I-D.ietf-roll-routing-metrics], [I-D.ietf-roll-

of0], and related companion specifications.

3.2.2. DODAG Repair

A DODAG Root institutes a global repair operation by incrementing the

DODAG Version Number. This initiates a new DODAG Version. Nodes in the

new DODAG Version can choose a new position whose Rank is not

constrained by their Rank within the old DODAG Version.

RPL also supports mechanisms which may be used for local repair within

the DODAG Version. The DIO message specifies the necessary parameters

as configured from and controlled by policy at the DODAG root.

3.2.3. Security

RPL supports message confidentiality and integrity. It is designed such

that link-layer mechanisms can be used when available and appropriate,

yet in their absence RPL can use its own mechanisms. RPL has three

basic security modes.

In the first, called "unsecured," RPL control messages are sent without

any additional security mechanisms. Unsecured mode does not imply that

the RPL network is unsecure: it could be using other present security

primitives (e.g. link-layer security) to meet application security

requirements.

In the second, called "pre-installed," nodes joining a RPL Instance

have pre-installed keys that enable them to process and generate

secured RPL messages.

The third mode is called "authenticated." In authenticated mode, nodes

have pre-installed keys as in pre-installed mode, but the pre-installed

key may only be used to join a RPL Instance as a leaf. Joining an

authenticated RPL Instance as a router requires obtaining a key from an

authentication authority. The process by which this key is obtained is

out of scope for this specification. Note that this specification alone

does not provide sufficient detail for a RPL implementation to securely

operate in authenticated mode. For a RPL implementation to operate

securely in authenticated mode it is necessary for a future companion

specification to detail the mechanisms by which a node obtains/requests

the authentication material (e.g. key, certificate), and to determine

from where that material should be obtained. See also Section 10.3.

3.2.4. Grounded and Floating DODAGs

DODAGs can be grounded or floating: the DODAG root advertises which is

the case. A grounded DODAG offers connectivity to hosts that are

required for satisfying the application-defined goal. A floating DODAG

is not expected to satisfy the goal and in most cases only provides

routes to nodes within the DODAG. Floating DODAGs may be used, for

example, to preserve inner connectivity during repair.

3.2.5. Local DODAGs

RPL nodes can optimize routes to a destination within an LLN by forming

a local DODAG whose DODAG Root is the desired destination. Unlike

global DAGs, which can consist of multiple DODAGs, local DAGs have one

and only one DODAG and therefore one DODAG Root. Local DODAGs can be

constructed on-demand.

3.2.6. Administrative Preference

An implementation/deployment may specify that some DODAG roots should

be used over others through an administrative preference.

Administrative preference offers a way to control traffic and engineer

DODAG formation in order to better support application requirements or

needs.

3.2.7. Datapath Validation and Loop Detection

The low-power and lossy nature of LLNs motivates RPL's use of on-demand

loop detection using data packets. Because data traffic can be

infrequent, maintaining a routing topology that is constantly up to

date with the physical topology can waste energy. Typical LLNs exhibit

variations in physical connectivity that are transient and innocuous to

traffic, but that would be costly to track closely from the control

plane. Transient and infrequent changes in connectivity need not be

addressed by RPL until there is data to send. This aspect of RPL's

design draws from existing, highly used LLN protocols as well as

extensive experimental and deployment evidence on its efficacy.

The RPL Packet Information that is transported with data packets

includes the Rank of the transmitter. An inconsistency between the

routing decision for a packet (upward or downward) and the Rank

relationship between the two nodes indicates a possible loop. On

receiving such a packet, a node institutes a local repair operation.

For example, if a node receives a packet flagged as moving in the

upward direction, and if that packet records that the transmitter is of

a lower (lesser) Rank than the receiving node, then the receiving node

is able to conclude that the packet has not progressed in the upward

direction and that the DODAG is inconsistent.

3.2.8. Distributed Algorithm Operation

A high level overview of the distributed algorithm, which constructs

the DODAG, is as follows:

Some nodes are configured to be DODAG roots, with associated

DODAG configurations.

*

Nodes advertise their presence, affiliation with a DODAG, routing

cost, and related metrics by sending link-local multicast DIO

messages to all-RPL-nodes.

Nodes listen for DIOs and use their information to join a new

DODAG (thus selecting DODAG parents), or to maintain an existing

DODAG, according to the specified Objective Function and Rank of

their neighbors.

Nodes provision routing table entries, for the destinations

specified by the DIO message, via their DODAG parents in the

DODAG Version. Nodes that decide to join a DODAG can provision

one or more DODAG parents as the next-hop for the default route

and a number of other external routes for the associated

instance.

3.3. Downward Routes and Destination Advertisement

RPL uses Destination Advertisement Object (DAO) messages to establish

downward routes. DAO messages are an optional feature for applications

that require P2MP or P2P traffic. RPL supports two modes of downward

traffic: storing (fully stateful) or non-storing (fully source routed).

Any given RPL Instance is either storing or non-storing. In both cases,

P2P packets travel Up toward a DODAG Root then Down to the final

destination (unless the destination is on the upward route). In the

non-storing case the packet will travel all the way to a DODAG root

before traveling Down. In the storing case the packet may be directed

Down towards the destination by a common ancestor of the source and the

destination prior to reaching a DODAG Root.

As of this specification no implementation is expected to support both

storing and non-storing modes of operation. Most implementations are

expected to support either no downward routes, non-storing mode only,

or storing mode only. Other modes of operation, such as a hybrid mix of

storing and non-storing mode, are out of scope for this specification

and may be described in other companion specifications.

This specification describes a basic mode of operation in support of

P2P traffic. Note that more optimized P2P solutions may be described in

companion specifications.

3.4. Local DODAGs Route Discovery

A RPL network can optionally support on-demand discovery of DODAGs to

specific destinations within an LLN. Such local DODAGs behave slightly

differently than global DODAGs: they are uniquely defined by the

combination of DODAGID and RPLInstanceID. The RPLInstanceID denotes

whether a DODAG is a local DODAG.

*

*

*

Type:

Function:

Stability:

Properties:

Abstract:

3.5. Rank Properties

The rank of a node is a scalar representation of the location of that

node within a DODAG Version. The rank is used to avoid and detect

loops, and as such must demonstrate certain properties. The exact

calculation of the rank is left to the Objective Function. Even though

the specific computation of the rank is left to the Objective Function,

the rank must implement generic properties regardless of the Objective

Function.

In particular, the rank of the nodes must monotonically decrease as the

DODAG version is followed towards the DODAG destination. In that

regard, the rank can be regarded as a scalar representation of the

location or radius of a node within a DODAG Version.

The details of how the Objective Function computes rank are out of

scope for this specification, although that computation may depend, for

example, on parents, link metrics, node metrics, and the node

configuration and policies. See Section 14 for more information.

The rank is not a path cost, although its value can be derived from and

influenced by path metrics. The rank has properties of its own that are

not necessarily those of all metrics:

The rank is an abstract numeric value.

The rank is the expression of a relative position within a

DODAG Version with regard to neighbors and is not necessarily a good

indication or a proper expression of a distance or a path cost to

the root.

The stability of the rank determines the stability of the

routing topology. Some dampening or filtering is RECOMMENDED to keep

the topology stable, and thus the rank does not necessarily change

as fast as some link or node metrics would. A new DODAG Version

would be a good opportunity to reconcile the discrepancies that

might form over time between metrics and ranks within a DODAG

Version.

The rank is incremented in a strictly monotonic fashion,

and can be used to validate a progression from or towards the root.

A metric, like bandwidth or jitter, does not necessarily exhibit

this property.

The rank does not have a physical unit, but rather a range

of increment per hop, where the assignment of each increment is to

be determined by the Objective Function.

The rank value feeds into DODAG parent selection, according to the RPL

loop-avoidance strategy. Once a parent has been added, and a rank value

for the node within the DODAG has been advertised, the node's further

DAGRank(M) is less than DAGRank(N):

options with regard to DODAG parent selection and movement within the

DODAG are restricted in favor of loop avoidance.

3.5.1. Rank Comparison (DAGRank())

Rank may be thought of as a fixed point number, where the position of

the radix point between the integer part and the fractional part is

determined by MinHopRankIncrease. MinHopRankIncrease is the minimum

increase in rank between a node and any of its DODAG parents. A DODAG

Root provisions MinHopRankIncrease. MinHopRankIncrease creates a

tradeoff between hop cost precision and the maximum number of hops a

network can support. A very large MinHopRankIncrease, for example,

allows precise characterization of a given hop's affect on Rank but

cannot support many hops.

When an objective function computes rank, the objective function

operates on the entire (i.e. 16-bit) rank quantity. When rank is

compared, e.g. for determination of parent relationships or loop

detection, the integer portion of the rank is to be used. The integer

portion of the Rank is computed by the DAGRank() macro as follows,

where floor(x) is the function that evaluates to the greatest integer

less than or equal to x:

 DAGRank(rank) = floor(rank/MinHopRankIncrease)

For example, if a 16-bit rank quantity is decimal 27, and the

MinHopRankIncrease is decimal 16, then DAGRank(27) = floor(1.6875) = 1.

The integer part of the rank is 1 and the fractional part is 11/16.

By convention in this document, using the macro DAGRank(node) may be

interpreted as DAGRank(node.rank), where node.rank is the rank value as

maintained by the node.

A node A has a rank less than the rank of a node B if DAGRank(A) is

less than DAGRank(B).

A node A has a rank equal to the rank of a node B if DAGRank(A) is

equal to DAGRank(B).

A node A has a rank greater than the rank of a node B if DAGRank(A) is

greater than DAGRank(B).

3.5.2. Rank Relationships

Rank computations maintain the following properties for any nodes M and

N that are neighbors in the LLN:

In this case, the position of M is

closer to the DODAG root than the position of N. Node M may safely

be a DODAG parent for Node N without risk of creating a loop.

Further, for a node N, all parents in the DODAG parent set must be

of rank less than DAGRank(N). In other words, the rank presented by

a node N MUST be greater than that presented by any of its parents.

DAGRank(M) equals DAGRank(N):

DAGRank(M) is greater than DAGRank(N):

In this case the positions of M and N

within the DODAG and with respect to the DODAG root are similar

(identical). Routing through a node with equal Rank may cause a

routing loop (i.e., if that node chooses to route through a node

with equal Rank as well).

In this case, the position of M

is farther from the DODAG root than the position of N. Further, Node

M may in fact be in the sub-DODAG of Node N. If node N selects node

M as DODAG parent there is a risk to create a loop.

As an example, the rank could be computed in such a way so as to

closely track ETX (Expected Transmission Count, a fairly common routing

metric used in LLN and defined in [I-D.ietf-roll-routing-metrics]) when

the metric that an objective function minimizes is ETX, or latency, or

in a more complicated way as appropriate to the objective function

being used within the DODAG.

3.6. Routing Metrics and Constraints Used By RPL

Routing metrics are used by routing protocols to compute shortest

paths. Interior Gateway Protocols (IGPs) such as IS-IS ([RFC5120]) and

OSPF ([RFC4915]) use static link metrics. Such link metrics can simply

reflect the bandwidth or can also be computed according to a polynomial

function of several metrics defining different link characteristics.

Some routing protocols support more than one metric: in the vast

majority of the cases, one metric is used per (sub)topology. Less

often, a second metric may be used as a tie-breaker in the presence of

Equal Cost Multiple Paths (ECMP). The optimization of multiple metrics

is known as an NP complete problem and is sometimes supported by some

centralized path computation engine.

In contrast, LLNs do require the support of both static and dynamic

metrics. Furthermore, both link and node metrics are required. In the

case of RPL, it is virtually impossible to define one metric, or even a

composite metric, that will satisfy all use cases.

In addition, RPL supports constrained-based routing where constraints

may be applied to both link and nodes. If a link or a node does not

satisfy a required constraint, it is 'pruned' from the candidate

neighbor set, thus leading to a constrained shortest path.

An Objective Function specifies the objectives used to compute the

(constrained) path. Furthermore, nodes are configured to support a set

of metrics and constraints, and select their parents in the DODAG

according to the metrics and constraints advertised in the DIO

messages. Upstream and Downstream metrics may be merged or advertised

separately depending on the OF and the metrics. When they are

advertised separately, it may happen that the set of DIO parents is

different from the set of DAO parents (a DAO parent is a node to which

Example 1:

Example 2:

unicast DAO messages are sent). Yet, all are DODAG parents with regards

to the rules for Rank computation.

The Objective Function is decoupled from the routing metrics and

constraints used by RPL. Indeed, whereas the OF dictates rules such as

DODAG parents selection, load balancing and so on, the set of metrics

and/or constraints used, and thus determine the preferred path, are

based on the information carried within the DAG container option in DIO

messages.

The set of supported link/node constraints and metrics is specified in

[I-D.ietf-roll-routing-metrics].

Shortest path: path offering the shortest end-to-end delay.

Shortest Constrained path: the path that does not traverse

any battery-operated node and that optimizes the path reliability.

3.7. Loop Avoidance

RPL tries to avoid creating loops when undergoing topology changes and

includes rank-based datapath validation mechanisms for detecting loops

when they do occur (see Section 11 for more details). In practice, this

means that RPL guarantees neither loop free path selection nor tight

delay convergence times, but can detect and repair a loop as soon as it

is used. RPL uses this loop detection to ensure that packets make

forward progress within the DODAG Version and trigger repairs when

necessary.

3.7.1. Greediness and Instability

A node is greedy if it attempts to move deeper (increase Rank) in the

DODAG Version in order to increase the size of the parent set or

improve some other metric. Once a node has joined a DODAG Version, RPL

disallows certain behaviors, including greediness, in order to prevent

resulting instabilities in the DODAG Version.

Suppose a node is willing to receive and process a DIO message from a

node in its own sub-DODAG, and in general a node deeper than itself. In

this case, a possibility exists that a feedback loop is created,

wherein two or more nodes continue to try and move in the DODAG Version

while attempting to optimize against each other. In some cases, this

will result in instability. It is for this reason that RPL limits the

cases where a node may process DIO messages from deeper nodes to some

forms of local repair. This approach creates an 'event horizon',

whereby a node cannot be influenced beyond some limit into an

instability by the action of nodes that may be in its own sub-DODAG.

3.7.1.1. Example: Greedy Parent Selection and Instability

 (A) (A) (A)

 |\ |\ |\

 | `-----. | `-----. | `-----.

 | \ | \ | \

 (B) (C) (B) \ | (C)

 \ | | /

 `-----. | | .-----'

 \| |/

 (C) (B)

 -1- -2- -3-

Figure 4 depicts a DODAG in 3 different configurations. A usable link

between (B) and (C) exists in all 3 configurations. In Figure 4-1, Node

(A) is a DODAG parent for Nodes (B) and (C). In Figure 4-2, Node (A) is

a DODAG parent for Nodes (B) and (C), and Node (B) is also a DODAG

parent for Node (C). In Figure 4-3, Node (A) is a DODAG parent for

Nodes (B) and (C), and Node (C) is also a DODAG parent for Node (B).

If a RPL node is too greedy, in that it attempts to optimize for an

additional number of parents beyond its most preferred parents, then an

instability can result. Consider the DODAG illustrated in Figure 4-1.

In this example, Nodes (B) and (C) may most prefer Node (A) as a DODAG

parent, but we will consider the case when they are operating under the

greedy condition that will try to optimize for 2 parents.

Section 8.2.2.4

Let Figure 4-1 be the initial condition.

Suppose Node (C) first is able to leave the DODAG and rejoin at a

lower rank, taking both Nodes (A) and (B) as DODAG parents as

depicted in Figure 4-2. Now Node (C) is deeper than both Nodes

(A) and (B), and Node (C) is satisfied to have 2 DODAG parents.

Suppose Node (B), in its greediness, is willing to receive and

process a DIO message from Node (C) (against the rules of RPL),

and then Node (B) leaves the DODAG and rejoins at a lower rank,

taking both Nodes (A) and (C) as DODAG parents. Now Node (B) is

deeper than both Nodes (A) and (C) and is satisfied with 2 DAG

parents.

Then Node (C), because it is also greedy, will leave and rejoin

deeper, to again get 2 parents and have a lower rank then both of

them.

Next Node (B) will again leave and rejoin deeper, to again get 2

parents

And again Node (C) leaves and rejoins deeper...

*

*

*

*

*

*

The process will repeat, and the DODAG will oscillate between

Figure 4-2 and Figure 4-3 until the nodes count to infinity and

restart the cycle again.

This cycle can be averted through mechanisms in RPL:

Nodes (B) and (C) stay at a rank sufficient to attach to their

most preferred parent (A) and don't go for any deeper (worse)

alternate parents (Nodes are not greedy)

Nodes (B) and (C) do not process DIO messages from nodes

deeper than themselves (because such nodes are possibly in

their own sub-DODAGs)

These mechanisms are further described in

3.7.2. DODAG Loops

A DODAG loop may occur when a node detaches from the DODAG and

reattaches to a device in its prior sub-DODAG. This may happen in

particular when DIO messages are missed. Strict use of the DODAG

Version Number can eliminate this type of loop, but this type of loop

may possibly be encountered when using some local repair mechanisms.

For example, consider the local repair mechanism that allows a node to

detach from the DODAG, advertise a rank of INFINITE_RANK (in order to

poison its routes / inform its sub-DODAG), and then to re-attach to the

DODAG. In that case the node may in some cases re-attach to its own

prior-sub-DODAG, causing a DODAG loop, because the poisoning may fail

if the INFINITE_RANK advertisements are lost in the LLN environment.

(In this case the rank-based datapath validation mechanisms would

eventually detect and trigger correction of the loop).

3.7.3. DAO Loops

A DAO loop may occur when the parent has a route installed upon

receiving and processing a DAO message from a child, but the child has

subsequently cleaned up the related DAO state. This loop happens when a

No-Path (a DAO message that invalidates a previously announced prefix)

was missed and persists until all state has been cleaned up. RPL

includes an optional mechanism to acknowledge DAO messages, which may

mitigate the impact of a single DAO message being missed. RPL includes

loop detection mechanisms that mitigate the impact of DAO loops and

trigger their repair. (See Section 11.2.2.3).

4. Traffic Flows Supported by RPL

RPL supports three basic traffic flows: Multipoint-to-Point (MP2P),

Point-to-Multipoint (P2MP), and Point-to-Point (P2P).

*

*

-

-

4.1. Multipoint-to-Point Traffic

Multipoint-to-Point (MP2P) is a dominant traffic flow in many LLN

applications ([RFC5867], [RFC5826], [RFC5673], [RFC5548]). The

destinations of MP2P flows are designated nodes that have some

application significance, such as providing connectivity to the larger

Internet or core private IP network. RPL supports MP2P traffic by

allowing MP2P destinations to be reached via DODAG roots.

4.2. Point-to-Multipoint Traffic

Point-to-multipoint (P2MP) is a traffic pattern required by several LLN

applications ([RFC5867], [RFC5826], [RFC5673], [RFC5548]). RPL supports

P2MP traffic by using a destination advertisement mechanism that

provisions Down routes toward destinations (prefixes, addresses, or

multicast groups), and away from roots. Destination advertisements can

update routing tables as the underlying DODAG topology changes.

4.3. Point-to-Point Traffic

RPL DODAGs provide a basic structure for point-to-point (P2P) traffic.

For a RPL network to support P2P traffic, a root must be able to route

packets to a destination. Nodes within the network may also have

routing tables to destinations. A packet flows towards a root until it

reaches an ancestor that has a known route to the destination. As

pointed out later in this document, in the most constrained case (when

nodes cannot store routes), that common ancestor may be the DODAG root.

In other cases it may be a node closer to both the source and

destination.

RPL also supports the case where a P2P destination is a 'one-hop'

neighbor.

RPL neither specifies nor precludes additional mechanisms for computing

and installing potentially more optimal routes to support arbitrary P2P

traffic.

5. RPL Instance

Within a given LLN, there may be multiple, logically independent RPL

instances. A RPL node may belong to multiple RPL instances, and may act

as a router in some and as a leaf in others. This document describes

how a single instance behaves.

There are two types of RPL Instances: local and global. RPL divides the

RPLInstanceID space between Global and Local instances to allow for

both coordinated and unilateral allocation of RPLInstanceIDs. Global

RPL Instances are coordinated, have one or more DODAGs, and are

typically long-lived. Local RPL Instances are always a single DODAG

whose singular root owns the corresponding DODAGID and allocates the

Local RPLInstanceID in a unilateral manner. Local RPL Instances can be

used, for example, for constructing DODAGs in support of a future on-

demand routing solution. The mode of operation of Local RPL Instances

is out of scope for this specification and may be described in other

companion specifications.

The definition and provisioning of RPL instances are out of scope for

this specification. Guidelines may be application and implementation

specific, and are expected to be elaborated in future companion

specifications. Those operations are expected to be such that data

packets coming from the outside of the RPL network can unambiguously be

associated to at least one RPL instance, and be safely routed over any

instance that would match the packet.

Control and data packets within RPL network are tagged to unambiguously

identify what RPL Instance they are part of.

Every RPL control message has a RPLInstanceID field. Some RPL control

messages, when referring to a local RPLInstanceID as defined below, may

also include a DODAGID.

Data packets that flow within the RPL network expose the RPLInstanceID

as part of the RPL Packet Information that RPL requires, as further

described in Section 11.2. For data packets coming from outside the RPL

network, the ingress router determines the RPLInstanceID and places it

into the resulting packet that it injects into the RPL network.

5.1. RPL Instance ID

A global RPLInstanceID MUST be unique to the whole LLN. Mechanisms for

allocating and provisioning global RPLInstanceID are out of scope for

this specification. There can be up to 128 global instance in the whole

network. Local instances are always used in conjunction with a DODAGID

(which is either given explicitly or implicitly in some cases), and up

64 local instances per DODAGID can be supported. Local instances are

allocated and managed by the node that owns the DODAGID, without any

explicit coordination with other nodes, as further detailed below.

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |0| ID | Global RPLinstanceID in 0..127

 +-+-+-+-+-+-+-+-+

A global RPLinstanceID is encoded in a RPLinstanceID field as follows:

A local RPLInstanceID is autoconfigured by the node that owns the

DODAGID and it MUST be unique for that DODAGID. The DODAGID used to

configure the local RPLInstanceID MUST be a reachable IPv6 address of

the node, and MUST be used as an endpoint of all communications within

that local instance.

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |1|D| ID | Local RPLInstanceID in 0..63

 +-+-+-+-+-+-+-+-+

A local RPLinstanceID is encoded in a RPLinstanceID field as follows:

The D flag in a Local RPLInstanceID is always set to 0 in RPL control

messages. It is used in data packets to indicate whether the DODAGID is

the source or the destination of the packet. If the D flag is set to 1

then the destination address of the IPv6 packet MUST be the DODAGID. If

the D flag is cleared then the source address of the IPv6 packet MUST

be the DODAGID.

For example, consider a node A that is the DODAG Root of a local RPL

Instance, and has allocated a local RPLInstanceID. By definition, all

traffic traversing that local RPL Instance will either originate or

terminate at node A. The DODAGID in this case will be the reachable

IPv6 address of node A, and all traffic will contain the address of

node A, thus the DODAGID, in either the source or destination address.

Thus the Local RPLInstanceID may indicate that the DODAGID is

equivalent to either the source address or the destination address by

setting the D flag appropriately.

6. ICMPv6 RPL Control Message

This document defines the RPL Control Message, a new ICMPv6 [RFC4443]

message. A RPL Control Message is identified by a code, and composed of

a base that depends on the code, and a series of options.

Most RPL Control Message have the scope of a link. The only exception

is for the DAO / DAO-ACK messages in non-storing mode, which are

exchanged using a unicast address over multiple hops and thus uses

global or unique-local addresses for both the source and destination

addresses. For all other RPL Control messages, the source address is a

link-local address, and the destination address is either the all-RPL-

nodes multicast address or a link-local unicast address of the

destination. The all-RPL-nodes multicast address is a new address with

a requested value of FF02::1A (to be confirmed by IANA).

In accordance with [RFC4443], the RPL Control Message consists of an

ICMPv6 header followed by a message body. The message body is comprised

of a message base and possibly a number of options as illustrated in

Figure 7.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | |

 . Base .

 . .

 +-+

 | |

 . Option(s) .

 . .

 +-+

The RPL Control message is an ICMPv6 information message with a

requested Type of 155 (to be confirmed by IANA).

The Code field identifies the type of RPL Control Message. This

document defines codes for the following RPL Control Message types (all

codes are to be confirmed by IANA Section 20.2):

0x00: DODAG Information Solicitation (Section 6.2)

0x01: DODAG Information Object (Section 6.3)

0x02: Destination Advertisement Object (Section 6.4)

0x03: Destination Advertisement Object Acknowledgment (Section

6.5)

0x80: Secure DODAG Information Solicitation (Section 6.2.2)

0x81: Secure DODAG Information Object (Section 6.3.2)

0x82: Secure Destination Advertisement Object (Section 6.4.2)

0x83: Secure Destination Advertisement Object Acknowledgment

(Section 6.5.2)

0x8A: Consistency Check (Section 6.6)

If a node receives a RPL control message with an unknown Code field,

the node MUST discard the message without any further processing, MAY

raise a management alert, and MUST NOT send any messages in response.

The checksum is computed as specified in [RFC4443]. It is set to zero

for the RPL security operations specified below, and computed once the

rest of the content of the RPL message including the security fields is

all set.

The high order bit (0x80) of the code denotes whether the RPL message

has security enabled. Secure RPL messages have a format to support

confidentiality and integrity, illustrated in Figure 8.

*

*

*

*

*

*

*

*

*

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | |

 . Security .

 . .

 +-+

 | |

 . Base .

 . .

 +-+

 | |

 . Option(s) .

 . .

 +-+

The remainder of this section describes the currently defined RPL

Control Message Base formats followed by the currently defined RPL

Control Message Options.

6.1. RPL Security Fields

Each RPL message has a secure variant. The secure variants provide

integrity and replay protection as well as optional confidentiality and

delay protection. Because security covers the base message as well as

options, in secured messages the security information lies between the

checksum and base, as shown in Figure 8.

The level of security and the algorithms in use are indicated in the

protocol messages as described below:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |T| Reserved | Algorithm |KIM|Resvd| LVL | Flags |

 +-+

 | Counter |

 +-+

 | |

 . Key Identifier .

 . .

 +-+

Message authentication codes (MACs) and signatures provide

authentication over the entire unsecured ICMPv6 RPL control message,

including the Security section with all fields defined, but with the

ICMPv6 checksum temporarily set to zero. Encryption provides

confidentiality of the secured RPL ICMPv6 message starting at the first

byte after the Security section and continuing to the last byte of the

packet. The security transformation yields a secured ICMPv6 RPL message

with the inclusion of the cryptographic fields (MAC, signature, etc.).

In other words, the security transformation itself (e.g. the Signature

and/or Algorithm in use) will detail how to incorporate the

cryptographic fields into the secured packet. The Security section

itself does not explicitly carry those cryptographic fields. Use of the

Security section is further detailed in Section 19 and Section 10.

 +-----------+-------------------+------------------------+

 | Algorithm | Encryption/MAC | Signature |

 +-----------+-------------------+------------------------+

 | 0 | CCM with AES-128 | RSA with SHA-256 |

 | 1-255 | Unassigned | Unassigned |

 +-----------+-------------------+------------------------+

 +------+-----+-----------------------------+------------+

 | Mode | KIM | Meaning | Key |

 | | | | Identifier |

 | | | | Length |

 | | | | (octets) |

 +------+-----+-----------------------------+------------+

 | 0 | 00 | Group key used. | 1 |

 | | | Key determined by Key Index | |

 | | | field. | |

 | | | | |

 | | | Key Source is not present. | |

 | | | Key Index is present. | |

 +------+-----+-----------------------------+------------+

 | 1 | 01 | Per-pair key used. | 0 |

 | | | Key determined by source | |

 | | | and destination of packet. | |

 | | | | |

 | | | Key Source is not present. | |

 | | | Key Index is not present. | |

 +------+-----+-----------------------------+------------+

 | 2 | 10 | Group key used. | 9 |

 | | | Key determined by Key Index | |

 | | | and Key Source Identifier. | |

 | | | | |

 | | | Key Source is present. | |

 | | | Key Index is present. | |

 +------+-----+-----------------------------+------------+

 | 3 | 11 | Node's signature key used. | 0/9 |

 | | | If packet is encrypted, |

 | | | it uses a group key, Key | |

 | | | Index and Key Source | |

 | | | specify key. | |

 | | | | |

 | | | Key Source may be present. | |

 | | | Key Index may be present. | |

 +------+-----+-----------------------------+------------+

Counter is Time (T):

 +---------------------------+

 | KIM=0,1,2 |

 +-------+--------------------+------+

 | LVL | Attributes | MAC |

 | | | Len |

 +-------+--------------------+------+

 | 0 | MAC-32 | 4 |

 | 1 | ENC-MAC-32 | 4 |

 | 2 | MAC-64 | 8 |

 | 3 | ENC-MAC-64 | 8 |

 | 4-7 | Unassigned | N/A |

 +-------+--------------------+------+

 +---------------------+

 | KIM=3 |

 +-------+---------------+-----+

 | LVL | Attributes | Sig |

 | | | Len |

 +-------+---------------+-----+

 | 0 | Sign-3072 | 384 |

 | 1 | ENC-Sign-3072 | 384 |

 | 2 | Sign-2048 | 256 |

 | 3 | ENC-Sign-2048 | 256 |

 | 4-7 | Unassigned | N/A |

 +-------+---------------+-----+

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | |

 . Key Source .

 . .

 +-+

 | |

 . Key Index .

 . .

 +-+

If the Counter is Time flag is set then the

Counter field is a timestamp. If the flag is cleared then the

Reserved:

Security Algorithm (Algorithm):

Key Identifier Mode (KIM):

Resvd:

Security Level (LVL):

Flags:

Counter:

Key Identifier:

Counter is an incrementing counter. Section 10.5 describes the

details of the 'T' flag and Counter field.

7-bit unused field. The field MUST be initialized to zero by

the sender and MUST be ignored by the receiver.

The Security Algorithm field specifies

the encryption, MAC, and signature scheme the network uses.

Supported values of this field are as follows:Section 10.9 describes

the algorithms in greater detail.

The Key Identifier Mode is a 2-bit field

that indicates whether the key used for packet protection is

determined implicitly or explicitly and indicates the particular

representation of the Key Identifier field. The Key Identifier Mode

is set one of the values from the table below:

3-bit unused field. The field MUST be initialized to zero by

the sender and MUST be ignored by the receiver.

The Security Level is a 3-bit field that

indicates the provided packet protection. This value can be adapted

on a per-packet basis and allows for varying levels of data

authenticity and, optionally, for data confidentiality. The KIM

field indicates whether signatures are used and the meaning of the

Level field. Note that the assigned values of Security Level are not

necessarily ordered-- a higher value of LVL does not necessarily

equate to increased security. The Security Level is set to one of

the values in the tables below:

8-bit unused field reserved for flags. The field MUST be

initialized to zero by the sender and MUST be ignored by the

receiver.

The Counter field indicates the non-repeating 4-octet value

used to construct the cryptographic mechanism that implements packet

protection and allows for the provision of semantic security. See

Section 10.9.1.

The Key Identifier field indicates which key was used

to protect the packet. This field provides various levels of

granularity of packet protection, including peer-to-peer keys, group

keys, and signature keys. This field is represented as indicated by

the Key Identifier Mode field and is formatted as follows:

Key Source:

Key Index:

Flags:

Reserved:

The Key Source field, when present, indicates the

logical identifier of the originator of a group key. When present

this field is 8 bytes in length.

The Key Index field, when present, allows unique

identification of different keys with the same originator. It is

the responsibility of each key originator to make sure that

actively used keys that it issues have distinct key indices and

that all key indices have a value unequal to 0x00. Value 0x00 is

reserved for a pre-installed, shared key. When present this field

is 1 byte in length.

Unassigned bits of the Security section are reserved. They MUST be set

to zero on transmission and MUST be ignored on reception.

6.2. DODAG Information Solicitation (DIS)

The DODAG Information Solicitation (DIS) message may be used to solicit

a DODAG Information Object from a RPL node. Its use is analogous to

that of a Router Solicitation as specified in IPv6 Neighbor Discovery;

a node may use DIS to probe its neighborhood for nearby DODAGs. Section

8.3 describes how nodes respond to a DIS.

6.2.1. Format of the DIS Base Object

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 +-+

 | Flags | Reserved | Option(s)...

 +-+

8-bit unused field reserved for flags. The field MUST be

initialized to zero by the sender and MUST be ignored by the

receiver.

8-bit unused field. The field MUST be initialized to zero by

the sender and MUST be ignored by the receiver.

Unassigned bits of the DIS Base are reserved. They MUST be set to zero

on transmission and MUST be ignored on reception.

6.2.2. Secure DIS

A Secure DIS message follows the format in Figure 8, where the base

format is the DIS message shown in Figure 14.

6.2.3. DIS Options

The DIS message MAY carry valid options.

Grounded (G):

This specification allows for the DIS message to carry the following

options:

0x00 Pad1

0x01 PadN

0x07 Solicited Information

6.3. DODAG Information Object (DIO)

The DODAG Information Object carries information that allows a node to

discover a RPL Instance, learn its configuration parameters, select a

DODAG parent set, and maintain the DODAG.

6.3.1. Format of the DIO Base Object

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | RPLInstanceID |Version Number | Rank |

 +-+

 |G|0| MOP | Prf | DTSN | Flags | Reserved |

 +-+

 | |

 + +

 | |

 + DODAGID +

 | |

 + +

 | |

 +-+

 | Option(s)...

 +-+-+-+-+-+-+-+-+

 +-----+---+

 | MOP | Meaning |

 +-----+---+

 | 0 | No downward routes maintained by RPL |

 | 1 | Non storing mode |

 | 2 | Storing without multicast support |

 | 3 | Storing with multicast support |

 | | |

 | | All other values are unassigned |

 +-----+---+

A value of 0 indicates that destination advertisement messages are

disabled and the DODAG maintains only upward routes

*

*

*

Mode of Operation (MOP):

DODAGPreference (Prf):

Version Number:

Rank:

RPLInstanceID:

Destination Advertisement Trigger Sequence Number (DTSN):

Flags:

Reserved:

DODAGID:

The Grounded (G) flag indicates whether the DODAG advertised can

satisfy the application-defined goal. If the flag is set, the DODAG

is grounded. If the flag is cleared, the DODAG is floating.

The Mode of Operation (MOP) field identifies

the mode of operation of the RPL Instance as administratively

provisioned at and distributed by the DODAG Root. All nodes who join

the DODAG must be able to honor the MOP in order to fully

participate as a router, or else they must only join as a leaf. MOP

is encoded as in the figure below:

A 3-bit unsigned integer that defines how

preferable the root of this DODAG is compared to other DODAG roots

within the instance. DAGPreference ranges from 0x00 (least

preferred) to 0x07 (most preferred). The default is 0 (least

preferred). Section 8.2 describes how DAGPreference affects DIO

processing.

8-bit unsigned integer set by the DODAG root to the

DODAGVersionNumber. Section 8.2 describes the rules for DODAG

Version numbers and how they affect DIO processing.

16-bit unsigned integer indicating the DODAG rank of the node

sending the DIO message. Section 8.2 describes how Rank is set and

how it affects DIO processing.

8-bit field set by the DODAG root that indicates which

RPL Instance the DODAG is part of.

8-bit

unsigned integer set by the node issuing the DIO message. The

Destination Advertisement Trigger Sequence Number (DTSN) flag is

used as part of the procedure to maintain downward routes. The

details of this process are described in Section 9.

8-bit unused field reserved for flags. The field MUST be

initialized to zero by the sender and MUST be ignored by the

receiver.

8-bit unused field. The field MUST be initialized to zero by

the sender and MUST be ignored by the receiver.

128-bit IPv6 address set by a DODAG root which uniquely

identifies a DODAG. The DODAGID MUST be a routable IPv6 address

belonging to the DODAG root.

Unassigned bits of the DIO Base are reserved. They MUST be set to zero

on transmission and MUST be ignored on reception.

6.3.2. Secure DIO

A Secure DIO message follows the format in Figure 8, where the base

format is the DIO message shown in Figure 15.

6.3.3. DIO Options

The DIO message MAY carry valid options.

This specification allows for the DIO message to carry the following

options:

0x00 Pad1

0x01 PadN

0x02 Metric Container

0x03 Routing Information

0x04 DODAG Configuration

0x08 Prefix Information

6.4. Destination Advertisement Object (DAO)

The Destination Advertisement Object (DAO) is used to propagate

destination information upwards along the DODAG. In storing mode the

DAO message is unicast by the child to the selected parent(s). In non-

storing mode the DAO message is unicast to the DODAG root. The DAO

message may optionally, upon explicit request or error, be acknowledged

by its destination with a Destination Advertisement Acknowledgement

(DAO-ACK) message back to the sender of the DAO.

6.4.1. Format of the DAO Base Object

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | RPLInstanceID |K|D| Flags | Reserved | DAOSequence |

 +-+

 | |

 + +

 | |

 + DODAGID* +

 | |

 + +

 | |

 +-+

 | Option(s)...

 +-+-+-+-+-+-+-+-+

*

*

*

*

*

*

RPLInstanceID:

K:

D:

Flags:

Reserved:

DAOSequence:

DODAGID (optional):

The '*' denotes that the DODAGID is not always present, as described

below.

8-bit field indicating the topology instance associated

with the DODAG, as learned from the DIO.

The 'K' flag indicates that the recipient is expected to send a

DAO-ACK back. (See Section 9.3

The 'D' flag indicates that the DODAGID field is present. This flag

MUST be set when a local RPLInstanceID is used.

The 6-bits remaining unused in the Flags field are reserved for

flags. The field MUST be initialized to zero by the sender and MUST

be ignored by the receiver.

8-bit unused field. The field MUST be initialized to zero by

the sender and MUST be ignored by the receiver.

Incremented at each unique DAO message from a node and

echoed in the DAO-ACK message.

128-bit unsigned integer set by a DODAG root which

uniquely identifies a DODAG. This field is only present when the 'D'

flag is set. This field is typically only present when a local

RPLInstanceID is in use, in order to identify the DODAGID that is

associated with the RPLInstanceID. When a global RPLInstanceID is in

use this field need not be present.

Unassigned bits of the DAO Base are reserved. They MUST be set to zero

on transmission and MUST be ignored on reception.

6.4.2. Secure DAO

A Secure DAO message follows the format in Figure 8, where the base

format is the DAO message shown in Figure 17.

6.4.3. DAO Options

The DAO message MAY carry valid options.

This specification allows for the DAO message to carry the following

options:

0x00 Pad1

0x01 PadN

0x05 RPL Target

0x06 Transit Information

*

*

*

*

RPLInstanceID:

D:

Flags:

DAOSequence:

0x09 RPL Target Descriptor

A special case of the DAO message, termed a No-Path, is used in storing

mode to clear downward routing state that has been provisioned through

DAO operation. The No-Path carries a Target option and an associated

Transit Information option with a lifetime of 0x00000000 to indicate a

loss of reachability to that Target.

6.5. Destination Advertisement Object Acknowledgement (DAO-ACK)

The DAO-ACK message is sent as a unicast packet by a DAO recipient (a

DAO parent or DODAG root) in response to a unicast DAO message.

6.5.1. Format of the DAO-ACK Base Object

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | RPLInstanceID |D| Reserved | DAOSequence | Status |

 +-+

 | |

 + +

 | |

 + DODAGID* +

 | |

 + +

 | |

 +-+

 | Option(s)...

 +-+-+-+-+-+-+-+-+

The '*' denotes that the DODAGID is not always present, as described

below.

8-bit field indicating the topology instance associated

with the DODAG, as learned from the DIO.

The 'D' flag indicates that the DODAGID field is present. This

would typically only be set when a local RPLInstanceID is used.

The 7-bits remaining unused in the Flags field are reserved for

flags. The field MUST be initialized to zero by the sender and MUST

be ignored by the receiver.

Incremented at each DAO message from a node, and echoed

in the DAO-ACK by the recipient. The DAOSequence is used to

correlate a DAO message and a DAO ACK message and is not to be

confused with the Transit Information option Path Sequence that is

associated to a given target Down the DODAG.

*

Status:

0:

1-127:

127-255:

DODAGID (optional):

Indicates the completion. Status 0 is defined as unqualified

acceptance in this specification. The remaining status values are

reserved as rejection codes. No rejection status codes are defined

in this specification, although status codes SHOULD be allocated

according to the following guidelines in future specifications:

Unqualified acceptance (i.e. the node receiving the DAO-ACK is

not rejected).

Not an outright rejection; the node sending the DAO-ACK is

willing to act as a Parent, but the receiving node is suggested

to find and use an alternate parent instead.

Rejection; the node sending the DAO-ACK is unwilling to

act as a Parent.

128-bit unsigned integer set by a DODAG root which

uniquely identifies a DODAG. This field is only present when the 'D'

flag is set. This field is typically only present when a local

RPLInstanceID is in use, in order to identify the DODAGID that is

associated with the RPLInstanceID. When a global RPLInstanceID is in

use this field need not be present.

Unassigned bits of the DAO-ACK Base are reserved. They MUST be set to

zero on transmission and MUST be ignored on reception.

6.5.2. Secure DAO-ACK

A Secure DAO-ACK message follows the format in Figure 8, where the base

format is the DAO-ACK message shown in Figure 18.

6.5.3. DAO-ACK Options

This specification does not define any options to be carried by the

DAO-ACK message.

6.6. Consistency Check (CC)

The CC message is used to check secure message counters and issue

challenge/responses. A CC message MUST be sent as a secured RPL

message.

6.6.1. Format of the CC Base Object

RPLInstanceID:

R:

Flags:

CC Nonce:

Destination Counter:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | RPLInstanceID |R| Flags | CC Nonce |

 +-+

 | |

 + +

 | |

 + DODAGID +

 | |

 + +

 | |

 +-+

 | Destination Counter |

 +-+

 | Option(s)...

 +-+-+-+-+-+-+-+-+

8-bit field indicating the topology instance associated

with the DODAG, as learned from the DIO.

The 'R' flag indicates whether the CC message is a response. A

message with the 'R' flag cleared is a request; a message with the

'R' flag set is a response.

The 7-bits remaining unused in the Flags field are reserved for

flags. The field MUST be initialized to zero by the sender and MUST

be ignored by the receiver.

16-bit unsigned integer set by a CC request. The

corresponding CC response includes the same CC nonce value as the

request.

32-bit unsigned integer value indicating the

sender's estimate of the destination's current security Counter

value. If the sender does not have an estimate, it SHOULD set the

Destination Counter field to zero.

Unassigned bits of the CC Base are reserved. They MUST be set to zero

on transmission and MUST be ignored on reception.

The Destination Counter value allows new or recovered nodes to

resynchronize through CC message exchanges. This is important to ensure

that a Counter value is not repeated for a given security key even in

the event of devices recovering from a failure that created a loss of

Counter state. For example, where a CC request or other RPL message is

received with an initialized Counter within the message security

section, the provision of the Incoming Counter within the CC response

message allows the requesting node to reset its Outgoing Counter to a

Option Type:

Option Length:

Option Data:

value greater than the last value received by the responding node; the

Incoming Counter will also be updated from the received CC response.

6.6.2. CC Options

This specification allows for the CC message to carry the following

options:

0x00 Pad1

0x01 PadN

6.7. RPL Control Message Options

6.7.1. RPL Control Message Option Generic Format

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

 | Option Type | Option Length | Option Data

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

RPL Control Message Options all follow this format:

8-bit identifier of the type of option. The Option Type

values are to be confirmed by IANA Section 20.4.

8-bit unsigned integer, representing the length in

octets of the option, not including the Option Type and Length

fields.

A variable length field that contains data specific to

the option.

When processing a RPL message containing an option for which the Option

Type value is not recognized by the receiver, the receiver MUST

silently ignore the unrecognized option and continue to process the

following option, correctly handling any remaining options in the

message.

RPL message options may have alignment requirements. Following the

convention in IPv6, options with alignment requirements are aligned in

a packet such that multi-octet values within the Option Data field of

each option fall on natural boundaries (i.e., fields of width n octets

are placed at an integer multiple of n octets from the start of the

header, for n = 1, 2, 4, or 8).

6.7.2. Pad1

The Pad1 option MAY be present in DIS, DIO, DAO, DAO-ACK, and CC

messages, and its format is as follows:

*

*

Option Type:

Option Length:

Option Data:

 0

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 | Type = 0 |

 +-+-+-+-+-+-+-+-+

The Pad1 option is used to insert a single octet of padding into the

message to enable options alignment. If more than one octet of padding

is required, the PadN option should be used rather than multiple Pad1

options.

NOTE! the format of the Pad1 option is a special case - it has neither

Option Length nor Option Data fields.

6.7.3. PadN

The PadN option MAY be present in DIS, DIO, DAO, DAO-ACK, and CC

messages, and its format is as follows:

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

 | Type = 1 | Option Length | 0x00 Padding...

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

The PadN option is used to insert two or more octets of padding into

the message to enable options alignment. PadN Option data MUST be

ignored by the receiver.

0x01 (to be confirmed by IANA)

For N octets of padding, where 2 <= N <= 7, the Option

Length field contains the value N-2. An Option Length of 0 indicates

a total padding of 2 octets. An Option Length of 5 indicates a total

padding of 7 octets, which is the maximum padding size allowed with

the PadN option.

For N (N > 1) octets of padding, the Option Data consists

of N-2 zero-valued octets.

6.7.4. Metric Container

The Metric Container option MAY be present in DIO or DAO messages, and

its format is as follows:

 0 1 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

 | Type = 2 | Option Length | Metric Data

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - -

Option Type:

Option Length:

Metric Data:

The Metric Container is used to report metrics along the DODAG. The

Metric Container may contain a number of discrete node, link, and

aggregate path metrics and constraints specified in [I-D.ietf-roll-

routing-metrics] as chosen by the implementer.

The Metric Container MAY appear more than once in the same RPL control

message, for example to accommodate a use case where the Metric Data is

longer than 256 bytes. More information is in [I-D.ietf-roll-routing-

metrics].

The processing and propagation of the Metric Container is governed by

implementation specific policy functions.

0x02 (to be confirmed by IANA)

The Option Length field contains the length in octets

of the Metric Data.

The order, content, and coding of the Metric Container

data is as specified in [I-D.ietf-roll-routing-metrics].

6.7.5. Route Information

The Route Information option MAY be present in DIO messages, and

carries the same information as the IPv6 Neighbor Discovery (ND) Route

Information option as defined in [RFC4191]. The root of a DODAG is

authoritative for setting that information and the information is

unchanged as propagated down the DODAG. A RPL router may trivially

transform it back into a ND option to advertise in its own RAs so a

node attached to the RPL router will end up using the DODAG for which

the root has the best preference for the destination of a packet. In

addition to the existing ND semantics, it is possible for an Objective

function to use this information to favor a DODAG which root is most

preferred for a specific destination. The format of the option is

modified slightly (Type, Length, Prefix) in order to be carried as a

RPL option as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 3 | Option Length | Prefix Length |Resvd|Prf|Resvd|

 +-+

 | Route Lifetime |

 +-+

 | |

 . Prefix (Variable Length) .

 . .

 +-+

The Route Information option is used to indicate that connectivity to

the specified destination prefix is available from the DODAG root.

Option Type:

Option Length:

Prefix Length

Prf:

Resvd:

Route Lifetime

Prefix

In the event that a RPL Control Message may need to specify

connectivity to more than one destination, the Route Information option

may be repeated.

[RFC4191] should be consulted as the authoritative reference with

respect to the Route Information option. The field descriptions are

transcribed here for convenience:

0x03 (to be confirmed by IANA)

Variable, length of the option in octets excluding the

Type and Length fields. Note that this length is expressed in units

of single-octets, unlike in IPv6 ND.

8-bit unsigned integer. The number of leading bits in

the Prefix that are valid. The value ranges from 0 to 128. The

Prefix field has the number of bytes inferred from the Option Length

field, that must be at least the Prefix Length. Note that in RPL

this means that the Prefix field may have lengths other than 0, 8,

or 16.

2-bit signed integer. The Route Preference indicates whether to

prefer the router associated with this prefix over others, when

multiple identical prefixes (for different routers) have been

received. If the Reserved (10) value is received, the Route

Information Option MUST be ignored. As per [RFC4191], the Reserved

(10) value MUST NOT be sent. ([RFC4191] restricts the Preference to

just three values to reinforce that it is not a metric).

Two 3-bit unused fields. They MUST be initialized to zero by

the sender and MUST be ignored by the receiver.

32-bit unsigned integer. The length of time in seconds

(relative to the time the packet is sent) that the prefix is valid

for route determination. A value of all one bits (0xffffffff)

represents infinity.

Variable-length field containing an IP address or a prefix of

an IPv6 address. The Prefix Length field contains the number of

valid leading bits in the prefix. The bits in the prefix after the

prefix length (if any) are reserved and MUST be initialized to zero

by the sender and ignored by the receiver. Note that in RPL this

field may have lengths other than 0, 8, or 16.

Unassigned bits of the Route Information option are reserved. They MUST

be set to zero on transmission and MUST be ignored on reception.

6.7.6. DODAG Configuration

The DODAG Configuration option MAY be present in DIO messages, and its

format is as follows:

Option Type:

Option Length:

Flags:

Authentication Enabled (A):

Path Control Size (PCS):

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 4 |Opt Length = 14| Flags |A| PCS | DIOIntDoubl. |

 +-+

 | DIOIntMin. | DIORedun. | MaxRankIncrease |

 +-+

 | MinHopRankIncrease | OCP |

 +-+

 | Reserved | Def. Lifetime | Lifetime Unit |

 +-+

The DODAG Configuration option is used to distribute configuration

information for DODAG Operation through the DODAG.

The information communicated in this option is generally static and

unchanging within the DODAG, therefore it is not necessary to include

in every DIO. This information is configured at the DODAG Root and

distributed throughout the DODAG with the DODAG Configuration Option.

Nodes other than the DODAG Root MUST NOT modify this information when

propagating the DODAG Configuration option. This option MAY be included

occasionally by the DODAG Root (as determined by the DODAG Root), and

MUST be included in response to a unicast request, e.g. a unicast DODAG

Information Solicitation (DIS) message.

0x04 (to be confirmed by IANA)

14

The 4-bits remaining unused in the Flags field are reserved for

flags. The field MUST be initialized to zero by the sender and MUST

be ignored by the receiver.

One bit flag describing the security mode

of the network. The bit describe whether a node must authenticate

with a key authority before joining the network as a router. If the

DIO is not a secure DIO, the 'A' bit MUST be zero.

3-bit unsigned integer used to configure the

number of bits that may be allocated to the Path Control field (see

Section 9.9). Note that when PCS is consulted to determine the width

of the Path Control field a value of 1 is added, i.e. a PCS value of

DIOIntervalDoublings:

DIOIntervalMin:

DIORedundancyConstant:

MaxRankIncrease:

MinHopRankInc

Default Lifetime:

Lifetime Unit:

Objective Code Point (OCP)

0 results in 1 active bit in the Path Control field. The default

value of PCS is DEFAULT_PATH_CONTROL_SIZE.

8-bit unsigned integer used to configure Imax of

the DIO trickle timer (see Section 8.3.1). The default value of

DIOIntervalDoublings is DEFAULT_DIO_INTERVAL_DOUBLINGS.

8-bit unsigned integer used to configure Imin of the

DIO trickle timer (see Section 8.3.1). The default value of

DIOIntervalMin is DEFAULT_DIO_INTERVAL_MIN.

8-bit unsigned integer used to configure k of

the DIO trickle timer (see Section 8.3.1). The default value of

DIORedundancyConstant is DEFAULT_DIO_REDUNDANCY_CONSTANT.

16-bit unsigned integer used to configure

DAGMaxRankIncrease, the allowable increase in rank in support of

local repair. If DAGMaxRankIncrease is 0 then this mechanism is

disabled.

16-bit unsigned integer used to configure

MinHopRankIncrease as described in Section 3.5.1. The default value

of MinHopRankInc is DEFAULT_MIN_HOP_RANK_INCREASE.

8-bit unsigned integer. This is the lifetime that is

used as default for all RPL routes. It is expressed in units of

Lifetime Units, e.g. the default lifetime in seconds is (Default

Lifetime) * (Lifetime Unit).

16-bit unsigned integer. Provides the unit in seconds

that is used to express route lifetimes in RPL. For very stable

networks, it can be hours to days.

16-bit unsigned integer. The OCP field

identifies the OF and is managed by the IANA.

6.7.7. RPL Target

The RPL Target option MAY be present in DAO messages, and its format is

as follows:

Option Type:

Option Length:

Flags:

Prefix Length:

Target Prefix:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 5 | Option Length | Flags | Prefix Length |

 +-+

 | |

 + +

 | Target Prefix (Variable Length) |

 . .

 . .

 +-+

The RPL Target Option is used to indicate a target IPv6 address,

prefix, or multicast group that is reachable or queried along the

DODAG. In a DAO, the RPL Target option indicates reachability.

A RPL Target Option May optionally be paired with a RPL Target

Descriptor Option (Figure 31) that qualifies the target.

A set of one or more Transit Information options (Section 6.7.8) MAY

directly follow a set of one or more Target option in a DAO message

(where each Target Option MAY be paired with a RPL Target Descriptor

Option as above). The structure of the DAO message, detailing how

Target options are used in conjunction with Transit Information

options, is further described in Section 9.4.

The RPL Target option may be repeated as necessary to indicate multiple

targets.

0x05 (to be confirmed by IANA)

Variable, length of the option in octets excluding the

Type and Length fields.

8-bit unused field reserved for flags. The field MUST be

initialized to zero by the sender and MUST be ignored by the

receiver.

8-bit unsigned integer. Number of valid leading bits in

the IPv6 Prefix.

Variable-length field identifying an IPv6 destination

address, prefix, or multicast group. The Prefix Length field

contains the number of valid leading bits in the prefix. The bits in

the prefix after the prefix length (if any) are reserved and MUST be

set to zero on transmission and MUST be ignored on receipt.

6.7.8. Transit Information

The Transit Information option MAY be present in DAO messages, and its

format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 6 | Option Length |E| Flags | Path Control |

 +-+

 | Path Sequence | Path Lifetime | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

 | |

 + +

 | |

 + Parent Address* +

 | |

 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The '*' denotes that the Parent Address is not always present, as

described below.

The Transit Information option is used for a node to indicate

attributes for a path to one or more destinations. The destinations are

indicated by one or more Target options that immediately precede the

Transit Information option(s).

The Transit Information option can be used for a node to indicate its

DODAG parents to an ancestor that is collecting DODAG routing

information, typically for the purpose of constructing source routes.

In the non-storing mode of operation this ancestor will be the DODAG

Root, and this option is carried by the DAO message. In the storing

mode of operation the Parent Address is not needed, since the DAO

message is sent directly to the parent. The option length is used to

determine whether the Parent Address is present or not.

A non-storing node that has more than one DAO parent MAY include a

Transit Information option for each DAO parent as part of the non-

storing destination advertisement operation. The node may distribute

the bits in the Path Control field among different groups of DAO

parents in order to signal a preference among parents. That preference

may influence the decision of the DODAG root when selecting among the

alternate parents/paths for constructing downward routes.

One or more Transit Information options MUST be preceded by one or more

RPL Target options. In this manner the RPL Target option indicates the

child node, and the Transit Information option(s) enumerate the DODAG

parents. The structure of the DAO message, further detailing how Target

options are used in conjunction with Transit Information options, is

further described in Section 9.4.

A typical non-storing node will use multiple Transit Information

options, and it will send the DAO message thus formed directly to the

root. A typical storing node will use one Transit Information option

with no parent field, and will send the DAO message thus formed, with

Option Type:

Option Length:

External (E):

Flags:

Path Control:

additional adjustments to Path Control as detailed later, to one or

multiple parents.

For example, in a non-storing mode of operation let Tgt(T) denote a

Target option for a target T. Let Trnst(P) denote a Transit Information

option that contains a parent address P. Consider the case of a non-

storing node N that advertises the self-owned targets N1 and N2 and has

parents P1, P2, and P3. In that case the DAO message would be expected

to contain the sequence ((Tgt(N1), Tgt(N2)), (Trnst(P1), Trnst(P2),

Trnst(P3))), such that the group of Target options {N1, N2} are

described by the Transit Information options as having the parents {P1,

P2, P3}. The non-storing node would then address that DAO message

directly to the DODAG root, and forward that DAO message through one of

the DODAG parents P1, P2, or P3.

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |PC1|PC2|PC3|PC4|

 +-+-+-+-+-+-+-+-+

0x06 (to be confirmed by IANA)

Variable, depending on whether or not Parent Address is

present.

1-bit flag. The 'E' flag is set to indicate that the

parent router redistributes external targets into the RPL network.

An external target is a target that has been learned through an

alternate protocol. The external targets are listed in the target

options that immediately precede the Transit Information option. An

external target is not expected to support RPL messages and options.

The 7-bits remaining unused in the Flags field are reserved for

flags. The field MUST be initialized to zero by the sender and MUST

be ignored by the receiver.

8-bit bitfield. The Path Control field limits the number

of DAO-Parents to which a DAO message advertising connectivity to a

specific destination may be sent, as well as providing some

indication of relative preference. The limit provides some bound on

overall DAO message fan-out in the LLN. The assignment and ordering

of the bits in the path control also serves to communicate

preference. Not all of these bits may be enabled as according to the

PCS in the DODAG Configuration. The Path Control field is divided

into four subfields which contain two bits each: PC1, PC2, PC3, and

PC4, as illustrated in Figure 28. The subfields are ordered by

preference, with PC1 being the most preferred and PC4 being the

least preferred. Within a subfield there is no order of preference.

By grouping the parents (as in ECMP) and ordering them, the parents

Path Sequence:

Path Lifetime:

Parent Address (optional):

may be associated with specific bits in the Path Control field in a

way that communicates preference.

8-bit unsigned integer. When a RPL Target option is

issued by the node that owns the Target Prefix (i.e. in a DAO

message), that node sets the Path Sequence and increments the Path

Sequence each time it issues a RPL Target option with updated

information.

8-bit unsigned integer. The length of time in Lifetime

Units (obtained from the Configuration option) that the prefix is

valid for route determination. The period starts when a new Path

Sequence is seen. A value of all one bits (0xFF) represents

infinity. A value of all zero bits (0x00) indicates a loss of

reachability. A DAO message that contains a Transit Information

option with a Path Lifetime of 0x00 for a Target is referred as a

No-Path (for that Target) in this document.

IPv6 Address of the DODAG Parent of the

node originally issuing the Transit Information Option. This field

may not be present, as according to the DODAG Mode of Operation

(storing or non-storing) and indicated by the Transit Information

option length.

Unassigned bits of the Transit Information option are reserved. They

MUST be set to zero on transmission and MUST be ignored on reception.

6.7.9. Solicited Information

The Solicited Information option MAY be present in DIS messages, and

its format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 7 |Opt Length = 19| RPLInstanceID |V|I|D| Flags |

 +-+

 | |

 + +

 | |

 + DODAGID +

 | |

 + +

 | |

 +-+

 |Version Number |

 +-+-+-+-+-+-+-+-+

Option Type:

Option Length:

V:

I:

D:

Flags:

Version Number:

RPLInstanceID:

DODAGID:

The Solicited Information option is used for a node to request DIO

messages from a subset of neighboring nodes. The Solicited Information

option may specify a number of predicate criteria to be matched by a

receiving node. This is used by the requester to limit the number of

replies from "non-interesting" nodes. These predicates affect whether a

node resets its DIO trickle timer, as described in Section 8.3.

The Solicited Information option contains flags that indicate which

predicates a node should check when deciding whether to reset its

Trickle timer. A node resets its Trickle timer when all predicates are

true. If a flag is set, then the RPL node MUST check the associated

predicate. If a flag is cleared, then the RPL node MUST NOT check the

associated predicate. (If a flag is cleared, the RPL node assumes that

the associated predicate is true).

0x07 (to be confirmed by IANA)

19

The V flag is the Version predicate. The Version predicate is true

if the receiver's DODAGVersionNumber matches the requested Version

Number. If the V flag is cleared then the Version field is not valid

and the Version field MUST be set to zero on transmission and

ignored upon receipt.

The I flag is the InstanceID predicate. The InstanceID predicate is

true when the RPL node's current RPLInstanceID matches the requested

RPLInstanceID. If the I flag is cleared then the RPLInstanceID field

is not valid and the RPLInstanceID field MUST be set to zero on

transmission and ignored upon receipt.

The D flag is the DODAGID predicate. The DODAGID predicate is true

if the RPL node's parent set has the same DODAGID as the DODAGID

field. If the D flag is cleared then the DODAGID field is not valid

and the DODAGID field MUST be set to zero on transmission and

ignored upon receipt.

The 5-bits remaining unused in the Flags field are reserved for

flags. The field MUST be initialized to zero by the sender and MUST

be ignored by the receiver.

8-bit unsigned integer containing the value of

DODAGVersionNumber that is being solicited when valid.

8-bit unsigned integer containing the RPLInstanceID

that is being solicited when valid.

128-bit unsigned integer containing the DODAGID that is being

solicited when valid.

Option Type:

Option Length:

Unassigned bits of the Solicited Information option are reserved. They

MUST be set to zero on transmission and MUST be ignored on reception.

6.7.10. Prefix Information

The Prefix Information option MAY be present in DIO messages, and

carries the information that is specified for the IPv6 ND Prefix

Information Option in [RFC4861], [RFC4862] and [RFC3775] for use by RPL

nodes and IPv6 hosts. In particular, a RPL node may use this option for

the purpose of State-Less Address Auto-Configuration (SLAAC) from a

prefix advertised by a parent as specified in [RFC4862], and advertise

its own address as specified in [RFC3775]. The root of a DODAG is

authoritative for setting that information. The information is

propagated down the DODAG unchanged, with the exception that a RPL

router may overwrite the Interface ID if the 'R' flag is set to

indicate its full address in the PIO The format of the option is

modified (Type, Length, Prefix) in order to be carried as a RPL option

as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 8 |Opt Length = 30| Prefix Length |L|A|R|Reserved1|

 +-+

 | Valid Lifetime |

 +-+

 | Preferred Lifetime |

 +-+

 | Reserved2 |

 +-+

 | |

 + +

 | |

 + Prefix +

 | |

 + +

 | |

 +-+

The Prefix Information option may be used to distribute the prefix in

use inside the DODAG, e.g. for address autoconfiguration.

[RFC4861] and [RFC3775] should be consulted as the authoritative

reference with respect to the Prefix Information option. The field

descriptions are transcribed here for convenience:

0x08 (to be confirmed by IANA)

30. Note that this length is expressed in units of

single-octets, unlike in IPv6 ND.

Prefix Length

L

A

R

Reserved1

Valid Lifetime

Preferred Lifetime

8-bit unsigned integer. The number of leading bits in

the Prefix that are valid. The value ranges from 0 to 128. The

prefix length field provides necessary information for on-link

determination (when combined with the L flag in the prefix

information option). It also assists with address autoconfiguration

as specified in [RFC4862], for which there may be more restrictions

on the prefix length.

1-bit on-link flag. When set, indicates that this prefix can be used

for on-link determination. When not set the advertisement makes no

statement about on-link or off-link properties of the prefix. In

other words, if the L flag is not set a RPL node MUST NOT conclude

that an address derived from the prefix is off-link. That is, it

MUST NOT update a previous indication that the address is on-link. A

RPL node acting as a router MUST NOT propagate a PIO with the L flag

set. A RPL node acting as a router MAY propagate a PIO with the L

flag not set.

1-bit autonomous address-configuration flag. When set indicates that

this prefix can be used for stateless address configuration as

specified in [RFC4862]. When both protocols (ND RAs and RPL DIOs)

are used to carry PIOs on the same link, it is possible to use

either one for SLAAC by a RPL node. It is also possible to make

either protocol ineligible for SLAAC operation by forcing the A flag

to 0 for PIOs carried in that protocol.

1-bit Router address flag. When set, indicates that the Prefix field

contains a complete IPv6 address assigned to the sending router that

can be used as parent in a target option. The indicated prefix is

the first Prefix Length bits of the Prefix field. The router IPv6

address has the same scope and conforms to the same lifetime values

as the advertised prefix. This use of the Prefix field is compatible

with its use in advertising the prefix itself, since Prefix

Advertisement uses only the leading bits. Interpretation of this

flag bit is thus independent of the processing required for the On-

Link (L) and Autonomous Address-Configuration (A) flag bits.

5-bit unused field. It MUST be initialized to zero by the

sender and MUST be ignored by the receiver.

32-bit unsigned integer. The length of time in seconds

(relative to the time the packet is sent) that the prefix is valid

for the purpose of on-link determination. A value of all one bits

(0xffffffff) represents infinity. The Valid Lifetime is also used by

[RFC4862].

32-bit unsigned integer. The length of time in

seconds (relative to the time the packet is sent) that addresses

Reserved2

Prefix

Option Type:

Option Length:

Descriptor:

generated from the prefix via stateless address autoconfiguration

remain preferred [RFC4862]. A value of all one bits (0xffffffff)

represents infinity. See [RFC4862]. Note that the value of this

field MUST NOT exceed the Valid Lifetime field to avoid preferring

addresses that are no longer valid.

This field is unused. It MUST be initialized to zero by the

sender and MUST be ignored by the receiver.

An IPv6 address or a prefix of an IPv6 address. The Prefix

Length field contains the number of valid leading bits in the

prefix. The bits in the prefix after the prefix length are reserved

and MUST be initialized to zero by the sender and ignored by the

receiver. A router SHOULD NOT send a prefix option for the link-

local prefix and a host SHOULD ignore such a prefix option. A non-

storing node SHOULD refrain from advertising a prefix till it owns

an address of that prefix, and then it SHOULD advertise its full

address in this field, with the 'R' flag set. The children of a node

that so advertises a full address with the 'R' flag set may then use

that address to determine the content of the Parent Address field of

the Transit Information Option.

Unassigned bits of the Prefix Information option are reserved. They

MUST be set to zero on transmission and MUST be ignored on reception.

6.7.11. RPL Target Descriptor

The RPL Target option MAY be immediately followed by one opaque

descriptor that qualifies that specific target.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 9 |Opt Length = 4 | Descriptor

 +-+

 Descriptor (cont.) |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The RPL Target Descriptor Option is used to qualify a target, something

that is sometimes called tagging.

There can be at most one descriptor per target. The descriptor is set

by the node that injects the target in the RPL network. It MUST be

copied but not modified by routers that propagate the target Up the

DODAG in DAO messages.

0x09 (to be confirmed by IANA)

4

32-bit unsigned integer. Opaque.

DODAGVersionNumber:

DAOSequence:

Path Sequence:

7. Sequence Counters

This section describes the general scheme for bootstrap and operation

of sequence counters in RPL, such as the DODAGVersionNumber in the DIO

message, the DAOSequence in the DAO message, and the Path Sequence in

the Transit Information option.

7.1. Sequence Counter Overview

This specification utilizes three different sequence numbers to

validate the freshness and the synchronization of protocol information:

This sequence counter is present in the DIO base

to indicate the Version of the DODAG being formed. The

DODAGVersionNumber is monotonically incremented by the root each

time the root decides to form a new Version of the DODAG in order to

revalidate the integrity and allow a global repairs to occur. The

DODAGVersionNumber is propagated unchanged Down the DODAG as routers

join the new DODAG Version. The DODAGVersionNumber is globally

significant in a DODAG and indicates the Version of the DODAG that a

router is operating in. An older (lesser) value indicates that the

originating router has not migrated to the new DODAG Version and can

not be used as a parent once the receiving node has migrated to the

newer DODAG Version.

This sequence counter is present in the DAO base to

correlate a DAO message and a DAO ACK message. The DAOSequence

number is locally significant to the node that issues a DAO message

for its own consumption to detect the loss of a DAO message and

enable retries.

This sequence counter is present in the Transit

Information option in a DAO message. The purpose of this counter is

to differentiate a movement where a newer route supersedes a stale

one from a route redundancy scenario where multiple routes exist in

parallel for a same target. The Path Sequence is globally

significant in a DODAG and indicates the freshness of the route to

the associated target. An older (lesser) value received from an

originating router indicates that the originating router holds stale

routing states and the originating router should not be considered

anymore as a potential next-hop for the target. The Path Sequence is

computed by the node that advertises the target, that is the target

itself or a router that advertises a target on behalf of a host, and

is unchanged as the DAO content is propagated towards the root by

parent routers. If a host does not pass a counter to its router,

then the router is in charge of computing the Path Sequence on

behalf of the host and the host can only register to one router for

that purpose. If a DAO message containing a same target is issued to

multiple parents at a given point of time for the purpose of route

redundancy, then the Path Sequence is the same in all the DAO

messages for that same target.

7.2. Sequence Counter Operation

RPL sequence counters are subdivided in a 'lollipop' fashion

([Perlman83]), where the values from 128 and greater are used as a

linear sequence to indicate a restart and bootstrap the counter, and

the values less than or equal to 127 used as a circular sequence number

space of size 128 as in [RFC1982]. Consideration is given to the mode

of operation when transitioning from the linear region to the circular

region. Finally, when operating in the circular region, if sequence

numbers are detected to be too far apart then they are not comparable,

as detailed below.

A window of comparison, SEQUENCE_WINDOW = 16, is configured based on a

value of 2^N, where N is defined to be 4 in this specification.

For a given sequence counter,

The sequence counter SHOULD be initialized to an implementation

defined value which is 128 or greater prior to use. A

recommended value is 240 (256 - SEQUENCE_WINDOW).

When a sequence counter increment would cause the sequence

counter to increment beyond its maximum value, the sequence

counter MUST wrap back to zero. When incrementing a sequence

counter greater than or equal to 128, the maximum value is 255.

When incrementing a sequence counter less than 128, the maximum

value is 127.

When comparing two sequence counters, the following rules MUST

be applied:

When a first sequence counter A is in the interval

[128..255] and a second sequence counter B is in [0..127]:

If (256 + B - A) is less than or equal to

SEQUENCE_WINDOW, then B is greater than A, A is less

than B, and the two are not equal.

If (256 + B - A) is greater than SEQUENCE_WINDOW,

then A is greater than B, B is less than A, and the

two are not equal.

For example, if A is 240, and B is 5, then (256 + 5 - 240)

is 21. 21 is greater than SEQUENCE_WINDOW (16), thus 240

is greater than 5. As another example, if A is 250 and B

is 5, then (256 + 5 - 250) is 11. 11 is less than

SEQUENCE_WINDOW (16), thus 250 is less than 5.

1.

2.

3.

1.

1.

2.

DODAGID

RIO Prefix

In the case where both sequence counters to be compared

are less than or equal to 127, and in the case where both

sequence counters to be compared are greater than or equal

to 128:

If the absolute magnitude of difference between the

two sequence counters is less than or equal to

SEQUENCE_WINDOW, then a comparison as described in

[RFC1982] is used to determine the relationships

greater than, less than, and equal.

If the absolute magnitude of difference of the two

sequence counters is greater than SEQUENCE_WINDOW,

then a desynchronization has occurred and the two

sequence numbers are not comparable.

If two sequence numbers are determined to be not comparable,

i.e. the results of the comparison are not defined, then a node

should consider the comparison as if it has evaluated in such a

way so as to give precedence to the sequence number that has

most recently been observed to increment. Failing this, the

node should consider the comparison as if it has evaluated in

such a way so as to minimize the resulting changes to its own

state.

8. Upward Routes

This section describes how RPL discovers and maintains upward routes.

It describes the use of DODAG Information Objects (DIOs), the messages

used to discover and maintain these routes. It specifies how RPL

generates and responds to DIOs. It also describes DODAG Information

Solicitation (DIS) messages, which are used to trigger DIO

transmissions.

As mentioned in Section 3.2.8, nodes that decide to join a DODAG MUST

provision at least one DODAG parent as a default route for the

associated instance. This default route enables a packet to be

forwarded upwards until it eventually hits a common ancestor from which

it will be routed downwards to the destination. If the destination is

not in the DODAG, then the DODAG root may be able to forward the packet

using connectivity to the outside of the DODAG; if it can not forward

the packet outside then the DODAG root has to drop it.

A DIO message can also transport explicit routing information:

The DODAGID is a Global or Unique Local IPv6 Address of the

root. A node that joins a DODAG SHOULD provision a host route via a

DODAG parent to the address used by the root as DODAGID.

The root MAY place one or more Route Information options in

a DIO message. The RIO is used to advertise an external route that

2.

1.

2.

4.

is reachable via the root, associated with a preference, as

presented in Section 6.7.5, which incorporates the RIO from

[RFC4191]. It is interpreted as a capability of the root as opposed

to a routing advertisement and it MUST NOT be redistributed in

another routing protocol though it SHOULD be used by an ingress RPL

router to select a DODAG when a packet is injected in a RPL domain

from a node attached to that RPL router. An Objective Function MAY

use the routes advertised in RIO or the preference for those routes

in order to favor a DODAG versus another one for a same instance.

8.1. DIO Base Rules

For the following DIO Base fields, a node that is not a DODAG

root MUST advertise the same values as its preferred DODAG

parent (defined in Section 8.2.1). In this way these values

will propagate Down the DODAG unchanged and advertised by every

node that has a route to that DODAG root. These fields are:

Grounded (G)

Mode of Operation (MOP)

DAGPreference (Prf)

Version

RPLInstanceID

DODAGID

A node MAY update the following fields at each hop:

Rank

DTSN

The DODAGID field each root sets MUST be unique within the RPL

Instance and MUST be a routable IPv6 address belonging to the

root.

8.2. Upward Route Discovery and Maintenance

Upward route discovery allows a node to join a DODAG by discovering

neighbors that are members of the DODAG of interest and identifying a

set of parents. The exact policies for selecting neighbors and parents

is implementation-dependent and driven by the OF. This section

specifies the set of rules those policies must follow for

interoperability.

1.

*

*

*

*

*

*

2.

*

*

3.

8.2.1. Neighbors and Parents within a DODAG Version

RPL's upward route discovery algorithms and processing are in terms of

three logical sets of link-local nodes. First, the candidate neighbor

set is a subset of the nodes that can be reached via link-local

multicast. The selection of this set is implementation-dependent and

OF-dependent. Second, the parent set is a restricted subset of the

candidate neighbor set. Finally, the preferred parent is a member of

the parent set that is the preferred next hop in upward routes. The

preferred parent is conceptually a single parent although it may be a

set of multiple parents if those parents are equally preferred and have

identical rank.

More precisely:

The DODAG parent set MUST be a subset of the candidate neighbor

set.

A DODAG root MUST have a DODAG parent set of size zero.

A node that is not a DODAG root MAY maintain a DODAG parent set

of size greater than or equal to one.

A node's preferred DODAG parent MUST be a member of its DODAG

parent set.

A node's rank MUST be greater than all elements of its DODAG

parent set.

When Neighbor Unreachability Detection (NUD) [RFC4861], or an

equivalent mechanism, determines that a neighbor is no longer

reachable, a RPL node MUST NOT consider this node in the

candidate neighbor set when calculating and advertising routes

until it determines that it is again reachable. Routes through

an unreachable neighbor MUST be removed from the routing table.

These rules ensure that there is a consistent partial order on nodes

within the DODAG. As long as node ranks do not change, following the

above rules ensures that every node's route to a DODAG root is loop-

free, as rank decreases on each hop to the root.

The OF can guide candidate neighbor set and parent set selection, as

discussed in [I-D.ietf-roll-of0].

8.2.2. Neighbors and Parents across DODAG Versions

The above rules govern a single DODAG Version. The rules in this

section define how RPL operates when there are multiple DODAG Versions:

1.

2.

3.

4.

5.

6.

8.2.2.1. DODAG Version

The tuple (RPLInstanceID, DODAGID, DODAGVersionNumber) uniquely

defines a DODAG Version. Every element of a node's DODAG parent

set, as conveyed by the last heard DIO message from each DODAG

parent, MUST belong to the same DODAG Version. Elements of a

node's candidate neighbor set MAY belong to different DODAG

Versions.

A node is a member of a DODAG Version if every element of its

DODAG parent set belongs to that DODAG Version, or if that node

is the root of the corresponding DODAG.

A node MUST NOT send DIOs for DODAG Versions of which it is not

a member.

DODAG roots MAY increment the DODAGVersionNumber that they

advertise and thus move to a new DODAG Version. When a DODAG

root increments its DODAGVersionNumber, it MUST follow the

conventions of Serial Number Arithmetic as described in Section

7. Events triggering the increment of the DODAGVersionNumber

are described later in this section and in Section 18.

Within a given DODAG, a node that is a not a root MUST NOT

advertise a DODAGVersionNumber higher than the highest

DODAGVersionNumber it has heard. Higher is defined as the

greater-than operator in Section 7.

Once a node has advertised a DODAG Version by sending a DIO, it

MUST NOT be a member of a previous DODAG Version of the same

DODAG (i.e. with the same RPLInstanceID, the same DODAGID, and

a lower DODAGVersionNumber). Lower is defined as the less-than

operator in Section 7.

When the DODAG parent set becomes empty on a node that is not a root,

(i.e. the last parent has been removed, causing the node to no longer

be associated with that DODAG), then the DODAG information should not

be suppressed until after the expiration of an implementation-specific

local timer. During the interval prior to suppression of the 'old'

DODAG state, the node will be able to observe if the DODAGVersionNumber

has been incremented should any new parents appear. This will help

protect against the possibility of loops that may occur if that node

were to inadvertently rejoin the old DODAG Version in its own prior

sub-DODAG.

As the DODAGVersionNumber is incremented, a new DODAG Version spreads

outward from the DODAG root. A parent that advertises the new

DODAGVersionNumber cannot belong to the sub-DODAG of a node advertising

an older DODAGVersionNumber. Therefore a node can safely add a parent

of any Rank with a newer DODAGVersionNumber without forming a loop.

1.

2.

3.

4.

5.

6.

For example, suppose that a node has left a DODAG with

DODAGVersionNumber N. Suppose that node had a sub-DODAG, and did

attempt to poison that sub-DODAG by advertising a rank of

INFINITE_RANK, but those advertisements may have become lost in the

LLN. Then, if the node did observe a candidate neighbor advertising a

position in that original DODAG at DODAGVersionNumber N, that candidate

neighbor could possibly have been in the node's former sub-DODAG and

there is a possible case where to add that candidate neighbor as a

parent could cause a loop. If that candidate neighbor in this case is

observed to advertise a DODAGVersionNumber N+1, then that candidate

neighbor is certain to be safe, since it is certain not to be in that

original node's sub-DODAG as it has been able to increment the

DODAGVersionNumber by hearing from the DODAG root while that original

node was detached. It is for this reason that it is useful for the

detached node to remember the original DODAG information, including the

DODAGVersionNumber N.

Exactly when a DODAG Root increments the DODAGVersionNumber is

implementation dependent and out of scope for this specification.

Examples include incrementing the DODAGVersionNumber periodically, upon

administrative intervention, or on application-level detection of lost

connectivity or DODAG inefficiency.

After a node transitions to and advertises a new DODAG Version, the

rules above make it unable to advertise the previous DODAG Version

(prior DODAGVersionNumber) once it has committed to advertising the new

DODAG Version.

8.2.2.2. DODAG Roots

A DODAG root without possibility to satisfy the application-

defined goal MUST NOT set the Grounded bit.

A DODAG root MUST advertise a rank of ROOT_RANK.

A node whose DODAG parent set is empty MAY become the DODAG

Root of a floating DODAG. It MAY also set its DAGPreference

such that it is less preferred.

In a deployment that uses non-RPL links to federate a number of LLN

roots, it is possible to run RPL over those non-RPL links and use one

router as a "backbone root". The backbone root is the virtual root of

the DODAG, and exposes a rank of BASE_RANK over the backbone. All the

LLN roots that are parented to that backbone root, including the

backbone root if it also serves as LLN root itself, expose a rank of

ROOT_RANK to the LLN. These virtual roots are part of the same DODAG

and advertise the same DODAGID. They coordinate DODAGVersionNumbers and

other DODAG parameters with the virtual root over the backbone. The

method of coordination is out of scope for this specification (to be

defined in future companion specifications).

1.

2.

3.

8.2.2.3. DODAG Selection

The objective function and the set of advertised routing metrics and

constraints of a DAG determines how a node selects its neighbor set,

parent set, and preferred parents. This selection implicitly also

determines the DODAG within a DAG. Such selection can include

administrative preference (Prf) as well as metrics or other

considerations.

If a node has the option to join a more preferred DODAG while still

meeting other optimization objectives, then the node will generally

seek to join the more preferred DODAG as determined by the OF. All else

being equal, it is left to the implementation to determine which DODAG

is most preferred (since, as a reminder, a node must only join one

DODAG per RPL Instance).

8.2.2.4. Rank and Movement within a DODAG Version

A node MUST NOT advertise a Rank less than or equal to any

member of its parent set within the DODAG Version.

A node MAY advertise a Rank lower than its prior advertisement

within the DODAG Version.

Let L be the lowest rank within a DODAG Version that a given

node has advertised. Within the same DODAG Version, that node

MUST NOT advertise an effective rank higher than L +

DAGMaxRankIncrease. INFINITE_RANK is an exception to this rule:

a node MAY advertise an INFINITE_RANK within a DODAG version

without restriction. If a node's Rank were to be higher than

allowed by L + DAGMaxRankIncrease, when it advertises Rank it

MUST advertise its Rank as INFINITE_RANK.

A node MAY, at any time, choose to join a different DODAG

within a RPL Instance. Such a join has no rank restrictions,

unless that different DODAG is a DODAG Version of which this

node has previously been a member, in which case the rule of

the previous bullet (3) must be observed. Until a node

transmits a DIO indicating its new DODAG membership, it MUST

forward packets along the previous DODAG.

A node MAY, at any time after hearing the next

DODAGVersionNumber advertised from suitable DODAG parents,

choose to migrate to the next DODAG Version within the DODAG.

Conceptually, an implementation is maintaining a DODAG parent set

within the DODAG Version. Movement entails changes to the DODAG parent

set. Moving Up does not present the risk to create a loop but moving

Down might, so that operation is subject to additional constraints.

When a node migrates to the next DODAG Version, the DODAG parent set

needs to be rebuilt for the new Version. An implementation could defer

1.

2.

3.

4.

5.

to migrate for some reasonable amount of time, to see if some other

neighbors with potentially better metrics but higher rank announce

themselves. Similarly, when a node jumps into a new DODAG it needs to

construct a new DODAG parent set for this new DODAG.

If a node needs to move Down a DODAG that it is attached to, increasing

its Rank, then it MAY poison its routes and delay before moving as

described in Section 8.2.2.5.

A node is allowed to join any DODAG Version that it has never been a

prior member of without any restrictions, but if the node has been a

prior member of the DODAG Version then it must continue to observe the

rule that it may not advertise a rank higher than L+DAGMaxRankIncrease

at any point in the life of the DODAG Version. This rule must be

observed so as not to create a loophole that would allow the node to

effectively increment its rank all the way to INFINITE_RANK, which may

have impact on other nodes and create a resource-wasting count-to-

infinity scenario.

8.2.2.5. Poisoning

A node poisons routes by advertising a Rank of INFINITE_RANK.

A node MUST NOT have any nodes with a Rank of INFINITE_RANK in

its parent set.

Although an implementation may advertise INFINITE_RANK for the purposes

of poisoning, doing so is not the same as setting Rank to

INFINITE_RANK. For example, a node may continue to send data packets

whose RPL Packet Information includes a Rank that is not INFINITE_RANK,

yet still advertise INFINITE_RANK in its DIOs.

When a (former) parent is observed to advertise a Rank of

INFINITE_RANK, that (former) parent has detached from the DODAG and is

no longer able to act as a parent, nor is there any way that another

node may be considered to have a Rank greater-than INFINITE_RANK.

Therefore that (former) parent cannot act as a parent any longer and is

removed from the parent set.

8.2.2.6. Detaching

A node unable to stay connected to a DODAG within a given DODAG

Version, i.e. that cannot retain non-empty parent set without

violating the rules of this specification, MAY detach from this

DODAG Version. A node that detaches becomes root of its own

floating DODAG and SHOULD immediately advertise this new

situation in a DIO as an alternate to poisoning.

8.2.2.7. Following a Parent

If a node receives a DIO from one of its DODAG parents,

indicating that the parent has left the DODAG, that node SHOULD

1.

2.

1.

1.

stay in its current DODAG through an alternative DODAG parent,

if possible. It MAY follow the leaving parent.

A DODAG parent may have moved, migrated to the next DODAG Version, or

jumped to a different DODAG. A node ought to give some preference to

remaining in the current DODAG, if possible via an alternate parent,

but ought to follow the parent if there are no other options.

8.2.3. DIO Message Communication

When an DIO message is received, the receiving node must first

determine whether or not the DIO message should be accepted for further

processing, and subsequently present the DIO message for further

processing if eligible.

If the DIO message is malformed, then the DIO message is not

eligible for further processing and a node MUST silently

discard it. (See Section 18 for error logging).

If the sender of the DIO message is a member of the candidate

neighbor set and the DIO message is not malformed, the node

MUST process the DIO.

8.2.3.1. DIO Message Processing

As DIO messages are received from candidate neighbors, the neighbors

may be promoted to DODAG parents by following the rules of DODAG

discovery as described in Section 8.2. When a node places a neighbor

into the DODAG parent set, the node becomes attached to the DODAG

through the new DODAG parent node.

The most preferred parent should be used to restrict which other nodes

may become DODAG parents. Some nodes in the DODAG parent set may be of

a rank less than or equal to the most preferred DODAG parent. (This

case may occur, for example, if an energy constrained device is at a

lesser rank but should be avoided as per an optimization objective,

resulting in a more preferred parent at a greater rank).

8.3. DIO Transmission

RPL nodes transmit DIOs using a Trickle timer ([I-D.ietf-roll-

trickle]). A DIO from a sender with a lesser DAGRank that causes no

changes to the recipient's parent set, preferred parent, or Rank SHOULD

be considered consistent with respect to the Trickle timer.

The following packets and events MUST be considered inconsistencies

with respect to the Trickle timer, and cause the Trickle timer to

reset:

When a node detects an inconsistency when forwarding a packet, as

detailed in Section 11.2.

1.

2.

*

Imin:

Imax:

k:

When a node receives a multicast DIS message without a Solicited

Information option, unless a DIS flag restricts this behavior.

When a node receives a multicast DIS with a Solicited Information

option and the node matches all of the predicates in the

Solicited Information option, unless a DIS flag restricts this

behavior.

When a node joins a new DODAG Version (e.g. by updating its

DODAGVersionNumber, joining a new RPL Instance, etc.).

Note that this list is not exhaustive, and an implementation MAY

consider other messages or events to be inconsistencies.

A node SHOULD NOT reset its DIO trickle timer in response to unicast

DIS messages. When a node receives a unicast DIS without a Solicited

Information option, it MUST unicast a DIO to the sender in response.

This DIO MUST include a DODAG Configuration option. When a node

receives a unicast DIS message with a Solicited Information option and

matches the predicates of that Solicited Information option, it MUST

unicast a DIO to the sender in response. This unicast DIO MUST include

a DODAG Configuration Option. Thus a node MAY transmit a unicast DIS

message to a potential DODAG parent in order to probe for DODAG

Configuration and other parameters.

8.3.1. Trickle Parameters

The configuration parameters of the trickle timer are specified as

follows:

learned from the DIO message as (2^DIOIntervalMin)ms. The

default value of DIOIntervalMin is DEFAULT_DIO_INTERVAL_MIN.

learned from the DIO message as DIOIntervalDoublings. The

default value of DIOIntervalDoublings is

DEFAULT_DIO_INTERVAL_DOUBLINGS.

learned from the DIO message as DIORedundancyConstant. The default

value of DIORedundancyConstant is DEFAULT_DIO_REDUNDANCY_CONSTANT.

In RPL, when k has the value of 0x00 this is to be treated as a

redundancy constant of infinity in RPL, i.e. Trickle never

suppresses messages.

8.4. DODAG Selection

The DODAG selection is implementation and OF dependent. In order to

limit erratic movements, and all metrics being equal, nodes SHOULD keep

their previous selection. Also, nodes SHOULD provide a means to filter

out a parent whose availability is detected as fluctuating, at least

when more stable choices are available.

*

*

*

When connection to a grounded DODAG is not possible or preferable for

security or other reasons, scattered DODAGs MAY aggregate as much as

possible into larger DODAGs in order to allow connectivity within the

LLN.

A node SHOULD verify that bidirectional connectivity and adequate link

quality is available with a candidate neighbor before it considers that

candidate as a DODAG parent.

8.5. Operation as a Leaf Node

In some cases a RPL node may attach to a DODAG as a leaf node only. One

example of such a case is when a node does not understand or does not

support (policy) the RPL Instance's OF or advertised metric/constraint.

As specified in Section 18.6 related to policy function, the node may

either join the DODAG as a leaf node or may not join the DODAG. As

mentioned in Section 18.5, it is then recommended to log a fault.

A leaf node does not extend DODAG connectivity but in some cases the

leaf node may still need to transmit DIOs on occasion, in particular

when the leaf node may not have always been acting as a leaf node and

an inconsistency is detected.

A node operating as a leaf node must obey the following rules:

It MUST NOT transmit DIOs containing the DAG Metric Container.

Its DIOs MUST advertise a DAGRank of INFINITE_RANK.

It MAY suppress DIO transmission, unless the DIO transmission

has been triggered due to detection of inconsistency when a

packet is being forwarded or in response to a unicast DIS

message, in which case the DIO transmission MUST NOT be

suppressed.

It MAY transmit unicast DAOs as described in Section 9.2.

It MAY transmit multicast DAOs to the '1 hop' neighborhood as

described in Section 9.10.

A particular case that requires a leaf node to send a DIO is if that

leaf node was a prior member of another DODAG and another node forwards

a message assuming the old topology, triggering an inconsistency. The

leaf node needs to transmit a DIO in order to repair the inconsistency.

Note that due to the lossy nature of LLNs, even though the leaf node

may have optimistically poisoned its routes by advertising a rank of

INFINITE_RANK in the old DODAG prior to becoming a leaf node, that

advertisement may have become lost and a leaf node must be capable to

send a DIO later in order to repair the inconsistency.

In the general case, the leaf node MUST NOT advertise itself as a

router (i.e. send DIOs).

1.

2.

3.

4.

5.

8.6. Administrative Rank

In some cases it might be beneficial to adjust the rank advertised by a

node beyond that computed by the OF based on some implementation

specific policy and properties of the node. For example, a node that

has limited battery should be a leaf unless there is no other choice,

and may then augment the rank computation specified by the OF in order

to expose an exaggerated rank.

9. Downward Routes

This section describes how RPL discovers and maintains downward routes.

RPL constructs and maintains downward routes with Destination

Advertisement Object (DAO) messages. Downward routes support P2MP

flows, from the DODAG roots toward the leaves. Downward routes also

support P2P flows: P2P messages can flow toward a DODAG Root (or a

common ancestor) through an upward route, then away from the DODAG Root

to a destination through a downward route.

This specification describes the two modes a RPL Instance may choose

from for maintaining downward routes. In the first mode, called

"storing", nodes store downward routing tables for their sub-DODAG.

Each hop on a downward route in a storing network examines its routing

table to decide on the next hop. In the second mode, called "non-

storing", nodes do not store downward routing tables. Downward packets

are routed with source routes populated by a DODAG Root [I-D.ietf-6man-

rpl-routing-header].

RPL allows a simple one-hop P2P optimization for both storing and non-

storing networks. A node may send a P2P packet destined to a one-hop

neighbor directly to that node.

9.1. Destination Advertisement Parents

To establish downward routes, RPL nodes send DAO messages upwards. The

next hop destinations of these DAO messages are called DAO parents. The

collection of a node's DAO parents is called the DAO parent set.

A node MAY send DAO messages using the all-RPL-nodes multicast

address, which is an optimization to provision one-hop routing.

The 'K' bit MUST be cleared on transmission of the multicast

DAO.

A node's DAO parent set MUST be a subset of its DODAG parent

set.

In storing mode operation, a node MUST NOT address unicast DAO

messages to nodes that are not DAO parents.

In storing mode operation, the IPv6 source and destination

addresses of a DAO message MUST be link-local addresses.

1.

2.

3.

4.

In non-storing mode operation, a node MUST NOT address unicast

DAO messages to nodes that are not DODAG roots.

In non-storing mode operation, the IPv6 source and destination

addresses of a DAO message MUST be a unique-local or a global

addresses.

The selection of DAO parents is implementation and objective function

specific.

9.2. Downward Route Discovery and Maintenance

Destination Advertisement may be configured to be entirely disabled, or

operate in either a storing or non-storing mode, as reported in the MOP

in the DIO message.

All nodes who join a DODAG MUST abide by the MOP setting from

the root. Nodes that do not have the capability to fully

participate as a router, e.g. that does not match the

advertised MOP, MAY join the DODAG as a leaf.

If the MOP is 0, indicating no downward routing, nodes MUST NOT

transmit DAO messages, and MAY ignore DAO messages.

In non-storing mode, the DODAG Root SHOULD store source routing

table entries for destinations learned from DAOs. The DODAG

Root MUST be able to generate source routes for those

destinations learned from DAOs which were stored.

In storing mode, all non-root, non-leaf nodes MUST store

routing table entries for destinations learned from DAOs.

A DODAG can have one of several possible modes of operation, as defined

by the MOP field. Either it does not support downward routes, it

supports downward routes through source routing from DODAG Roots, or it

supports downward routes through in-network routing tables.

When downward routes are supported through source routing from DODAG

Roots, it is generally expected that the DODAG Root has stored the

source routing information learned from DAOs in order to construct the

source routes. If the DODAG Root fails to store some information, then

some destinations may be unreachable.

When downward routes are supported through in-network routing tables,

the multicast operation defined in this specification may or may not be

supported, also as indicated by the MOP field.

When downward routes are supported through in-network routing tables as

described in this specification, it is expected that nodes acting as

routers have been provisioned sufficiently to hold the required routing

table state. If a node acting as a router is unable to hold the full

routing table state then the routing state is not complete, messages

may be dropped as a consequence, and a fault may be logged (Section

5.

6.

1.

2.

3.

4.

18.5). Future extensions to RPL may elaborate on refined actions/

behaviors to manage this case.

As of this specification RPL does not support mixed-mode operation,

where some nodes source route and other store routing tables: future

extensions to RPL may support this mode of operation.

9.2.1. Maintenance of Path Sequence

For each Target that is associated with (owned by) a node, that node is

responsible to emit DAO messages in order to provision the downward

routes. The Target+Transit information contained in those DAO messages

subsequently propagates Up the DODAG. The Path Sequence counter in the

Transit information option is used to indicate freshness and update

stale downward routing information as described in Section 7.

For a Target that is associated with (owned by) a node, that node MUST

increment the Path Sequence counter, and generate a new DAO message,

when:

The Path Lifetime is to be updated (e.g. a refresh or a no-

Path)

The Parent Address list is to be changed

For a Target that is associated with (owned by) a node, that node MAY

increment the Path Sequence counter, and generate a new DAO message, on

occasion in order to refresh the downward routing information. In

storing mode, the node generates such DAO to each of its DAO parents in

order to enable multipath. All DAOs generated at the same time for a

same target MUST be sent with the same path sequence in the transit

information.

9.2.2. Generation of DAO Messages

A node might send DAO messages when it receives DAO messages, as a

result of changes in its DAO parent set, or in response to another

event such as the expiry of a related prefix lifetime. In the case of

receiving DAOs, it matters whether the DAO message is "new," or

contains new information. In non-storing mode, every DAO message a node

receives is "new." In storing mode, a DAO message is "new" if it

satisfies any of these criteria for a contained Target:

it has a newer Path Sequence number,

it has additional Path Control bits, or

is a No-Path DAO message that removes the last downward route

to a prefix.

A node that receives a DAO message from its sub-DODAG MAY suppress

scheduling a DAO message transmission if that DAO message is not new.

1.

2.

1.

2.

3.

9.3. DAO Base Rules

If a node sends a DAO message with newer or different

information than the prior DAO message transmission, it MUST

increment the DAOSequence field by at least one. A DAO message

transmission that is identical to the prior DAO message

transmission MAY increment the DAOSequence field.

The RPLInstanceID and DODAGID fields of a DAO message MUST be

the same value as the members of the node's parent set and the

DIOs it transmits.

A node MAY set the 'K' flag in a unicast DAO message to solicit

a unicast DAO-ACK in response in order to confirm the attempt.

A node receiving a unicast DAO message with the 'K' flag set

SHOULD respond with a DAO-ACK. A node receiving a DAO message

without the 'K' flag set MAY respond with a DAO-ACK, especially

to report an error condition.

A node that sets the 'K' flag in a unicast DAO message but does

not receive a DAO-ACK in response MAY reschedule the DAO

message transmission for another attempt, up until an

implementation-specific number of retries.

Nodes SHOULD ignore DAOs without newer sequence numbers and

MUST NOT process them further.

Unlike the Version field of a DIO, which is incremented only by a DODAG

Root and repeated unchanged by other nodes, DAOSequence values are

unique to each node. The sequence number space for unicast and

multicast DAO messages can be either the same or distinct. It is

RECOMMENDED to use the same sequence number space.

9.4. Structure of DAO Messages

DAOs follow a common structure in both storing and non-storing

networks. In the most general form, a DAO message may include several

groups of options, where each group consists of one or more Target

options followed by one or more Transit Information options. The entire

group of Transit Information options applies to the entire group of

Target options. Later sections describe further details for each mode

of operation.

RPL nodes MUST include one or more RPL Target Options in each

DAO message they transmit. One RPL Target Option MUST have a

prefix that includes the node's IPv6 address if that node needs

the DODAG to provision downward routes to that node. The RPL

Target Option MAY be immediately followed by an opaque RPL

Target Descriptor Option that qualifies it.

1.

2.

3.

4.

5.

6.

1.

When a node updates the information in a Transit Information

option for a Target option that covers one of its addresses, it

MUST increment the Path Sequence number in that Transit

Information option. The Path Sequence number MAY be incremented

occasionally to cause a refresh to the downward routes.

One or more RPL Target Option in a unicast DAO message MUST be

followed by one or more Transit Information Option. All the

transit options apply to all the target options that

immediately precede them.

Multicast DAOs MUST NOT include the Parent Address in Transit

Information options.

A node that receives and processes a DAO message containing

information for a specific Target, and that has prior

information for that Target, MUST use the Path Sequence number

in the Transit Information option associated with that Target

in order to determine whether or not the DAO message contains

updated information as per Section 7.

If a node receives a DAO message that does not follow the above

rules, it MUST discard the DAO message without further

processing.

In non-storing mode, the root builds a strict source routing header,

hop-by-hop, by recursively looking up one-hop information that ties a

target (address or prefix) and a transit address together. In some

cases, when a child address is derived from a prefix that is owned and

advertised by a parent, that parent-child relationship may be inferred

by the root for the purpose of constructing the source routing header.

In all other cases it is necessary to inform the root of the transit-

target relationship from a reachable target, so as to later enable the

recursive construction of the routing header. An address that is

advertised as target in a DAO message MUST be collocated in the same

router, or reachable onlink by the router that owns the address that is

indicated in the associated transit information. The following

additional rules apply to ensure the continuity of the end-to-end

source route path:

The address of a parent used in the transit option MUST be

taken from a PIO from that parent with the 'R' flag set. The

'R' flag in a PIO indicates that the prefix field actually

contains the full parent address but the child SHOULD NOT

assume that the parent address is onlink.

A PIO with a 'A' flag set indicates that the RPL child node may

use the prefix to autoconfigure an address. A parent that

advertises a prefix in a PIO with the 'A' flag set MUST ensure

2.

3.

4.

5.

6.

1.

2.

that the address or the whole prefix in the PIO is reachable

from the root by advertising it as a DAO target. If the parent

also sets the 'L' flag indicating that the prefix is onlink,

then it MUST advertise the whole prefix as target in a DAO

message. If the 'L' flag is cleared, indicating a subnet

operation, and the 'R' flag is set, indicating that the parent

provides its own address in the PIO, then the parent MUST

advertise that address as a DAO target.

An address that is advertised as target in a DAO message MUST

be collocated in the same router or reachable onlink by the

router that owns the address that is indicated in the

associated transit information.

In order to enable an optimum compression of the routing

header, the parent SHOULD set the 'R' flag in all PIOs with the

'A' flag set and the 'L' flag cleared, and the child SHOULD

prefer to use as transit the address of the parent that is

found in the PIO that is used to autoconfigure the address that

is advertised as target in the DAO message.

A router might have targets that are not known to be on-link

for a parent, either because they are addresses located on an

alternate interface or because they belong to nodes that are

external to RPL, for instance connected hosts. In order to

inject such a target in the RPL network, the router MUST

advertise itself as the Parent Address in the Transit

Information option for that target, using an address that is

on-link for that nodes DAO parent. If the target belongs to an

external node then the router MUST set the External 'E' flag in

the transit information.

A child node that has autoconfigured an address from a parent PIO with

the 'L' flag set does not need to advertise that address as a DAO

target since the parent insures that the whole prefix is already

reachable from the root. But if the 'L' flag is not set then it is

necessary in non-storing mode for the child node to inform the root of

the parent-child relationship, using a reachable address of the parent,

so as to enable the recursive construction of the routing header. This

is done by associating an address of the parent as transit with the

address of the child as target in a DAO message.

9.5. DAO Transmission Scheduling

Because DAOs flow upwards, receiving a unicast DAO can trigger sending

a unicast DAO to a DAO parent.

On receiving a unicast DAO message with updated information,

such as containing a Transit Information option with a new Path

3.

4.

5.

1.

Sequence, a node SHOULD send a DAO. It SHOULD NOT send this DAO

message immediately. It SHOULD delay sending the DAO message in

order to aggregate DAO information from other nodes for which

it is a DAO parent.

A node SHOULD delay sending a DAO message with a timer

(DelayDAO). Receiving a DAO message starts the DelayDAO timer.

DAO messages received while the DelayDAO timer is active do not

reset the timer. When the DelayDAO timer expires, the node

sends a DAO.

When a node adds a node to its DAO parent set, it SHOULD

schedule a DAO message transmission.

DelayDAO's value and calculation is implementation-dependent. A default

value of DEFAULT_DAO_DELAY is defined in this specification.

9.6. Triggering DAO Messages

Nodes can trigger their sub-DODAG to send DAO messages. Each node

maintains a DAO Trigger Sequence Number (DTSN), which it communicates

through DIO messages.

If a node hears one of its DAO parents increment its DTSN, the

node MUST schedule a DAO message transmission using rules in

Section 9.3 and Section 9.5.

In non-storing mode, if a node hears one of its DAO parents

increment its DTSN, the node MUST increment its own DTSN.

In a storing mode of operation, as part of routine routing table

updates and maintenance, a storing node MAY increment DTSN in order to

reliably trigger a set of DAO updates from its immediate children. In a

storing mode of operation it is not necessary to trigger DAO updates

from the entire sub-DODAG, since that state information will propagate

hop-by-hop Up the DODAG.

In a non-storing mode of operation, a DTSN increment will also cause

the immediate children of a node to increment their DTSN in turn,

triggering a set of DAO updates from the entire sub-DODAG. In a non-

storing mode of operation typically only the root would independently

increment the DTSN when a DAO refresh is needed but a global repair

(such as by incrementing DODAGVersionNumber) is not desired. In a non-

storing mode of operation typically all non-root nodes would increment

their DTSN only when their parent(s) are observed to do so.

In the general, a node may trigger DAO updates according to

implementation specific logic, such as based on the detection of a

downward route inconsistency or occasionally based upon an internal

timer.

In the case of triggered DAOs, selecting a proper DAODelay can greatly

reduce the number of DAOs transmitted. The trigger flows Down the

2.

3.

1.

2.

DODAG; in the best case the DAOs flow Up the DODAG such that leaves

send DAOs first, with each node sending a DAO message only once. Such a

scheduling could be approximated by setting DAODelay inversely

proportional to Rank. Note that this suggestion is intended as an

optimization to allow efficient aggregation (it is not required for

correct operation in the general case).

9.7. Non-storing Mode

In non-storing mode, RPL routes messages downward using IP source

routing. The following rule applies to nodes that are in non-storing

mode. Storing mode has a separate set of rules, described in Section

9.8.

The Parent Address field of a Transit Information Option MUST

contain one or more addresses. All of these addresses MUST be

addresses of DAO parents of the sender.

DAOs are sent directly to the root along a default route

installed as part of the parent selection.

When a node removes a node from its DAO parent set, it MAY

generate a new DAO message with an updated Transit Information

option.

In non-storing mode, a node uses DAOs to report its DAO parents to the

DODAG Root. The DODAG Root can piece together a downward route to a

node by using DAO parent sets from each node in the route. The Path

Sequence information may be used to detect stale DAO information. The

purpose of this per-hop route calculation is to minimize traffic when

DAO parents change. If nodes reported complete source routes, then on a

DAO parent change the entire sub-DODAG would have to send new DAOs to

the DODAG Root. Therefore, in non-storing mode, a node can send a

single DAO, although it might choose to send more than one DAO message

to each of multiple DAO parents.

Nodes pack DAOs by sending a single DAO message with multiple RPL

Target Options. Each RPL Target Option has its own, immediately

following, Transit Information options.

9.8. Storing Mode

In storing mode, RPL routes messages downward by the IPv6 destination

address. The following rule apply to nodes that are in storing mode:

The Parent Address field of a Transmit Information option MUST

be empty.

On receiving a unicast DAO, a node MUST compute if the DAO

would change the set of prefixes that the node itself

advertises. This computation SHOULD include consultation of the

1.

2.

3.

1.

2.

Path Sequence information in the Transit Information options

associated with the DAO, to determine if the DAO message

contains newer information that supersedes the information

already stored at the node. If so, the node MUST generate a new

DAO message and transmit it, following the rules in Section

9.5. Such a change includes receiving a No-Path DAO.

When a node generates a new DAO, it SHOULD unicast it to each

of its DAO parents. It MUST NOT unicast the DAO message to

nodes that are not DAO parents.

When a node removes a node from its DAO parent set, it SHOULD

send a No-Path DAO message (Section 6.4.3) to that removed DAO

parent to invalidate the existing route.

If messages to an advertised downwards address suffer from a

forwarding error, neighbor unreachable detected (NUD), or

similar failure, a node MAY mark the address as unreachable and

generate an appropriate No-Path DAO.

DAOs advertise what destination addresses and prefixes a node has

routes to. Unlike in non-storing mode, these DAOs do not communicate

information about the routes themselves: that information is stored

within the network and is implicit from the IPv6 source address. When a

storing node generates a DAO, it uses the stored state of DAOs it has

received to produce a set of RPL Target options and their associated

Transmit Information options.

Because this information is stored within each node's routing tables,

in storing mode DAOs are communicated directly to DAO parents, who

store this information.

9.9. Path Control

A DAO message from a node contains one or more Target Options. Each

Target Option specifies either a prefix advertised by the node, a

prefix of addresses reachable outside the LLN, the address of

destination in the node's sub-DODAG, or a multicast group that a node

in the sub-DODAG is listening to. The Path Control field of the Transit

Information option allows nodes to request or allow for multiple

downward routes. A node constructs the Path Control field of a Transit

Information option as follows:

The bit width of the path control field MUST be equal to the

value (PCS + 1), where PCS is specified in the control field of

the DODAG Configuration Option. Bits greater than or equal to

the value (PCS + 1) MUST be cleared on transmission and MUST be

ignored on reception. Bits below that value are considered

"active" bits.

3.

4.

5.

1.

The node MUST logically construct groupings of its DAO parents

while populating the Path Control field, where each group

consists of DAO parents of equal preference. Those groups MUST

then be ordered according to preference, which allows for a

logical mapping of DAO parents onto Path Control subfields (See

Figure 28). Groups MAY be repeated in order to extend over the

entire bit width of the patch control field, but the order,

including repeated groups, MUST be retained so that preference

is properly communicated.

For a RPL Target option describing a node's own address or a

prefix outside the LLN, at least one active bit of the Path

Control field MUST be set. More active bits of the Path Control

field MAY be set.

If a node receives multiple DAOs with the same RPL Target

option, it MUST bitwise-OR the Path Control fields it receives.

This aggregated bitwise-OR represents the number of downward

routes the prefix requests.

When a node sends a DAO message to one of its DAO parents, it

MUST select one or more of the bits that are set active in the

subfield that is mapped to the group containing that DAO parent

from the aggregated Path Control field. A given bit can only be

presented as active to one parent. The DAO message it transmits

to its parent MUST have these active bits set and all other

active bits cleared.

For the RPL Target option and DAOSequence number, the DAOs a

node sends to different DAO parents MUST have disjoint sets of

active Path Control bits. A node MUST NOT set the same active

bit on DAOs to two different DAO parents.

Path control bits SHOULD be allocated according to the

preference mapping of DAO parents onto Path Control subfields,

such that the active Path Control bits, or groupings of bits,

that belong to a particular Path Control subfield are allocated

to DAO parents within the group that was mapped to that

subfield.

In a non-storing mode of operation, a node MAY pass DAOs

through without performing any further processing on the Path

Control field.

A node MUST NOT unicast a DAO message that has no active bits

in the Path Control field set. It is possible that, for a given

Target option, that a node does not have enough aggregate Path

Control bits to send a DAO message containing that Target to

2.

3.

4.

5.

6.

7.

8.

9.

each of its DAO Parents, in which case those least preferred

DAO Parents may not get a DAO message for that Target.

The Path Control field allows a node to bound how many downward routes

will be generated to it. It sets a number of bits in the Path Control

field equal to the maximum number of downward routes it prefers. Each

bit is sent to at most one DAO parent; clusters of bits can be sent to

a single DAO parent for it to divide among its own DAO parents.

A node that provisions a DAO route for a Target that has an associated

Path Control field SHOULD use the content of that Path Control field in

order to determine an order of preference among multiple alternative

DAO routes for that Target. The Path Control field assignment is

derived from preference (of the DAO parents), as determined on the

basis of this node's best knowledge of the "end-to-end" aggregated

metrics in the "downward" direction as per the objective function. In

non storing mode the root can determine the downward route by

aggregating the information from each received DAO, which includes the

Path Control indications of preferred DAO parents.

9.9.1. Path Control Example

Suppose that there is an LLN operating in storing mode that contains a

Node N with four parents, P1, P2, P3, and P4. Let N have three

children, C1, C2, and C3 in its sub-DODAG. Let PCS be 7, such that

there will be 8 active bits in the Path Control field: 11111111b.

Consider the following example:

 {P1, P2} -> PC1 (11000000b) in the Path Control field

 {P3} -> PC2 (00110000b) in the Path Control field

 {P4} -> PC3 (00001100b) in the Path Control field

 {P4} -> PC4 (00000011b) in the Path Control field

The Path Control field is split into 4 subfields, PC1 (11000000b), PC2

(00110000b), PC3 (00001100b), and PC4 (00000011b), such that those 4

subfields represent 4 different levels of preference as per Figure 28.

The implementation at Node N, in this example, groups {P1, P2} to be of

equal preference to each other, and the most preferred group overall.

{P3} is less preferred to {P1, P2}, and more preferred to {P4}. Let

Node N then perform its path control mapping such that:

Let C1 send a DAO containing a Target T with a Path Control

10000000b. Node N stores an entry associating 10000000b with

the Path Control field for C1 and Target T.

Let C2 send a DAO containing a Target T with a Path Control

00010000b. Node N stores an entry associating 00010000b with

the Path Control field for C1 and Target T.

1.

2.

Let C3 send a DAO containing a Target T with a Path Control

00001100b. Node N stores an entry associating 00001100b with

the Path Control field for C1 and Target T.

At some later time, Node N generates a DAO for Target T. Node N

will construct an aggregate Path Control field by ORing

together the contribution from each of its children that have

given a DAO for Target T. The aggregate Path Control field thus

has the active bits set as: 10011100b.

Node N then distributes the aggregate Path Control bits among

its parents P1, P2, P3, and P4 in order to prepare the DAO

messages.

P1 and P2 are eligible to receive active bits from the most

preferred subfield (11000000b). Those bits are 10000000b in the

aggregate Path Control field. Node N must the bit to one of the

two parents only. In this case, Node P1 is allocated the bit,

and gets the Path Control field 10000000b for its DAO. There

are no bits left to allocate to Node P2, thus Node P2 would

have a Path Control field of 00000000b and a DAO cannot be

generated to Node P2 since there are no active bits.

The second-most preferred subfield (00110000b) has the active

bits 00010000b. Node N has mapped P3 to this subfield. Node N

may allocates the active bit to P3, constructing a DAO for P3

containing Target T with a Path Control of 00010000b.

The third-most preferred subfield (00001100b) has the active

bits 00001100b. Node N has mapped P4 to this subfield. Node N

may allocate both bits to P4, constructing a DAO for P4

containing Target T with a Path Control of 00001100b.

The least preferred subfield (00000011b) has no active bits.

Had there been active bits, those bits would have been added to

the Path Control field of the DAO constructed for P4.

The process of populating the DAO messages destined for P1, P2,

P3, P4 with other targets (other than T) proceeds as according

the aggregate path control fields collected for those targets.

9.10. Multicast Destination Advertisement Messages

A special case of DAO operation, distinct from unicast DAO operation,

is multicast DAO operation which may be used to populate '1-hop'

routing table entries.

A node MAY multicast a DAO message to the link-local scope all-

RPL-nodes multicast address.

3.

4.

5.

6.

7.

8.

9.

10.

1.

A multicast DAO message MUST be used only to advertise

information about the node itself, i.e. prefixes directly

connected to or owned by the node, such as a multicast group

that the node is subscribed to or a global address owned by the

node.

A multicast DAO message MUST NOT be used to relay connectivity

information learned (e.g. through unicast DAO) from another

node.

A node MUST NOT perform any other DAO related processing on a

received multicast DAO message, in particular a node MUST NOT

perform the actions of a DAO parent upon receipt of a multicast

DAO.

The multicast DAO may be used to enable direct P2P communication,

without needing the DODAG to relay the packets.

10. Security Mechanisms

This section describes the generation and processing of secure RPL

messages. The high order bit of the RPL message code identifies whether

a RPL message is secure or not. In addition to secure versions of basic

control messages (DIS, DIO, DAO, DAO-ACK), RPL has several messages

which are relevant only in networks with security enabled.

Implementation complexity and size is a core concern for LLNs such that

it may be economically or physically impossible to include

sophisticated security provisions in a RPL implementation. Furthermore,

many deployments can utilize link-layer or other security mechanisms to

meet their security requirements without requiring the use of security

in RPL.

Therefore, the security features described in this document are

OPTIONAL to implement. A given implementation MAY support a subset

(including the empty set) of the described security features, for

example it could support integrity and confidentiality, but not

signatures. An implementation SHOULD clearly specify which security

mechanisms are supported, and it is RECOMMENDED that implementers

carefully consider security requirements and the availability of

security mechanisms in their network.

10.1. Security Overview

RPL supports three security modes:

Unsecured. In this security mode, RPL uses basic DIS, DIO, DAO,

and DAO-ACK messages, which do not have security sections. As a

network could be using other security mechanisms, such as link-

layer security, unsecured mode does not imply all messages are

sent without any protection.

2.

3.

4.

*

*

Pre-installed. In this security mode, RPL uses secure messages.

To join a RPL Instance, a node must have a pre-installed key.

Nodes use this to provide message confidentiality, integrity, and

authenticity. A node may, using this preinstalled key, join the

RPL network as either a host or a router.

Authenticated. In this security mode, RPL uses secure messages.

To join a RPL Instance, a node must have a pre-installed key.

Nodes use this key to provide message confidentiality, integrity,

and authenticity. Using this preinstalled key, a node may join

the network as a host only. To join the network as a router, a

node must obtain a second key from a key authority. This key

authority can authenticate that the requester is allowed to be a

router before providing it with the second key. Authenticated

mode cannot be supported by symmetric algorithms. As of this

specification, RPL supports only symmetric algorithms:

authenticated mode is included for the benefit of potential

future cryptographic primitives. See Section 10.3.

Whether or not the RPL Instance uses unsecured mode is signaled by

whether it uses secure RPL messages. Whether a secured network uses the

pre-installed or authenticated mode is signaled by the 'A' bit of the

DAG Configuration option.

This specification specifies CCM -- Counter with CBC-MAC (Cipher Block

Chaining Message Authentication Code) -- as the cryptographic basis for

RPL security[RFC3610]. In this specification, CCM uses AES-128 as its

underlying cryptographic algorithm. There are bits reserved in the

security section to specify other algorithms in the future.

All secured RPL messages have either a message authentication code

(MAC) or a signature. Secured RPL messages optionally also have

encryption protection for confidentiality. Secured RPL message formats

support both integrated encryption/authentication schemes (e.g., CCM)

as well as schemes that separately encrypt and authenticate packets.

10.2. Joining a Secure Network

RPL security assumes that a node wishing to join a secured network has

been preconfigured with a shared key for communicating with neighbors

and the RPL root. To join a secure RPL network, a node either listens

for secure DIOs or triggers secure DIOs by sending a secure DIS. In

addition to the DIO/DIS rules in Section 8, secure DIO and DIS messages

have these rules:

If sent, this initial secure DIS MUST set the Key Identifier

Mode field to 0 (00) and MUST set the Security Level field to 1

(001). The key used MUST be the preconfigured group key (Key

Index 0x00).

*

*

1.

When a node resets its Trickle timer in response to a secure

DIS (Section 8.3), the next DIO it transmits MUST be a secure

DIO with the same security configuration as the secure DIS. If

a node receives multiple secure DIS messages before it

transmits a DIO, the secure DIO MUST have the same security

configuration as the last DIS it is responding to.

When a node sends a DIO in response to a unicast secure DIS

(Section 8.3), the DIO MUST be a secure DIO.

The above rules allow a node to join a secured RPL Instance using the

preconfigured shared key. Once a node has joined the DODAG using the

preconfigured shared key, the 'A' bit of the Configuration option

determines its capabilities. If the 'A' bit of the Configuration is

cleared, then nodes can use this preinstalled, shared key to exchange

messages normally: it can issue DIOs, DAOs, etc.

If the 'A' bit of the Configuration option is set and the RPL Instance

is operating in authenticated mode:

A node MUST NOT advertise a Rank besides INFINITE_RANK in

secure DIOs secured with Key Index 0x00. When processing DIO

messages secured with Key Index 0x00, a processing node MUST

consider the advertised Rank to be INFINITE_RANK. Any other

value results in the message being discarded.

Secure DAOs using Key Index 0x00 MUST NOT have a RPL Target

option with a prefix besides the node's address. If a node

receives a secured DAO message using the preinstalled, shared

key where the RPL Target option does not match the IPv6 source

address, it MUST discard the secured DAO message without

further processing.

The above rules mean that in RPL Instances where the 'A' bit is set,

using Key Index 0x00 a node can join the RPL Instance as a host but not

a router. A node must communicate with a key authority to obtain a key

that will enable it to act as a router.

10.3. Installing Keys

Authenticated mode requires a would-be router to dynamically install

new keys once they have joined a network as a host. Having joined as a

host, the node uses standard IP messaging to communicate with an

authorization server, which can provide new keys.

The protocol to obtain such keys is out of scope for this specification

and to be elaborated in future specifications. That elaboration is

required for RPL to securely operate in authenticated mode.

2.

3.

1.

2.

10.4. Consistency Checks

RPL nodes send Consistency Check (CC) messages to protect against

replay attacks and synchronize counters.

If a node receives a unicast CC message with the R bit cleared,

and it is a member of or is in the process of joining the

associated DODAG, it SHOULD respond with a unicast CC message

to the sender. This response MUST have the R bit set, and MUST

have the same CC Nonce, RPLInstanceID and DODAGID fields as the

message it received.

If a node receives a multicast CC message, it MUST discard the

message with no further processing.

Consistency Check messages allow nodes to issue a challenge-response to

validate a node's current Counter value. Because the CC Nonce is

generated by the challenger, an adversary replaying messages is

unlikely to be able to generate a correct response. The Counter in the

Consistency Check response allows the challenger to validate the

Counter values it hears.

10.5. Counters

In the simplest case, the Counter value is an unsigned integer that a

node increments by one or more on each secured RPL transmission. The

Counter MAY represent a timestamp that has the following properties:

The timestamp MUST be at least six octets long.

The timestamp MUST be in 1024Hz (binary millisecond)

granularity.

The timestamp start time MUST be January 1, 1970, 12:00:00AM

UTC.

If the Counter represents such as timestamp, the Counter value

MUST be a value computed as follows. Let T be the timestamp, S

be the start time of the key in use, and E be the end time of

the key in use. Both S and E are represented using the same 3

rules as the timestamp described above. If E > T < S, then the

Counter is invalid and a node MUST NOT generate a packet.

Otherwise, the Counter value is equal to T-S.

If the Counter represents such a timestamp, a node MAY set the

'T' flag of the security section of secured RPL packets.

If the Counter field does not present such a timestamp, then a

node MUST NOT set the 'T' flag.

1.

2.

1.

2.

3.

4.

5.

6.

If a node does not have a local timestamp that satisfies the

above requirements, it MUST ignore the 'T' flag.

If a node supports such timestamps and it receives a message with the

'T' flag set, it MAY apply the temporal check on the received message

described in Section 10.7.1. If a node receives a message without the

'T' flag set, it MUST NOT apply this temporal check. A node's security

policy MAY, for application reasons, include rejecting all messages

without the 'T' flag set.

The 'T' flag is present because many LLNs today already maintain global

time synchronization at sub-millisecond granularity for security,

application, and other reasons. Allowing RPL to leverage this existing

functionality when present greatly simplifies solutions to some

security problems, such as delay protection.

10.6. Transmission of Outgoing Packets

Given an outgoing RPL control packet and required security protection,

this section describes how RPL generates the secured packet to

transmit. It also describes the order of cryptographic operations to

provide the required protection.

The requirement for security protection and the level of security to be

applied to an outgoing RPL packet shall be determined by the node's

security policy database. The configuration of this security policy

database for outgoing packet processing is implementation specific.

Where secured RPL messages are to be transmitted, a RPL node MUST set

the security section (T, Sec, KIM, and LVL) in the outgoing RPL packet

to describe the protection level and security settings that are applied

(see Section 6.1). The Security subfield bit of the RPL message Code

field MUST be set to indicate the secure RPL message.

The Counter value used in constructing the AES-128 CCM Nonce (Figure

33) to secure the outgoing packet MUST be an increment of the last

Counter transmitted to the particular destination address.

Where security policy specifies the application of delay protection,

the Timestamp Counter used in constructing the CCM Nonce to secure the

outgoing packet MUST be incremented according to the rules in Section

10.5. Where a Timestamp Counter is applied (indicated with the 'T' flag

set) the locally maintained Time Counter MUST be included as part of

the transmitted secured RPL message.

The cryptographic algorithm used in securing the outgoing packet shall

be specified by the node's security policy database and MUST be

indicated in the value of the Sec field set within the outgoing

message.

The security policy for the outgoing packet shall determine the

applicable Key Identifier Mode (KIM) and Key Identifier specifying the

security key to be used for the cryptographic packet processing,

including the optional use of signature keys (see Section 6.1). The

security policy will also specify the algorithm (Algorithm) and level

of protection (Level) in the form of authentication or authentication

7.

and encryption, and potential use of signatures that shall apply to the

outgoing packet.

Where encryption is applied, a node MUST replace the original packet

payload with that payload encrypted using the security protection, key,

and CCM nonce specified in the security section of the packet.

All secured RPL messages include integrity protection. In conjunction

with the security algorithm processing, a node derives either a Message

Authentication Code (MAC) or signature that MUST be included as part of

the outgoing secured RPL packet.

10.7. Reception of Incoming Packets

This section describes the reception and processing of a secured RPL

packet. Given an incoming secured RPL packet, where the Security

subfield bit of the RPL message Code field is set, this section

describes how RPL generates an unencrypted variant of the packet and

validates its integrity.

The receiver uses the RPL security control fields to determine the

necessary packet security processing. If the described level of

security for the message type and originator is unknown or does not

meet locally maintained security policies, a node MUST discard the

packet without further processing, MAY raise a management alert, and

MUST NOT send any messages in response. These policies can include

security levels, keys used, source identifiers, or the lack of

timestamp-based counters (as indicated by the 'T' flag). The

configuration of the security policy database for incoming packet

processing is out of scope for this specification (it may, for example,

be defined through DIO Configuration or through out-of-band

administrative router configuration).

Where the message security level (LVL) indicates an encrypted RPL

message, the node uses the key information identified through the KIM

field as well as the CCM Nonce as input to the message payload

decryption processing. The CCM Nonce shall be derived from the message

Counter field and other received and locally maintained information

(see Section 10.9.1). The plaintext message contents shall be obtained

by invoking the inverse cryptographic mode of operation specified by

the Sec field of the received packet.

The receiver shall use the CCM Nonce and identified key information to

check the integrity of the incoming packet. If the integrity check

fails against the received message authentication code (MAC), a node

MUST discard the packet.

If the received message has an initialized (zero value) Counter value

and the receiver has an incoming Counter currently maintained for the

originator of the message, the receiver MUST initiate a Counter

resynchronization by sending a Consistency Check response message (see

Section 6.6) to the message source. The Consistency Check response

message shall be protected with the current full outgoing Counter

maintained for the particular node address. That outgoing Counter will

be included within the security section of the message while the

incoming Counter will be included within the Consistency Check message

payload.

Based on the specified security policy a node MAY apply replay

protection for a received RPL message. The replay check SHOULD be

performed before the authentication of the received packet. The Counter

as obtained from the incoming packet shall be compared against the

watermark of the incoming Counter maintained for the given origination

node address. If the received message Counter value is non-zero and

less than the maintained incoming Counter watermark a potential packet

replay is indicated and the node MUST discard the incoming packet.

If delay protection is specified as part of the incoming packet

security policy checks, the Timestamp Counter is used to validate the

timeliness of the received RPL message. If the incoming message

Timestamp Counter value indicates a message transmission time prior to

the locally maintained transmission time Counter for the originator

address, a replay violation is indicated and the node MUST discard the

incoming packet. If the received Timestamp Counter value indicates a

message transmission time that is earlier than the Current time less

the acceptable packet delay, a delay violation is indicated and the

node MUST discard the incoming packet.

Once a message has been decrypted, where applicable, and has

successfully passed its integrity check, replay, and optionally delay

protection checks, the node can update its local security information,

such as the source's expected Counter value for replay comparison.

A node MUST NOT update its security information on receipt of a message

that fails security policy checks or other applied integrity, replay,

or delay checks.

10.7.1. Timestamp Key Checks

If the 'T' flag of a message is set and a node has a local timestamp

that follows the requirements in Section 10.5, then a node MAY check

the temporal consistency of the message. The node computes the transmit

time of the message by adding the Counter value to the start time of

the associated key. If this transmit time is past the end time of the

key, the node MAY discard the message without further processing. If

the transmit time is too far in the past or future compared to the

local time on the receiver, it MAY discard the message without further

processing.

10.8. Coverage of Integrity and Confidentiality

For a RPL ICMPv6 message, the entire packet is within the scope of RPL

security.

Message authentication codes (MAC) and signatures are calculated over

the entire unsecured IPv6 packet. When computing MACs and signatures,

mutable IPv6 fields are considered to be filled with zeroes, following

the rules in Section 3.3.3.1 of [RFC4302] (IPSec Authenticated Header).

MAC and signature calculations are performed before any compression

that lower layers may apply.

When a RPL ICMPv6 message is encrypted, encryption starts at the first

byte after the security section and continues to the last byte of the

packet. The IPv6 header, ICMPv6 header, and RPL message up to the end

of the security section are not encrypted, as they are needed to

correctly decrypt the packet.

For example, a node sending a message with LVL=1, KIM=0, and

Algorithm=0 uses the CCM algorithm [RFC3610] to create a packet with

attributes ENC-MAC-32: it encrypts the packet and appends a 32-bit MAC.

The block cipher key is determined by the Key Index; the CCM Nonce is

computed as described in Section 10.9.1; the message to authenticate

and encrypt is the RPL message starting at the first byte after the

security section and ends with the last byte of the packet; the

additional authentication data starts with the beginning of the IPv6

header and ends with the last byte of the RPL security section.

10.9. Cryptographic Mode of Operation

The cryptographic mode of operation described in this specification

(Algorithm = 0) is based on CCM and the block-cipher AES-128[RFC3610].

This mode of operation is widely supported by existing implementations.

CCM mode requires a nonce (CCM nonce).

10.9.1. CCM Nonce

A RPL node constructs a CCM nonce as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | |

 + Source Identifier +

 | |

 +-+

 | Counter |

 +-+

 |KIM|Resvd| LVL |

 +-+-+-+-+-+-+-+-+

Source Identifier:

Counter:

Key Identifier Mode (KIM):

Security Level (LVL):

8 bytes. Source Identifier is set to the logical

identifier of the originator of the protected packet.

4 bytes. Counter is set to the (uncompressed) value of the

corresponding field in the Security option of the RPL control

message.

2 bits. KIM is set to the value of the

corresponding field in the Security option of the RPL control

message.

3 bits. Security Level is set to the value of

the corresponding field in the Security option of the RPL control

message.

Unassigned bits of the CCM nonce are reserved. They MUST be set to zero

when constructing the CCM nonce.

All fields of the CCM nonce are represented in most-significant-octet

and most-significant-bit first order.

10.9.2. Signatures

If the Key Identification Mode (KIM) mode indicates the use of

signatures (a value of 3), then a node appends a signature to the data

payload of the packet. The Security Level (LVL) field describes the

length of this signature.

The signature scheme in RPL for Security Mode 3 is an instantiation of

the RSA algorithm (RSASSA-PSS) as defined in Section 8.1 of [RFC3447].

It uses as public key the pair (n,e), where n is a 2048-bit or 3072-bit

RSA modulus and where e=2^{16}+1. It uses CCM mode [RFC3610] as the

encryption scheme with M=0 (as a stream-cipher). Note that although

[RFC3610] disallows the CCM mode with M=0, RPL explicitly allows the

CCM mode with M=0 when used in conjunction with a signature, because

the signature provides sufficient data authentication. Here, the CCM

mode with M=0 is specified as in [RFC3610], but where the M' field in

Section 2.2 MUST be set to 0. It uses the SHA-256 hash function

specified in Section 6.2 of [FIPS180]. It uses the message encoding

rules of Section 8.1 of [RFC3447].

Let 'a' be a concatenation of a six-byte representation of Counter and

the message header. The packet payload is the right-concatenation of

packet data 'm' and the signature 's'. This signature scheme is invoked

with the right-concatenation of the message parts a and m, whereas the

signature verification is invoked with the right-concatenation of the

message parts a and m, and with signature s.

RSA signatures of this form provide sufficient protection for RPL

networks. If needed, alternative signature schemes which produce more

concise signatures is out of scope for this specification and may be

the subject of a future specification.

An implementation that supports RSA signing with either 2048-bit or

3072-bit signatures SHOULD support verification of both 2048-bit and

3072-bit RSA signatures. This is in consideration of providing an

upgrade path for a RPL deployment.

11. Packet Forwarding and Loop Avoidance/Detection

11.1. Suggestions for Packet Forwarding

This document specifies a routing protocol. These non-normative

suggestions are provided to aid in the design of a forwarding

implementation by illustrating how such an implementation could work

with RPL

When forwarding a packet to a destination, precedence is given to

selection of a next-hop successor as follows:

This specification only covers how a successor is selected from

the DODAG Version that matches the RPLInstanceID marked in the

IPv6 header of the packet being forwarded. Routing outside the

instance can be done as long as additional rules are put in

place such as strict ordering of instances and routing

protocols to protect against loops. Such rules may be defined

in a separate document.

If a local administrative preference favors a route that has

been learned from a different routing protocol than RPL, then

use that successor.

If the packet header specifies a source route by including a

RH4 header as specified in [I-D.ietf-6man-rpl-routing-header],

then use that route. If the node fails to forward the packet

with that specified source route, then that packet should be

dropped. The node MAY log an error. The node may send an ICMPv6

Error in Source Routing Header message to the source of the

packet (See Section 20.18).

If there is an entry in the routing table matching the

destination that has been learned from a multicast destination

advertisement (e.g. the destination is a one-hop neighbor),

then use that successor.

If there is an entry in the routing table matching the

destination that has been learned from a unicast destination

advertisement (e.g. the destination is located Down the sub-

DODAG), then use that successor. If there are DAO Path Control

bits associated with multiple successors, then consult the Path

Control bits to order the successors by preference when

choosing. If, for a given DAO Path Control bit, multiple

successors are recorded as having asserted that bit, precedence

1.

2.

3.

4.

5.

Down 'O':

Rank-Error 'R':

Forwarding-Error 'F':

should be given to the successor who most recently asserted

that bit.

If there is a DODAG Version offering a route to a prefix

matching the destination, then select one of those DODAG

parents as a successor according to the OF and routing metrics.

Any other as-yet-unattempted DODAG parent may be chosen for the

next attempt to forward a unicast packet when no better match

exists.

Finally the packet is dropped. ICMP Destination Unreachable MAY

be invoked (an inconsistency is detected).

Hop Limit MUST be decremented when forwarding as per [RFC2460].

Note that the chosen successor MUST NOT be the neighbor that was the

predecessor of the packet (split horizon), except in the case where it

is intended for the packet to change from an upward to a downward

direction, as determined by the routing table of the node making the

change, such as switching from DIO routes to DAO routes as the

destination is neared in order to continue traveling toward the

destination.

11.2. Loop Avoidance and Detection

RPL loop avoidance mechanisms are kept simple and designed to minimize

churn and states. Loops may form for a number of reasons, e.g. control

packet loss. RPL includes a reactive loop detection technique that

protects from meltdown and triggers repair of broken paths.

RPL loop detection uses RPL Packet Information that is transported

within the data packets, relying on an external mechanism such as [I-

D.ietf-6man-rpl-option] that places in the RPL Packet Information in an

IPv6 Hop-by-Hop Option header.

The content of RPL Packet Information is defined as follows:

1-bit flag indicating whether the packet is expected to

progress Up or Down. A router sets the 'O' flag when the packet is

expected to progress Down (using DAO routes), and clears it when

forwarding toward the DODAG root (to a node with a lower rank). A

host or RPL leaf node MUST set the 'O' flag to 0.

1-bit flag indicating whether a rank error was

detected. A rank error is detected when there is a mismatch in the

relative ranks and the direction as indicated in the 'O' bit. A host

or RPL leaf node MUST set the 'R' bit to 0.

1-bit flag indicating that this node can not

forward the packet further towards the destination. The 'F' bit

might be set by a child node that does not have a route to

6.

7.

8.

RPLInstanceID:

SenderRank:

destination for a packet with the Down 'O' bit set. A host or RPL

leaf node MUST set the 'F' bit to 0.

8-bit field indicating the DODAG instance along which

the packet is sent.

16-bit field set to zero by the source and to

DAGRank(rank) by a router that forwards inside the RPL network.

11.2.1. Source Node Operation

If the source is aware of the RPLInstanceID that is preferred for the

packet, then it MUST set the RPLInstanceID field associated with the

packet accordingly, otherwise it MUST set it to the

RPL_DEFAULT_INSTANCE.

11.2.2. Router Operation

11.2.2.1. Instance Forwarding

The RPLInstanceID is associated by the source with the packet. This

RPLInstanceID MUST match the RPL Instance onto which the packet is

placed by any node, be it a host or router. The RPLInstanceID is part

of the RPL Packet Information.

A RPL router that forwards a packet in the RPL network MUST check if

the packet includes the RPL Packet Information. If not, then the RPL

router MUST insert a RPL Packet Information. If the router is an

ingress router that injects the packet into the RPL network, the router

MUST set the RPLInstanceID field in the RPL Packet Information. The

details of how that router determines the mapping to a RPLInstanceID

are out of scope for this specification and left to future

specification.

A router that forwards a packet to outside the RPL network MUST remove

the RPL Packet Information.

When a router receives a packet that specifies a given RPLInstanceID

and the node can forward the packet along the DODAG associated to that

instance, then the router MUST do so and leave the RPLInstanceID value

unchanged.

If any node can not forward a packet along the DODAG associated to the

RPLInstanceID, then the node SHOULD discard the packet and send an ICMP

error message.

11.2.2.2. DAG Inconsistency Loop Detection

The DODAG is inconsistent if the direction of a packet does not match

the rank relationship. A receiver detects an inconsistency if it

receives a packet with either:

the 'O' bit set (to Down) from a node of a higher rank.*

the 'O' bit cleared (for Up) from a node of a lesser rank.

When the DODAG root increments the DODAGVersionNumber, a temporary rank

discontinuity may form between the next DODAG Version and the prior

DODAG Version, in particular if nodes are adjusting their rank in the

next DODAG Version and deferring their migration into the next DODAG

Version. A router that is still a member of the prior DODAG Version may

choose to forward a packet to a (future) parent that is in the next

DODAG Version. In some cases this could cause the parent to detect an

inconsistency because the rank-ordering in the prior DODAG Version is

not necessarily the same as in the next DODAG Version and the packet

may be judged to not be making forward progress. If the sending router

is aware that the chosen successor has already joined the next DODAG

Version, then the sending router MUST update the SenderRank to

INFINITE_RANK as it forwards the packets across the discontinuity into

the next DODAG Version in order to avoid a false detection of rank

inconsistency.

One inconsistency along the path is not considered a critical error and

the packet may continue. But a second detection along the path of a

same packet should not occur and the packet MUST be dropped.

This process is controlled by the Rank-Error bit associated with the

packet. When an inconsistency is detected on a packet, if the Rank-

Error bit was not set then the Rank-Error bit is set. If it was set the

packet MUST be discarded and the trickle timer MUST be reset.

11.2.2.3. DAO Inconsistency Detection and Recovery

DAO inconsistency loop recovery is a mechanism that applies to storing

mode of operation only.

In non-storing mode, the packets are source routed to the destination

and DAO inconsistencies are not corrected locally. Instead, an ICMP

error with a new code "Error in Source Routing Header" is sent back to

the root. The "Error in Source Routing Header" message has the same

format as the "Destination Unreachable Message" as specified in

[RFC4443]. The portion of the invoking packet that is sent back in the

ICMP message should record at least up to the routing header, and the

routing header should be consumed by this node so that the destination

in the IPv6 header is the next hop that this node could not reach.

A DAO inconsistency happens when a router has a downward route that was

previously learned from a DAO message via a child, but that downward

route is not longer valid in the child, e.g. because that related state

in the child has been cleaned up. With DAO inconsistency loop recovery,

a packet can be used to recursively explore and cleanup the obsolete

DAO states along a sub-DODAG.

In a general manner, a packet that goes Down should never go Up again.

If DAO inconsistency loop recovery is applied, then the router SHOULD

send the packet back to the parent that passed it with the Forwarding-

Error 'F' bit set and the 'O' bit left untouched. Otherwise the router

MUST silently discard the packet.

*

Upon receiving a packet with a Forwarding-Error bit set, the node MUST

remove the routing states that caused forwarding to that neighbor,

clear the Forwarding-Error bit and attempt to send the packet again.

The packet may be sent to an alternate neighbor, after the expiration

of a user-configurable implementation specific timer. If that alternate

neighbor still has an inconsistent DAO state via this node, the process

will recurse, this node will set the Forwarding-Error 'F' bit and the

routing state in the alternate neighbor will be cleaned up as well.

12. Multicast Operation

This section describes further a multicast routing operation over an

IPv6 RPL network, and specifically how unicast DAOs can be used to

relay group registrations up. The same DODAG construct can used to

forward unicast and multicast traffic. The registration uses DAO

messages that are identical to unicast except for the type of address

that is transported. The main difference is that the multicast traffic

going down is copied to all the children that have registered to the

multicast group whereas unicast traffic is passed to one child only.

Nodes that support the RPL storing mode of operation SHOULD also

support multicast DAO operations as described below. Nodes that only

support the non-storing mode of operation are not expected to support

this section.

The multicast operation is controlled by the MOP field in the DIO.

If the MOP field requires multicast support, then a node that

joins the RPL network as a router must operate as described in

this section for multicast signaling and forwarding within the

RPL network. A node that does not support the multicast operation

required by the MOP field can only join as a leaf.

If the MOP field does not require multicast support, then

multicast is handled by some other way that is out of scope for

this specification. (Examples may include a series of unicast

copies or limited-scope flooding).

A router might select to pass a listener registration DAO message to

its preferred parent only, in which case multicast packets coming back

might be lost for all of its sub-DODAG if the transmission fails over

that link. Alternatively the router might select to copy additional

parents as it would do for DAO messages advertising unicast

destinations, in which case there might be duplicates that the router

will need to prune.

As a result, multicast routing states are installed in each router on

the way from the listeners to the DODAG root, enabling the root to copy

a multicast packet to all its children routers that had issued a DAO

message including a Target option for that multicast group.

For a multicast packet sourced from inside the DODAG, the packet is

passed to the preferred parents, and if that fails then to the

*

*

alternates in the DODAG. The packet is also copied to all the

registered children, except for the one that passed the packet.

Finally, if there is a listener in the external infrastructure then the

DODAG root has to further propagate the packet into the external

infrastructure.

As a result, the DODAG Root acts as an automatic proxy Rendezvous Point

for the RPL network, and as source towards the non-RPL domain for all

multicast flows started in the RPL domain. So regardless of whether the

root is actually attached to a non-RPL domain, and regardless of

whether the DODAG is grounded or floating, the root can serve inner

multicast streams at all times.

13. Maintenance of Routing Adjacency

The selection of successors, along the default paths Up along the

DODAG, or along the paths learned from destination advertisements Down

along the DODAG, leads to the formation of routing adjacencies that

require maintenance.

In IGPs such as OSPF [RFC4915] or IS-IS [RFC5120], the maintenance of a

routing adjacency involves the use of Keepalive mechanisms (Hellos) or

other protocols such as the Bidirectional Forwarding Detection

[RFC5881] (BFD) and the MANET Neighborhood Discovery Protocol [I-

D.ietf-manet-nhdp](NHDP) . Unfortunately, such a proactive approach is

often not desirable in constrained environments where it would lead to

excessive control traffic in light of the data traffic with a negative

impact on both link loads and nodes resources.

By contrast with those routing protocols, RPL does not define any

'keep-alive' mechanisms to detect routing adjacency failures: this is

because in many cases such a mechanism would be too expensive in terms

of bandwidth and even more importantly energy (a battery operated

device could not afford to send periodic Keep alive). Still RPL

requires an external mechanisms to detect that a neighbor is no longer

reachable. Such a mechanism should preferably be reactive to traffic in

order to minimize the overhead to maintain the routing adjacency and

focus on links that are actually being used.

Example reactive mechanisms that can be used include:

The Neighbor Unreachability Detection [RFC4861] mechanism.

Layer 2 triggers [RFC5184] derived from events such as

association states and L2 acknowledgements.

14. Guidelines for Objective Functions

An Objective Function (OF), in conjunction with routing metrics and

constraints, allows for the selection of a DODAG to join, and a number

of peers in that DODAG as parents. The OF is used to compute an ordered

list of parents. The OF is also responsible to compute the rank of the

device within the DODAG Version.

*

*

The Objective Function is indicated in the DIO message using an

Objective Code Point (OCP), and indicates the method that must be used

to construct the DODAG. The Objective Code Points are specified in [I-

D.ietf-roll-of0], and related companion specifications.

14.1. Objective Function Behavior

Most Objective Functions are expected to follow the same abstract

behavior at a node:

The parent selection is triggered each time an event indicates

that a potential next hop information is updated. This might

happen upon the reception of a DIO message, a timer elapse, all

DODAG parents are unavailable, or a trigger indicating that the

state of a candidate neighbor has changed.

An OF scans all the interfaces on the node. Although there may

typically be only one interface in most application scenarios,

there might be multiple of them and an interface might be

configured to be usable or not for RPL operation. An interface

can also be configured with a preference or dynamically learned

to be better than another by some heuristics that might be link-

layer dependent and are out of scope for this specification.

Finally an interface might or not match a required criterion for

an Objective Function, for instance a degree of security. As a

result, some interfaces might be completely excluded from the

computation, for example if those interfaces cannot satisfy some

advertised constraints, while others might be more or less

preferred.

An OF scans all the candidate neighbors on the possible

interfaces to check whether they can act as a router for a DODAG.

There might be multiple of them and a candidate neighbor might

need to pass some validation tests before it can be used. In

particular, some link layers require experience on the activity

with a router to enable the router as a next hop.

An OF computes rank of a node for comparison by adding to the

rank of the candidate a value representing the relative locations

of the node and the candidate in the DODAG Version.

The increase in rank must be at least MinHopRankIncrease.

To keep loop avoidance and metric optimization in alignment,

the increase in rank should reflect any increase in the metric

value. For example, with a purely additive metric such as ETX,

the increase in rank can be made proportional to the increase

in the metric.

*

*

*

*

-

-

Candidate neighbors that would cause the rank of the node to

increase are not considered for parent selection.

Candidate neighbors that advertise an OF incompatible with the

set of OF specified by the policy functions are ignored.

As it scans all the candidate neighbors, the OF keeps the current

best parent and compares its capabilities with the current

candidate neighbor. The OF defines a number of tests that are

critical to reach the objective. A test between the routers

determines an order relation.

If the routers are equal for that relation then the next test

is attempted between the routers,

Else the best of the two routers becomes the current best

parent and the scan continues with the next candidate

neighbor.

Some OFs may include a test to compare the ranks that would

result if the node joined either router.

When the scan is complete, the preferred parent is elected and

the node's rank is computed as the preferred parent rank plus the

step in rank with that parent.

Other rounds of scans might be necessary to elect alternate

parents. In the next rounds:

Candidate neighbors that are not in the same DODAG are

ignored.

Candidate neighbors that are of greater rank than the node are

ignored.

Candidate neighbors of an equal rank to the node are ignored

for parent selection.

Candidate neighbors of a lesser rank than the node are

preferred.

15. Suggestions for Interoperation with Neighbor Discovery

This specification directly borrows the Prefix Information Option (PIO)

and the Routing Information Option (RIO) from IPv6 ND. It is envisioned

that, as future specifications build on this base, there may be

additional cause to leverage parts of IPv6 ND. This section provides

some suggestions for future specifications.

First and foremost RPL is a routing protocol. One should take great

care to preserve architecture when mapping functionalities between RPL

-

*

*

-

-

-

*

*

-

-

-

-

and ND. RPL is for routing only. That said, there may be persuading

technical reasons to allow for sharing options between RPL and IPv6 ND

in a particular implementation/deployment.

In general the following guidelines apply:

RPL Type codes must be allocated from the RPL Control Message

Options registry.

RPL Length fields must be expressed in units of single octets, as

opposed to ND Length fields which are expressed in units of 8

octets.

RPL Options are generally not required to be aligned to 8 octet

boundaries.

When mapping/transposing an IPv6 ND option for redistribution as

a RPL option, any padding octets should be removed when possible.

For example, the Prefix Length field in the PIO is sufficient to

describe the length of the Prefix field. When mapping/transposing

a RPL option for redistribution as an IPv6 ND option, any such

padding octets should be restored. This procedure must be

unambiguous.

16. Summary of Requirements for Interoperable Implementations

This section summarizes basic interoperability and references normative

text for RPL implementations operating in one of three major modes.

Implementations are expected to support either no downward routes, non-

storing mode only, or storing mode only. A fourth mode, operation as a

leaf, is also possible.

Implementations conforming to this specification may contain different

subsets of capabilities as appropriate to the application scenario. It

is important for the implementer to support a level of interoperability

consistent with that required by the application scenario. To this end,

further guidance may be provided beyond this specification (e.g. as

applicability statements), and it is understood that in some cases such

further guidance may override portions of this specification.

16.1. Common Requirements

In a general case the greatest level of interoperability may be

achieved when all of the nodes in a RPL LLN are cooperating to use the

same MOP, OF, metrics, and constraints, and are thus able to act as RPL

Routers. When a node is not capable to be a RPL Router it may be

possible to interoperate in a more limited manner as a RPL leaf.

All RPL implementations need to support the use of RPL Packet

Information transported within data packets (Section 11.2). One such

mechanism is described in [I-D.ietf-6man-rpl-option].

RPL implementations will need to support the use of Neighbor

Unreachability Detection (NUD), or an equivalent mechanism, to maintain

*

*

*

*

the reachability of neighboring RPL nodes (Section 8.2.1). Alternate

mechanisms may be optimized to the constrained capabilities of the

implementation, such as hints from the link layer.

This specification provides means to obtain a PIO and thus form an IPv6

address. When that mechanism is used it may be necessary to perform

address resolution and duplicate address detection through an external

process, such as IPv6 ND ([RFC4861]) or 6LoWPAN ND ([I-D.ietf-6lowpan-

nd]).

16.2. Operation as a RPL Leaf Node (only)

An implementation of a Leaf Node (only) does not ever participate

as a RPL Router. Interoperable implementations of leaf nodes

behave as summarized in Section 8.5.

Support of a particular MOP encoding is not required, although if

the leaf node sends DAO messages to setup downward routes the

leaf node should do so in a manner consistent with the mode of

operation described by the MOP.

Support of a particular OF is not required.

In brief summary, a leaf node does not generally issue DIO

messages, it may issue DAO and DIS messages. A leaf node accepts

DIO messages though it generally ignores DAO and DIS messages.

16.3. Operation as a RPL Router

If further guidance is not available then a RPL Router implementation

MUST at least support the metric-less OF0 [I-D.ietf-roll-of0].

For consistent operation a RPL Router implementation needs to support

the MOP in use by the DODAG.

All RPL Routers will need to implement Trickle ([I-D.ietf-roll-

trickle])

16.3.1. Support for Upward Routes only

An implementation of a RPL router that supports only Upward Routes

supports the following:

Upward Routes (Section 8)

MOP encoding 0 (Section 20.3)

In brief summary DIO and DIS messages are issued, and DAO

messages are not issued. DIO and DIS messages are accepted, and

DAO messages are ignored.

*

*

*

*

*

*

*

16.3.2. Support for Upward Routes and Downward Routes in Non-Storing

mode

An implementation of a RPL router that supports Upward Routes and

Downward Routes in Non-Storing mode supports the following:

Upward Routes (Section 8)

Downward Routes (Non-Storing) (Section 9)

MOP encoding 1 (Section 20.3)

Source-routed downward traffic ([I-D.ietf-6man-rpl-routing-

header])

In brief summary DIO and DIS messages are issued, and DAO

messages are issued to the DODAG Root. DIO and DIS messages are

accepted, and DAO messages are ignored by nodes other than DODAG

Roots. Multicast is not supported through the means described in

this specification, though it may be supported through some

alternate means.

16.3.3. Support for Upward Routes and Downward Routes in Storing mode

An implementation of a RPL router that supports Upward Routes and

Downward Routes in Storing mode supports the following:

Upward Routes (Section 8)

Downward Routes (Storing) (Section 9)

MOP encoding 2 (Section 20.3)

In brief summary DIO, DIS, and DAO messages are issued. DIO, DIS,

and DAO messages are accepted. Multicast is not supported through

the means described in this specification, though it may be

supported through some alternate means.

16.3.3.1. Optional support for basic multicast scheme

A Storing mode implementation may be enhanced with basic multicast

support through the following additions:

Basic Multicast Support (Section 12)

MOP encoding 3 (Section 20.3)

*

*

*

*

*

*

*

*

*

*

*

BASE_RANK

ROOT_RANK

INFINITE_RANK

RPL_DEFAULT_INSTANCE

DEFAULT_PATH_CONTROL_SIZE

16.4. Items for Future Specification

A number of items are left to future specification, including but not

limited to:

How to attach a non-RPL node such as an IPv6 host, e.g. to

consistently distribute at least PIO material to the attached

node.

How to obtain authentication material in support if authenticated

mode is used (Section 10.3).

Details of operation over multiple simultaneous instances.

Advanced configuration mechanisms, such as provisioning of

RPLInstanceIDs, parameterization of objective functions, and

parameters to control security. (It is expected that such

mechanisms might extend the DIO as a means to disseminate

information across the DODAG).

17. RPL Constants and Variables

Following is a summary of RPL constants and variables:

This is the rank for a virtual root that might be used to

coordinate multiple roots. BASE_RANK has a value of 0.

This is the rank for a DODAG root. ROOT_RANK has a value of

MinHopRankIncrease (as advertised by the DODAG root), such that

DAGRank(ROOT_RANK) is 1.

This is the constant maximum for the rank. INFINITE_RANK

has a value of 0xFFFF.

This is the RPLInstanceID that is used by this

protocol by a node without any overriding policy.

RPL_DEFAULT_INSTANCE has a value of 0.

This is the default value used to configure

PCS in the DODAG Configuration Option, which dictates the number of

significant bits in the Path Control field of the Transit

Information option. DEFAULT_PATH_CONTROL_SIZE has a value of 0. This

*

*

*

*

DEFAULT_DIO_INTERVAL_MIN

DEFAULT_DIO_INTERVAL_DOUBLINGS

DEFAULT_DIO_REDUNDANCY_CONSTANT

DEFAULT_MIN_HOP_RANK_INCREASE

DEFAULT_DAO_DELAY

DIO Timer

DAG Version Increment Timer

DelayDAO Timer

RemoveTimer

configures the simplest case limiting the fan-out to 1 and limiting

a node to send a DAO message to only one parent.

This is the default value used to configure

Imin for the DIO trickle timer. DEFAULT_DIO_INTERVAL_MIN has a value

of 3. This configuration results in Imin of 8ms.

This is the default value used to

configure Imax for the DIO trickle timer.

DEFAULT_DIO_INTERVAL_DOUBLINGS has a value of 20. This configuration

results in a maximum interval of 2.3 hours.

This is the default value used to

configure k for the DIO trickle timer.

DEFAULT_DIO_REDUNDANCY_CONSTANT has a value of 10. This

configuration is a conservative value for trickle suppression

mechanism.

This is the default value of

MinHopRankIncrease. DEFAULT_MIN_HOP_RANK_INCREASE has a value of

256. This configuration results in an 8-bit wide integer part of

Rank.

This is the default value for the DelayDAO Timer.

DEFAULT_DAO_DELAY has value of 1 second. See Section 9.5.

One instance per DODAG that a node is a member of. Expiry

triggers DIO message transmission. Trickle timer with variable

interval in [0, DIOIntervalMin..2^DIOIntervalDoublings]. See Section

8.3.1

Up to one instance per DODAG that the node

is acting as DODAG root of. May not be supported in all

implementations. Expiry triggers increment of DODAGVersionNumber,

causing a new series of updated DIO message to be sent. Interval

should be chosen appropriate to propagation time of DODAG and as

appropriate to application requirements (e.g. response time vs.

overhead).

Up to one timer per DAO parent (the subset of DODAG

parents chosen to receive destination advertisements) per DODAG.

Expiry triggers sending of DAO message to the DAO parent. See

Section 9.5

Up to one timer per DAO entry per neighbor (i.e. those

neighbors that have given DAO messages to this node as a DODAG

parent) Expiry may trigger No-Path advertisements or immediately

deallocate the DAO entry if there are no DAO parents.

18. Manageability Considerations

The aim of this section is to give consideration to the manageability

of RPL, and how RPL will be operated in a LLN. The scope of this

section is to consider the following aspects of manageability:

configuration, monitoring, fault management, accounting, and

performance of the protocol in light of the recommendations set forth

in [RFC5706].

18.1. Introduction

Most of the existing IETF management standards are Structure of

Management Information (SMI) based data models (MIB modules) to monitor

and manage networking devices.

For a number of protocols, the IETF community has used the IETF

Standard Management Framework, including the Simple Network Management

Protocol [RFC3410], the Structure of Management Information [RFC2578],

and MIB data models for managing new protocols.

As pointed out in [RFC5706], the common policy in terms of operation

and management has been expanded to a policy that is more open to a set

of tools and management protocols rather than strictly relying on a

single protocol such as SNMP.

In 2003, the Internet Architecture Board (IAB) held a workshop on

Network Management [RFC3535] that discussed the strengths and

weaknesses of some IETF network management protocols and compared them

to operational needs, especially configuration.

One issue discussed was the user-unfriendliness of the binary format of

SNMP [RFC3410]. In the case of LLNs, it must be noted that at the time

of writing, the CoRE Working Group is actively working on resource

management of devices in LLNs. Still, it is felt that this section

provides important guidance on how RPL should be deployed, operated,

and managed.

As stated in [RFC5706], "A management information model should include

a discussion of what is manageable, which aspects of the protocol need

to be configured, what types of operations are allowed, what protocol-

specific events might occur, which events can be counted, and for which

events an operator should be notified". These aspects are discussed in

detail in the following sections.

RPL will be used on a variety of devices that may have resources such

as memory varying from a few Kbytes to several hundreds of Kbytes and

even Mbytes. When memory is highly constrained, it may not be possible

to satisfy all the requirements listed in this section. Still it is

worth listing all of these in an exhaustive fashion, and implementers

will then determine which of these requirements could be satisfied

according to the available resources on the device.

18.2. Configuration Management

This section discusses the configuration management, listing the

protocol parameters for which configuration management is relevant.

Some of the RPL parameters are optional. The requirements for

configuration are only applicable for the options that are used.

18.2.1. Initialization Mode

"Architectural Principles of the Internet" [RFC1958], Section 3.8,

states: "Avoid options and parameters whenever possible. Any options

and parameters should be configured or negotiated dynamically rather

than manually." This is especially true in LLNs where the number of

devices may be large and manual configuration is infeasible. This has

been taken into account in the design of RPL whereby the DODAG root

provides a number of parameters to the devices joining the DODAG, thus

avoiding cumbersome configuration on the routers and potential sources

of misconfiguration (e.g. values of trickle timers, ...). Still there

are additional RPL parameters that a RPL implementation should allow to

be configured, which are discussed in this section.

18.2.1.1. DIS mode of operation upon boot-up

When a node is first powered up:

The node may decide to stay silent, waiting to receive DIO

messages from DODAG of interest (advertising a supported OF and

metrics/constraints) and not send any multicast DIO messages

until it has joined a DODAG.

The node may decide to send one or more DIS messages

(optionally requesting DIO for a specific DODAG) as an initial

probe for nearby DODAGs, and in the absence of DIO messages in

reply after some configurable period of time, the node may

decide to root a floating DODAG and start sending multicast DIO

messages.

A RPL implementation SHOULD allow configuring the preferred mode of

operation listed above along with the required parameters (in the

second mode: the number of DIS messages and related timer).

18.2.2. DIO and DAO Base Message and Options Configuration

RPL specifies a number of protocol parameters considering the large

spectrum of applications where it will be used. That said, particular

attention has been given to limiting the number of these parameters

that must be configured on each RPL router. Instead, a number of the

default values can be used, and when required these parameters can be

provided by the DODAG root thus allowing for dynamic parameter setting.

1.

2.

A RPL implementation SHOULD allow configuring the following routing

protocol parameters. As pointed out above, note that a large set of

parameters is configured on the DODAG root.

18.2.3. Protocol Parameters to be configured on every router in the LLN

A RPL implementation MUST allow configuring the following RPL

parameters:

RPLInstanceID [DIO message, in DIO base message]. Although the

RPLInstanceID must be configured on the DODAG root, it must also

be configured as a policy on every node in order to determine

whether or not the node should join a particular DODAG. Note that

a second RPLInstance can be configured on the node, should it

become root of a floating DODAG.

List of supported Objective Code Points (OCPs)

List of supported metrics: [I-D.ietf-roll-routing-metrics]

specifies a number of metrics and constraints used for the DODAG

formation. Thus a RPL implementation should allow configuring the

list of metrics that a node can accept and understand. If a DIO

is received with a metric and/or constraint that is not

understood or supported, as specified in Section 8.5, the node

would join as a leaf node.

Prefix information, along with valid and preferred lifetime and

the L and A flags. [DIO message, Prefix Information option]. A

RPL implementation SHOULD allow configuring if the Prefix

Information Option must be carried with the DIO message to

distribute the prefix information for auto-configuration. In that

case, the RPL implementation MUST allow the list of prefixes to

be advertised in the Prefix Information Option along with the

corresponding flags.

Solicited Information [DIS message, in Solicited Information

option]. Note that an RPL implementation SHOULD allow configuring

when such messages should be sent and under which circumstances,

along with the value of the RPLInstance ID, V/I/D flags.

'K' flag: when a node should set the 'K' flag in a DAO message

[DAO message, in DAO base message].

MOP (Mode of Operation) [DIO message, in DIO base message].

Route Information (and preference) [DIO message, in Route

Information option]

*

*

*

*

*

*

*

*

18.2.4. Protocol Parameters to be configured on every non-DODAG-root

router in the LLN

A RPL implementation MUST allow configuring the Target prefix [DAO

message, in RPL Target option].

Furthermore, there are circumstances where a node may want to designate

a Target to allow for specific processing of the Target

(prioritization, ...). Such processing rules are out of scope for this

specification. When used, a RPL implementation SHOULD allow configuring

the Target Descriptor on a per-Target basis (for example using access

lists).

A node whose DODAG parent set is empty may become the DODAG root of a

floating DODAG. It may also set its DAGPreference such that it is less

preferred. Thus a RPL implementation MUST allow configuring the set of

actions that the node should initiate in this case:

Start its own (floating) DODAG: the new DODAGID must be

configured in addition to its DAGPreference.

Poison the broken path (see procedure in Section 8.2.2.5).

Trigger a local repair.

18.2.5. Parameters to be configured on the DODAG root

In addition, several other parameters are configured only on the DODAG

root and advertised in options carried in DIO messages.

As specified in Section 8.3, a RPL implementation makes use of trickle

timers to govern the sending of DIO messages. The operation of the

trickle algorithm is determined by a set of configurable parameters,

which MUST be configurable and that are then advertised by the DODAG

root along the DODAG in DIO messages.

DIOIntervalDoublings [DIO message, in DODAG configuration option]

DIOIntervalMin [DIO message, in DODAG configuration option]

DIORedundancyConstant [DIO message, in DODAG configuration

option]

In addition, a RPL implementation SHOULD allow for configuring the

following set of RPL parameters:

Path Control Size [DIO message, in DODAG configuration option]

MinHopRankIncrease [DIO message, in DODAG configuration option]

The DODAGPreference field [DIO message, DIO Base object]

*

*

*

*

*

*

*

*

*

DODAGID [DIO message, in DIO base option] and [DAO message, when

the 'D' flag of the DAO message is set]

DAG Root behavior: in some cases, a node may not want to permanently

act as a floating DODAG root if it cannot join a grounded DODAG. For

example a battery-operated node may not want to act as a floating DODAG

root for a long period of time. Thus a RPL implementation MAY support

the ability to configure whether or not a node could act as a floating

DODAG root for a configured period of time.

DAG Version Number Increment: a RPL implementation may allow by

configuration at the DODAG root to refresh the DODAG states by updating

the DODAGVersionNumber. A RPL implementation SHOULD allow configuring

whether or not periodic or event triggered mechanisms are used by the

DODAG root to control DODAGVersionNumber change (which triggers a

global repair as specified in Section 3.2.2.

18.2.6. Configuration of RPL Parameters related to DAO-based mechanisms

DAO messages are optional and used in DODAGs that require downward

routing operation. This section deals with the set of parameters

related to DAO messages and provides recommendations on their

configuration.

As stated in Section 9.5, it is recommended to delay the sending of DAO

message to DAO parents in order to maximize the chances to perform

route aggregation. Upon receiving a DAO message, the node should thus

start a DelayDAO timer. The default value is DEFAULT_DAO_DELAY. A RPL

implementation MAY allow for configuring the DelayDAO timer.

In a storing mode of operation, a storing node may increment DTSN in

order to reliably trigger a set of DAO updates from its immediate

children, as part of routine routing table updates and maintenance. A

RPL implementation MAY allow for configuring a set of rules specifying

the triggers for DTSN increment (manual or event-based).

When a DAO entry times out or is invalidated, a node SHOULD make a

reasonable attempt to report a No-Path to each of the DAO parents. That

number of attempts MAY be configurable.

An implementation should support rate-limiting the sending of DAO

messages. The related parameters MAY be configurable.

18.2.7. Configuration of RPL Parameters related to Security mechanisms

As described in Section 10, the security features described in this

document are optional to implement and a given implementation may

support a subset (including the empty set) of the described security

features.

To this end an implementation supporting described security features

may conceptually implement a security policy database. In support of

the security mechanisms, a RPL implementation SHOULD allow for

configuring a subset of the following parameters:

*

Security Modes accepted [Unsecured mode, Pre-Installed mode,

Authenticated mode]

KIM values accepted [Secure RPL Control messages, in Security

Section]

Level values accepted [Secure RPL Control messages, in Security

section]

Algorithm values accepted [Secure RPL Control messages, in

Security section]

Key material in support of Authenticated or Pre-Installed key

modes.

In addition, a RPL implementation SHOULD allow for configuring a DODAG

root with a subset of the following parameters:

Level values advertised [Secure DIO message, in Security Section]

KIM value advertised [Secure DIO message, in Security Section]

Algorithm value advertised [Secure DIO message, in Security

Section]

18.2.8. Default Values

This document specifies default values for the following set of RPL

variables:

DEFAULT_PATH_CONTROL_SIZE

DEFAULT_DIO_INTERVAL_MIN

DEFAULT_DIO_INTERVAL_DOUBLINGS

DEFAULT_DIO_REDUNDANCY_CONSTANT

DEFAULT_MIN_HOP_RANK_INCREASE

DEFAULT_DAO_DELAY

It is recommended to specify default values in protocols; that being

said, as discussed in [RFC5706], default values may make less and less

sense. RPL is a routing protocol that is expected to be used in a

number of contexts where network characteristics such as the number of

nodes, link and nodes types are expected to vary significantly. Thus,

these default values are likely to change with the context and as the

technology will evolve. Indeed, LLNs' related technology (e.g.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

hardware, link layers) have been evolving dramatically over the past

few years and such technologies are expected to change and evolve

considerably in the coming years.

The proposed values are not based on extensive best current practices

and are considered to be conservative.

18.3. Monitoring of RPL Operation

Several RPL parameters should be monitored to verify the correct

operation of the routing protocol and the network itself. This section

lists the set of monitoring parameters of interest.

18.3.1. Monitoring a DODAG parameters

A RPL implementation SHOULD provide information about the following

parameters:

DODAG Version number [DIO message, in DIO base message]

Status of the G flag [DIO message, in DIO base message]

Status of the MOP field [DIO message, in DIO base message]

Value of the DTSN [DIO message, in DIO base message]

Value of the rank [DIO message, in DIO base message]

DAOSequence: Incremented at each unique DAO message, echoed in

the DAO-ACK message [DAO and DAO-ACK messages]

Route Information [DIO message, Route Information option] (list

of IPv6 prefixes per parent along with lifetime and preference]

Trickle parameters:

DIOIntervalDoublings [DIO message, in DODAG configuration

option]

DIOIntervalMin [DIO message, in DODAG configuration option]

DIORedundancyConstant [DIO message, in DODAG configuration

option]

Path Control Size [DIO message, in DODAG configuration option]

MinHopRankIncrease [DIO message, in DODAG configuration option]

Values that may be monitored only on the DODAG root

*

*

*

*

*

*

*

*

-

-

-

*

*

Transit Information [DAO, Transit Information option]: A RPL

implementation SHOULD allow configuring whether the set of

received Transit Information options should be displayed on the

DODAG root. In this case, the RPL database of received Transit

Information should also contain: the path-sequence, path control,

path lifetime and parent address.

18.3.2. Monitoring a DODAG inconsistencies and loop detection

Detection of DODAG inconsistencies is particularly critical in RPL

networks. Thus it is recommended for a RPL implementation to provide

appropriate monitoring tools. A RPL implementation SHOULD provide a

counter reporting the number of a times the node has detected an

inconsistency with respect to a DODAG parent, e.g. if the DODAGID has

changed.

When possible more granular information about inconsistency detection

should be provided. A RPL implementation MAY provide counters reporting

the number of following inconsistencies:

Packets received with 'O' bit set (to Down) from a node with a

higher rank

Packets received with 'O' bit cleared (to Up) from a node with a

lower rank

Number of packets with the 'F' bit set

Number of packets with the 'R' bit set

18.4. Monitoring of the RPL data structures

18.4.1. Candidate Neighbor Data Structure

A node in the candidate neighbor list is a node discovered by the some

means and qualified to potentially become a parent (with high enough

local confidence). A RPL implementation SHOULD provide a way to allow

for the candidate neighbor list to be monitored with some metric

reflecting local confidence (the degree of stability of the neighbors)

as measured by some metrics.

A RPL implementation MAY provide a counter reporting the number of

times a candidate neighbor has been ignored, should the number of

candidate neighbors exceeds the maximum authorized value.

18.4.2. Destination Oriented Directed Acyclic Graph (DAG) Table

For each DODAG, a RPL implementation is expected to keep track of the

following DODAG table values:

RPLInstanceID

*

*

*

*

*

*

DODAGID

DODAGVersionNumber

Rank

Objective Code Point

A set of DODAG Parents

A set of prefixes offered upwards along the DODAG

Trickle timers used to govern the sending of DIO messages for the

DODAG

List of DAO parents

DTSN

Node status (router versus leaf)

A RPL implementation SHOULD allow for monitoring the set of parameters

listed above.

18.4.3. Routing Table and DAO Routing Entries

A RPL implementation maintains several information elements related to

the DODAG and the DAO entries (for storing nodes). In the case of a non

storing node, a limited amount of information is maintained (the

routing table is mostly reduced to a set of DODAG parents along with

characteristics of the DODAG as mentioned above) whereas in the case of

storing nodes, this information is augmented with routing entries.

A RPL implementation SHOULD allow for the following parameters to be

monitored:

Next Hop (DODAG parent)

Next Hop Interface

Path metrics value for each DODAG parent

A DAO Routing Table Entry conceptually contains the following elements

(for storing nodes only):

Advertising Neighbor Information

IPv6 Address

Interface ID to which DAO Parents has this entry been reported

Retry Counter

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Logical equivalent of DAO Content:

DAO-Sequence

Path Sequence

DAO Lifetime

DAO Path Control

Destination Prefix (or Address or Mcast Group)

A RPL implementation SHOULD provide information about the state of each

DAO Routing Table entry states.

18.5. Fault Management

Fault management is a critical component used for troubleshooting,

verification of the correct mode of operation of the protocol, network

design, and is also a key component of network performance monitoring.

A RPL implementation SHOULD allow providing the following information

related to fault managements:

Memory overflow along with the cause (e.g. routing tables

overflow, ...)

Number of times a packet could not be sent to a DODAG parent

flagged as valid

Number of times a packet has been received for which the router

did not have a corresponding RPLInstanceID

Number of times a local repair procedure was triggered

Number of times a global repair was triggered by the DODAG root

Number of received malformed messages

Number of seconds with packets to forward and no next hop (DODAG

parent)

Number of seconds without next hop (DODAG parent)

Number of times a node has joined a DODAG as a leaf because it

received a DIO with metric/constraint not understood and it was

configured to join as a leaf node in this case (see Section

18.6).

It is RECOMMENDED to report faults via at least error log messages.

Other protocols may be used to report such faults.

*

-

-

-

-

*

*

*

*

*

*

*

*

*

*

18.6. Policy

Policy rules can be used by a RPL implementation to determine whether

or not the node is allowed to join a particular DODAG advertised by a

neighbor by means of DIO messages.

This document specifies operation within a single DODAG. A DODAG is

characterized by the following tuple (RPLInstanceID, DODAGID).

Furthermore, as pointed out above, DIO messages are used to advertise

other DODAG characteristics such as the routing metrics and constraints

used to build to the DODAG and the Objective Function in use (specified

by OCP).

The first policy rules consist of specifying the following conditions

that a RPL node must satisfy to join a DODAG:

RPLInstanceID

List of supported routing metrics and constraints

Objective Function (OCP values)

A RPL implementation MUST allow configuring these parameters and SHOULD

specify whether the node must simply ignore the DIO if the advertised

DODAG is not compliant with the local policy or whether the node should

join as the leaf node if only the list of supported routing metrics and

constraints, and the OF is not supported. Additionally a RPL

implementation SHOULD allow for the addition of the DODAGID as part of

the policy.

A RPL implementation SHOULD allow configuring the set of acceptable or

preferred Objective Functions (OF) referenced by their Objective

Codepoints (OCPs) for a node to join a DODAG, and what action should be

taken if none of a node's candidate neighbors advertise one of the

configured allowable Objective Functions, or if the advertised metrics/

constraint is not understood/supported. Two actions can be taken in

this case:

The node joins the DODAG as a leaf node as specified in Section

8.5

The node does not join the DODAG

A node in an LLN may learn routing information from different routing

protocols including RPL. It is in this case desirable to control via

administrative preference which route should be favored. An

implementation SHOULD allow for specifying an administrative preference

for the routing protocol from which the route was learned.

Internal Data Structures: some RPL implementations may limit the size

of the candidate neighbor list in order to bound the memory usage, in

which case some otherwise viable candidate neighbors may not be

considered and simply dropped from the candidate neighbor list.

*

*

*

*

*

A RPL implementation MAY provide an indicator on the size of the

candidate neighbor list.

18.7. Fault Isolation

It is RECOMMENDED to quarantine neighbors that start emitting malformed

messages at unacceptable rates.

18.8. Impact on Other Protocols

RPL has very limited impact on other protocols. Where more than one

routing protocol is required on a router such as a LBR, it is expected

for the device to support routing redistribution functions between the

routing protocols to allow for reachability between the two routing

domains. Such redistribution SHOULD be governed by the use of user

configurable policy.

With regards to the impact in terms of traffic on the network, RPL has

been designed to limit the control traffic thanks to mechanisms such as

Trickle timers (Section 8.3). Thus the impact of RPL on other protocols

should be extremely limited.

18.9. Performance Management

Performance management is always an important aspect of a protocol and

RPL is not an exception. Several metrics of interest have been

specified by the IP Performance Monitoring (IPPM) Working Group: that

being said, they will be hardly applicable to LLN considering the cost

of monitoring these metrics in terms of resources on the devices and

required bandwidth. Still, RPL implementation MAY support some of

these, and other parameters of interest are listed below:

Number of repairs and time to repair in seconds (average,

variance)

Number of times and duration during which a devices could not

forward a packet because of a lack of reachable neighbor in its

routing table

Monitoring of resources consumption by RPL in terms of bandwidth

and required memory

Number of RPL control messages sent and received

18.10. Diagnostics

There may be situations where a node should be placed in "verbose" mode

to improve diagnostics. Thus a RPL implementation SHOULD provide the

ability to place a node in and out of verbose mode in order to get

additional diagnostic information.

*

*

*

*

Data confidentiality:

Data authenticity:

Replay protection:

Timeliness (delay protection):

19. Security Considerations

19.1. Overview

From a security perspective, RPL networks are no different from any

other network. They are vulnerable to passive eavesdropping attacks and

potentially even active tampering when physical access to a wire is not

required to participate in communications. The very nature of ad hoc

networks and their cost objectives impose additional security

constraints, which perhaps make these networks the most difficult

environments to secure. Devices are low-cost and have limited

capabilities in terms of computing power, available storage, and power

drain; and it cannot always be assumed they have a trusted computing

base or a high-quality random number generator aboard. Communications

cannot rely on the online availability of a fixed infrastructure and

might involve short-term relationships between devices that may never

have communicated before. These constraints might severely limit the

choice of cryptographic algorithms and protocols and influence the

design of the security architecture because the establishment and

maintenance of trust relationships between devices need to be addressed

with care. In addition, battery lifetime and cost constraints put

severe limits on the security overhead these networks can tolerate,

something that is of far less concern with higher bandwidth networks.

Most of these security architectural elements can be implemented at

higher layers and may, therefore, be considered to be out of scope for

this specification. Special care, however, needs to be exercised with

respect to interfaces to these higher layers.

The security mechanisms in this standard are based on symmetric-key and

public-key cryptography and use keys that are to be provided by higher

layer processes. The establishment and maintenance of these keys are

out of scope for this specification. The mechanisms assume a secure

implementation of cryptographic operations and secure and authentic

storage of keying material.

The security mechanisms specified provide particular combinations of

the following security services:

Assurance that transmitted information is only

disclosed to parties for which it is intended.

Assurance of the source of transmitted information

(and, hereby, that information was not modified in transit).

Assurance that a duplicate of transmitted

information is detected.

Assurance that transmitted information

was received in a timely manner.

The actual protection provided can be adapted on a per-packet basis and

allows for varying levels of data authenticity (to minimize security

overhead in transmitted packets where required) and for optional data

confidentiality. When nontrivial protection is required, replay

protection is always provided.

Replay protection is provided via the use of a non-repeating value (CCM

nonce) in the packet protection process and storage of some status

information (originating device and the CCM nonce counter last received

from that device), which allows detection of whether this particular

CCM nonce value was used previously by the originating device. In

addition, so-called delay protection is provided amongst those devices

that have a loosely synchronized clock on board. The acceptable time

delay can be adapted on a per-packet basis and allows for varying

latencies (to facilitate longer latencies in packets transmitted over a

multi-hop communication path).

Cryptographic protection may use a key shared between two peer devices

(link key) or a key shared among a group of devices (group key), thus

allowing some flexibility and application-specific tradeoffs between

key storage and key maintenance costs versus the cryptographic

protection provided. If a group key is used for peer-to-peer

communication, protection is provided only against outsider devices and

not against potential malicious devices in the key-sharing group.

Data authenticity may be provided using symmetric-key based or public-

key based techniques. With public-key based techniques (via

signatures), one corroborates evidence as to the unique originator of

transmitted information, whereas with symmetric-key based techniques

data authenticity is only provided relative to devices in a key-sharing

group. Thus, public-key based authentication may be useful in scenarios

that require a more fine-grained authentication than can be provided

with symmetric-key based authentication techniques alone, such as with

group communications (broadcast, multicast), or in scenarios that

require non-repudiation.

20. IANA Considerations

20.1. RPL Control Message

The RPL Control Message is an ICMP information message type that is to

be used carry DODAG Information Objects, DODAG Information

Solicitations, and Destination Advertisement Objects in support of RPL

operation.

IANA has defined an ICMPv6 Type Number Registry. The suggested type

value for the RPL Control Message is 155, to be confirmed by IANA.

20.2. New Registry for RPL Control Codes

IANA is requested to create a registry, RPL Control Codes, for the Code

field of the ICMPv6 RPL Control Message.

New codes may be allocated only by an IETF Review. Each code should be

tracked with the following qualities:

Code

Description

Defining RFC

The following codes are currently defined:

Code Description Reference

0x00 DODAG Information Solicitation
This

document

0x01 DODAG Information Object
This

document

0x02 Destination Advertisement Object
This

document

0x03 Destination Advertisement Object Acknowledgment
This

document

0x80 Secure DODAG Information Solicitation
This

document

0x81 Secure DODAG Information Object
This

document

0x82 Secure Destination Advertisement Object
This

document

0x83
Secure Destination Advertisement Object

Acknowledgment

This

document

0x8A Consistency Check
This

document

RPL Control Codes

20.3. New Registry for the Mode of Operation (MOP)

IANA is requested to create a registry for the 3-bit Mode of Operation

(MOP), which is contained in the DIO Base.

New values may be allocated only by an IETF Review. Each value should

be tracked with the following qualities:

Mode of Operation Value

Capability description

Defining RFC

Four values are currently defined:

*

*

*

*

*

*

MOP

value
Description Reference

0 No downward routes maintained by RPL
This

document

1 Non-Storing mode of operation
This

document

2
Storing mode of operation with no multicast

support

This

document

3
Storing mode of operation with multicast

support

This

document

DIO Mode of operation

The rest of the range, decimal 4 to 7, is currently unassigned.

20.4. RPL Control Message Option

IANA is requested to create a registry for the RPL Control Message

Options

New values may be allocated only by an IETF Review. Each value should

be tracked with the following qualities:

Value

Meaning

Defining RFC

Value Meaning Reference

0 Pad1 This document

1 PadN This document

2 DAG Metric Container This Document

3 Routing Information This Document

4 DODAG Configuration This Document

5 RPL Target This Document

6 Transit Information This Document

7 Solicited Information This Document

8 Prefix Information This Document

9 Target Descriptor This Document

RPL Control Message Options

20.5. Objective Code Point (OCP) Registry

IANA is requested to create a registry to manage the codespace of the

Objective Code Point (OCP) field.

*

*

*

No OCP codepoints are defined in this specification.

New codes may be allocated only by an IETF Review. Each code should be

tracked with the following qualities:

OCP code

Description

Defining RFC

20.6. New Registry for the Security Section Algorithm

IANA is requested to create a registry for the values of 8-bit

Algorithm field in the Security Section.

New values may be allocated only by an IETF Review. Each value should

be tracked with the following qualities:

Value

Encryption/MAC

Signature

Defining RFC

The following value is currently defined:

Value Encryption/MAC Signature Reference

0 CCM with AES-128 RSA with SHA-256 This document

Security Section Algorithm

20.7. New Registry for the Security Section Flags

IANA is requested to create a registry for the 8-bit Security Section

Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

No bit is currently defined for the Security Section Flags.

20.8. New Registry for Per-KIM Security Levels

IANA is requested to create one registry for the 3-bit Security Level

(LVL) Field per allocated KIM value.

*

*

*

*

*

*

*

*

*

*

For a given KIM value, new levels may be allocated only by an IETF

Review. Each level should be tracked with the following qualities:

Level

KIM value

Description

Defining RFC

The following levels pre KIM value are currently defined:

Level KIM value Description Reference

0 0 See Figure 12 This document

1 0 See Figure 12 This document

2 0 See Figure 12 This document

3 0 See Figure 12 This document

0 1 See Figure 12 This document

1 1 See Figure 12 This document

2 1 See Figure 12 This document

3 1 See Figure 12 This document

0 2 See Figure 12 This document

1 2 See Figure 12 This document

2 2 See Figure 12 This document

3 2 See Figure 12 This document

0 3 See Figure 12 This document

1 3 See Figure 12 This document

2 3 See Figure 12 This document

3 3 See Figure 12 This document

Per-KIM Security Levels

20.9. New Registry for the DIS (DODAG Informational Solicitation) Flags

IANA is requested to create a registry for the DIS (DODAG Informational

Solicitation) Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

*

*

*

*

*

*

Defining RFC

No bit is currently defined for the DIS (DODAG Informational

Solicitation) Flags.

20.10. New Registry for the DODAG Information Object (DIO) Flags

IANA is requested to create a registry for the 8-bit DODAG Information

Object (DIO) Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

No bit is currently defined for the DIS (DODAG Informational

Solicitation) Flags.

20.11. New Registry for the Destination Advertisement Object (DAO)

Flags

IANA is requested to create a registry for the 8-bit Destination

Advertisement Object (DAO) Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

The following bits are currently defined:

Bit number Description Reference

0 DAO-ACK request (K) This document

1 DODAGID field is present (D) This document

DAO Base Flags

20.12. New Registry for the Destination Advertisement Object (DAO)

Acknowledgement Flags

IANA is requested to create a registry for the 8-bit Destination

Advertisement Object (DAO) Acknowledgement Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

*

*

*

*

*

*

*

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

The following bit is currently defined:

Bit number Description Reference

0 DODAGID field is present (D) This document

DAO-ACK Base Flags

20.13. New Registry for the Consistency Check (CC) Flags

IANA is requested to create a registry for the 8-bit Consistency Check

(CC) Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

The following bit is currently defined:

Bit number Description Reference

0 CC Response (R) This document

Consistency Check Base Flags

20.14. New Registry for the DODAG Configuration Option Flags

IANA is requested to create a registry for the 8-bit DODAG

Configuration Option Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

The following bits are currently defined:

*

*

*

*

*

*

*

*

*

Bit number Description Reference

4 Authentication Enabled (A) This document

5-7 Path Control Size (PCS) This document

DODAG Configuration Option Flags

20.15. New Registry for the RPL Target Option Flags

IANA is requested to create a registry for the 8-bit RPL Target Option

Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

No bit is currently defined for the RPL Target Option Flags.

20.16. New Registry for the Transit Information Option Flags

IANA is requested to create a registry for the 8-bit Transit

Information Option (RIO) Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

Capability description

Defining RFC

The following bits are currently defined:

Bit number Description Reference

0 External (E) This document

Transit Information Option Flags

20.17. New Registry for the Solicited Information Option Flags

IANA is requested to create a registry for the 8-bit Solicited

Information Option (RIO) Flag Field.

New bit numbers may be allocated only by an IETF Review. Each bit

should be tracked with the following qualities:

Bit number (counting from bit 0 as the most significant bit)

*

*

*

*

*

*

*

Capability description

Defining RFC

The following bits are currently defined:

Bit number Description Reference

0 Version Predicate match (V) This document

1 InstanceID Predicate match (I) This document

2 DODAGID Predicate match (D) This document

Solicited Information Option Flags

20.18. ICMPv6: Error in Source Routing Header

In some cases RPL will return an ICMPv6 error message when a message

cannot be delivered as specified by its source routing header. This

ICMPv6 error message is "Error in Source Routing Header".

IANA has defined an ICMPv6 "Code" Fields Registry for ICMPv6 Message

Types. ICMPv6 Message Type 1 describes "Destination Unreachable" codes.

The "Error in Source Routing Header" code is suggested to be allocated

from the ICMPv6 Code Fields Registry for ICMPv6 Message Type 1, with a

suggested code value of 7, to be confirmed by IANA.

20.19. Link-Local Scope multicast address

The rules for assigning new IPv6 multicast addresses are defined in

[RFC3307]. This specification requires the allocation of a new

permanent multicast address with a link local scope for RPL nodes

called all-RPL-nodes, with a suggested value of FF02::1A, to be

confirmed by IANA.

21. Acknowledgements

The authors would like to acknowledge the review, feedback, and

comments from Roger Alexander, Emmanuel Baccelli, Dominique Barthel,

Yusuf Bashir, Yoav Ben-Yehezkel, Phoebus Chen, Quynh Dang, Mischa

Dohler, Mathilde Durvy, Joakim Eriksson, Omprakash Gnawali, Manhar

Goindi, Mukul Goyal, Ulrich Herberg, Anders Jagd, JeongGil (John) Ko,

Ajay Kumar, Quentin Lampin, Jerry Martocci, Matteo Paris, Alexandru

Petrescu, Joseph Reddy, Michael Richardson, Don Sturek, Joydeep

Tripathi, and Nicolas Tsiftes.

The authors would like to acknowledge the guidance and input provided

by the ROLL Chairs, David Culler and JP Vasseur, and the Area Director

Adrian Farrel.

The authors would like to acknowledge prior contributions of Robert

Assimiti, Mischa Dohler, Julien Abeille, Ryuji Wakikawa, Teco Boot,

Patrick Wetterwald, Bryan Mclaughlin, Carlos J. Bernardos, Thomas

Watteyne, Zach Shelby, Caroline Bontoux, Marco Molteni, Billy Moon, Jim

*

*

Bound, Yanick Pouffary, Henning Rogge and Arsalan Tavakoli, whom have

provided useful design considerations to RPL.

RPL Security Design, found in Section 10, Section 19, and elsewhere

throughout the document, is primarily the contribution of the Security

Design Team: Tzeta Tsao, Roger Alexander, Dave Ward, Philip Levis, Kris

Pister, Rene Struik, and Adrian Farrel.

Thanks also to Jari Arkko and Ralph Droms for their attentive reviews,

especially with respect to interoperability considerations and

integration with other IETF specifications.

22. Contributors

Stephen Dawson-Haggerty

UC Berkeley

Soda Hall, UC Berkeley

Berkeley, CA 94720

USA

Email: stevedh@cs.berkeley.edu

23. References

23.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[RFC2460]

Deering, S.E. and R.M. Hinden, "Internet

Protocol, Version 6 (IPv6) Specification", RFC

2460, December 1998.

[RFC3447]

Jonsson, J. and B. Kaliski, "Public-Key

Cryptography Standards (PKCS) #1: RSA

Cryptography Specifications Version 2.1", RFC

3447, February 2003.

[RFC3775]
Johnson, D., Perkins, C. and J. Arkko, "Mobility

Support in IPv6", RFC 3775, June 2004.

[RFC4191]

Draves, R. and D. Thaler, "Default Router

Preferences and More-Specific Routes", RFC 4191,

November 2005.

[RFC4302]
Kent, S., "IP Authentication Header", RFC 4302,

December 2005.

[RFC4443]

Conta, A., Deering, S. and M. Gupta, "Internet

Control Message Protocol (ICMPv6) for the

Internet Protocol Version 6 (IPv6)

Specification", RFC 4443, March 2006.

[RFC4861]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:deering@cisco.com
mailto:hinden@iprg.nokia.com
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3775
http://tools.ietf.org/html/rfc3775
http://tools.ietf.org/html/rfc4191
http://tools.ietf.org/html/rfc4191
http://tools.ietf.org/html/rfc4302
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4443

Narten, T., Nordmark, E., Simpson, W. and H.

Soliman, "Neighbor Discovery for IP version 6

(IPv6)", RFC 4861, September 2007.

[RFC4862]

Thomson, S., Narten, T. and T. Jinmei, "IPv6

Stateless Address Autoconfiguration", RFC 4862,

September 2007.

[I-D.ietf-roll-

routing-

metrics]

Vasseur, J, Kim, M, Pister, K, Dejean, N and D

Barthel, "Routing Metrics used for Path

Calculation in Low Power and Lossy Networks",

Internet-Draft draft-ietf-roll-routing-

metrics-19, March 2011.

[I-D.ietf-roll-

of0]

Thubert, P, "RPL Objective Function Zero",

Internet-Draft draft-ietf-roll-of0-20, September

2011.

[I-D.ietf-roll-

trickle]

Levis, P, Clausen, T, Hui, J, Gnawali, O and J

Ko, "The Trickle Algorithm", Internet-Draft

draft-ietf-roll-trickle-08, January 2011.

[I-D.ietf-6man-

rpl-option]

Hui, J and J Vasseur, "RPL Option for Carrying

RPL Information in Data-Plane Datagrams",

Internet-Draft draft-ietf-6man-rpl-option-05,

November 2011.

[I-D.ietf-6man-

rpl-routing-

header]

Hui, J, Vasseur, J, Culler, D and V Manral, "An

IPv6 Routing Header for Source Routes with RPL",

Internet-Draft draft-ietf-6man-rpl-routing-

header-05, November 2011.

23.2. Informative References

[RFC5867]

Martocci, J., De Mil, P., Riou, N. and W.

Vermeylen, "Building Automation Routing

Requirements in Low-Power and Lossy Networks",

RFC 5867, June 2010.

[RFC5673]

Pister, K., Thubert, P., Dwars, S. and T.

Phinney, "Industrial Routing Requirements in

Low-Power and Lossy Networks", RFC 5673,

October 2009.

[RFC5548]

Dohler, M., Watteyne, T., Winter, T. and D.

Barthel, "Routing Requirements for Urban Low-

Power and Lossy Networks", RFC 5548, May 2009.

[RFC5826]

Brandt, A., Buron, J. and G. Porcu, "Home

Automation Routing Requirements in Low-Power

and Lossy Networks", RFC 5826, April 2010.

[I-D.ietf-roll-

terminology]

Vasseur, J, "Terminology in Low power And Lossy

Networks", Internet-Draft draft-ietf-roll-

terminology-06, September 2011.

[RFC3819]

Karn, P., Bormann, C., Fairhurst, G., Grossman,

D., Ludwig, R., Mahdavi, J., Montenegro, G.,

Touch, J. and L. Wood, "Advice for Internet

http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/draft-ietf-roll-routing-metrics-19
http://tools.ietf.org/html/draft-ietf-roll-routing-metrics-19
http://tools.ietf.org/html/draft-ietf-roll-of0-20
http://tools.ietf.org/html/draft-ietf-roll-trickle-08
http://tools.ietf.org/html/draft-ietf-6man-rpl-option-05
http://tools.ietf.org/html/draft-ietf-6man-rpl-option-05
http://tools.ietf.org/html/draft-ietf-6man-rpl-routing-header-05
http://tools.ietf.org/html/draft-ietf-6man-rpl-routing-header-05
http://tools.ietf.org/html/rfc5867
http://tools.ietf.org/html/rfc5867
http://tools.ietf.org/html/rfc5673
http://tools.ietf.org/html/rfc5673
http://tools.ietf.org/html/rfc5548
http://tools.ietf.org/html/rfc5548
http://tools.ietf.org/html/rfc5826
http://tools.ietf.org/html/rfc5826
http://tools.ietf.org/html/rfc5826
http://tools.ietf.org/html/draft-ietf-roll-terminology-06
http://tools.ietf.org/html/draft-ietf-roll-terminology-06
http://tools.ietf.org/html/rfc3819

Subnetwork Designers", BCP 89, RFC 3819, July

2004.

[RFC4101]
Rescorla, E., IAB, "Writing Protocol Models",

RFC 4101, June 2005.

[RFC4915]

Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L.

and P. Pillay-Esnault, "Multi-Topology (MT)

Routing in OSPF", RFC 4915, June 2007.

[RFC5120]

Przygienda, T., Shen, N. and N. Sheth, "M-ISIS:

Multi Topology (MT) Routing in Intermediate

System to Intermediate Systems (IS-ISs)", RFC

5120, February 2008.

[RFC1982]
Elz, R. and R. Bush, "Serial Number

Arithmetic", RFC 1982, August 1996.

[RFC5184]

Teraoka, F., Gogo, K., Mitsuya, K., Shibui, R.

and K. Mitani, "Unified Layer 2 (L2)

Abstractions for Layer 3 (L3)-Driven Fast

Handover", RFC 5184, May 2008.

[RFC5706]

Harrington, D., "Guidelines for Considering

Operations and Management of New Protocols and

Protocol Extensions", RFC 5706, November 2009.

[RFC5881]

Katz, D. and D. Ward, "Bidirectional Forwarding

Detection (BFD) for IPv4 and IPv6 (Single

Hop)", RFC 5881, June 2010.

[RFC3410]

Case, J., Mundy, R., Partain, D. and B.

Stewart, "Introduction and Applicability

Statements for Internet-Standard Management

Framework", RFC 3410, December 2002.

[RFC3610]

Whiting, D., Housley, R. and N. Ferguson,

"Counter with CBC-MAC (CCM)", RFC 3610,

September 2003.

[RFC2578]

McCloghrie, K., Perkins, D. and J.

Schoenwaelder, "Structure of Management

Information Version 2 (SMIv2)", STD 58, RFC

2578, April 1999.

[RFC3535]

Schoenwaelder, J., "Overview of the 2002 IAB

Network Management Workshop", RFC 3535, May

2003.

[RFC1958]
Carpenter, B., "Architectural Principles of the

Internet", RFC 1958, June 1996.

[RFC3307]
Haberman, B., "Allocation Guidelines for IPv6

Multicast Addresses", RFC 3307, August 2002.

[I-D.ietf-manet-

nhdp]

Clausen, T, Dearlove, C and J Dean, "Mobile Ad

Hoc Network (MANET) Neighborhood Discovery

Protocol (NHDP)", Internet-Draft draft-ietf-

manet-nhdp-15, December 2010.

[I-

D.ietf-6lowpan-

nd]

Shelby, Z, Chakrabarti, S and E Nordmark,

"Neighbor Discovery Optimization for Low Power

http://tools.ietf.org/html/rfc3819
http://tools.ietf.org/html/rfc4101
http://tools.ietf.org/html/rfc4915
http://tools.ietf.org/html/rfc4915
http://tools.ietf.org/html/rfc5120
http://tools.ietf.org/html/rfc5120
http://tools.ietf.org/html/rfc5120
mailto:kre@munnari.OZ.AU
mailto:randy@psg.com
http://tools.ietf.org/html/rfc1982
http://tools.ietf.org/html/rfc1982
http://tools.ietf.org/html/rfc5184
http://tools.ietf.org/html/rfc5184
http://tools.ietf.org/html/rfc5184
http://tools.ietf.org/html/rfc5706
http://tools.ietf.org/html/rfc5706
http://tools.ietf.org/html/rfc5706
http://tools.ietf.org/html/rfc5881
http://tools.ietf.org/html/rfc5881
http://tools.ietf.org/html/rfc5881
http://tools.ietf.org/html/rfc3410
http://tools.ietf.org/html/rfc3410
http://tools.ietf.org/html/rfc3410
http://tools.ietf.org/html/rfc3610
mailto:kzm@cisco.com
mailto:dperkins@snmpinfo.com
mailto:schoenw@ibr.cs.tu-bs.de
mailto:schoenw@ibr.cs.tu-bs.de
http://tools.ietf.org/html/rfc2578
http://tools.ietf.org/html/rfc2578
http://tools.ietf.org/html/rfc3535
http://tools.ietf.org/html/rfc3535
mailto:brian@dxcoms.cern.ch
http://tools.ietf.org/html/rfc1958
http://tools.ietf.org/html/rfc1958
http://tools.ietf.org/html/rfc3307
http://tools.ietf.org/html/rfc3307
http://tools.ietf.org/html/draft-ietf-manet-nhdp-15
http://tools.ietf.org/html/draft-ietf-manet-nhdp-15
http://tools.ietf.org/html/draft-ietf-manet-nhdp-15
http://tools.ietf.org/html/draft-ietf-6lowpan-nd-18

and Lossy Networks (6LoWPAN)", Internet-Draft

draft-ietf-6lowpan-nd-18, October 2011.

[Perlman83]

Perlman, R., "Fault-Tolerant Broadcast of

Routing Information", North-Holland Computer

Networks 7: 395-405, 1983.

[FIPS180]

National Institute of Standards and Technology,

, "FIPS Pub 180-3, Secure Hash Standard (SHS)",

US Department of Commerce , February 2008.

Appendix A. Example Operation

This appendix provides some examples to illustrate the dissemination of

addressing information and prefixes with RPL. The examples depict

information being distributed with PIO and RIO options, and the use of

DIO and DAO messages. Note that this appendix is not normative, and

that the specific details of a RPL addressing plan and

autoconfiguration may vary according to specific implementations. RPL

merely provides a vehicle for disseminating information that may be

built upon and used by other mechanisms.

Note that these examples illustrate use of address autoconfiguration

schemes supported by information distributed within RPL. However, if an

implementation includes another address autoconfiguration scheme, RPL

nodes might be configured not to set the 'A' flag in PIO options,

though the PIO can still be used to distribute prefix and addressing

information.

Appendix A.1. Example Operation in Storing Mode With Node-owned

Prefixes

Figure 35 illustrates the logical addressing architecture of a simple

RPL network operating in storing mode. In this example each node, A, B,

C, and D, owns its own prefix, and makes that prefix available for

address autoconfiguration by on-link devices. (This is conveyed by

setting the 'A' flag and the 'L' flag in the PIO of the DIO messages).

Node A owns the prefix A::/64, node B owns B::/64, and so on. Node B

autoconfigures an on-link address with respect to node A, A::B. Nodes C

and D similarly autoconfigure on-link addresses from Node B's prefix,

B::C and B::D respectively. Nodes have the option of setting the 'R'

flag and publishing their address within the Prefix field of the PIO.

http://tools.ietf.org/html/draft-ietf-6lowpan-nd-18

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

 +-------------+

 | Root |

 | |

 | Node A |

 | |

 | A::A |

 +------+------+

 |

 |

 |

 +------+------+

 | A::B |

 | |

 | Node B |

 | |

 | B::B |

 +------+------+

 |

 |

 .--------------+--------------.

 / \

 / \

 +------+------+ +------+------+

 | B::C | | B::D |

 | | | |

 | Node C | | Node D |

 | | | |

 | C::C | | D::D |

 +-------------+ +-------------+

Appendix A.1.1. DIO messages and PIO

Node A, for example, will send DIO messages with a PIO as follows:

Set

Set

Clear

64

A::

Node B, for example, will send DIO messages with a PIO as follows:

Set

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

o

o

o

o

o

Set

Set

64

B::B

Node C, for example, will send DIO messages with a PIO as follows:

Set

Set

Clear

64

C::

Node D, for example, will send DIO messages with a PIO as follows:

Set

Set

Set

64

D::D

Appendix A.1.2. DAO messages

Node B will send DAO messages to node A with the following information:

Target B::/64

Target C::/64

Target D::/64

Node C will send DAO messages to node B with the following information:

Target C::/64

Node D will send DAO messages to node B with the following information:

Target D::/64

o

o

o

o

o

o

o

o

o

o

o

o

Appendix A.1.3. Routing Information Base

Node A will conceptually collect the following information into its

RIB:

A::/64 connected

B::/64 via B's link local

C::/64 via B's link local

D::/64 via B's link local

Node B will conceptually collect the following information into its

RIB:

::/0 via A's link local

B::/64 connected

C::/64 via C's link local

D::/64 via D's link local

Node C will conceptually collect the following information into its

RIB:

::/0 via B's link local

C::/64 connected

Node D will conceptually collect the following information into its

RIB:

::/0 via B's link local

D::/64 connected

Appendix A.2. Example Operation in Storing Mode With Subnet-wide Prefix

Figure 36 illustrates the logical addressing architecture of a simple

RPL network operating in storing mode. In this example the root node A

sources a prefix which is used for address autoconfiguration over the

entire RPL subnet. (This is conveyed by setting the 'A' flag and

clearing the 'L' flag in the PIO of the DIO messages). Nodes A, B, C,

and D all autoconfigure to the prefix A::/64. Nodes have the option of

setting the 'R' flag and publishing their address within the Prefix

field of the PIO.

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

 +-------------+

 | Root |

 | |

 | Node A |

 | A::A |

 | |

 +------+------+

 |

 |

 |

 +------+------+

 | |

 | Node B |

 | A::B |

 | |

 +------+------+

 |

 |

 .--------------+--------------.

 / \

 / \

 +------+------+ +------+------+

 | | | |

 | Node C | | Node D |

 | A::C | | A::D |

 | | | |

 +-------------+ +-------------+

Appendix A.2.1. DIO messages and PIO

Node A, for example, will send DIO messages with a PIO as follows:

Set

Clear

Clear

64

A::

Node B, for example, will send DIO messages with a PIO as follows:

Set

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

o

o

o

o

o

Clear

Set

64

A::B

Node C, for example, will send DIO messages with a PIO as follows:

Set

Clear

Clear

64

A::

Node D, for example, will send DIO messages with a PIO as follows:

Set

Clear

Set

64

A::D

Appendix A.2.2. DAO messages

Node B will send DAO messages to node A with the following information:

Target A::B/128

Target A::C/128

Target A::D/128

Node C will send DAO messages to node B with the following information:

Target A::C/128

Node D will send DAO messages to node B with the following information:

Target A::D/128

o

o

o

o

o

o

o

o

o

o

o

o

Appendix A.2.3. Routing Information Base

Node A will conceptually collect the following information into its

RIB:

A::A/128 connected

A::B/128 via B's link local

A::C/128 via B's link local

A::D/128 via B's link local

Node B will conceptually collect the following information into its

RIB:

::/0 via A's link local

A::B/128 connected

A::C/128 via C's link local

A::D/128 via D's link local

Node C will conceptually collect the following information into its

RIB:

::/0 via B's link local

A::C/128 connected

Node D will conceptually collect the following information into its

RIB:

::/0 via B's link local

A::D/128 connected

Appendix A.3. Example Operation in Non-Storing Mode With Node-owned

Prefixes

Figure 37 illustrates the logical addressing architecture of a simple

RPL network operating in non-storing mode. In this example each node,

A, B, C, and D, owns its own prefix, and makes that prefix available

for address autoconfiguration by on-link devices. (This is conveyed by

setting the 'A' flag and the 'L' flag in the PIO of the DIO messages).

Node A owns the prefix A::/64, node B owns B::/64, and so on. Node B

autoconfigures an on-link address with respect to node A, A::B. Nodes C

and D similarly autoconfigure on-link addresses from Node B's prefix,

o

B::C and B::D respectively. Nodes have the option of setting the 'R'

flag and publishing their address within the Prefix field of the PIO.

 +-------------+

 | Root |

 | |

 | Node A |

 | |

 | A::A |

 +------+------+

 |

 |

 |

 +------+------+

 | A::B |

 | |

 | Node B |

 | |

 | B::B |

 +------+------+

 |

 |

 .--------------+--------------.

 / \

 / \

 +------+------+ +------+------+

 | B::C | | B::D |

 | | | |

 | Node C | | Node D |

 | | | |

 | C::C | | D::D |

 +-------------+ +-------------+

Appendix A.3.1. DIO messages and PIO

The PIO contained in the DIO messages in the non-storing mode with

node-owned prefixes can be considered to be identical to those in the

storing mode with node-owned prefixes case (Appendix Appendix A.1.1).

Appendix A.3.2. DAO messages

Node B will send DAO messages to node A with the following information:

Target B::/64, Transit A::B

Node C will send DAO messages to node A with the following information:

o

o

o

o

o

o

o

o

o

o

o

o

Target C::/64, Transit B::C

Node D will send DAO messages to node A with the following information:

Target D::/64, Transit B::D

Appendix A.3.3. Routing Information Base

Node A will conceptually collect the following information into its

RIB. Note that Node A has enough information to construct source routes

by doing recursive lookups into the RIB:

A::/64 connected

B::/64 via A::B

C::/64 via B::C

D::/64 via B::D

Node B will conceptually collect the following information into its

RIB:

::/0 via A's link local

B::/64 connected

Node C will conceptually collect the following information into its

RIB:

::/0 via B's link local

C::/64 connected

Node D will conceptually collect the following information into its

RIB:

::/0 via B's link local

D::/64 connected

Appendix A.4. Example Operation in Non-Storing Mode With Subnet-wide

Prefix

Figure 38 illustrates the logical addressing architecture of a simple

RPL network operating in non-storing mode. In this example the root

node A sources a prefix which is used for address autoconfiguration

over the entire RPL subnet. (This is conveyed by setting the 'A' flag

and clearing the 'L' flag in the PIO of the DIO messages). Nodes A, B,

C, and D all autoconfigure to the prefix A::/64. Nodes must set the 'R'

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

flag and publishing their address within the Prefix field of the PIO,

in order to inform their children which address to use in the transit

option.

 +-------------+

 | Root |

 | |

 | Node A |

 | A::A |

 | |

 +------+------+

 |

 |

 |

 +------+------+

 | |

 | Node B |

 | A::B |

 | |

 +------+------+

 |

 |

 .--------------+--------------.

 / \

 / \

 +------+------+ +------+------+

 | | | |

 | Node C | | Node D |

 | A::C | | A::D |

 | | | |

 +-------------+ +-------------+

Appendix A.4.1. DIO messages and PIO

Node A, for example, will send DIO messages with a PIO as follows:

Set

Clear

Set

64

A::A

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

'A' flag:

'L' flag:

'R' flag:

Prefix Length:

Prefix:

o

o

o

Node B, for example, will send DIO messages with a PIO as follows:

Set

Clear

Set

64

A::B

Node C, for example, will send DIO messages with a PIO as follows:

Set

Clear

Set

64

A::C

Node D, for example, will send DIO messages with a PIO as follows:

Set

Clear

Set

64

A::D

Appendix A.4.2. DAO messages

Node B will send DAO messages to node A with the following information:

Target A::B/128, Transit A::A

Node C will send DAO messages to node A with the following information:

Target A::C/128, Transit A::B

Node D will send DAO messages to node A with the following information:

Target A::D/128, Transit A::B

o

o

o

o

o

o

o

o

o

o

Appendix A.4.3. Routing Information Base

Node A will conceptually collect the following information into its

RIB. Note that Node A has enough information to construct source routes

by doing recursive lookups into the RIB:

A::A/128 connected

A::B/128 via A::A

A::C/128 via A::B

A::D/128 via A::B

Node B will conceptually collect the following information into its

RIB:

::/0 via A's link local

A::B/128 connected

Node C will conceptually collect the following information into its

RIB:

::/0 via B's link local

A::C/128 connected

Node D will conceptually collect the following information into its

RIB:

::/0 via B's link local

A::D/128 connected

Appendix A.5. Example with External Prefixes

Consider the simple network illustrated in Figure 39. In this example

there are a group of routers participating in a RPL network: a DODAG

Root, nodes A, Y, and Z. The DODAG Root and node Z also have

connectivity to different external network domains (i.e. external to

the RPL network). Note that those external networks could be RPL

networks or another type of network altogether.

 RPL Network +-------------------+

 RPL::/64 | |

 | External |

 [RPL::Root] (Root)----------+ Prefix |

 | | EXT_1::/64 |

 | | |

 | +-------------------+

 [RPL::A] (A)

 :

 :

 :

 [RPL::Y] (Y)

 | +-------------------+

 | | |

 | | External |

 [RPL::Z] (Z)------------+ Prefix |

 : | EXT_2::/64 |

 : | |

 : +-------------------+

In this example the DODAG Root makes a prefix available to the RPL

subnet for address autoconfiguration. Here the entire RPL subnet uses

that same prefix, RPL::/64, for address autoconfiguration, though in

other implementations more complex/hybrid schemes could be employed.

The DODAG Root has connectivity to an external (with respect to that

RPL network) prefix EXT_1::/64. The DODAG Root may have learned of

connectivity to this prefix, for example, via explicit configuration or

IPv6 ND on a non-RPL interface. The DODAG Root is configured to

announce information on the connectivity to this prefix.

Similarly, Node Z has connectivity to an external prefix EXT_2::/64.

Node Z also has a sub-DODAG underneath of it.

The DODAG Root adds a RIO to its DIO messages. The RIO contains

the external prefix EXT_1::/64. This information may be

repeated in the DIO messages emitted by the other nodes within

the DODAG. Thus the reachability to the prefix EXT_1::/64 is

disseminated down the DODAG.

Node Z may advertise reachability to the target network

EXT_2::/64 by sending DAO messages using EXT_2::/64 as a target

in the Target option and itself (Node Z) as a parent in the

Transit Information option. (In storing mode that Transit

Information option does not need to contain the address of Node

Z). A non-storing root then becomes aware of the 1-hop link

(Node Z -- EXT_2::/64) for use in constructing source routes.

Node Z may additionally advertise its reachability to

1.

2.

EXT_2::/64 to nodes in its sub-DODAG by sending DIO messages

with a PIO, with the 'A' flag cleared.

Authors' Addresses

Tim Winter editor Winter EMail: wintert@acm.org

Pascal Thubert editor Thubert Cisco Systems, Inc Village

d'Entreprises Green Side 400, Avenue de Roumanille Batiment T3 Biot

- Sophia Antipolis, 06410 France Phone: +33 497 23 26 34 EMail:

pthubert@cisco.com

Anders Brandt Brandt Sigma Designs Emdrupvej 26A, 1.

Copenhagen, DK-2100 Denmark EMail: abr@sdesigns.dk

Thomas Heide Clausen Clausen LIX, Ecole Polytechnique, France Phone:

+33 6 6058 9349 EMail: T.Clausen@computer.org URI: http://

www.ThomasClausen.org/

Jonathan W. Hui Hui Arch Rock Corporation 501 2nd St. Ste. 410 San

Francisco, CA 94107 USA EMail: jhui@archrock.com

Richard Kelsey Kelsey Ember Corporation Boston, MA USA Phone: +1 617

951 1225 EMail: kelsey@ember.com

Philip Levis Levis Stanford University 358 Gates Hall, Stanford

University Stanford, CA 94305-9030 USA EMail: pal@cs.stanford.edu

Kris Pister Pister Dust Networks 30695 Huntwood Ave. Hayward, CA

94544 USA EMail: kpister@dustnetworks.com

Rene Struik Struik EMail: rstruik.ext@gmail.com

JP Vasseur Vasseur Cisco Systems, Inc 11, Rue Camille Desmoulins

Issy Les Moulineaux, 92782 France EMail: jpv@cisco.com

mailto:wintert@acm.org
mailto:pthubert@cisco.com
mailto:abr@sdesigns.dk
mailto:T.Clausen@computer.org
http://www.ThomasClausen.org/
http://www.ThomasClausen.org/
mailto:jhui@archrock.com
mailto:kelsey@ember.com
mailto:pal@cs.stanford.edu
mailto:kpister@dustnetworks.com
mailto:rstruik.ext@gmail.com
mailto:jpv@cisco.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Design Principles
	1.2. Expectations of Link Layer Type
	2. Terminology
	3. Protocol Overview
	3.1. Topology
	3.1.1. Constructing Topologies
	3.1.2. RPL Identifiers
	3.1.3. Instances, DODAGs, and DODAG Versions
	3.2. Upward Routes and DODAG Construction
	3.2.1. Objective Function (OF)
	3.2.2. DODAG Repair
	3.2.3. Security
	3.2.4. Grounded and Floating DODAGs
	3.2.5. Local DODAGs
	3.2.6. Administrative Preference
	3.2.7. Datapath Validation and Loop Detection
	3.2.8. Distributed Algorithm Operation
	3.3. Downward Routes and Destination Advertisement
	3.4. Local DODAGs Route Discovery
	3.5. Rank Properties
	3.5.1. Rank Comparison (DAGRank())
	3.5.2. Rank Relationships
	3.6. Routing Metrics and Constraints Used By RPL
	3.7. Loop Avoidance
	3.7.1. Greediness and Instability
	3.7.1.1. Example: Greedy Parent Selection and Instability
	3.7.2. DODAG Loops
	3.7.3. DAO Loops
	4. Traffic Flows Supported by RPL
	4.1. Multipoint-to-Point Traffic
	4.2. Point-to-Multipoint Traffic
	4.3. Point-to-Point Traffic
	5. RPL Instance
	5.1. RPL Instance ID
	6. ICMPv6 RPL Control Message
	6.1. RPL Security Fields
	6.2. DODAG Information Solicitation (DIS)
	6.2.1. Format of the DIS Base Object
	6.2.2. Secure DIS
	6.2.3. DIS Options
	6.3. DODAG Information Object (DIO)
	6.3.1. Format of the DIO Base Object
	6.3.2. Secure DIO
	6.3.3. DIO Options
	6.4. Destination Advertisement Object (DAO)
	6.4.1. Format of the DAO Base Object
	6.4.2. Secure DAO
	6.4.3. DAO Options
	6.5. Destination Advertisement Object Acknowledgement (DAO-ACK)
	6.5.1. Format of the DAO-ACK Base Object
	6.5.2. Secure DAO-ACK
	6.5.3. DAO-ACK Options
	6.6. Consistency Check (CC)
	6.6.1. Format of the CC Base Object
	6.6.2. CC Options
	6.7. RPL Control Message Options
	6.7.1. RPL Control Message Option Generic Format
	6.7.2. Pad1
	6.7.3. PadN
	6.7.4. Metric Container
	6.7.5. Route Information
	6.7.6. DODAG Configuration
	6.7.7. RPL Target
	6.7.8. Transit Information
	6.7.9. Solicited Information
	6.7.10. Prefix Information
	6.7.11. RPL Target Descriptor
	7. Sequence Counters
	7.1. Sequence Counter Overview
	7.2. Sequence Counter Operation
	8. Upward Routes
	8.1. DIO Base Rules
	8.2. Upward Route Discovery and Maintenance
	8.2.1. Neighbors and Parents within a DODAG Version
	8.2.2. Neighbors and Parents across DODAG Versions
	8.2.2.1. DODAG Version
	8.2.2.2. DODAG Roots
	8.2.2.3. DODAG Selection
	8.2.2.4. Rank and Movement within a DODAG Version
	8.2.2.5. Poisoning
	8.2.2.6. Detaching
	8.2.2.7. Following a Parent
	8.2.3. DIO Message Communication
	8.2.3.1. DIO Message Processing
	8.3. DIO Transmission
	8.3.1. Trickle Parameters
	8.4. DODAG Selection
	8.5. Operation as a Leaf Node
	8.6. Administrative Rank
	9. Downward Routes
	9.1. Destination Advertisement Parents
	9.2. Downward Route Discovery and Maintenance
	9.2.1. Maintenance of Path Sequence
	9.2.2. Generation of DAO Messages
	9.3. DAO Base Rules
	9.4. Structure of DAO Messages
	9.5. DAO Transmission Scheduling
	9.6. Triggering DAO Messages
	9.7. Non-storing Mode
	9.8. Storing Mode
	9.9. Path Control
	9.9.1. Path Control Example
	9.10. Multicast Destination Advertisement Messages
	10. Security Mechanisms
	10.1. Security Overview
	10.2. Joining a Secure Network
	10.3. Installing Keys
	10.4. Consistency Checks
	10.5. Counters
	10.6. Transmission of Outgoing Packets
	10.7. Reception of Incoming Packets
	10.7.1. Timestamp Key Checks
	10.8. Coverage of Integrity and Confidentiality
	10.9. Cryptographic Mode of Operation
	10.9.1. CCM Nonce
	10.9.2. Signatures
	11. Packet Forwarding and Loop Avoidance/Detection
	11.1. Suggestions for Packet Forwarding
	11.2. Loop Avoidance and Detection
	11.2.1. Source Node Operation
	11.2.2. Router Operation
	11.2.2.1. Instance Forwarding
	11.2.2.2. DAG Inconsistency Loop Detection
	11.2.2.3. DAO Inconsistency Detection and Recovery
	12. Multicast Operation
	13. Maintenance of Routing Adjacency
	14. Guidelines for Objective Functions
	14.1. Objective Function Behavior
	15. Suggestions for Interoperation with Neighbor Discovery
	16. Summary of Requirements for Interoperable Implementations
	16.1. Common Requirements
	16.2. Operation as a RPL Leaf Node (only)
	16.3. Operation as a RPL Router
	16.3.1. Support for Upward Routes only
	16.3.2. Support for Upward Routes and Downward Routes in Non-Storing mode
	16.3.3. Support for Upward Routes and Downward Routes in Storing mode
	16.3.3.1. Optional support for basic multicast scheme
	16.4. Items for Future Specification
	17. RPL Constants and Variables
	18. Manageability Considerations
	18.1. Introduction
	18.2. Configuration Management
	18.2.1. Initialization Mode
	18.2.1.1. DIS mode of operation upon boot-up
	18.2.2. DIO and DAO Base Message and Options Configuration
	18.2.3. Protocol Parameters to be configured on every router in the LLN
	18.2.4. Protocol Parameters to be configured on every non-DODAG-root router in the LLN
	18.2.5. Parameters to be configured on the DODAG root
	18.2.6. Configuration of RPL Parameters related to DAO-based mechanisms
	18.2.7. Configuration of RPL Parameters related to Security mechanisms
	18.2.8. Default Values
	18.3. Monitoring of RPL Operation
	18.3.1. Monitoring a DODAG parameters
	18.3.2. Monitoring a DODAG inconsistencies and loop detection
	18.4. Monitoring of the RPL data structures
	18.4.1. Candidate Neighbor Data Structure
	18.4.2. Destination Oriented Directed Acyclic Graph (DAG) Table
	18.4.3. Routing Table and DAO Routing Entries
	18.5. Fault Management
	18.6. Policy
	18.7. Fault Isolation
	18.8. Impact on Other Protocols
	18.9. Performance Management
	18.10. Diagnostics
	19. Security Considerations
	19.1. Overview
	20. IANA Considerations
	20.1. RPL Control Message
	20.2. New Registry for RPL Control Codes
	20.3. New Registry for the Mode of Operation (MOP)
	20.4. RPL Control Message Option
	20.5. Objective Code Point (OCP) Registry
	20.6. New Registry for the Security Section Algorithm
	20.7. New Registry for the Security Section Flags
	20.8. New Registry for Per-KIM Security Levels
	20.9. New Registry for the DIS (DODAG Informational Solicitation) Flags
	20.10. New Registry for the DODAG Information Object (DIO) Flags
	20.11. New Registry for the Destination Advertisement Object (DAO) Flags
	20.12. New Registry for the Destination Advertisement Object (DAO) Acknowledgement Flags
	20.13. New Registry for the Consistency Check (CC) Flags
	20.14. New Registry for the DODAG Configuration Option Flags
	20.15. New Registry for the RPL Target Option Flags
	20.16. New Registry for the Transit Information Option Flags
	20.17. New Registry for the Solicited Information Option Flags
	20.18. ICMPv6: Error in Source Routing Header
	20.19. Link-Local Scope multicast address
	21. Acknowledgements
	22. Contributors
	23. References
	23.1. Normative References
	23.2. Informative References
	Appendix A. Example Operation
	Appendix A.1. Example Operation in Storing Mode With Node-owned Prefixes
	Appendix A.1.1. DIO messages and PIO
	Appendix A.1.2. DAO messages
	Appendix A.1.3. Routing Information Base
	Appendix A.2. Example Operation in Storing Mode With Subnet-wide Prefix
	Appendix A.2.1. DIO messages and PIO
	Appendix A.2.2. DAO messages
	Appendix A.2.3. Routing Information Base
	Appendix A.3. Example Operation in Non-Storing Mode With Node-owned Prefixes
	Appendix A.3.1. DIO messages and PIO
	Appendix A.3.2. DAO messages
	Appendix A.3.3. Routing Information Base
	Appendix A.4. Example Operation in Non-Storing Mode With Subnet-wide Prefix
	Appendix A.4.1. DIO messages and PIO
	Appendix A.4.2. DAO messages
	Appendix A.4.3. Routing Information Base
	Appendix A.5. Example with External Prefixes
	Authors' Addresses

