
Networking Working Group P. Levis
Internet-Draft Stanford University
Intended status: Standards Track T. Clausen
Expires: June 9, 2011 LIX, Ecole Polytechnique
 J. Hui
 Arch Rock Corporation
 O. Gnawali
 Stanford University
 J. Ko
 Johns Hopkins University
 December 6, 2010

The Trickle Algorithm
draft-ietf-roll-trickle-06

Abstract

 The Trickle algorithm allows nodes in a lossy shared medium (e.g.,
 low power and lossy networks) to exchange information in a highly
 robust, energy efficient, simple, and scalable manner. Dynamically
 adjusting transmission windows allows Trickle to spread new
 information on the scale of link-layer transmission times while
 sending only a few messages per hour when information does not
 change. A simple suppression mechanism and transmission point
 selection allows Trickle's communication rate to scale
 logarithmically with density. This document describes the Trickle
 algorithm and considerations in its use.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 9, 2011.

Copyright Notice

Levis, et al. Expires June 9, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Trickle Algorithm Overview 4
4. Trickle Algorithm . 5
4.1. Parameters and Variables 5
4.2. Algorithm Description 6

5. Using Trickle . 6
6. Operational Considerations 7
6.1. Mismatched Redundancy Constants 7
6.2. Mismatched Imin . 7
6.3. Mismatched Imax . 7
6.4. Mismatched Definitions 8
6.5. Specifying the Constant k 8
6.6. Relationship Between k and Imin 8
6.7. Tweaks and Improvements to Trickle 9
6.8. Uses of Trickle . 9

7. Acknowledgements . 10
8. IANA Considerations . 10
9. Security Considerations 10
10. References . 11
10.1. Normative References 11
10.2. Informative References 11

 Authors' Addresses . 12

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Levis, et al. Expires June 9, 2011 [Page 2]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

1. Introduction

 The Trickle algorithm establishes a density-aware local communication
 primitive with an underlying consistency model that guides when a
 node transmits. When a node's data does not agree with its
 neighbors, that node communicates quickly to resolve the
 inconsistency (e.g., in milliseconds). When nodes agree, they slow
 their communication rate exponentially, such that nodes send packets
 very infrequently (e.g., a few packets per hour). Instead of
 flooding a network with packets, the algorithm controls the send rate
 so each node hears a small trickle of packets, just enough to stay
 consistent. Furthermore, by relying only on local communication
 (e.g., broadcast or local multicast), Trickle handles network re-
 population, is robust to network transience, loss, and disconnection,
 is simple to implement, and requires very little state. Current
 implementations use 4-11 bytes of RAM and are 50-200 lines of C
 code[Levis08].

 While Trickle was originally designed for reprogramming protocols
 (where the data is the code of the program being updated), experience
 has shown it to be a powerful mechanism that can be applied to wide
 range of protocol design problems, including control traffic timing,
 multicast propagation, and route discovery. This flexibility stems
 from being able to define, on a case-by-case basis, what constitutes
 "agreement" or an "inconsistency;" Section 6.8 presents a few
 examples of how the algorithm can be used.

 This document describes the Trickle algorithm and provides guidelines
 for its use. It also states requirements for protocol specifications
 that use Trickle. This document does not provide results on
 Trickle's performance or behavior, nor does it explain the
 algorithm's design in detail: interested readers should refer to
 [Levis04] and [Levis08].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 Additionally, this document introduces the following terminology:

 Trickle communication rate: the sum of the number of messages sent
 or received by the Trickle algorithm in an interval.

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Levis, et al. Expires June 9, 2011 [Page 3]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 Trickle transmission rate: the sum of the number of messages sent by
 the Trickle algorithm in an interval.

3. Trickle Algorithm Overview

 Trickle's basic primitive is simple: every so often, a node transmits
 data unless it hears a few other transmissions whose data suggest its
 own transmission is redundant. Examples of such data include routing
 state, software update versions, and the last heard multicast packet.
 This primitive allows Trickle to scale to thousand-fold variations in
 network density, quickly propagate updates, distribute transmission
 load evenly, be robust to transient disconnections, handle network
 repopulations, and impose a very low maintenance overhead: one
 example use, routing beacons in the CTP protocol [Gnawali09],
 requires sending on the order of a few packets per hour yet can
 respond in milliseconds.

 Trickle sends all messages to a local communication address. The
 exact address used can depend on both the underlying IP protocol as
 well as how the higher layer protocol uses Trickle. In IPv6, for
 example, it can be the link-local multicast address or another local
 multicast address, while in IPv4 it can be the broadcast address
 (255.255.255.255).

 There are two possible results to a Trickle message: either every
 node that hears the message finds its data is consistent with their
 own state, or a recipient detects an inconsistency. Detection can be
 the result of either an out-of-date node hearing something new, or an
 updated node hearing something old. As long as every node
 communicates somehow - either receives or transmits - some node will
 detect the need for an update.

 For example, consider a simple case where "up to date" is defined by
 version numbers (e.g., network configuration). If node A transmits
 that it has version V, but B has version V+1, then B knows that A
 needs an update. Similarly, if B transmits that it has version V+1,
 A knows that it needs an update. If B broadcasts or multicasts
 updates, then all of its neighbors can receive them without having to
 advertise their need. Some of these recipients might not even have
 heard A's transmission.

 In this example, it does not matter who first transmits, A or B;
 either case will detect the inconsistency. All that matters is that
 some nodes communicate with one another at some nonzero rate. As
 long as the network is connected and there is some minimum
 communication rate for each node, the network will reach eventual
 consistency.

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 4]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 The fact that Trickle communication can be either transmission or
 reception enables the Trickle algorithm to operate in sparse as well
 as dense networks. A single, disconnected node must transmit at the
 Trickle communication rate. In a lossless, single-hop network of
 size n, the Trickle communication rate at each node equals the sum of
 the Trickle transmission rates across all nodes. The Trickle
 algorithm balances the load in such a scenario, as each node's
 Trickle transmission rate is 1/nth of the Trickle communication rate.
 Sparser networks require more transmissions per node, but the
 utilization of a given broadcast domain (e.g., radio channel over
 space, shared medium) will not increase. This is an important
 property in wireless networks and other shared media, where the
 channel is a valuable shared resource. Additionally, reducing
 transmissions in dense networks conserves system energy.

4. Trickle Algorithm

 This section describes the Trickle algorithm.

4.1. Parameters and Variables

 A Trickle timer has three configuration parameters: the minimum
 interval size Imin, the maximum interval size Imax, and a redundancy
 constant k:

 o The minimum interval size, Imin, is defined in units of time
 (e.g., milliseconds, seconds). For example, a protocol might
 define the minimum interval as 100 milliseconds.

 o The maximum interval size, Imax, is described as a number of
 doublings of the minimum interval size (the base-2 log(max/min)).
 For example, a protocol might define Imax as 16. If the minimum
 interval is 100ms, then the amount of time specified by Imax is
 100ms * 65536, 6,553.6 seconds, or approximately 109 minutes.

 o The redundancy constant is a natural number (an integer greater
 than zero).

 In addition to these three parameters, Trickle maintains three
 variables:

 o I, the current interval size

 o t, a time within the current interval, and

 o c, a counter.

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 5]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

4.2. Algorithm Description

 The Trickle algorithm has five rules:

 1. When an interval begins, Trickle resets c to 0 and sets t to a
 random point in the interval, taken from the range [I/2, I), that
 is, values greater than or equal to I/2 and less than I. The
 interval ends at I.

 2. Whenever Trickle hears a transmission that is "consistent," it
 increments the counter c.

 3. At time t, Trickle transmits if and only if the counter c is less
 than the redundancy constant k.

 4. When the interval I expires, Trickle doubles the interval length.
 If this new interval length would be longer than the time
 specified by Imax, Trickle sets the interval length I to be the
 time specified by Imax.

 5. If Trickle hears a transmission that is "inconsistent," the
 Trickle timer resets. If I is greater than Imin when a Trickle
 timer resets, Trickle sets I to Imin, resets c to 0, and sets t
 to random point in the interval, taken from the range [I/2, I),
 that is, values greater than or equal to I/2 and less than I. If
 I is equal to Imin, resetting a Trickle timer does nothing.
 Trickle can also reset the timer in response to external
 "events."

 The terms consistent, inconsistent and event are in quotes because
 their meaning depends on how a protocol uses Trickle.

5. Using Trickle

 A protocol specification that uses Trickle MUST specify:

 o Default values for Imin, Imax, and k. Because link layers can
 vary widely in their properties, the default value of Imin SHOULD
 be specified in terms of the worst-case latency of a link layer
 transmission. For example, a specification should say "the
 default value of Imin is 4 times the worst case link layer
 latency" and should not say "the default value of Imin is 500
 milliseconds." Worst case latency is approximately time until the
 first link-layer transmission of the frame assuming an idle
 channel (does not include backoff, virtual carrier sense, etc.).

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 6]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 o What constitutes a "consistent" transmission.

 o What constitutes an "inconsistent" transmission.

 o What "events," if any, besides inconsistent transmissions that
 reset the Trickle timer.

6. Operational Considerations

 It is RECOMMENDED that a protocol which uses Trickle includes
 mechanisms to inform nodes of configuration parameters at runtime.
 However, it is not always possible to do so. In the cases where
 different nodes have different configuration parameters, Trickle may
 have unintended behaviors. This section outlines some of those
 behaviors and operational considerations as educational exercises.

6.1. Mismatched Redundancy Constants

 If nodes do not agree on the redundancy constant k, then nodes with
 higher values of k will transmit more often than nodes with lower
 values of k. In some cases, this increased load can be independent
 of the density. For example, consider a network where all nodes but
 one have k=1, and this one node has k=2. The different node can end
 up transmitting on every interval: it is maintaining a Trickle
 communication rate of 2 with only itself. Hence, the danger of
 mismatched k values is uneven transmission load that can deplete the
 energy of some nodes in a low power network.

6.2. Mismatched Imin

 If nodes do not agree on Imin, then some nodes, on hearing
 inconsistent messages, will transmit sooner than others. These
 faster nodes will have their intervals grow to similar size as the
 slower nodes within a single slow interval time, but in that period
 may suppress the slower nodes. However, such suppression will end
 after the first slow interval, when the nodes generally agree on the
 interval size. Hence, mismatched Imin values are usually not a
 significant concern. Note that mismatched Imin values and matching
 Imax doubling constants will lead to mismatched maximum interval
 lengths.

6.3. Mismatched Imax

 If nodes do not agree on Imax, then this can cause long-term problems
 with transmission load. Nodes with small Imax values will transmit
 faster, suppressing those with larger Imax values. The nodes with
 larger Imax values, always suppressed, will never transmit. In the

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 7]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 base case, when the network is consistent, this can cause long-term
 inequities in energy cost.

6.4. Mismatched Definitions

 If nodes do not agree on what constitutes a consistent or
 inconsistent transmission, then Trickle may fail to operate properly.
 For example, if a receiver thinks a transmission is consistent, but
 the transmitter (if in the receivers situation) would have thought it
 inconsistent, then the receiver will not respond properly and inform
 the transmitter. This can lead the network to not reach a consistent
 state. For this reason, unlike the configuration constants k, Imin,
 and Imax, consistency definitions MUST be clearly stated in the
 protocol and SHOULD NOT be configured at runtime.

6.5. Specifying the Constant k

 There are some edge cases where a protocol may wish to use Trickle
 with its suppression disabled (k is set to infinity). In general,
 this approach is highly dangerous and it is NOT RECOMMENDED.
 Disabling suppression means that every node will always send on every
 interval, and can lead to congestion in dense networks. This
 approach is especially dangerous if many nodes reset their intervals
 at the same time. In general, it is much more desirable to set k to
 a high value (e.g., 5 or 10) than infinity. Typical values for k are
 1-5: these achieve a good balance between redundancy and low
 cost[Levis08].

 Nevertheless, there are situations where a protocol may wish to turn
 off Trickle suppression. Because k is a natural number
 (Section 4.1), k=0 has no useful meaning. If a protocol allows k to
 be dynamically configured, a value of 0 remains unused. For ease of
 debugging and packet inspection, having the parameter describe k-1
 rather than k can be confusing. Instead, it is RECOMMENDED that
 protocols which require turning off suppression reserve k=0 to mean
 k=infinity.

6.6. Relationship Between k and Imin

 Finally, a protocol SHOULD set k and Imin such that Imin is at least
 two to three times as long as it takes to transmit k packets.
 Otherwise, if more than k nodes reset their intervals to Imin, the
 resulting communication will lead to congestion and significant
 packet loss. Experimental results have shown that packet losses from
 congestion reduce Trickle's efficiency [Levis04].

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 8]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

6.7. Tweaks and Improvements to Trickle

 Trickle is based on a small number of simple, tightly integrated
 mechanisms that are highly robust to challenging network
 environments. In our experiences using Trickle, attempts to tweak
 its behavior are typically not worth the cost. As written, the
 algorithm is already highly efficient: further reductions in
 transmissions or response time come at the cost of failures in edge
 cases. Based on our experiences, we urge protocol designers to
 suppress the instinct to tweak or improve Trickle without a great
 deal of experimental evidence that the change does not violate its
 assumptions and break the algorithm in edge cases.

 This warning in mind, Trickle is far from perfect. For example,
 Trickle suppression typically leads sparser nodes to transmit more
 than denser ones; it is far from the optimal computation of a minimum
 cover. However, in dynamic network environments such as wireless and
 low-power, lossy networks, the coordination needed to compute the
 optimal set of transmissions is typically much greater than the
 benefits it provides. One of the benefits of Trickle is that it is
 so simple to implement and requires so little state yet operates so
 efficiently. Efforts to improve it should be weighed against the
 cost of increased complexity.

6.8. Uses of Trickle

 The Trickle algorithm has been used in a variety of protocols, both
 in operational as well as academic settings. Giving a brief overview
 of some of these uses provides useful examples of how and when it can
 be used. These examples should not be considered exhaustive.

 Reliable flooding/dissemination: A protocol uses Trickle to
 periodically advertise the most recent data it has received,
 typically through a version number. An inconsistency is when a node
 hears a newer version number or receives new data. A consistency is
 when a node hears an older or equal version number. When hearing an
 older version number, rather than reset its own Trickle timer, it
 sends an update. Nodes with old version numbers that receive the
 update will then reset their own timers, leading to fast propagation
 of the new data. Examples of this use include multicast[Hui08a],
 network configuration[Lin08][Dang09], and installing new application
 programs[Hui04][Levis04].

 Routing control traffic: A protocol uses Trickle to control when it
 sends beacons which contain routing state. An inconsistency is when
 the routing topology changes in a way that could lead to loops or
 significant stretch: examples include when the routing layer detects
 a routing loop or when a node's routing cost changes significantly.

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 9]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 Consistency is when the routing topology is operating well and is
 delivering packets successfully. Using the Trickle algorithm in this
 way allows a routing protocol to react very quickly to problems (Imin
 is small) but send very few beacons when the topology is stable.
 Examples of this use include RPL[I-D.ietf-roll-rpl], CTP[Gnawali09],
 and some current commericial IPv6 routing layers[Hui08b].

7. Acknowledgements

 The authors would like to acknowledge the guidance and input provided
 by the ROLL chairs, David Culler and JP Vasseur.

 The authors would also like to acknowledge the helpful comments of
 Yoav Ben-Yehezkel, Alexandru Petrescu, and Ulrich Herberg, which
 greatly improved the document.

8. IANA Considerations

 This document has no IANA considerations.

9. Security Considerations

 As it is an algorithm, Trickle itself does not have any specific
 security considerations. However, two security concerns can arise
 when Trickle is used in a protocol. The first is that an adversary
 can force nodes to send many more packets than needed by forcing
 Trickle timer resets. In low power networks this increase in traffic
 can harm system lifetime. The second concern is that an adversary
 can prevent nodes from reaching consistency.

 Protocols can prevent adversarial Trickle resets by carefully
 selecting what can cause a reset and protecting these events and
 messages with proper security mechanisms. For example, if a node can
 reset nearby Trickle timers by sending a certain packet, this packet
 should be authenticated such that an adversary cannot forge one.

 An adversary can possibly prevent nodes from reaching consistency by
 suppressing transmissions with "consistent" messages. For example,
 imagine node A detects an inconsistency and resets its Trickle timer.
 If an adversary can prevent A from sending messages that inform
 nearby nodes of the inconsistency in order to repair it, then A may
 remain inconsistent indefinitely. Depending on the security model of
 the network, authenticated messages, or a transitive notion of
 consistency can prevent this problem. E.g., if messages that are
 consistent with A and so suppress its transmissions are by definition

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 10]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 inconsistent with what A heard, then an adversary cannot
 simultaneously prevent A from notifying neighbors and not notify the
 neighbors itself (recall Trickle operates on shared, broadcast
 media). Note that this means Trickle should filter unicast messages.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [Dang09] Dang, T., Bulusu, N., Feng, W., and S. Park, "DHV: A Code
 Consistency Maintenance Protocol for Multi-hop Wireless
 Networks", Wireless Sensor Networks: 6th European
 Conference Proceedings EWSN 2009 Cork, February 2009,
 <http://books.google.com/books?id=3fb5eePdkBg>.

 [Gnawali09]
 Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., and P.
 Levis, "Collection Tree Protocol", Proceedings of the 7th
 ACM Conference on Embedded Networked Systems SenSys 2009,
 November 2009,
 <http://portal.acm.org/citation.cfm?id=1644038.1644040>.

 [Hui04] Hui, J. and D. Culler, "The dynamic behavior of a data
 dissemination protocol for network programming at scale",
 Proceedings of the 2nd ACM Conference on Embedded
 Networked Systems SenSys 2004, November 2004,
 <http://portal.acm.org/citation.cfm?id=1031506>.

 [Hui08a] Hui, J., "An Extended Internet Architecture for Low-Power
 Wireless Networks - Design and Implementation", UC
 Berkeley Technical Report EECS-2008-116, September 2008,
 <http://portal.acm.org/citation.cfm?id=1460412.1460415>.

 [Hui08b] Hui, J. and D. Culler, "IP is dead, long live IP for
 wireless sensor networks", Proceedings of the 6th ACM
 Conference on Embedded Networked Systems SenSys 2008,
 November 2008,
 <http://portal.acm.org/citation.cfm?id=1460412.1460415>.

 [I-D.ietf-roll-rpl]
 Winter, T., Thubert, P., Brandt, A., Clausen, T., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., and J.

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://books.google.com/books?id=3fb5eePdkBg
http://portal.acm.org/citation.cfm?id=1644038.1644040
http://portal.acm.org/citation.cfm?id=1031506
http://portal.acm.org/citation.cfm?id=1460412.1460415
http://portal.acm.org/citation.cfm?id=1460412.1460415

Levis, et al. Expires June 9, 2011 [Page 11]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 Vasseur, "RPL: IPv6 Routing Protocol for Low power and
 Lossy Networks", draft-ietf-roll-rpl-15 (work in
 progress), November 2010.

 [Levis04] Levis, P., Patel, N., Culler, D., and S. Shenker,
 "Trickle: A Self-Regulating Algorithm for Code Propagation
 and Maintenance in Wireless Sensor Networks"", Proceedings
 of the First USENIX/ACM Symposium on Networked Systems
 Design and Implementation NSDI 2004, March 2004,
 <http://portal.acm.org/citation.cfm?id=1251177>.

 [Levis08] Levis, P., Brewer, E., Culler, D., Gay, D., Madden, S.,
 Patel, N., Polastre, J., Shenker, S., Szewczyk, R., and A.
 Woo, "The Emergence of a Networking Primitive in Wireless
 Sensor Networks", Communications of the ACM, v.51 n.7,
 July 2008,
 <http://portal.acm.org/citation.cfm?id=1364804>.

 [Lin08] Lin, K. and P. Levis, "Data Discovery and Dissemination
 with DIP", Proceedings of the 7th international conference
 on Information processing in sensor networks IPSN 2008,
 April 2008,
 <http://portal.acm.org/citation.cfm?id=1371607.1372753>.

Authors' Addresses

 Philip Levis
 Stanford University
 358 Gates Hall, Stanford University
 Stanford, CA 94305
 USA

 Phone: +1 650 725 9064
 Email: pal@cs.stanford.edu

 Thomas Heide Clausen
 LIX, Ecole Polytechnique

 Phone: +33 6 6058 9349
 Email: T.Clausen@computer.org

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06
https://datatracker.ietf.org/doc/html/draft-ietf-roll-rpl-15
http://portal.acm.org/citation.cfm?id=1251177
http://portal.acm.org/citation.cfm?id=1364804
http://portal.acm.org/citation.cfm?id=1371607.1372753

Levis, et al. Expires June 9, 2011 [Page 12]

Internet-Draft draft-ietf-roll-trickle-06 December 2010

 Jonathan Hui
 Arch Rock Corporation
 501 Snd St., Suite 410
 San Francisco, CA 94107
 USA

 Email: jhui@archrock.com

 Omprakash Gnawali
 Stanford University
 S255 Clark Center, 318 Campus Drive
 Stanford, CA 94305
 USA

 Phone: +1 650 725 6086
 Email: gnawali@cs.stanford.edu

 JeongGil Ko
 Johns Hopkins University
 3400 N. Charles St., 224 New Engineering Building
 Baltimore, MD 21218
 USA

 Phone: +1 410 516 4312
 Email: jgko@cs.jhu.edu

https://datatracker.ietf.org/doc/html/draft-ietf-roll-trickle-06

Levis, et al. Expires June 9, 2011 [Page 13]

