
Internet Draft David Meyer
Expires December 3, 1999 Cisco Systems
draft-ietf-rps-appl-rpsl-06 Joachim Schmitz
 America On-Line
 Carol Orange
 RIPE NCC
 Mark Prior
 Connect
 Cengiz Alaettinoglu
 USC/ISI
 June 3, 1999

Using RPSL in Practice

Status of this Memo:

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Copyright (C) The Internet Society (1998). All Rights Reserved.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It
is inappropriate to use Internet-Drafts as reference material or to cite
them other than as 'work in progress.'

The list of current Internet-Drafts can be accessed at
<http://www.ietf.org/ietf/1id-abstracts.txt>

The list of Internet-Draft Shadow Directories can be accessed at
<http://www.ietf.org/shadow.html>.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.
Internet Draft Using RPSL June 3, 1999

Abstract

This document is a tutorial on using the Routing Policy Specification
Language (RPSL) to describe routing policies in the Internet Routing

https://datatracker.ietf.org/doc/html/draft-ietf-rps-appl-rpsl-06
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Registry (IRR). We explain how to specify various routing policies and
configurations using RPSL, how to register these policies in the IRR, and
how to analyze them using the routing policy analysis tools, for example to
generate vendor specific router configurations.

1 Introduction

This document is a tutorial on RPSL and is targeted towards an
Internet/Network Service Provider (ISP/NSP) engineer who understands
Internet routing, but is new to RPSL and to the IRR. Readers are referred to
the RPSL reference document (RFC 2280) [1] for completeness. It is also
good to have that document at hand while working through this tutorial.

The IRR is a repository of routing policies. Currently, the IRR repository
is a set of five repositories maintained at the following sites: the CA*Net
registry in Canada, the ANS, CW and RADB registries in the United States of
America, and the RIPE registry in Europe. The five repositories are run
independently. However, each site exchanges its data with the others
regularly (at least once a day and as often as every ten minutes). CW,
CA*Net and ANS are private registries which contain the routing policies of
the networks and the customer networks of CW, CA*Net, and ANS respectively.
RADB and RIPE are both public registries, and any ISP can publish their
policies in these registries.

The registries all maintain up-to-date copies of one another's data. At any
of the sites, the five registries can be inspected as a set. One should
refrain from registering his/her data in more than one of the registries, as
this practice leads almost invariably to inconsistencies in the data. The
user trying to interpret the data is left in a confusing (at best)
situation. CW, ANS and CA*Net customers are generally required to register
their policies in their provider's registry. Others may register policies
either at the RIPE or RADB registry, as preferred.

RPSL is based on RIPE-181 [2, 3], a language used to register routing
policies and configurations in the IRR. Operational use of RIPE-181 has
shown that it is sometimes difficult (or impossible) to express a routing
policy which is used in practice. RPSL has been developed to address these
shortcomings and to provide a language which can be further extended as the
need arises. RPSL obsoletes RIPE-181.

RPSL constructs are expressed in one or more database "objects" which are
registered in one of the registries described above. Each database object
contains some routing policy information and some necessary administrative

Meyer et. al. Expires December 3, 1999 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2280

Internet Draft Using RPSL June 3, 1999

data. For example, an address prefix routed in the inter-domain mesh is
specified in a route object, and the peering policies of an AS are specified
in an aut-num object. The database objects are related to each other by
reference. For example, a route object must refer to the aut-num object for
the AS in which it is originated. Implicitly, these relationships define
sets of objects, which can be used to specify policies effecting all
members. For example, we can specify a policy for all routes of an ISP, by
referring to the AS number in which the routes are registered to be
originated.

When objects are registered in the IRR, they become available for others to
query using a whois service. Figure 1 illustrates the use of the whois
command to obtain the route object for 128.223.0.0/16. The output of the
whois command is the ASCII representation of the route object. The syntax
and semantics of the route object are described in Appendix A.3. Registered
policies can also be compared with others for consistency and they can be
used to diagnose operational routing problems in the Internet.

 % whois -h whois.ra.net 128.223.0.0/16
 route: 128.223.0.0/16
 descr: UONet
 descr: University of Oregon
 descr: Computing Center
 descr: Eugene, OR 97403-1212
 descr: USA
 origin: AS3582
 mnt-by: MAINT-AS3582
 changed: meyer@ns.uoregon.edu 19960222
 source: RADB

 Figure 1: whois command and a route object.

The RAToolSet [6] is a suite of tools which can be used to analyze the
routing registry data. It includes tools to configure routers (RtConfig),
tools to analyze paths on the Internet (prpath and prtraceroute), and tools
to compare, validate and register RPSL objects (roe, aoe and prcheck).

In the following section, we will describe how common routing policies can
be expressed in RPSL. The objects themselves are described in Appendix A.
Authoritative information on the IRR objects, however, should be sought in
RFC-2280, and authoritative information on general database objects (person,
role, and maintainers) and on querying and updating the registry databases,
should be sought in RIPE-157 [4]. Section 3.2 describes the use of RtConfig
to generate vendor specific router configurations.

https://datatracker.ietf.org/doc/html/rfc2280

Meyer et. al. Expires December 3, 1999 [Page 3]

Internet Draft Using RPSL June 3, 1999

2 Specifying Policy in RPSL

The key purpose of RPSL is to allow you to specify your routing
configuration in the public Internet Routing Registry (IRR), so that you and
others can check your policies and announcements for consistency. Moreover,
in the process of setting policies and configuring routers, you take the
policies and configurations of others into account.

In this section, we begin by showing how some simple peering policies can be
expressed in RPSL. We will build on that to introduce various database
objects that will be needed in order to register policies in the IRR, and to
show how more complex policies can be expressed.

2.1 Common Peering Policies

The peering policies of an AS are registered in an aut-num object which
looks something like that in Figure 2. We will focus on the semantics of
the import and export attributes in which peering policies are expressed.
We will also describe some of the other key attributes in the aut-num
object, but the reader should refer to RFC-2280 or to RIPE-157 for the
definitive descriptions.

 aut-num: AS2
 as-name: CAT-NET
 descr: Catatonic State University
 ...
 import: from AS1 accept ANY
 import: from AS3 accept <^AS3+$>
 export: to AS3 announce ANY
 export: to AS1 announce AS2 AS3
 ...
 admin-c: AO36-RIPE
 tech-c: CO19-RIPE
 mnt-by: OPS4-RIPE
 changed: orange@ripe.net
 source: RIPE

 Figure 2: Autonomous System Object

Now consider Figure 3 (AS4 and AS5 in the figure will be discussed later).
The peering policies expressed in the AS2 aut-num object in Figure 2 are

https://datatracker.ietf.org/doc/html/rfc2280

typical for a small service provider providing connectivity for a customer

Meyer et. al. Expires December 3, 1999 [Page 4]

Internet Draft Using RPSL June 3, 1999

AS3 and using AS1 for transit. That is, AS2 only accepts announcements from
AS3 which:

 o are originated in AS3; and

 o have paths composed of only AS3's (^ in <^AS3+$> means that AS3 is the
 first member of the path, + means that AS3 occurs one or more times in
 the path, and $ means that no other AS can be present in the path after
 AS3)(1).

To AS1, AS2 announces only those routes which originate in their AS or in
their customer's AS.

 AS1--------AS2--------AS3
 | |
 | |
 AS4--------AS5

 Figure 3: Some Neighboring ASes.

In the example above, ``accept ANY'' in the import attribute indicates that
AS2 will accept any announcements that AS1 sends, and ``announce ANY'' in
the export attribute indicates that any route that AS2 has in its routing
table will be passed on to AS3. Assuming that AS1 announces ``ANY'' to AS2,
AS2 is taking full routing from AS1.

Note that with this peering arrangement, if AS1 adds or deletes route
objects, there is no need to update any of the aut-num objects to continue
the full routing policy. Added (or deleted) route objects will implicitly
update AS1's and AS2's policies.

While the peering policy specified in Figure 2 for AS2 is common, in
practice many peering agreements are more complex. Before we consider more
examples, however, let's first consider the aut-num object itself. Note
that it is just a set of attribute labels and values which can be submitted
to one of the registry databases. This particular object is specified as
being in (or headed for) the RIPE registry (see the last line in Figure 2).
The source should be specified as one of ANS, CANET, CW, RADB, or RIPE
depending on the registry in which the object is maintained. The source
attribute must be specified in every database object.

It is also worth noting that this object is ``maintained by'' OPS4-RIPE (the
value of the mnt-by attribute), which references a ``mntner'' object.
Because the aut-num object may be used for router configuration and other

 1. AS-PATH regular expressions are POSIX compliant regular expressions.

Meyer et. al. Expires December 3, 1999 [Page 5]

Internet Draft Using RPSL June 3, 1999

operational purposes, the readers need to be able to count on the validity
of its contents. It is therefore required that a mntner be specified in the
aut-num and in most other database objects, which means you must create a
mntner object before you can register your peering policies. For brief
information on the ``mntner'' object and object writeability, see Appendix A
of this document. For more extensive information on how to set up and use a
mntner to protect your database objects, see Section 2.3 of RIPE-157.

2.2 ISP Customer - Transit Provider Policies

It is not uncommon for an ISP to acquire connectivity from a transit
provider which announces all routes to it, which it in turn passes on to its
customers to allow them to access hosts on the global Internet. Meanwhile,
the ISP will generally announce the routes of its customers networks to the
transit ISP, making them accessible on the global Internet. This is the
service that is specified in Figure 2 for AS3.

Consider again Figure 3. Suppose now that AS2 wants to provide the same
service to AS4. Clearly, it would be easy to modify the import and export
lines in the aut-num object for AS2 (Figure 2) to those shown in Figure 4.

 import: from AS1 accept ANY
 import: from AS3 accept <^AS3+$>
 import: from AS4 accept <^AS4+$>
 export: to AS3 announce ANY
 export: to AS4 announce ANY
 export: to AS1 announce AS2 AS3 AS4

 Figure 4: Policy for AS3 and AS4 in the AS2 as-num object

These changes are trivial to make of course, but clearly as the number of
AS2 customers grows, it becomes more difficult to keep track of, and to
prevent errors. Note also that if AS1 is selective about only accepting
routes from the customers of AS2 from AS2, the aut-num object for AS1 would
have to be adjusted to accommodate AS2's new customer.

By using the RPSL ``as-set'' object, we can simplify this significantly. In
Figure 5, we describe the customers of AS2. Having this set to work with,
we can now rewrite the policies in Figure 2 as shown in Figure 6.

Meyer et. al. Expires December 3, 1999 [Page 6]

Internet Draft Using RPSL June 3, 1999

 as-set: AS2:AS-CUSTOMERS
 members: AS3 AS4
 ...
 changed: orange@ripe.net
 source: RIPE

 Figure 5: The as-set object

 import: from AS1 accept ANY
 import: from AS2:AS-CUSTOMERS accept <^AS2:AS-CUSTOMERS+$>
 export: to AS2:AS-CUSTOMERS announce ANY
 export: to AS1 announce AS2 AS2:AS-CUSTOMERS

 Figure 6: Policy in the AS2 aut-num object for all AS2 customers

Note that if the aut-num object for AS1 contains the line:

 import: from AS2 accept <^AS2+ AS2:AS-CUSTOMERS*$>

then no changes will need to be made to the aut-num objects for AS1 or AS2
as the AS2 customer base grows. The AS numbers for new customers can simply
be added to the as-set AS2:AS-CUSTOMERS, and everything will work as for the
existing customers. Clearly in terms of readability, scalability and
maintainability, this is a far better mechanism when compared to adding
policy for the customer AS's to the aut-num objects directly. The policy in
this particular example states that AS1 will accept route announcements from
AS2 in which the first element of the path is AS2, followed by more
occurrences of AS2, and then 0 or more occurrences of any AS2 customer (e.g.
any member of the as-set AS2:AS-CUSTOMERS).

Alternatively, one may wish to limit the routes one accepts from a peer,
especially if the peer is a customer. This is recommended for several
reasons, such as preventing the improper use of unassigned address space,
and of course malicious use of another organization's address space.

Such filtering can be expressed in various ways in RPSL. Suppose the address
space 7.7.0.0/16 has been allocated to the ISP managing AS3 for assignment
to its customers. AS3 may want to announce part or all of this block on the
global Internet. Suppose AS2 wants to be certain that it only accepts

Meyer et. al. Expires December 3, 1999 [Page 7]

Internet Draft Using RPSL June 3, 1999

announcements from AS3 for address space that has been properly allocated to
AS3. AS2 might then modify the AS3 import line in Figure 2 to read:

 import: from AS3 accept { 7.7.0.0/16^16-19 }

which states that route announcements for this address block will be
accepted from AS3 if they are of length upto /19. This of course will have
to be modified if and when AS3 gets more address space. Moreover, it is
again clear that for an ISP with a growing or changing customer base, this
mechanism will not scale well.

 route-set: AS2:RS-ROUTES:AS3
 members: 7.7.0.0/16^16-19
 ...
 changed: orange@ripe.net
 source: RIPE

 Figure 7: The route-set object

Luckily RPSL supports the notion of a ``route-set'' which, as shown in
Figure 7, can be used to specify the set of routes that will be accepted
from a given customer. Given this set (and a similar one for AS4), the
manager of AS2 can now filter on the address space that will be accepted
from their customers by modifying the import lines in the AS2 aut-num object
as shown in Figure 8.

 import: from AS1 accept ANY
 import: from AS3 accept AS2:RS-ROUTES:AS3
 import: from AS4 accept AS2:RS-ROUTES:AS4
 export: to AS2:AS-CUSTOMERS announce ANY
 export: to AS1 announce AS2 AS2:AS-CUSTOMERS

Figure 8: Policy in the AS2 aut-num object for address based filtering on
AS2 customers

Note that this is now only slightly more complex than the example in
Figure 6. Furthermore, nothing need be changed in the AS2 aut-num object
due to address space changes for a customer, and this filtering can be
supported without any changes to the AS1 aut-num object. The additional
complexity is due to the two route set names being different, otherwise we

could have combined the two import statements into one. Please note that

Meyer et. al. Expires December 3, 1999 [Page 8]

Internet Draft Using RPSL June 3, 1999

the set names are constructed hierarchically. The first AS number denotes
whose sets these are, and the last AS number parameterize these sets for
each peer. RPSL allows the peer's AS number to be replaced by the keyword
PeerAS. Hence,

 import: from AS3 accept AS2:RS-ROUTES:PeerAS
 import: from AS4 accept AS2:RS-ROUTES:PeerAS

has the same meaning as the corresponding import statements in Figure 6.
This lets us combine the two import statements into one as shown in
Figure 9.

 import: from AS1 accept ANY
 import: from AS2:AS-CUSTOMERS accept AS2:RS-ROUTES:PeerAS
 export: to AS2:AS-CUSTOMERS announce ANY
 export: to AS1 announce AS2 AS2:AS-CUSTOMERS

 Figure 9: Policy in the AS2 aut-num object using PeerAS

2.3 Including Interfaces in Peering Definitions

In the above examples peerings were only given among ASes. However, the
peerings may be described in much more detail by RPSL, where peerings can be
specified between physical routers using IP addresses in the import and
export attributes. Figure 10 shows a simple example in which AS1 and AS2
are connected to an exchange point IX. While AS1 has only one connection to
the exchange point via a router interface with IP address 7.7.7.1, AS2 has
two different connections with IP address 7.7.7.2 and 7.7.7.3. The first AS
may then define its routing policy in more detail by specifying its boundary
router.

 +--------------------+ +--------------------+
 | 7.7.7.1 |-----+ +-----| 7.7.7.2 | | |
 | | | | | |
 | AS1 | ======== | AS2 |
 | | IX | | |
 | | +-----| 7.7.7.3 |
 +--------------------+ +--------------------+

 Figure 10: Including interfaces in peerings definitions

Meyer et. al. Expires December 3, 1999 [Page 9]

Internet Draft Using RPSL June 3, 1999

 aut-num: AS1
 import: from AS2 at 7.7.7.1 accept <^AS2+$>
 ...

Because AS1 has only one connection to the exchange point in this example,
this specification does not differ from that in which no boundary router is
specified. However, AS1 might want to choose to accept only those
announcements from AS2 which come from the router with IP address 7.7.7.2
and disregard those announcements from router 7.7.7.3. AS1 can specify this
routing policy as follows:

 aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1 accept <^AS2+$>
 ...

By selecting certain pairs of routers in a peering specification, others can
be denied. If no routers are included in a policy clause then it is assumed
that the policy applies to all peerings among the ASes involved.

2.4 Describing Simple Backup Connections

The specification of peerings among ASes is not limited to one router for
each AS. In figure 10 one of the two connections of AS2 to the exchange
point IX might be used as backup in case the other connection fails. Let us
assume that AS1 wants to use the connection to router 7.7.7.2 of AS2 during
regular operations, and router 7.7.7.3 as backup. In a router configuration
this may be done by setting a local preference. The equivalent in RPSL is a
corresponding action definition in the peering description. The action
definitions are inserted directly before the accept keyword.

 aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1 action pref=10;
 from AS2 7.7.7.3 at 7.7.7.1 action pref=20;
 accept <^AS2+$>
 ...

pref is opposite to local-pref in that the smaller values are preferred over
larger values. Actions may also be defined without specifying IP addresses
of routers. If no routers are included in the policy clause then it is
assumed that the actions are carried out for all peerings among the ASes
involved.

In the previous example AS1 controls where it sends its traffic and which

connection is used as backup. However, AS2 may also define a backup

Meyer et. al. Expires December 3, 1999 [Page 10]

Internet Draft Using RPSL June 3, 1999

connection in an export clause:

 aut-num: AS2
 export: to AS1 7.7.7.1 at 7.7.7.2 action med=10;
 to AS1 7.7.7.1 at 7.7.7.3 action med=20;
 announce <^AS2+$>

The definition given here for AS2 is the symmetric counterpart to the
routing policy of AS1. The selection of routing information is done by
setting the multi exit discriminator metric med. Actually, med metrics will
not be used in practice like this; they are more suitable for load balancing
including backups. For more details on med metrics refer to the BGP-4
RFC [7]. To use the med to achieve load balancing, one often sets it to the
``IGP metric''. This is specified in RPSL as:

 aut-num: AS2
 export: to AS1 action med=igp_cost; announce <^AS2+$>

Hence, both routers will set the med to the IGP metric at that router,
causing some routes to be preferred at one of the routers and other routes
at the other router.

2.5 Multi-Home Routing Policies using the community Attribute

RFC 1998 [9] describes the use of the BGP community attribute to provide
support for load balancing and backup connections of multi-homed autonomous
systems. In this section, we use stepwise refinement of an example to
illustrate how those policies might be specified using RPSL.

The basic premise of RFC 1998 is to use the BGP community attribute to allow
a customer to configure the BGP ``LOCAL_PREF'' on a provider's routers.
This will allow the customer to influence the provider's route selection,
normally by lowering the BGP ``LOCAL_PREF'' to indicate backup arrangements.

In this example, we illustrate how AS1 (the provider) might specify their
policy so that a customer (AS4) connected to two of AS1's direct customers
(AS2 and AS3) might signal to AS1 which connection is to be preferred.

AS1's base policy is to only accept routes from customers that are
originated by the customer, or by the customer's customers. This leads to a
policy such as:

 aut-num: AS1

https://datatracker.ietf.org/doc/html/rfc1998
https://datatracker.ietf.org/doc/html/rfc1998

 import: from AS2

Meyer et. al. Expires December 3, 1999 [Page 11]

Internet Draft Using RPSL June 3, 1999

 accept (AS2 OR AS4) AND <^AS2+ AS4*$>
 import: from AS3
 accept (AS3 OR AS4) AND <^AS3+ AS4*$>
 import: from AS5
 accept AS5 AND <^AS5+$>

Note that AS4 is a customer of AS2 and AS3, and AS5 does not have its own
customers.

Now suppose we want to add some policy to describe that if a customer tags a
route with community 1:1 then AS1 will act on this to reduce the BGP
``LOCAL_PREF'' by 10.

 aut-num: AS1
 import: from AS2
 action pref=10;
 accept (AS2 OR AS4) AND <^AS2+ AS4*$> AND community.contains(1:1)
 import: from AS2
 action pref=0;
 accept (AS2 OR AS4) AND <^AS2+ AS4*$>
 import: from AS3
 action pref=10;
 accept (AS3 OR AS4) AND <^AS3+ AS4*$> AND community.contains(1:1)
 import: from AS3
 action pref=0;
 accept (AS3 OR AS4) AND <^AS3+ AS4*$>
 import: from AS5
 action pref=10;
 accept AS5 AND <^AS5+$> AND community.contains(1:1)
 import: from AS5
 action pref=0;
 accept AS5 AND <^AS5+$>

We can see here that basically we are adding identical statements for each
peering to the policy. This is the ideal candidate for RPSL's refine
statement. This will make the policy more concise and avoid some of the
potential for errors as more peering statements are added in the future:

 aut-num: AS1
 import: {
 from AS-ANY
 action pref=10;
 accept community.contains(1:1);
 from AS-ANY
 action pref=0;
 accept ANY;

 } refine {

Meyer et. al. Expires December 3, 1999 [Page 12]

Internet Draft Using RPSL June 3, 1999

 from AS2 accept (AS2 OR AS4) AND <^AS2+ AS4*$>;
 from AS3 accept (AS3 OR AS4) AND <^AS3+ AS4*$>;
 from AS5 accept AS5 AND <^AS5+$>;
 }

Now, we can clearly see that any route that has been accepted from a
customer that contains the community 1:1 will have it's local preference
value reduced by 10.

The refinement has cleaned up some of the policy but we still have a large
number of individual policies representing the same basic provider policy
``from the customer, accept customer routes''. These can be simplified by
using AS sets.

First, we will collect together all of AS1's customers into a single AS set,
AS1:AS-CUSTOMERS. We use a hierarchical set name that start with AS1 to
avoid possible set name clashes in IRR with other ASes:

 as-set: AS1:AS-CUSTOMERS
 members: AS2, AS3, AS5

We also define one set for each customer which lists the AS numbers of any
of their customers.

 as-set: AS1:AS-CUSTOMERS:AS2
 members: AS4

 as-set: AS1:AS-CUSTOMERS:AS3
 members: AS4

 as-set: AS1:AS-CUSTOMERS:AS5
 members: # AS5 has no customers yet, so keep blank for now

We can now use the keyword PeerAS with these AS sets to simplify the policy
further:

 aut-num: AS1
 import: {
 from AS-ANY
 action pref=10;
 accept community.contains(1:1);
 from AS-ANY
 action pref=0;

 accept ANY;

Meyer et. al. Expires December 3, 1999 [Page 13]

Internet Draft Using RPSL June 3, 1999

 } refine {
 from AS1:AS-CUSTOMERS
 accept (PeerAS OR AS1:AS-CUSTOMER:PeerAS)
 AND <^PeerAS+ AS1:AS-CUSTOMER:PeerAS*$>
 }

The use of PeerAS with AS1:AS-CUSTOMERS is basically equivalent to looping
over the members of AS1:AS-CUSTOMERS, expanding the policy by replacing
PeerAS with a member from the set AS1:AS-CUSTOMERS.

To illustrate how this policy might be utilised by AS4 , we present the
following policy fragment:

 aut-num: AS4
 export: to AS2
 action community.append(1:1);
 announce AS1
 export: to AS3
 announce AS1

Here, AS4 is signalling AS1 to prefer the routes from AS3.

3 Tools

In this section, we briefly introduce a number of tools which can be used to
inspect data in the database, to determine optimal routing policies, and
enter new data.

3.1 The aut-num Object Editor

All the examples shown in the previous sections may well be edited by hand.
They may be extracted one by one from the IRR using the whois program,
edited, and then handed back to the registry robots. However, again the
RAToolSet [6] provides a very nice tool which makes working with aut-num
objects much easier: the aut-num object editor aoe.

The aut-num object editor has a graphical user interface to view and
manipulate aut-num objects registered at any IRR. New aut-num objects may be
generated using templates and submitted to the registries. Moreover, the
routing policy from the databases may be compared to real life peerings.
Therefore, aoe is highly recommended as an interface to the IRR for aut-num
objects. Further information on aoe is available together with the

RAToolSet [6].

Meyer et. al. Expires December 3, 1999 [Page 14]

Internet Draft Using RPSL June 3, 1999

3.2 Router Configuration Using RtConfig

RtConfig is a tool developed by the Routing Arbiter project [8] to generate
vendor specific router configurations from the policy data held in the
various IRRs. RtConfig currently supports Cisco, gated and RSd
configuration formats. It has been publicly available since late 1994, and
is currently being used by many sites for router configuration. The next
section describes a methodology for generating vendor specific router
configurations using RtConfig.(2)

3.3 Using RtConfig

The general paradigm for using RtConfig involves registering policy in an
IRR, building a RtConfig source file, then running running RtConfig against
the source file and the IRR database to create vendor specific router
configuration for the specified policy. The source file will contain vendor
specific commands as well as RtConfig commands. To make a source file, pick
up one of your router configuration files and replace the vendor specific
policy configuration commands with the RtConfig commands.

Commands beginning with @RtConfig instruct RtConfig to perform special
operations. An example source file is shown in Figure 11. In this example,
commands such as ``@RtConfig import AS3582 198.32.162.1 AS3701
198.32.162.2'' instruct RtConfig to generate vendor specific import policies
where the router 198.32.162.1 in AS3582 is importing routes from router
198.32.162.2 in AS3701. The other @RtConfig commands instruct the RtConfig
to use certain names and numbers in the output that it generates (please
refer to RtConfig manual [8] for additional information).

Once a source file is created, the file is processed by RtConfig (the
default IRR is the RADB, and the default vendor is Cisco; however, command
line options can be used to override these values). The result of running
RtConfig on the source file in Figure 11 is shown in Figure 19 in
Appendix B.

A RPSL Database Objects

In this appendix, we introduce the RPSL objects required to implement many
typical Internet routing policies. RFC-2280 and RIPE-157 provide the
authoritative description for these objects and for the RPSL syntax, but
this appendix will often be sufficient in practice.

 2. Discussion of RtConfig internals is beyond the scope of this document.

https://datatracker.ietf.org/doc/html/rfc2280

Meyer et. al. Expires December 3, 1999 [Page 15]

Internet Draft Using RPSL June 3, 1999

 router bgp 3582
 network 128.223.0.0
 !
 ! Start with access-list 100
 !
 @RtConfig set cisco_access_list_no = 100
 !
 ! NERO
 neighbor 198.32.162.2 remote-as 3701
 @RtConfig set cisco_map_name = "AS3701-EXPORT"
 @RtConfig export AS3582 198.32.162.1 AS3701 198.32.162.2
 @RtConfig set cisco_map_name = "AS3701-IMPORT"
 @RtConfig import AS3582 198.32.162.1 AS3701 198.32.162.2
 !
 ! WNA/VERIO
 neighbor 198.32.162.6 remote-as 2914
 @RtConfig set cisco_map_name = "AS2914-EXPORT"
 @RtConfig export AS3582 198.32.162.1 AS2914 198.32.162.6
 @RtConfig set cisco_map_name = "AS2914-IMPORT"
 @RtConfig import AS3582 198.32.162.1 AS2914 198.32.162.6
 ...

 Figure 11: RtConfig Template File

The frequently needed objects are:

 o maintainer objects (mntner)

 o autonomous system number objects (aut-num)

 o route objects (route)

 o set objects (as-set, route-set)

and they are described in the following sections. To make your routing
policies and configuration public, these objects should be registered in
exactly one of the IRR registries.

In general, you can register your information by sending the appropriate
objects to an email address for the registry you use. The email should
consist of the objects you want to have registered or modified, separated by
empty lines, and preceded by some kind of authentication details (see
below). The registry robot processes your mail and enters new objects into
the database, deletes old ones (upon request), or makes the requested
modifications.

Meyer et. al. Expires December 3, 1999 [Page 16]

Internet Draft Using RPSL June 3, 1999

You will receive a response indicating the status of your submission. As
the emails are handled automatically, the response is generally very fast.
However, it should be remembered that a significant number of updates are
also sometimes submitted to the database (by other robots), so the response
time cannot be guaranteed. The email addresses for submitting objects to
the existing registries are listed in Figure 12.

 ANS auto-dbm@ans.net
 CANET auto-dbm@canet.net
 CW auto-rr@cw.net
 RADB auto-dbm@ra.net
 RIPE auto-dbm@ripe.net

 Figure 12: Email addresses to register policy objects in IRR.

Because it is required that a maintainer be specified in many of the
database objects, a mntner is usually the first to be created. To have it
properly authenticated, a mntner object is added manually by registry staff.
Thereafter, all database submissions, deletions and modifications should be
done through the registry robot.

Each of the registries can provide additional information and support for
users. For the public registries this support is available from the email
addresses listed in Figure 13.

 RADB db-admin@ra.net
 RIPE ripe-dbm@ripe.net

 Figure 13: Support email addresses.

If you are using one of the private registries, your service provider should
be able to address your questions.

A.1 The Maintainer Object

The maintainer object is used to introduce some kind of authorization for
registrations. It lists various contact persons and describes security
mechanisms that will be applied when updating objects in the IRR.
Registering a mntner object is the first step in creating policies for an
AS. An example is shown in Figure 14. The maintainer is called
MAINT-AS3701. The contact person here is the same for administrative
(admin-c) and technical (tech-c) issues and is referenced by the NIC-handle
DMM65. NIC-handles are unique identifiers for persons in registries. Refer
to registry documentation for further details on person objects and usage of

NIC-handles.

Meyer et. al. Expires December 3, 1999 [Page 17]

Internet Draft Using RPSL June 3, 1999

The example shows two authentication mechanisms: CRYPT-PW and MAIL-FROM.
CRYPT-PW takes as its argument a password that is encrypted with Unix
crypt(3) routine. When sending updates, the maintainer adds the field
password: <cleartext password> to the beginning of any requests that are to
be authenticated. MAIL-FROM takes an argument that is a regular expression
which covers a set of mail addresses. Only users with any of these mail
addresses are authorized to work with objects secured by the corresponding
maintainer(3).

The security mechanisms of the mntner object will only be applied on those
objects referencing a specific mntner object. The reference is done by
adding the attribute mnt-by to an object using the name of the mntner object
as its value. In Figure 14, the maintainer MAINT-AS3701 is maintained by
itself.

mntner: MAINT-AS3701
descr: Network for Research and Engineering in Oregon
remark: Internal Backbone
admin-c: DMM65
tech-c: DMM65
upd-to: noc@nero.net
auth: CRYPT-PW 949WK1mirBy6c
auth: MAIL-FROM .*@nero.net
notify: noc@nero.net
mnt-by: MAINT-AS3701
changed: meyer@antc.uoregon.edu 970318
source: RADB

 Figure 14: Maintainer Object

A.2 The Autonomous System Object

The autonomous system object describes the import and export policies of an
AS. Each organization registers an autonomous system object (aut-num) in the
IRR for its AS. Figure 15 shows the aut-num for AS3582 (UONET).

The autonomous system object lists contacts (admin-c, tech-c) and is
maintained by (mnt-by) MAINT-AS3701 which is the maintainer displayed in
Figure 14.

 3. Clearly, neither of these mechanisms is sufficient to provide
strong authentication or authorization. Other public key (e.g., PGP)
authentication mechanisms are available from some of the IRRs.

Meyer et. al. Expires December 3, 1999 [Page 18]

Internet Draft Using RPSL June 3, 1999

The most important attributes of the aut-num object are import and export.
The import clause of an aut-num specifies import policies, while the export
clause specifies export policies. The corresponding clauses allow a very
detailed description of the routing policy of the AS specified. The details
are given in section 2.

With these clauses, an aut-num object shows its relationship to other
autonomous systems by describing its peerings. In addition, it also defines
a routing entity comprising a group of IP networks which are handled
according to the rules defined in the aut-num object. Therefore, it is
closely linked to route objects.

In this example, AS3582 imports all routes from AS3701 by using the keyword
ANY. AS3582 imports only internal routes from AS4222, AS5650, and AS1798.
The import policy for for AS2914 is slightly more complex. Since AS2914
provides transit to various other ASes, AS3582 accepts routes with ASPATHs
that begin with AS2194 followed by members of AS-WNA, which is an as set
(see section A.4.1 below) describing those customers that transit AS2914.

Since AS3582 is a multi-homed stub AS (i.e., it does not provide transit),
its export policy consists simply of ``announce AS3582'' clauses; that is,
announce internal routes of AS3582. These routes are those in route objects
where the origin attribute is AS3582.

aut-num: AS3582
as-name: UONET
descr: University of Oregon, Eugene OR
import: from AS3701 accept ANY
import: from AS4222 accept <^AS4222+$>
import: from AS5650 accept <^AS5650+$>
import: from AS2914 accept <^AS2914+ (AS-WNA)*$>
import: from AS1798 accept <^AS1798+$>
export: to AS3701 announce AS3582
export: to AS4222 announce AS3582
export: to AS5650 announce AS3582
export: to AS2914 announce AS3582
export: to AS1798 announce AS3582
admin-c: DMM65
tech-c: DMM65
notify: nethelp@ns.uoregon.edu
mnt-by: MAINT-AS3582
changed: meyer@antc.uoregon.edu 970316
source: RADB

 Figure 15: Autonomous System Object

The aut-num object forms the basis of a scalable and maintainable router

Meyer et. al. Expires December 3, 1999 [Page 19]

Internet Draft Using RPSL June 3, 1999

 route: 128.223.0.0/16
 origin: AS3582
 descr: UONet
 descr: University of Oregon
 descr: Computing Center
 descr: Eugene, OR 97403-1212
 descr: USA
 mnt-by: MAINT-AS3582
 changed: meyer@ns.uoregon.edu 960222
 source: RADB

 Figure 16: Example of a route object

configuration system. For example, if AS3582 originates a new route, it
need only create a route object for that route with origin AS3582. AS3582
can now build configuration using this route object without changing its
aut-num object.

Similarly, if for example, AS3701 originates a new route, it need only
create a route object for that route with origin AS3701. Both AS3701 and
AS3582 can now build configuration using this route object without modifying
its aut-num object.

A.3 The Route Object

In contrast to aut-num objects which describe propagation of routing
information for an autonomous system as a whole, route objects define single
routes from an AS. An example is given in Figure 16.

This route object is maintained by MAINT-AS3582 and references AS3582 by the
origin attribute. By this reference it is grouped together with other
routes of the same origin AS, becoming member of the routing entity denoted
by AS3582. The routing policies can then be defined in the aut-num objects
for this group of routes.

Consequently, the route objects give the routes from this AS which are
distributed to peer ASes according to the rules of the routing policy.
Therefore, for any route in the routing tables of the backbone routers a
route object must exist in one of the registries in IRR. route objects must
be registered in the IRR only for the routes seen outside your AS. Normally,
this set of external routes is different from the routes internally visible
within your AS. One of the major reasons is that external peers need no
information at all about your internal routing specifics. Therefore,
external routes are in general aggregated combinations of internal routes,
having shorter IP prefixes where applicable according to the CIDR rules.

Please see the CIDR FAQ [5] for a tutorial introduction to CIDR. It is

Meyer et. al. Expires December 3, 1999 [Page 20]

Internet Draft Using RPSL June 3, 1999

strongly recommended that you aggregate your routes as much as possible,
thereby minimizing the number of routes you inject into the global routing
table and at the same time reducing the corresponding number of route
objects in the IRR.

While you may easily query single route objects using the whois program, and
submit objects via mail to the registry robots, this becomes kind of awkward
for larger sets. The RAToolSet [6] offers several tools to make handling of
route objects easier. If you want to read policy data from the IRR and
process it by other programs, you might be interested in using peval which
is a low level policy evaluation tool. As an example, the command

 peval -h whois.ra.net AS3582

will give you all route objects from AS3582 registered with RADB.

A much more sophisticated tool from the RAToolSet to handle route objects
interactively is the route object editor roe. It has a graphical user
interface to view and manipulate route objects registered at any IRR. New
route objects may be generated from templates and submitted to the
registries. Moreover, the route objects from the databases may be compared
to real life routes. Therefore, roe is highly recommended as an interface
to the IRR for route objects. Further information on peval and roe is
available together with the RAToolSet [6].

A.4 Set Objects

With routing policies it is often necessary to reference groups of
autonomous systems or routes which have identical properties regarding a
specific policy. To make working with such groups easier RPSL allows to
combine them in set objects. There are two basic types of predefined set
objects, as-set, and route-set. The RPSL set objects are described below.

A.4.1 AS-SET Object

Autonomous system set objects (as-set) are used to group autonomous system
objects into named sets. An as-set has an RPSL name that starts with
``AS-''. In the example in Figure 17, an as-set called AS-NERO-PARTNERS and
containing AS3701, AS4201, AS3582, AS4222, AS1798 is defined. The as-set is
the RPSL replacement for the RIPE-181 as-macro. It has been extended to
include ASes in the set indirectly by referencing as set names in the
aut-num objects.

AS-SETs are particularly useful when specifying policies for groups such as

customers, providers, or for transit. You are encouraged to register sets

Meyer et. al. Expires December 3, 1999 [Page 21]

Internet Draft Using RPSL June 3, 1999

for these groups because it is most likely that you will treat them alike,
i.e. you will have a very similar routing policy for all your customers
which have an autonomous system of their own. You may as well discover that
this is also true for the providers you are peering with, and it is most
convenient to have the ASes combined in one as-set for which you offer
transit. For example, if a transit provider specifies its import policy
using its customer's as-set (i.e., its import clause for the customer
contains the customer's as-set), then that customer can modify the set of
ASes that its transit provider accepts from it. Again, this can be
accomplished without requiring the customer or the transit provider to
modify its aut-num object.

 as-set: AS3582:AS-PARTNERS
 members: AS3701, AS4201, AS3582, AS4222, AS1798

 Figure 17: as-set Object

The ASes of the set are simply compiled in a comma delimited list following
the members attribute of the as-set. This list may also contain other
AS-SET names.

A.4.2 ROUTE-SET Object

A route-set is a way to name a group of routes. The syntax is similar to
the as-set. A route-set has an RPSL name that starts with ``RS-''. The
members attribute lists the members of the set. The value of a members
attribute is a list of address prefixes, or route-set names. The members of
the route-set are the address prefixes or the names of other route sets
specified.

Figure 18 presents some example route-set objects. The set rs-uo contains
two address prefixes, namely 128.223.0.0/16 and 198.32.162.0/24. The set
rs-bar contains the members of the set rs-uo and the address prefix
128.7.0.0/16. The set rs-martians illustrate the use of range operators.
0.0.0.0/0^32 are the length 32 more specifics of 0.0.0.0/0, i.e. the host
routes; 224.0.0.0/3^+ are the more specifics of 224.0.0.0/3, i.e. the routes
falling into the multicast address space. For more complete list of range
operators please refer to RFC-2280.

B Output of RtConfig: An Example

In Figure 19, you see the result of running RtConfig on the source file in
Figure 11.

https://datatracker.ietf.org/doc/html/rfc2280

Meyer et. al. Expires December 3, 1999 [Page 22]

Internet Draft Using RPSL June 3, 1999

 route-set: rs-uo
 members: 128.223.0.0/16, 198.32.162.0/24

 route-set: rs-bar
 members: 128.7.0.0/16, rs-uo

 route-set: rs-martians
 remarks: routes not accepted from any peer
 members: 0.0.0.0/0, # default route
 0.0.0.0/0^32, # host routes
 224.0.0.0/3^+, # multicast routes
 127.0.0.0/8^9-32, . . .

 Figure 18: route-set Objects

 router bgp 3582
 network 128.223.0.0
 !
 ! NERO
 neighbor 198.32.162.2 remote-as 3701

 no access-list 100
 access-list 100 permit ip 128.223.0.0 0.0.0.0 255.255.0.0 0.0.0.0
 access-list 100 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
 !
 no route-map AS3701-EXPORT
 route-map AS3701-EXPORT permit 1
 match ip address 100
 !
 router bgp 3582
 neighbor 198.32.162.2 route-map AS3701-EXPORT out
 !
 no route-map AS3701-IMPORT
 route-map AS3701-IMPORT permit 1
 set local-preference 1000
 !
 router bgp 3582
 neighbor 198.32.162.2 route-map AS3701-IMPORT in

 Figure 19: Output of RtConfig (cont)

C Security Consideration

This document is a tutorial to RPSL, it does not define protocols or

standards that need to be secured.

Meyer et. al. Expires December 3, 1999 [Page 23]

Internet Draft Using RPSL June 3, 1999

 !
 ! WNA/VERIO
 neighbor 198.32.162.6 remote-as 2914
 !
 no route-map AS2914-EXPORT
 route-map AS2914-EXPORT permit 1
 match ip address 100
 !
 router bgp 3582
 neighbor 198.32.162.6 route-map AS2914-EXPORT out
 no ip as-path access-list 100
 ip as-path access-list 100 permit ^_2914(((_[0-9]+))*_ \
 (13|22|97|132|175|668|1914|2905|2914|3361|3381|3791|3937| \
 4178|4354|4571|4674|4683|5091|5303|5798|5855|5856|5881|6083 \
 |6188|6971|7790|7951|8028))?$
 !
 no route-map AS2914-IMPORT
 route-map AS2914-IMPORT permit 1
 match as-path 100
 set local-preference 998
 !
 router bgp 3582
 neighbor 198.32.162.6 route-map AS2914-IMPORT in

 Figure 20: Output of RtConfig

References

 [1] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg, D. Meyer, M.
 Terpstra, and C. Villamizer: Routing Policy Specification Language
 (RPSL), RFC 2280.

 [2] T. Bates, J-M. Jouanigot, D. Karrenberg, P. Lothberg, and M. Terpstra.
 Representation of IP Routing Policies in the RIPE database, Technical
 Report ripe-81, RIPE, RIPE NCC, Amsterdam, Netherlands, February 1993.

 [3] T. Bates, E. Gerich, J. Joncharay, J-M. Jouanigot, D. Karrenberg, M.
 Terpstra, and J. Yu. Representation of IP Routing Policies in a
 Routing Registry, Technical Report ripe-181, RIPE, RIPE NCC,
 Amsterdam, Netherlands, October 1994.

 [4] A. M. R. Magee. RIPE NCC Database Documentation. Technical Report
 RIPE-157, RIPE NCC, Amsterdam, Netherlands, May 1997.

 [5] Hank Nussbacher. The CIDR FAQ. Tel Aviv University and IBM Israel.
http://www.ibm.net.il/~hank/cidr.html

https://datatracker.ietf.org/doc/html/rfc2280
http://www.ibm.net.il/~hank/cidr.html

Meyer et. al. Expires December 3, 1999 [Page 24]

Internet Draft Using RPSL June 3, 1999

 [6] The RAToolSet. http://www.ra.net/ra/RAToolSet/

 [7] Y. Rekhter adn T. Li. A Border Gateway Protocol 4 (BGP-4). Request for
 Comment RFC 1654. Network Information Center, July 1994.

 [8] RtConfig as part of the RAToolSet.
http://www.ra.net/ra/RAToolSet/RtConfig.html

 [9] E. Chen, T. Bates. An Application of the BGP Community Attribute in
 Multi-Home Routing. RFC 1998.

D Authors' Addresses

 David Meyer
 Cisco Systems
 email: dmm@cisco.com

 Joachim Schmitz
 America On-Line
 email: SchmitzJo@aol.com

 Carol Orange
 RIPE NCC
 email: orange@ripe.net

 Mark Prior
 connect.com.au pty ltd
 email: mrp@connect.com.au

 Cengiz Alaettinoglu
 USC Information Sciences Institute
 email: cengiz@isi.edu

http://www.ra.net/ra/RAToolSet/
https://datatracker.ietf.org/doc/html/rfc1654
http://www.ra.net/ra/RAToolSet/RtConfig.html
https://datatracker.ietf.org/doc/html/rfc1998

Meyer et. al. Expires December 3, 1999 [Page 25]

