
Internet Draft Cengiz Alaettinoglu
Expires October 6, 1999 USC/Information Sciences Institute
draft-ietf-rps-rpsl-v2-03.txt Curtis Villamizar
 ANS
 Elise Gerich
 At Home Network
 David Kessens
 Qwest Communications
 David Meyer
 University of Oregon
 Tony Bates
 Cisco Systems
 Daniel Karrenberg
 RIPE
 Marten Terpstra
 Bay Networks
 April 6, 1999

Routing Policy Specification Language (RPSL)

Status of this Memo:

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Copyright (C) The Internet Society (1998). All Rights Reserved.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It
is inappropriate to use Internet-Drafts as reference material or to cite
them other than as 'work in progress.'

The list of current Internet-Drafts can be accessed at
<http://www.ietf.org/ietf/1id-abstracts.txt>

The list of Internet-Draft Shadow Directories can be accessed at
<http://www.ietf.org/shadow.html>.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
Internet Draft RPSL April 6, 1999

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

https://datatracker.ietf.org/doc/html/draft-ietf-rps-rpsl-v2-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

document are to be interpreted as described in RFC 2119.

Abstract

RPSL allows a network operator to be able to specify routing policies at
various levels in the Internet hierarchy; for example at the Autonomous
System (AS) level. At the same time, policies can be specified with
sufficient detail in RPSL so that low level router configurations can be
generated from them. RPSL is extensible; new routing protocols and new
protocol features can be introduced at any time.

Alaettinoglu et. al. Expires October 6, 1999 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119

Internet Draft RPSL April 6, 1999

Contents

1 Introduction 5

2 RPSL Names, Reserved Words, and Representation 6

3 Contact Information 9

3.1 mntner Class . 9

3.2 person Class . 11

3.3 role Class . 12

4 route Class 13

5 Set Classes 14

5.1 as-set Class . 15

5.2 route-set Class . 16

5.3 Predefined Set Objects . 18

5.4 Filters and filter-set Class 18

5.5 rtr-set Class . 23

5.6 Peerings and peering-set Class 24

6 aut-num Class 27

6.1 import Attribute: Import Policy Specification 28

 6.1.1Action Specification . 28

6.2 export Attribute: Export Policy Specification 29

 6.3 Other Routing Protocols, Multi-Protocol Routing Protocols, and
 Injecting Routes Between Protocols 30

6.4 Ambiguity Resolution . 31

6.5 default Attribute: Default Policy Specification 34

6.6 Structured Policy Specification 35

Alaettinoglu et. al. Expires October 6, 1999 [Page 3]

Internet Draft RPSL April 6, 1999

7 dictionary Class 38

7.1 Initial RPSL Dictionary and Example Policy Actions and Filters . . 42

8 Advanced route Class 46

8.1 Specifying Aggregate Routes . 46

 8.1.1Interaction with policies in aut-num class 50

 8.1.2Ambiguity resolution with overlapping aggregates 51

8.2 Specifying Static Routes . 53

9 inet-rtr Class 53

10Extending RPSL 55

 10.1Extensions by changing the dictionary class 55

 10.2Extensions by adding new attributes to existing classes 56

 10.3Extensions by adding new classes 56

 10.4Extensions by changing the syntax of existing RPSL attributes . . . 56

11Security Consideration 57

12Acknowledgements 57

A Routing Registry Sites 59

B Grammar Rules 59

C Changes from RFC 2280 67

D Authors' Addresses 68

https://datatracker.ietf.org/doc/html/rfc2280

Alaettinoglu et. al. Expires October 6, 1999 [Page 4]

Internet Draft RPSL April 6, 1999

1 Introduction

This Internet Draft is the reference document for the Routing Policy
Specification Language (RPSL). RPSL allows a network operator to be able to
specify routing policies at various levels in the Internet hierarchy; for
example at the Autonomous System (AS) level. At the same time, policies can
be specified with sufficient detail in RPSL so that low level router
configurations can be generated from them. RPSL is extensible; new routing
protocols and new protocol features can be introduced at any time.

RPSL is a replacement for the current Internet policy specification language
known as RIPE-181 [6] or RFC-1786 [7]. RIPE-81 [8] was the first language
deployed in the Internet for specifying routing policies. It was later
replaced by RIPE-181 [6]. Through operational use of RIPE-181 it has become
apparent that certain policies cannot be specified and a need for an
enhanced and more generalized language is needed. RPSL addresses RIPE-181's
limitations.

RPSL was designed so that a view of the global routing policy can be
contained in a single cooperatively maintained distributed database to
improve the integrity of Internet's routing. RPSL is not designed to be a
router configuration language. RPSL is designed so that router
configurations can be generated from the description of the policy for one
autonomous system (aut-num class) combined with the description of a router
(inet-rtr class), mainly providing router ID, autonomous system number of
the router, interfaces and peers of the router, and combined with a global
database mappings from AS sets to ASes (as-set class), and from origin ASes
and route sets to route prefixes (route and route-set classes). The
accurate population of the RPSL database can help contribute toward such
goals as router configurations that protect against accidental (or
malicious) distribution of inaccurate routing information, verification of
Internet's routing, and aggregation boundaries beyond a single AS.

RPSL is object oriented; that is, objects contain pieces of policy and
administrative information. These objects are registered in the Internet
Routing Registry (IRR) by the authorized organizations. The registration
process is beyond the scope of this document. Please refer to [1, 17, 4]
for more details on the IRR.

In the following sections, we present the classes that are used to define
various policy and administrative objects. The "mntner" class defines
entities authorized to add, delete and modify a set of objects. The
"person" and "role" classes describes technical and administrative contact
personnel. Autonomous systems (ASes) are specified using the "aut-num"
class. Routes are specified using the "route" class. Sets of objects can
be defined using the "as-set", "route-set", "filter-set", "peering-set", and
"rtr-set" classes. The "dictionary" class provides the extensibility to the
language. The "inet-rtr" class is used to specify routers. Many of these

https://datatracker.ietf.org/doc/html/rfc1786

classes were originally defined in earlier documents [6, 13, 16, 12, 5] and
have all been enhanced.

Alaettinoglu et. al. Expires October 6, 1999 [Page 5]

Internet Draft RPSL April 6, 1999

This document is self-contained. However, the reader is encouraged to read
RIPE-181 [7] and the associated documents [13, 16, 12, 5] as they provide
significant background as to the motivation and underlying principles behind
RIPE-181 and consequently, RPSL. For a tutorial on RPSL, the reader should
read the RPSL applications document [4].

2 RPSL Names, Reserved Words, and Representation

Each class has a set of attributes which store a piece of information about
the objects of the class. Attributes can be mandatory or optional: A
mandatory attribute has to be defined for all objects of the class; optional
attributes can be skipped. Attributes can also be single or multiple
valued. Each object is uniquely identified by a set of attributes, referred
to as the class ``key''.

The value of an attribute has a type. The following types are most widely
used. Note that RPSL is case insensitive and only the characters from the
ASCII character set can be used.

<object-name>Many objects in RPSL have a name. An <object-name> is made up
 of letters, digits, the character underscore ``_'', and the character
 hyphen ``-''; the first character of a name must be a letter, and the
 last character of a name must be a letter or a digit. The following
 words are reserved by RPSL, and they can not be used as names:

 any as-any rs-any peeras
 and or not
 atomic from to at action accept announce except refine
 networks into inbound outbound

 Names starting with certain prefixes are reserved for certain object
 types. Names starting with ``as-'' are reserved for as set names.
 Names starting with ``rs-'' are reserved for route set names. Names
 starting with ``rtrs-'' are reserved for router set names. Names
 starting with ``fltr-'' are reserved for filter set names. Names
 starting with ``prng-'' are reserved for peering set names.

<as-number>An AS number x is represented as the string ``ASx''. That is,
 the AS 226 is represented as AS226.

<ipv4-address>An IPv4 address is represented as a sequence of four integers
 in the range from 0 to 255 separated by the character dot ``.''. For
 example, 128.9.128.5 represents a valid IPv4 address. In the rest of
 this document, we may refer to IPv4 addresses as IP addresses.

Alaettinoglu et. al. Expires October 6, 1999 [Page 6]

Internet Draft RPSL April 6, 1999

<address-prefix>An address prefix is represented as an IPv4 address
 followed by the character slash ``/'' followed by an integer in the
 range from 0 to 32. The following are valid address prefixes:
 128.9.128.5/32, 128.9.0.0/16, 0.0.0.0/0; and the following address
 prefixes are invalid: 0/0, 128.9/16 since 0 or 128.9 are not strings
 containing four integers.

<address-prefix-range>An address prefix range is an address prefix followed
 by an optional range operator. The range operators are:

 ^- is the exclusive more specifics operator; it stands for the more
 specifics of the address prefix excluding the address prefix
 itself. For example, 128.9.0.0/16^- contains all the more
 specifics of 128.9.0.0/16 excluding 128.9.0.0/16.

 ^+ is the inclusive more specifics operator; it stands for the more
 specifics of the address prefix including the address prefix
 itself. For example, 5.0.0.0/8^+ contains all the more specifics
 of 5.0.0.0/8 including 5.0.0.0/8.

 ^n where n is an integer, stands for all the length n specifics of the
 address prefix. For example, 30.0.0.0/8^16 contains all the more
 specifics of 30.0.0.0/8 which are of length 16 such as 30.9.0.0/16.

 ^n-m where n and m are integers, stands for all the length n to length
 m specifics of the address prefix. For example, 30.0.0.0/8^24-32
 contains all the more specifics of 30.0.0.0/8 which are of length
 24 to 32 such as 30.9.9.96/28.

 Range operators can also be applied to address prefix sets. In this
 case, they distribute over the members of the set. For example, for a
 route-set (defined later) rs-foo, rs-foo^+ contains all the inclusive
 more specifics of all the prefixes in rs-foo.

 It is an error to follow a range operator with another one (e.g.
 30.0.0.0/8^24-28^+ is an error). However, a range operator can be
 applied to an address prefix set that has address prefix ranges in it
 (e.g. {30.0.0.0/8^24-28}^27-30 is not an error). In this case, the
 outer operator ^n-m distributes over the inner operator ^k-l and becomes
 the operator ^max(n,k)-m if m is greater than or equal to max(n,k), or
 otherwise, the prefix is deleted from the set. Note that the operator
 ^n is equivalent to ^n-n; prefix/l^+ is equivalent to prefix/l^l-32;
 prefix/l^- is equivalent to prefix/l^(l+1)-32; {prefix/l^n-m}^+ is
 equivalent to {prefix/l^n-32}; and {prefix/l^n-m}^- is equivalent to
 {prefix/l^(n+1)-32}. For example,

 {128.9.0.0/16^+}^- == {128.9.0.0/16^-}

 {128.9.0.0/16^-}^+ == {128.9.0.0/16^-}

Alaettinoglu et. al. Expires October 6, 1999 [Page 7]

Internet Draft RPSL April 6, 1999

 {128.9.0.0/16^17}^24 == {128.9.0.0/16^24}
 {128.9.0.0/16^20-24}^26-28 == {128.9.0.0/16^26-28}
 {128.9.0.0/16^20-24}^22-28 == {128.9.0.0/16^22-28}
 {128.9.0.0/16^20-24}^18-28 == {128.9.0.0/16^20-28}
 {128.9.0.0/16^20-24}^18-22 == {128.9.0.0/16^20-22}
 {128.9.0.0/16^20-24}^18-19 == {}

<date>A date is represented as an eight digit integer of the form YYYYMMDD
 where YYYY represents the year, MM represents the month of the year (01
 through 12), and DD represents the day of the month (01 through 31).
 All dates are in UTC unless otherwise specified. For example, June 24,
 1996 is represented as 19960624.

<email-address>is as described in RFC-822[10].

<dns-name>is as described in RFC-1034[18].

<nic-handle>is a uniquely assigned identifier[15] used by routing, address
 allocation, and other registries to unambiguously refer to contact
 information. person and role classes map NIC handles to actual person
 names, and contact information.

<free-form>is a sequence of ASCII characters.

<X-name>is a name of an object of type X. That is <mntner-name> is a name
 of a mntner object.

<registry-name>is a name of an IRR registry. The routing registries are
 listed in Appendix A.

A value of an attribute may also be a list of one of these types. A list is
represented by separating the list members by commas ``,''. For example,
``AS1, AS2, AS3, AS4'' is a list of AS numbers. Note that being list valued
and being multiple valued are orthogonal. A multiple valued attribute has
more than one value, each of which may or may not be a list. On the other
hand a single valued attribute may have a list value.

An RPSL object is textually represented as a list of attribute-value pairs.
Each attribute-value pair is written on a separate line. The attribute name
starts at column 0, followed by character ``:'' and followed by the value
of the attribute. The attribute which has the same name as the object's
class should be specified first. The object's representation ends when a
blank line is encountered. An attribute's value can be split over multiple
lines, by having a space, a tab or a plus ('+') character as the first
character of the continuation lines. The character ``+'' for line
continuation allows attribute values to contain blank lines. More spaces
may optionally be used after the continuation character to increase
readability. The order of attribute-value pairs is significant.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1034

Alaettinoglu et. al. Expires October 6, 1999 [Page 8]

Internet Draft RPSL April 6, 1999

An object's description may contain comments. A comment can be anywhere in
an object's definition, it starts at the first ``#'' character on a line and
ends at the first end-of-line character. White space characters can be used
to improve readability.

An integer can be specified using (1) the C programming language notation
(e.g. 1, 12345); (2) sequence of four 1-octet integers (in the range from 0
to 255) separated by the character dot ``.'' (e.g. 1.1.1.1, 255.255.0.0),
in this case a 4-octet integer is formed by concatenating these 1-octet
integers in the most significant to least significant order; (3) sequence of
two 2-octet integers (in the range from 0 to 65535) separated by the
character colon ``:'' (e.g. 3561:70, 3582:10), in this case a 4-octet
integer is formed by concatenating these 2-octet integers in the most
significant to least significant order.

3 Contact Information

The mntner, person and role classes, admin-c, tech-c, mnt-by, changed, and
source attributes of all classes describe contact information. The mntner
class also specifies authenticaiton information required to create, delete
and update other objects. These classes do not specify routing policies and
each registry may have different or additional requirements on them. Here
we present the common denominator for completeness which is the RIPE
database implementation [17]. Please consult your routing registry for the
latest specification of these classes and attributes. The ``Routing Policy
System Security'' document [21] describes the authenticaiton and
authorization model in more detail.

3.1 mntner Class

The mntner class specifies authenticaiton information required to create,
delete and update RPSL objects. A provider, before he/she can create RPSL
objects, first needs to create a mntner object. The attributes of the
mntner class are shown in Figure 1. The mntner class was first described
in [13].

The mntner attribute is mandatory and is the class key. Its value is an
RPSL name. The auth attribute specifies the scheme that will be used to
identify and authenticate update requests from this maintainer. It has the
following syntax:

 auth: <scheme-id> <auth-info>

 E.g.
 auth: NONE

Alaettinoglu et. al. Expires October 6, 1999 [Page 9]

Internet Draft RPSL April 6, 1999

 Attribute Value Type
 mntner <object-name> mandatory, single-valued, class key
 descr <free-form> mandatory, single-valued
 auth see description in text mandatory, multi-valued
 upd-to <email-address> mandatory, multi-valued
 mnt-nfy <email-address> optional, multi-valued
 tech-c <nic-handle> mandatory, multi-valued
 admin-c <nic-handle> optional, multi-valued
 remarks <free-form> optional, multi-valued
 notify <email-address> optional, multi-valued
 mnt-by list of <mntner-name> mandatory, multi-valued
 changed <email-address> <date> mandatory, multi-valued
 source <registry-name> mandatory, single-valued

 Figure 1: mntner Class Attributes

 auth: CRYPT-PW dhjsdfhruewf
 auth: MAIL-FROM .*@ripe\.net

The <scheme-id>'s currently defined are: NONE, MAIL-FROM, PGP-KEY and
CRYPT-PW. The <auth-info> is additional information required by a particular
scheme: in the case of MAIL-FROM, it is a regular expression matching valid
email addresses; in the case of CRYPT-PW, it is a password in UNIX crypt
format; and in the case of PGP-KEY, it is a pointer to key-certif
object [23] containing the PGP public key of the user. If multiple auth
attributes are specified, an update request satisfying any one of them is
authenticated to be from the maintainer.

The upd-to attribute is an email address. On an unauthorized update attempt
of an object maintained by this maintainer, an email message will be sent to
this address. The mnt-nfy attribute is an email address. A notification
message will be forwarded to this email address whenever an object
maintained by this maintainer is added, changed or deleted.

The descr attribute is a short, free-form textual description of the object.
The tech-c attribute is a technical contact NIC handle. This is someone to
be contacted for technical problems such as misconfiguration. The admin-c
attribute is an administrative contact NIC handle. The remarks attribute is
a free text explanation or clarification. The notify attribute is an email
address to which notifications of changes to this object should be sent.
The mnt-by attribute is a list of mntner object names. The authorization
for changes to this object is governed by any of the maintainer objects
referenced. The changed attribute documents who last changed this object,
and when this change was made. Its syntax has the following form:

Alaettinoglu et. al. Expires October 6, 1999 [Page 10]

Internet Draft RPSL April 6, 1999

 changed: <email-address> <YYYYMMDD>

 E.g.
 changed: johndoe@terabit-labs.nn 19900401

The <email-address> identifies the person who made the last change.
<YYYYMMDD> is the date of the change. The source attribute specifies the
registry where the object is registered. Figure 2 shows an example mntner
object. In the example, UNIX crypt format password authentication is used.

 mntner: RIPE-NCC-MNT
 descr: RIPE-NCC Maintainer
 admin-c: DK58
 tech-c: OPS4-RIPE
 upd-to: ops@ripe.net
 mnt-nfy: ops-fyi@ripe.net
 auth: CRYPT-PW lz1A7/JnfkTtI
 mnt-by: RIPE-NCC-MNT
 changed: ripe-dbm@ripe.net 19970820
 source: RIPE

 Figure 2: An example mntner object.

The descr, tech-c, admin-c, remarks, notify, mnt-by, changed and source
attributes are attributes of all RPSL classes. Their syntax, semantics, and
mandatory, optional, multi-valued, or single-valued status are the same for
for all RPSL classes. Only exception to this is the admin-c attribute which
is mandatory for the aut-num class. We do not further discuss them in other
sections.

3.2 person Class

A person class is used to describe information about people. Even though it
does not describe routing policy, we still describe it here briefly since
many policy objects make reference to person objects. The person class was
first described in [16].

The attributes of the person class are shown in Figure 3. The person
attribute is the full name of the person. The phone and the fax-no
attributes have the following syntax:

 phone: +<country-code> <city> <subscriber> [ext. <extension>]

 E.g.:

 phone: +31 20 12334676

Alaettinoglu et. al. Expires October 6, 1999 [Page 11]

Internet Draft RPSL April 6, 1999

 Attribute Value Type
 person <free-form> mandatory, single-valued
 nic-hdl <nic-handle> mandatory, single-valued, class key
 address <free-form> mandatory, multi-valued
 phone see description in text mandatory, multi-valued
 fax-no same as phone optional, multi-valued
 e-mail <email-address> mandatory, multi-valued

 Figure 3: person Class Attributes

 phone: +44 123 987654 ext. 4711

Figure 4 shows an example person object.

 person: Daniel Karrenberg
 address: RIPE Network Coordination Centre (NCC)
 address: Singel 258
 address: NL-1016 AB Amsterdam
 address: Netherlands
 phone: +31 20 535 4444
 fax-no: +31 20 535 4445
 e-mail: Daniel.Karrenberg@ripe.net
 nic-hdl: DK58
 changed: Daniel.Karrenberg@ripe.net 19970616
 source: RIPE

 Figure 4: An example person object.

3.3 role Class

The role class is similar to the person object. However, instead of
describing a human being, it describes a role performed by one or more human
beings. Examples include help desks, network monitoring centers, system
administrators, etc. Role object is particularly useful since often a
person performing a role may change, however the role itself remains.

The attributes of the role class are shown in Figure 5. The nic-hdl
attributes of the person and role classes share the same name space. The
trouble attribute of role object may contain additional contact information
to be used when a problem arises in any object that references this role
object. Figure 6 shows an example role object.

Alaettinoglu et. al. Expires October 6, 1999 [Page 12]

Internet Draft RPSL April 6, 1999

 Attribute Value Type
 role <free-form> mandatory, single-valued
 nic-hdl <nic-handle> mandatory, single-valued, class key
 trouble <free-form> optional, multi-valued
 address <free-form> mandatory, multi-valued
 phone see description in text mandatory, multi-valued
 fax-no same as phone optional, multi-valued
 e-mail <email-address> mandatory, multi-valued

 Figure 5: role Class Attributes

 role: RIPE NCC Operations
 trouble:
 address: Singel 258
 address: 1016 AB Amsterdam
 address: The Netherlands
 phone: +31 20 535 4444
 fax-no: +31 20 545 4445
 e-mail: ops@ripe.net
 admin-c: CO19-RIPE
 tech-c: RW488-RIPE
 tech-c: JLSD1-RIPE
 nic-hdl: OPS4-RIPE
 notify: ops@ripe.net
 changed: roderik@ripe.net 19970926
 source: RIPE

 Figure 6: An example role object.

4 route Class

Each interAS route (also referred to as an interdomain route) originated by
an AS is specified using a route object. The attributes of the route class
are shown in Figure 7. The route attribute is the address prefix of the
route and the origin attribute is the AS number of the AS that originates
the route into the interAS routing system. The route and origin attribute
pair is the class key.

Figure 8 shows examples of four route objects (we do not include contact
attributes such as admin-c, tech-c for brevity). Note that the last two
route objects have the same address prefix, namely 128.8.0.0/16. However,
they are different route objects since they are originated by different ASes
(i.e. they have different keys).

Alaettinoglu et. al. Expires October 6, 1999 [Page 13]

Internet Draft RPSL April 6, 1999

Attribute Value Type
route <address-prefix> mandatory, single-valued, class key
origin <as-number> mandatory, single-valued, class key
member-of list of <route-set-names> optional, multi-valued
 see Section 5
inject see Section 8 optional, multi-valued
components see Section 8 optional, single-valued
aggr-bndry see Section 8 optional, single-valued
aggr-mtd see Section 8 optional, single-valued
export-comps see Section 8 optional, single-valued
holes see Section 8 optional, multi-valued

 Figure 7: route Class Attributes

 route: 128.9.0.0/16
 origin: AS226

 route: 128.99.0.0/16
 origin: AS226

 route: 128.8.0.0/16
 origin: AS1

 route: 128.8.0.0/16
 origin: AS2

 Figure 8: Route Objects

5 Set Classes

To specify policies, it is often useful to define sets of objects. For this
purpose we define as-set, route-set, rtr-set, filter-set, and peering-set
classes. These classes define a named set. The members of these sets can
be specified either directly by listing them in the sets' definition, or
indirectly by having member objects refer to the sets' names, or a
combination of both methods.

A set's name is an rpsl word with the following restrictions: All as-set
names start with prefix ``as-''. All route-set names start with prefix
``rs-''. All rtr-set names start with prefix ``rtrs-''. All filter-set
names start with prefix ``fltr-''. All peering-set names start with prefix
``prng-''. For example, as-foo is a valid as-set name.

Set names can also be hierarchical. A hierarchical set name is a sequence

Alaettinoglu et. al. Expires October 6, 1999 [Page 14]

Internet Draft RPSL April 6, 1999

of set names and AS numbers separated by colons ``:''. At least one
component of such a name must be an actual set name (i.e. start with one of
the prefixes above). All the set name components of an hierarchical name
has to be of the same type. For example, the following names are valid:
AS1:AS-CUSTOMERS, AS1:RS-EXPORT:AS2, RS-EXCEPTIONS:RS-BOGUS.

The purpose of an hierarchical set name is to partition the set name space
so that the maintainers of the set X1 controls the whole set name space
underneath, i.e. X1:...:Xn-1. Thus, a set object with name X1:...:Xn-1:Xn
can only be created by the maintainer of the object with name X1:...:Xn-1.
That is, only the maintainer of AS1 can create a set with name AS1:AS-FOO;
and only the maintainer of AS1:AS-FOO can create a set with name
AS1:AS-FOO:AS-BAR. Please see RPS Security Document [21] for details.

5.1 as-set Class

The attributes of the as-set class are shown in Figure 9. The as-set
attribute defines the name of the set. It is an RPSL name that starts with
``as-''. The members attribute lists the members of the set. The members
attribute is a list of AS numbers, or other as-set names.

 Attribute Value Type
 as-set <object-name> mandatory, single-valued,
 class key
 members list of <as-numbers> or optional, multi-valued
 <as-set-names>
 mbrs-by-ref list of <mntner-names> optional, multi-valued

 Figure 9: as-set Class Attributes

Figure 10 presents two as-set objects. The set as-foo contains two ASes,
namely AS1 and AS2. The set as-bar contains the members of the set as-foo
and AS3, that is it contains AS1, AS2, AS3. The set as-empty contains no
members.

 as-set: as-foo as-set: as-bar as-set: as-empty
 members: AS1, AS2 members: AS3, as-foo

 Figure 10: as-set objects.

The mbrs-by-ref attribute is a list of maintainer names or the keyword ANY.
If this attribute is used, the AS set also includes ASes whose aut-num
objects are registered by one of these maintainers and whose member-of

attribute refers to the name of this AS set. If the value of a mbrs-by-ref

Alaettinoglu et. al. Expires October 6, 1999 [Page 15]

Internet Draft RPSL April 6, 1999

attribute is ANY, any AS object referring to the AS set is a member of the
set. If the mbrs-by-ref attribute is missing, only the ASes listed in the
members attribute are members of the set.

 as-set: as-foo
 members: AS1, AS2
 mbrs-by-ref: MNTR-ME

 aut-num: AS3 aut-num: AS4
 member-of: as-foo member-of: as-foo
 mnt-by: MNTR-ME mnt-by: MNTR-OTHER

 Figure 11: as-set objects.

Figure 11 presents an example as-set object that uses the mbrs-by-ref
attribute. The set as-foo contains AS1, AS2 and AS3. AS4 is not a member
of the set as-foo even though the aut-num object references as-foo. This is
because MNTR-OTHER is not listed in the as-foo's mbrs-by-ref attribute.

5.2 route-set Class

The attributes of the route-set class are shown in Figure 12. The route-set
attribute defines the name of the set. It is an RPSL name that starts with
``rs-''. The members attribute lists the members of the set. The members
attribute is a list of address prefixes or other route-set names. Note
that, the route-set class is a set of route prefixes, not of RPSL route
objects.

 Attribute Value Type
 route-set <object-name> mandatory, single-valued,
 class key
 members list of <address-prefix-range> or optional, multi-valued
 <route-set-name> or
 <route-set-name><range-operator>
 mbrs-by-ref list of <mntner-names> optional, multi-valued

 Figure 12: route-set Class Attributes

Figure 13 presents some example route-set objects. The set rs-foo contains
two address prefixes, namely 128.9.0.0/16 and 128.9.0.0/24. The set rs-bar
contains the members of the set rs-foo and the address prefix 128.7.0.0/16.

An address prefix or a route-set name in a members attribute can be

optionally followed by a range operator. For example, the following set

Alaettinoglu et. al. Expires October 6, 1999 [Page 16]

Internet Draft RPSL April 6, 1999

 route-set: rs-foo
 members: 128.9.0.0/16, 128.9.0.0/24

 route-set: rs-bar
 members: 128.7.0.0/16, rs-foo

 Figure 13: route-set Objects

 route-set: rs-bar
 members: 5.0.0.0/8^+, 30.0.0.0/8^24-32, rs-foo^+

contains all the more specifics of 5.0.0.0/8 including 5.0.0.0/8, all the
more specifics of 30.0.0.0/8 which are of length 24 to 32 such as
30.9.9.96/28, and all the more specifics of address prefixes in route set
rs-foo.

The mbrs-by-ref attribute is a list of maintainer names or the keyword ANY.
If this attribute is used, the route set also includes address prefixes
whose route objects are registered by one of these maintainers and whose
member-of attribute refers to the name of this route set. If the value of a
mbrs-by-ref attribute is ANY, any route object referring to the route set
name is a member. If the mbrs-by-ref attribute is missing, only the address
prefixes listed in the members attribute are members of the set.

 route-set: rs-foo
 mbrs-by-ref: MNTR-ME, MNTR-YOU

 route-set: rs-bar
 members: 128.7.0.0/16
 mbrs-by-ref: MNTR-YOU

 route: 128.9.0.0/16
 origin: AS1
 member-of: rs-foo
 mnt-by: MNTR-ME

 route: 128.8.0.0/16
 origin: AS2
 member-of: rs-foo, rs-bar
 mnt-by: MNTR-YOU

 Figure 14: route-set objects.

Figure 14 presents example route-set objects that use the mbrs-by-ref
attribute. The set rs-foo contains two address prefixes, namely

128.8.0.0/16 and 128.9.0.0/16 since the route objects for 128.8.0.0/16 and

Alaettinoglu et. al. Expires October 6, 1999 [Page 17]

Internet Draft RPSL April 6, 1999

128.9.0.0/16 refer to the set name rs-foo in their member-of attribute. The
set rs-bar contains the address prefixes 128.7.0.0/16 and 128.8.0.0/16. The
route 128.7.0.0/16 is explicitly listed in the members attribute of rs-bar,
and the route object for 128.8.0.0/16 refer to the set name rs-bar in its
member-of attribute.

Note that, if an address prefix is listed in a members attribute of a route
set, it is a member of that route set. The route object corresponding to
this address prefix does not need to contain a member-of attribute referring
to this set name. The member-of attribute of the route class is an
additional mechanism for specifying the members indirectly.

5.3 Predefined Set Objects

In a context that expects a route set (e.g. members attribute of the
route-set class), an AS number ASx defines the set of routes that are
originated by ASx; and an as-set AS-X defines the set of routes that are
originated by the ASes in AS-X. A route p is said to be originated by ASx if
there is a route object for p with ASx as the value of the origin attribute.
For example, in Figure 15, the route set rs-special contains 128.9.0.0/16,
routes of AS1 and AS2, and routes of the ASes in AS set AS-FOO.

 route-set: rs-special
 members: 128.9.0.0/16, AS1, AS2, AS-FOO

 Figure 15: Use of AS numbers and AS sets in route sets.

The set rs-any contains all routes registered in IRR. The set as-any
contains all ASes registered in IRR.

5.4 Filters and filter-set Class

The attributes of the filter-set class are shown in Figure 16. A filter-set
object defines a set of routes that are matched by its filter. The
filter-set attribute defines the name of the filter. It is an RPSL name
that starts with ``fltr-''.

 Attribute Value Type
 filter-set <object-name> mandatory, single-valued, class key
 filter <filter> mandatory, single-valued

 Figure 16: filter Class Attributes

Alaettinoglu et. al. Expires October 6, 1999 [Page 18]

Internet Draft RPSL April 6, 1999

 filter-set: fltr-foo
 filter: { 5.0.0.0/8, 6.0.0.0/8 }

 filter-set: fltr-bar
 filter: (AS1 or fltr-foo) and <AS2>

 Figure 17: filter-set objects.

The filter attribute defines the set's policy filter. A policy filter is a
logical expression which when applied to a set of routes returns a subset of
these routes. We say that the policy filter matches the subset returned.
The policy filter can match routes using any BGP path attribute, such as the
destination address prefix (or NLRI), AS-path, or community attributes.

The policy filters can be composite by using the operators AND, OR, and NOT.
The following policy filters can be used to select a subset of routes:

ANY The keyword ANY matches all routes.

Address-Prefix Set This is an explicit list of address prefixes enclosed in
braces '{' and '}'. The policy filter matches the set of routes whose
destination address-prefix is in the set. For example:

 { 0.0.0.0/0 }
 { 128.9.0.0/16, 128.8.0.0/16, 128.7.128.0/17, 5.0.0.0/8 }
 { }

An address prefix can be optionally followed by a range operator (i.e. '^-',
'^+', '^n', or '^n-m'). For example, the set

 { 5.0.0.0/8^+, 128.9.0.0/16^-, 30.0.0.0/8^16, 30.0.0.0/8^24-32 }

contains all the more specifics of 5.0.0.0/8 including 5.0.0.0/8, all the
more specifics of 128.9.0.0/16 excluding 128.9.0.0/16, all the more
specifics of 30.0.0.0/8 which are of length 16 such as 30.9.0.0/16, and all
the more specifics of 30.0.0.0/8 which are of length 24 to 32 such as
30.9.9.96/28.

Route Set Name A route set name matches the set of routes that are members
of the set. A route set name may be a name of a route-set object, an AS
number, or a name of an as-set object (AS numbers and as-set names

Alaettinoglu et. al. Expires October 6, 1999 [Page 19]

Internet Draft RPSL April 6, 1999

implicitly define route sets; please see Section 5.3). For example:

 aut-num: AS1
 import: from AS2 accept AS2
 import: from AS2 accept AS-FOO
 import: from AS2 accept RS-FOO

The keyword PeerAS can be used instead of the AS number of the peer AS.
PeerAS is particularly useful when the peering is specified using an AS
expression. For example:

 as-set: AS-FOO
 members: AS2, AS3

 aut-num: AS1
 import: from AS-FOO accept PeerAS

is same as:

 aut-num: AS1
 import: from AS2 accept AS2
 import: from AS3 accept AS3

A route set name can also be followed by one of the operators '^-', '^+',
'^n' or '^n-m'. These operators are distributive over the route sets. For
example, { 5.0.0.0/8, 6.0.0.0/8 }^+ equals { 5.0.0.0/8^+, 6.0.0.0/8^+ }, and
AS1^- equals all the exclusive more specifics of routes originated by AS1.

AS Path Regular Expressions An AS-path regular expression can be used as a
policy filter by enclosing the expression in `<' and `>'. An AS-path policy
filter matches the set of routes which traverses a sequence of ASes matched
by the AS-path regular expression. A router can check this using the
AS_PATH attribute in the Border Gateway Protocol [20], or the RD_PATH
attribute in the Inter-Domain Routing Protocol[19].

AS-path Regular Expressions are POSIX compliant regular expressions over the
alphabet of AS numbers. The regular expression constructs are as follows:

ASN where ASN is an AS number. ASN matches the AS-path that is of
 length 1 and contains the corresponding AS number (e.g.
 AS-path regular expression AS1 matches the AS-path ``1'').

 The keyword PeerAS can be used instead of the AS number of the

Alaettinoglu et. al. Expires October 6, 1999 [Page 20]

Internet Draft RPSL April 6, 1999

 peer AS.

AS-set where AS-set is an AS set name. AS-set matches the AS-paths that
 is matched by one of the ASes in the AS-set.

. matches the AS-paths matched by any AS number.

[...] is an AS number set. It matches the AS-paths matched by the AS
 numbers listed between the brackets. The AS numbers in the
 set are separated by white space characters. If a `-' is used
 between two AS numbers in this set, all AS numbers between the
 two AS numbers are included in the set. If an as-set name is
 listed, all AS numbers in the as-set are included.

[^...] is a complemented AS number set. It matches any AS-path which is
 not matched by the AS numbers in the set.

^ Matches the empty string at the beginning of an AS-path.

$ Matches the empty string at the end of an AS-path.

We next list the regular expression operators in the decreasing order of
evaluation. These operators are left associative, i.e. performed left to
right.

Unary postfix operators * + ? {m} {m,n} {m,}
 For a regular expression A, A* matches zero or more
 occurrences of A; A+ matches one or more occurrences of A; A?
 matches zero or one occurrence of A; A{m} matches m occurrence
 of A; A{m,n} matches m to n occurrence of A; A{m,} matches m or
 more occurrence of A. For example, [AS1 AS2]{2} matches AS1
 AS1, AS1 AS2, AS2 AS1, and AS2 AS2.

Unary postfix operators ~* ~+ ~{m} ~{m,n} ~{m,}
 These operators have similar functionality as the
 corresponding operators listed above, but all occurrences of
 the regular expression has to match the same pattern. For
 example, [AS1 AS2]~{2} matches AS1 AS1 and AS2 AS2, but it does
 not match AS1 AS2 and AS2 AS1.

Binary catenation operator
 This is an implicit operator and exists between two regular
 expressions A and B when no other explicit operator is
 specified. The resulting expression A B matches an AS-path if
 A matches some prefix of the AS-path and B matches the rest of
 the AS-path.

Binary alternative (or) operator |

 For a regular expressions A and B, A | B matches any AS-path

Alaettinoglu et. al. Expires October 6, 1999 [Page 21]

Internet Draft RPSL April 6, 1999

 that is matched by A or B.

Parenthesis can be used to override the default order of evaluation. White
spaces can be used to increase readability.

The following are examples of AS-path filters:

 <AS3>
 <^AS1>
 <AS2$>
 <^AS1 AS2 AS3$>
 <^AS1 .* AS2$>.

The first example matches any route whose AS-path contains AS3, the second
matches routes whose AS-path starts with AS1, the third matches routes whose
AS-path ends with AS2, the fourth matches routes whose AS-path is exactly
``1 2 3'', and the fifth matches routes whose AS-path starts with AS1 and
ends in AS2 with any number of AS numbers in between.

Composite Policy Filters The following operators (in decreasing order of
evaluation) can be used to form composite policy filters:

NOT Given a policy filter x, NOT x matches the set of routes that are not
 matched by x. That is it is the negation of policy filter x.

AND Given two policy filters x and y, x AND y matches the intersection of
 the routes that are matched by x and that are matched by y.

OR Given two policy filters x and y, x OR y matches the union of the routes
 that are matched by x and that are matched by y.

Note that an OR operator can be implicit, that is `x y' is equivalent to `x
OR y'.

 E.g.
 NOT {128.9.0.0/16, 128.8.0.0/16}
 AS226 AS227 OR AS228
 AS226 AND NOT {128.9.0.0/16}
 AS226 AND {0.0.0.0/0^0-18}

The first example matches any route except 128.9.0.0/16 and 128.8.0.0/16.
The second example matches the routes of AS226, AS227 and AS228. The third

example matches the routes of AS226 except 128.9.0.0/16. The fourth example

Alaettinoglu et. al. Expires October 6, 1999 [Page 22]

Internet Draft RPSL April 6, 1999

matches the routes of AS226 whose length are not longer than 18.

Routing Policy Attributes Policy filters can also use the values of other
attributes for comparison. The attributes whose values can be used in
policy filters are specified in the RPSL dictionary. Please refer to
Section 7 for details. An example using the the BGP community attribute is
shown below:

 aut-num: AS1
 export: to AS2 announce AS1 AND NOT community(NO_EXPORT)

Filters using the routing policy attributes defined in the dictionary are
evaluated before evaluating the operators AND, OR and NOT.

Filter Set Name A filter set name matches the set of routes that are
matched by its filter attribute. Note that the filter attribute of a filter
set, can recursively refer to other filter set names. For example in
Figure 17, fltr-foo matches { 5.0.0.0/8, 6.0.0.0/8 }, and fltr-bar matches
AS1'S routes or { 5.0.0.0/8, 6.0.0.0/8 } if their as path contained AS2.

5.5 rtr-set Class

The attributes of the rtr-set class are shown in Figure 18. The rtr-set
attribute defines the name of the set. It is an RPSL name that starts with
``rtrs-''. The members attribute lists the members of the set. The members
attribute is a list of inet-rtr names, ipv4_addresses or other rtr-set
names.

 Attribute Value Type
 rtr-set <object-name> mandatory, single-valued,
 class key
 members list of <inet-rtr-names> or optional, multi-valued
 <rtr-set-names>
 or <ipv4_addresses>
 mbrs-by-ref list of <mntner-names> optional, multi-valued

 Figure 18: rtr-set Class Attributes

Figure 19 presents two rtr-set objects. The set rtrs-foo contains two
routers, namely rtr1.isp.net and rtr2.isp.net. The set rtrs-bar contains
the members of the set rtrs-foo and rtr3.isp.net, that is it contains

rtr1.isp.net, rtr2.isp.net, rtr3.isp.net.

Alaettinoglu et. al. Expires October 6, 1999 [Page 23]

Internet Draft RPSL April 6, 1999

 rtr-set: rtrs-foo rtr-set: rtrs-bar
 members: rtr1.isp.net, rtr2.isp.net members: rtr3.isp.net, rtrs-foo

 Figure 19: rtr-set objects.

The mbrs-by-ref attribute is a list of maintainer names or the keyword ANY.
If this attribute is used, the router set also includes routers whose
inet-rtr objects are registered by one of these maintainers and whose
member-of attribute refers to the name of this router set. If the value of
a mbrs-by-ref attribute is ANY, any inet-rtr object referring to the router
set is a member of the set. If the mbrs-by-ref attribute is missing, only
the routers listed in the members attribute are members of the set.

 rtr-set: rtrs-foo
 members: rtr1.isp.net, rtr2.isp.net
 mbrs-by-ref: MNTR-ME

 inet-rtr: rtr3.isp.net
 local-as: as1
 ifaddr: 1.1.1.1 masklen 30
 member-of: rtrs-foo
 mnt-by: MNTR-ME

 Figure 20: rtr-set objects.

Figure 20 presents an example rtr-set object that uses the mbrs-by-ref
attribute. The set rtrs-foo contains rtr1.isp.net, rtr2.isp.net and
rtr3.isp.net.

5.6 Peerings and peering-set Class

The attributes of the peering-set class are shown in Figure 21. A
peering-set object defines a set of peerings that are listed in its peering
attributes. The peering-set attribute defines the name of the set. It is
an RPSL name that starts with ``prng-''.

 Attribute Value Type
 peering-set <object-name> mandatory, single-valued, class key
 peering <peering> mandatory, multi-valued

 Figure 21: filter Class Attributes

The peering attribute defines a peering that can be used for importing or

Alaettinoglu et. al. Expires October 6, 1999 [Page 24]

Internet Draft RPSL April 6, 1999

 ---------------------- ----------------------
 | 7.7.7.1 |-------| |-------| 7.7.7.2 |
 | | ======== | |
 | AS1 | EX1 |-------| 7.7.7.3 AS2 |
 | | | |
 | 9.9.9.1 |------ ------| 9.9.9.2 |
 ---------------------- | | ----------------------
 ===========
 | EX2
 ---------------------- |
 | 9.9.9.3 |---------
 | |
 | AS3 |

Figure 22: Example topology consisting of three ASes, AS1, AS2, and AS3;
two exchange points, EX1 and EX2; and six routers.

exporting routes. In describing peerings, we are going to use the topology
of Figure 22. In this topology, there are three ASes, AS1, AS2, and AS3;
two exchange points, EX1 and EX2; and six routers. Routers connected to the
same exchange point peer with each other and exchange routing information.
That is, 7.7.7.1, 7.7.7.2 and 7.7.7.3 peer with each other; 9.9.9.1, 9.9.9.2
and 9.9.9.3 peer with each other.

The syntax of a peering specification is:

 <as-expression> [<router-expression-1>] [at <router-expression-2>]
 | <peering-set-name>

where <as-expression> is an expression over AS numbers and AS sets using
operators AND, OR, and EXCEPT, and <router-expression-1> and
<router-expression-2> are expressions over router IP addresses, inet-rtr
names, and rtr-set names using operators AND, OR, and EXCEPT. The binary
``EXCEPT'' operator is the set subtraction operator and has the same
precedence as the operator AND (it is semantically equivalent to ``AND NOT''
combination). That is ``(AS1 OR AS2) EXCEPT AS2'' equals ``AS1''.

This form identifies all the peerings between any local router in
<router-expression-2> to any of their peer routers in <router-expression-1>
in the ASes in <as-expression>. If <router-expression-2> is not specified,
it defaults to all routers of the local AS that peer with ASes in
<as-expression>. If <router-expression-1> is not specified, it defaults to

all routers of the peer ASes in <as-expression> that peer with the local AS.

Alaettinoglu et. al. Expires October 6, 1999 [Page 25]

Internet Draft RPSL April 6, 1999

If a <peering-set-name> is used, the peerings are listed in the
corresponding peering-set object. Note that the peering-set objects can be
recursive.

Many special forms of this general peering specification is possible. The
following examples illustrate the most common cases, using the import
attribute of the aut-num class. In the following example 7.7.7.1 imports
128.9.0.0/16 from 7.7.7.2.

 (1) aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1 accept { 128.9.0.0/16 }

In the following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2 and
7.7.7.3.

 (2) aut-num: AS1
 import: from AS2 at 7.7.7.1 accept { 128.9.0.0/16 }

In the following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2 and
7.7.7.3, and 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2.

 (3) aut-num: AS1
 import: from AS2 accept { 128.9.0.0/16 }

In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2 and
9.9.9.3.

 (4) as-set: AS-FOO
 members: AS2, AS3

 aut-num: AS1
 import: from AS-FOO at 9.9.9.1 accept { 128.9.0.0/16 }

In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2 and
9.9.9.3, and 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2 and 7.7.7.3.

 (5) aut-num: AS1
 import: from AS-FOO accept { 128.9.0.0/16 }

In the following example AS1 imports 128.9.0.0/16 from AS3 at router 9.9.9.1

Alaettinoglu et. al. Expires October 6, 1999 [Page 26]

Internet Draft RPSL April 6, 1999

 (6) aut-num: AS1
 import: from AS-FOO and not AS2 at not 7.7.7.1
 accept { 128.9.0.0/16 }

This is because "AS-FOO and not AS2" equals AS3 and "not 7.7.7.1" equals
9.9.9.1.

In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2 and
9.9.9.3.

 (7) peering-set: prng-bar
 peering: AS1 at 9.9.9.1

 peering-set: prng-foo
 peering: prng-bar
 peering: AS2 at 9.9.9.1

 aut-num: AS1
 import: from prng-foo accept { 128.9.0.0/16 }

6 aut-num Class

Routing policies are specified using the aut-num class. The attributes of
the aut-num class are shown in Figure 23. The value of the aut-num
attribute is the AS number of the AS described by this object. The as-name
attribute is a symbolic name (in RPSL name syntax) of the AS. The import,
export and default routing policies of the AS are specified using import,
export and default attributes respectively.

 Attribute Value Type
 aut-num <as-number> mandatory, single-valued, class key
 as-name <object-name> mandatory, single-valued
 member-of list of <as-set-names> optional, multi-valued
 import see Section 6.1 optional, multi valued
 export see Section 6.2 optional, multi valued
 default see Section 6.5 optional, multi valued

 Figure 23: aut-num Class Attributes

Alaettinoglu et. al. Expires October 6, 1999 [Page 27]

Internet Draft RPSL April 6, 1999

6.1 import Attribute: Import Policy Specification

In RPSL, an import policy is divided into import policy expressions. Each
import policy expression is specified using an import attribute. The import
attribute has the following syntax (we will extend this syntax later in
Sections 6.3 and 6.6):

 import: from <peering-1> [action <action-1>]
 . . .
 from <peering-N> [action <action-N>]
 accept <filter>

The action specification is optional. The semantics of an import attribute
is as follows: the set of routes that are matched by <filter> are imported
from all the peers in <peerings>; while importing routes at <peering-M>,
<action-M> is executed.

 E.g.
 aut-num: AS1
 import: from AS2 action pref = 1; accept { 128.9.0.0/16 }

This example states that the route 128.9.0.0/16 is accepted from AS2 with
preference 1. We already presented how peerings (see Section 5.6) and
filters (see Section 5.4) are specified. We next present how to specify
actions.

6.1.1 Action Specification

Policy actions in RPSL either set or modify route attributes, such as
assigning a preference to a route, adding a BGP community to the BGP
community path attribute, or setting the MULTI-EXIT-DISCRIMINATOR attribute.
Policy actions can also instruct routers to perform special operations, such
as route flap damping.

The routing policy attributes whose values can be modified in policy actions
are specified in the RPSL dictionary. Please refer to Section 7 for a list
of these attributes. Each action in RPSL is terminated by the semicolon
character (';'). It is possible to form composite policy actions by listing
them one after the other. In a composite policy action, the actions are
executed left to right. For example,

 aut-num: AS1

 import: from AS2

Alaettinoglu et. al. Expires October 6, 1999 [Page 28]

Internet Draft RPSL April 6, 1999

 action pref = 10; med = 0; community.append(10250, 3561:10);
 accept { 128.9.0.0/16 }

sets pref to 10, med to 0, and then appends 10250 and 3561:10 to the BGP
community path attribute. The pref attribute is the inverse of the
local-pref attribute (i.e. local-pref == 65535 - pref). A route with a
local-pref attribute is always preferred over a route without one.

 aut-num: AS1
 import: from AS2 action pref = 1;
 from AS3 action pref = 2;
 accept AS4

The above example states that AS4's routes are accepted from AS2 with
preference 1, and from AS3 with preference 2 (routes with lower integer
preference values are preferred over routes with higher integer preference
values).

 aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 1;
 from AS2 action pref = 2;
 accept AS4

The above example states that AS4's routes are accepted from AS2 on peering
7.7.7.1-7.7.7.2 with preference 1, and on any other peering with AS2 with
preference 2.

6.2 export Attribute: Export Policy Specification

Similarly, an export policy expression is specified using an export
attribute. The export attribute has the following syntax:

 export: to <peering-1> [action <action-1>]
 . . .
 to <peering-N> [action <action-N>]
 announce <filter>

The action specification is optional. The semantics of an export attribute
is as follows: the set of routes that are matched by <filter> are exported
to all the peers specified in <peerings>; while exporting routes at

<peering-M>, <action-M> is executed.

Alaettinoglu et. al. Expires October 6, 1999 [Page 29]

Internet Draft RPSL April 6, 1999

 E.g.
 aut-num: AS1
 export: to AS2 action med = 5; community .= { 70 };
 announce AS4

In this example, AS4's routes are announced to AS2 with the med attribute's
value set to 5 and community 70 added to the community list.

Example:

 aut-num: AS1
 export: to AS-FOO announce ANY

In this example, AS1 announces all of its routes to the ASes in the set
AS-FOO.

6.3 Other Routing Protocols, Multi-Protocol Routing Protocols, and Injecting
 Routes Between Protocols

The more complete syntax of the import and export attributes are as follows:

 import: [protocol <protocol-1>] [into <protocol-2>]
 from <peering-1> [action <action-1>]
 . . .
 from <peering-N> [action <action-N>]
 accept <filter>
 export: [protocol <protocol-1>] [into <protocol-2>]
 to <peering-1> [action <action-1>]
 . . .
 to <peering-N> [action <action-N>]
 announce <filter>

Where the optional protocol specifications can be used for specifying
policies for other routing protocols, or for injecting routes of one
protocol into another protocol, or for multi-protocol routing policies. The
valid protocol names are defined in the dictionary. The <protocol-1> is the
name of the protocol whose routes are being exchanged. The <protocol-2> is
the name of the protocol which is receiving these routes. Both <protocol-1>
and <protocol-2> default to the Internet Exterior Gateway Protocol,
currently BGP.

In the following example, all interAS routes are injected into RIP.

Alaettinoglu et. al. Expires October 6, 1999 [Page 30]

Internet Draft RPSL April 6, 1999

 aut-num: AS1
 import: from AS2 accept AS2
 export: protocol BGP4 into RIP
 to AS1 announce ANY

In the following example, AS1 accepts AS2's routes including any more
specifics of AS2's routes, but does not inject these extra more specific
routes into OSPF.

 aut-num: AS1
 import: from AS2 accept AS2^+
 export: protocol BGP4 into OSPF
 to AS1 announce AS2

In the following example, AS1 injects its static routes (routes which are
members of the set AS1:RS-STATIC-ROUTES) to the interAS routing protocol and
appends AS1 twice to their AS paths.

 aut-num: AS1
 import: protocol STATIC into BGP4
 from AS1 action aspath.prepend(AS1, AS1);
 accept AS1:RS-STATIC-ROUTES

In the following example, AS1 imports different set of unicast routes for
multicast reverse path forwarding from AS2:

 aut-num: AS1
 import: from AS2 accept AS2
 import: protocol IDMR
 from AS2 accept AS2:RS-RPF-ROUTES

6.4 Ambiguity Resolution

It is possible that the same peering can be covered by more that one peering
specification in a policy expression. For example:

 aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 2;
 from AS2 7.7.7.2 at 7.7.7.1 action pref = 1;
 accept AS4

Alaettinoglu et. al. Expires October 6, 1999 [Page 31]

Internet Draft RPSL April 6, 1999

This is not an error, though definitely not desirable. To break the
ambiguity, the action corresponding to the first peering specification is
used. That is the routes are accepted with preference 2. We call this rule
as the specification-order rule.

Consider the example:

 aut-num: AS1
 import: from AS2 action pref = 2;
 from AS2 7.7.7.2 at 7.7.7.1 action pref = 1; dpa = 5;
 accept AS4

where both peering specifications cover the peering 7.7.7.1-7.7.7.2, though
the second one covers it more specifically. The specification order rule
still applies, and only the action ``pref = 2'' is executed. In fact, the
second peering-action pair has no use since the first peering-action pair
always covers it. If the intended policy was to accept these routes with
preference 1 on this particular peering and with preference 2 in all other
peerings, the user should have specified:

 aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 1; dpa = 5;
 from AS2 action pref = 2;
 accept AS4

It is also possible that more than one policy expression can cover the same
set of routes for the same peering. For example:

 aut-num: AS1
 import: from AS2 action pref = 2; accept AS4
 import: from AS2 action pref = 1; accept AS4

In this case, the specification-order rule is still used. That is, AS4's
routes are accepted from AS2 with preference 2. If the filters were
overlapping but not exactly the same:

 aut-num: AS1
 import: from AS2 action pref = 2; accept AS4
 import: from AS2 action pref = 1; accept AS4 OR AS5

the AS4's routes are accepted from AS2 with preference 2 and however AS5's
routes are also accepted, but with preference 1.

Alaettinoglu et. al. Expires October 6, 1999 [Page 32]

Internet Draft RPSL April 6, 1999

We next give the general specification order rule for the benefit of the
RPSL implementors. Consider two policy expressions:

 aut-num: AS1
 import: from peerings-1 action action-1 accept filter-1
 import: from peerings-2 action action-2 accept filter-2

The above policy expressions are equivalent to the following three
expressions where there is no ambiguity:

 aut-num: AS1
 import: from peerings-1 action action-1 accept filter-1
 import: from peerings-3 action action-2 accept filter-2 AND NOT filter-1
 import: from peerings-4 action action-2 accept filter-2

where peerings-3 are those that are covered by both peerings-1 and
peerings-2, and peerings-4 are those that are covered by peerings-2 but not
by peerings-1 (``filter-2 AND NOT filter-1'' matches the routes that are
matched by filter-2 but not by filter-1).

Example:

 aut-num: AS1
 import: from AS2 7.7.7.2 at 7.7.7.1
 action pref = 2;
 accept {128.9.0.0/16}
 import: from AS2
 action pref = 1;
 accept {128.9.0.0/16, 75.0.0.0/8}

Lets consider two peerings with AS2, 7.7.7.1-7.7.7.2 and 9.9.9.1-9.9.9.2.
Both policy expressions cover 7.7.7.1-7.7.7.2. On this peering, the route
128.9.0.0/16 is accepted with preference 2, and the route 75.0.0.0/8 is
accepted with preference 1. The peering 9.9.9.1-9.9.9.2 is only covered by
the second policy expressions. Hence, both the route 128.9.0.0/16 and the
route 75.0.0.0/8 are accepted with preference 1 on peering 9.9.9.1-9.9.9.2.

Note that the same ambiguity resolution rules also apply to export and
default policy expressions.

Alaettinoglu et. al. Expires October 6, 1999 [Page 33]

Internet Draft RPSL April 6, 1999

6.5 default Attribute: Default Policy Specification

Default routing policies are specified using the default attribute. The
default attribute has the following syntax:

 default: to <peering> [action <action>] [networks <filter>]

The <action> and <filter> specifications are optional. The semantics are as
follows: The <peering> specification indicates the AS (and the router if
present) is being defaulted to; the <action> specification, if present,
indicates various attributes of defaulting, for example a relative
preference if multiple defaults are specified; and the <filter>
specifications, if present, is a policy filter. A router only uses the
default policy if it received the routes matched by <filter> from this peer.

In the following example, AS1 defaults to AS2 for routing.

 aut-num: AS1
 default: to AS2

In the following example, router 7.7.7.1 in AS1 defaults to router 7.7.7.2
in AS2.

 aut-num: AS1
 default: to AS2 7.7.7.2 at 7.7.7.1

In the following example, AS1 defaults to AS2 and AS3, but prefers AS2 over
AS3.

 aut-num: AS1
 default: to AS2 action pref = 1;
 default: to AS3 action pref = 2;

In the following example, AS1 defaults to AS2 and uses 128.9.0.0/16 as the
default network.

 aut-num: AS1
 default: to AS2 networks { 128.9.0.0/16 }

Alaettinoglu et. al. Expires October 6, 1999 [Page 34]

Internet Draft RPSL April 6, 1999

6.6 Structured Policy Specification

The import and export policies can be structured. We only reccomend
structured policies to advanced RPSL users. Please feel free to skip this
section.

The syntax for a structured policy specification is the following:

 <import-factor> ::= from <peering-1> [action <action-1>]
 . . .
 from <peering-N> [action <action-N>]
 accept <filter>;

 <import-term> ::= <import-factor> |
 LEFT-BRACE
 <import-factor>
 . . .
 <import-factor>
 RIGHT-BRACE

 <import-expression> ::= <import-term> |
 <import-term> EXCEPT <import-expression> |
 <import-term> REFINE <import-expression>

 import: [protocol <protocol1>] [into <protocol2>]
 <import-expression>

Please note the semicolon at the end of an <import-factor>. If the policy
specification is not structured (as in all the examples in other sections),
this semicolon is optional. The syntax and semantics for an <import-factor>
is already defined in Section 6.1.

An <import-term> is either a sequence of <import-factor>'s enclosed within
matching braces (i.e. `{' and `}') or just a single <import-factor>. The
semantics of an <import-term> is the union of <import-factor>'s using the
specification order rule. An <import-expression> is either a single
<import-term> or an <import-term> followed by one of the keywords "except"
and "refine", followed by another <import-expression>. Note that our
definition allows nested expressions. Hence there can be exceptions to
exceptions, refinements to refinements, or even refinements to exceptions,
and so on.

The semantics for the except operator is as follows: The result of an
except operation is another <import-term>. The resulting policy set
contains the policies of the right hand side but their filters are modified
to only include the routes also matched by the left hand side. The policies
of the left hand side are included afterwards and their filters are modified

to exclude the routes matched by the right hand side. Please note that the

Alaettinoglu et. al. Expires October 6, 1999 [Page 35]

Internet Draft RPSL April 6, 1999

filters are modified during this process but the actions are copied
verbatim. When there are multiple levels of nesting, the operations (both
except and refine) are performed right to left.

Consider the following example:

 import: from AS1 action pref = 1; accept as-foo;
 except {
 from AS2 action pref = 2; accept AS226;
 except {
 from AS3 action pref = 3; accept {128.9.0.0/16};
 }
 }

where the route 128.9.0.0/16 is originated by AS226, and AS226 is a member
of the as set as-foo. In this example, the route 128.9.0.0/16 is accepted
from AS3, any other route (not 128.9.0.0/16) originated by AS226 is accepted
from AS2, and any other ASes' routes in as-foo is accepted from AS1.

We can come to the same conclusion using the algebra defined above.
Consider the inner exception specification:

 from AS2 action pref = 2; accept AS226;
 except {
 from AS3 action pref = 3; accept {128.9.0.0/16};
 }

is equivalent to

 {
 from AS3 action pref = 3; accept AS226 AND {128.9.0.0/16};
 from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
 }

Hence, the original expression is equivalent to:

 import: from AS1 action pref = 1; accept as-foo;
 except {
 from AS3 action pref = 3; accept AS226 AND {128.9.0.0/16};
 from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
 }

which is equivalent to

Alaettinoglu et. al. Expires October 6, 1999 [Page 36]

Internet Draft RPSL April 6, 1999

 import: {
 from AS3 action pref = 3;
 accept as-foo AND AS226 AND {128.9.0.0/16};
 from AS2 action pref = 2;
 accept as-foo AND AS226 AND NOT {128.9.0.0/16};
 from AS1 action pref = 1;
 accept as-foo AND NOT
 (AS226 AND NOT {128.9.0.0/16} OR AS226 AND {128.9.0.0/16});
 }

Since AS226 is in as-foo and 128.9.0.0/16 is in AS226, it simplifies to:

 import: {
 from AS3 action pref = 3; accept {128.9.0.0/16};
 from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
 from AS1 action pref = 1; accept as-foo AND NOT AS226;
 }

In the case of the refine operator, the resulting set is constructed by
taking the cartasian product of the two sides as follows: for each policy l
in the left hand side and for each policy r in the right hand side, the
peerings of the resulting policy are the peerings common to both r and l;
the filter of the resulting policy is the intersection of l's filter and r's
filter; and action of the resulting policy is l's action followed by r's
action. If there are no common peerings, or if the intersection of filters
is empty, a resulting policy is not generated.

Consider the following example:

 import: { from AS-ANY action pref = 1; accept community(3560:10);
 from AS-ANY action pref = 2; accept community(3560:20);
 } refine {
 from AS1 accept AS1;
 from AS2 accept AS2;
 from AS3 accept AS3;
 }

Here, any route with community 3560:10 is assigned a preference of 1 and any
route with community 3560:20 is assigned a preference of 2 regardless of
whom they are imported from. However, only AS1's routes are imported from
AS1, and only AS2's routes are imported from AS2, and only AS3's routes are
imported form AS3, and no routes are imported from any other AS. We can
reach the same conclusion using the above algebra. That is, our example is
equivalent to:

Alaettinoglu et. al. Expires October 6, 1999 [Page 37]

Internet Draft RPSL April 6, 1999

 import: {
 from AS1 action pref = 1; accept community(3560:10) AND AS1;
 from AS1 action pref = 2; accept community(3560:20) AND AS1;
 from AS2 action pref = 1; accept community(3560:10) AND AS2;
 from AS2 action pref = 2; accept community(3560:20) AND AS2;
 from AS3 action pref = 1; accept community(3560:10) AND AS3;
 from AS3 action pref = 2; accept community(3560:20) AND AS3;
 }

Note that the common peerings between ``from AS1'' and ``from AS-ANY'' are
those peerings in ``from AS1''. Even though we do not formally define
``common peerings'', it is straight forward to deduce the definition from
the definitions of peerings (please see Section 5.6).

Consider the following example:

 import: {
 from AS-ANY action med = 0; accept {0.0.0.0/0^0-18};
 } refine {
 from AS1 at 7.7.7.1 action pref = 1; accept AS1;
 from AS1 action pref = 2; accept AS1;
 }

where only routes of length 0 to 18 are accepted and med's value is set to 0
to disable med's effect for all peerings; In addition, from AS1 only AS1's
routes are imported, and AS1's routes imported at 7.7.7.1 are preferred over
other peerings. This is equivalent to:

 import: {
 from AS1 at 7.7.7.1 action med=0; pref=1; accept {0.0.0.0/0^0-
18} AND AS1;
 from AS1 action med=0; pref=2; accept {0.0.0.0/0^0-
18} AND AS1;
 }

The above syntax and semantics also apply equally to structured export
policies with ``from'' replaced with ``to'' and ``accept'' is replaced with
``announce''.

7 dictionary Class

The dictionary class provides extensibility to RPSL. Dictionary objects
define routing policy attributes, types, and routing protocols. Routing

Alaettinoglu et. al. Expires October 6, 1999 [Page 38]

Internet Draft RPSL April 6, 1999

policy attributes, henceforth called rp-attributes, may correspond to actual
protocol attributes, such as the BGP path attributes (e.g. community, dpa,
and AS-path), or they may correspond to router features (e.g. BGP route flap
damping). As new protocols, new protocol attributes, or new router features
are introduced, the dictionary object is updated to include appropriate
rp-attribute and protocol definitions.

An rp-attribute is an abstract class; that is a data representation is not
available. Instead, they are accessed through access methods. For example,
the rp-attribute for the BGP AS-path attribute is called aspath; and it has
an access method called prepend which stuffs extra AS numbers to the AS-path
attributes. Access methods can take arguments. Arguments are strongly
typed. For example, the method prepend above takes AS numbers as arguments.

Once an rp-attribute is defined in the dictionary, it can be used to
describe policy filters and actions. Policy analysis tools are required to
fetch the dictionary object and recognize newly defined rp-attributes,
types, and protocols. The analysis tools may approximate policy analyses on
rp-attributes that they do not understand: a filter method may always
match, and an action method may always perform no-operation. Analysis tools
may even download code to perform appropriate operations using mechanisms
outside the scope of RPSL.

We next describe the syntax and semantics of the dictionary class. This
description is not essential for understanding dictionary objects (but it is
essential for creating one). Please feel free to skip to the RPSL Initial
Dictionary subsection (Section 7.1).

The attributes of the dictionary class are shown in Figure 24. The
dictionary attribute is the name of the dictionary object, obeying the RPSL
naming rules. There can be many dictionary objects, however there is always
one well-known dictionary object ``RPSL''. All tools use this dictionary by
default.

 Attribute Value Type
 dictionary <object-name> mandatory, single-valued, class key
 rp-attribute see description in text optional, multi valued
 typedef see description in text optional, multi valued
 protocol see description in text optional, multi valued

 Figure 24: dictionary Class Attributes

The rp-attribute attribute has the following syntax:

 rp-attribute: <name>
 <method-1>(<type-1-1>, ..., <type-1-N1> [, "..."])

 ...

Alaettinoglu et. al. Expires October 6, 1999 [Page 39]

Internet Draft RPSL April 6, 1999

 <method-M>(<type-M-1>, ..., <type-M-NM> [, "..."])

where <name> is the name of the rp-attribute; and <method-i> is the name of
an access method for the rp-attribute, taking Ni arguments where the j-th
argument is of type <type-i-j>. A method name is either an RPSL name or one
of the operators defined in Figure 25. The operator methods with the
exception of operator() and operator[] can take only one argument.

 operator= operator==
 operator<<= operator<
 operator>>= operator>
 operator+= operator>=
 operator-= operator<=
 operator*= operator!=
 operator/= operator()
 operator.= operator[]

 Figure 25: Operators

An rp-attribute can have many methods defined for it. Some of the methods
may even have the same name, in which case their arguments are of different
types. If the argument list is followed by ``...'', the method takes a
variable number of arguments. In this case, the actual arguments after the
Nth argument are of type <type-N>.

Arguments are strongly typed. A <type> in RPSL is either a predefined type,
a union type, a list type, or a dictionary defined type. The predefined
types are listed in Figure 26.

 integer[lower, upper] ipv4_address
 real[lower, upper] address_prefix
 enum[name, name, ...] address_prefix_range
 string dns_name
 boolean filter
 rpsl_word as_set_name
 free_text route_set_name
 email rtr_set_name
 as_number filter_set_name
 peering_set_name

 Figure 26: Predefined Types

The integer and the real predefined types can be followed by a lower and an
upper bound to specify the set of valid values of the argument. The range
specification is optional. We use the ANSI C language conventions for

representing integer, real and string values. The enum type is followed by

Alaettinoglu et. al. Expires October 6, 1999 [Page 40]

Internet Draft RPSL April 6, 1999

a list of RPSL names which are the valid values of the type. The boolean
type can take the values true or false. as_number, ipv4_address,
address_prefix and dns_name types are as in Section 2. filter type is a
policy filter as in Section 6. The value of filter type is suggested to be
enclosed in parenthesis.

The syntax of a union type is as follows:

 union <type-1>, ... , <type-N>

where <type-i> is an RPSL type. The union type is either of the types
<type-1> through <type-N> (analogous to unions in C[14]).

The syntax of a list type is as follows:

 list [<min_elems>:<max_elems>] of <type>

In this case, the list elements are of <type> and the list contains at least
<min_elems> and at most <max_elems> elements. The size specification is
optional. If it is not specified, there is no restriction in the number of
list elements. A value of a list type is represented as a sequence of
elements separated by the character ``,'' and enclosed by the characters
``{'' and ``}''.

The typedef attribute in the dictionary defines named types as follows:

 typedef: <name> <type>

where <name> is a name for type <type>. typedef attribute is paticularly
useful when the type defined is not a predefined type (e.g. list of unions,
list of lists, etc.).

A protocol attribute of the dictionary class defines a protocol and a set of
peering parameters for that protocol (which are used in inet-rtr class in
Section 9). Its syntax is as follows:

 protocol: <name>
 MANDATORY | OPTIONAL <parameter-1>(<type-1-1>,..., <type-1-N1> [,"..."])
 ...
 MANDATORY | OPTIONAL <parameter-M>(<type-M-1>,..., <type-M-NM> [,"..."])

Alaettinoglu et. al. Expires October 6, 1999 [Page 41]

Internet Draft RPSL April 6, 1999

where <name> is the name of the protocol; MANDATORY and OPTIONAL are
keywords; and <parameter-i> is a peering parameter for this protocol, taking
Ni many arguments. The syntax and semantics of the arguments are as in the
rp-attribute. If the keyword MANDATORY is used, the parameter is mandatory
and needs to be specified for each peering of this protocol. If the keyword
OPTIONAL is used, the parameter can be skipped.

7.1 Initial RPSL Dictionary and Example Policy Actions and Filters

dictionary: RPSL
rp-attribute: # preference, smaller values represent higher preferences
 pref
 operator=(integer[0, 65535])
rp-attribute: # BGP multi_exit_discriminator attribute
 med
 # to set med to 10: med = 10;
 # to set med to the IGP metric: med = igp_cost;
 operator=(union integer[0, 65535], enum[igp_cost])
rp-attribute: # BGP destination preference attribute (dpa)
 dpa
 operator=(integer[0, 65535])
rp-attribute: # BGP aspath attribute
 aspath
 # prepends AS numbers from last to first order
 prepend(as_number, ...)
typedef: # a community value in RPSL is either
 # - a 4 byte integer (ok to use 3561:70 notation)
 # - internet, no_export, no_advertise (see RFC-1997)
 community_elm union
 integer[1, 4294967295],
 enum[internet, no_export, no_advertise],
typedef: # list of community values { 40, no_export, 3561:70 }
 community_list list of community_elm
rp-attribute: # BGP community attribute
 community
 # set to a list of communities
 operator=(community_list)
 # append community values
 operator.=(community_list)
 append(community_elm, ...)
 # delete community values
 delete(community_elm, ...)
 # a filter: true if one of community values is contained
 contains(community_elm, ...)
 # shortcut to contains: community(no_export, 3561:70)
 operator()(community_elm, ...)
 # order independent equality comparison

https://datatracker.ietf.org/doc/html/rfc1997

 operator==(community_list)
rp-attribute: # next hop router in a static route

Alaettinoglu et. al. Expires October 6, 1999 [Page 42]

Internet Draft RPSL April 6, 1999

 next-hop
 # to set to 7.7.7.7: next-hop = 7.7.7.7;
 # to set to router's own address: next-hop = self;
 operator=(union ipv4_address, enum[self])
rp-attribute: # cost of a static route
 cost
 operator=(integer[0, 65535])
protocol: BGP4
 # as number of the peer router
 MANDATORY asno(as_number)
 # enable flap damping
 OPTIONAL flap_damp()
 OPTIONAL flap_damp(integer[0,65535],# penalty per flap
 integer[0,65535],# penalty value for supression
 integer[0,65535],# penalty value for reuse
 integer[0,65535],# halflife in secs when up
 integer[0,65535],# halflife in secs when down
 integer[0,65535])# maximum penalty
protocol: OSPF
protocol: RIP
protocol: IGRP
protocol: IS-IS
protocol: STATIC
protocol: RIPng
protocol: DVMRP
protocol: PIM-DM
protocol: PIM-SM
protocol: CBT
protocol: MOSPF

 Figure 27: RPSL Dictionary

Figure 27 shows the initial RPSL dictionary. It has seven rp-attributes:
pref to assign local preference to the routes accepted; med to assign a
value to the MULTI_EXIT_DISCRIMINATOR BGP attribute; dpa to assign a value to
the DPA BGP attribute; aspath to prepend a value to the AS_PATH BGP
attribute; community to assign a value to or to check the value of the
community BGP attribute; next-hop to assign next hop routers to static
routes; and cost to assign a cost to static routes. The dictionary defines
two types: community_elm and community_list. community_elm type is either a
4-byte unsigned integer, or one of the keywords internet, no_export or
no_advertise (defined in [9]). An integer can be specified using two 2-byte
integers seperated by ``:'' to partition the community number space so that
a provider can use its AS number as the first two bytes, and assigns a
semantics of its choice to the last two bytes.

The initial dictionary (Figure 27) defines only options for the Border
Gateway Protocol: asno and flap_damp. The mandatory asno option is the AS

number of the peer router. The optional flap_damp option instructs the
router to damp route flaps[22] when importing routes from the peer router.

Alaettinoglu et. al. Expires October 6, 1999 [Page 43]

Internet Draft RPSL April 6, 1999

It can be specified with or without parameters. If parameters are missing,
they default to:

 flap_damp(1000, 2000, 750, 900, 900, 20000)

That is, a penalty of 1000 is assigned at each route flap, the route is
suppressed when penalty reaches 2000. The penalty is reduced in half after
15 minutes (900 seconds) of stability regardless of whether the route is up
or down. A supressed route is reused when the penalty falls below 750. The
maximum penalty a route can be assigned is 20,000 (i.e. the maximum suppress
time after a route becomes stable is about 75 minutes). These parameters
are consistent with the default flap damping parameters in several routers.

Policy Actions and Filters Using RP-Attributes

The syntax of a policy action or a filter using an rp-attribute x is as
follows:

 x.method(arguments)
 x ``op'' argument

where method is a method and ``op'' is an operator method of the
rp-attribute x. If an operator method is used in specifying a composite
policy filter, it evaluates earlier than the composite policy filter
operators (i.e. AND, OR, NOT, and implicit or operator).

The pref rp-attribute can be assigned a positive integer as follows:

 pref = 10;

The med rp-attribute can be assigned either a positive integer or the word
``igp_cost'' as follows:

 med = 0;
 med = igp_cost;

The dpa rp-attribute can be assigned a positive integer as follows:

 dpa = 100;

Alaettinoglu et. al. Expires October 6, 1999 [Page 44]

Internet Draft RPSL April 6, 1999

The BGP community attribute is list-valued, that is it is a list of 4-byte
integers each representing a ``community''. The following examples
demonstrate how to add communities to this rp-attribute:

 community .= { 100 };
 community .= { NO_EXPORT };
 community .= { 3561:10 };

In the last case, a 4-byte integer is constructed where the more significant
two bytes equal 3561 and the less significant two bytes equal 10. The
following examples demonstrate how to delete communities from the community
rp-attribute:

 community.delete(100, NO_EXPORT, 3561:10);

Filters that use the community rp-attribute can be defined as demonstrated
by the following examples:

 community.contains(100, NO_EXPORT, 3561:10);
 community(100, NO_EXPORT, 3561:10); # shortcut

The community rp-attribute can be set to a list of communities as follows:

 community = {100, NO_EXPORT, 3561:10, 200};
 community = {};

In this first case, the community rp-attribute contains the communities 100,
NO_EXPORT, 3561:10, and 200. In the latter case, the community rp-attribute
is cleared. The community rp-attribute can be compared against a list of
communities as follows:

 community == {100, NO_EXPORT, 3561:10, 200}; # exact match

To influence the route selection, the BGP as_path rp-attribute can be made
longer by prepending AS numbers to it as follows:

 aspath.prepend(AS1);
 aspath.prepend(AS1, AS1, AS1);

Alaettinoglu et. al. Expires October 6, 1999 [Page 45]

Internet Draft RPSL April 6, 1999

The following examples are invalid:

 med = -50; # -50 is not in the range
 med = igp; # igp is not one of the enum values
 med.assign(10); # method assign is not defined
 community.append(AS3561:20); # the first argument should be 3561

Figure 28 shows a more advanced example using the rp-attribute community.
In this example, AS3561 bases its route selection preference on the
community attribute. Other ASes may indirectly affect AS3561's route
selection by including the appropriate communities in their route
announcements.

 aut-num: AS1
 export: to AS2 action community.={3561:90};
 to AS3 action community.={3561:80};
 announce AS1

 as-set: AS3561:AS-PEERS
 members: AS2, AS3

 aut-num: AS3561
 import: from AS3561:AS-PEERS
 action pref = 10;
 accept community(3561:90)
 import: from AS3561:AS-PEERS
 action pref = 20;
 accept community(3561:80)
 import: from AS3561:AS-PEERS
 action pref = 20;
 accept community(3561:70)
 import: from AS3561:AS-PEERS
 action pref = 0;
 accept ANY

 Figure 28: Policy example using the community rp-attribute.

8 Advanced route Class

8.1 Specifying Aggregate Routes

The components, aggr-bndry, aggr-mtd, export-comps, inject, and holes
attributes are used for specifying aggregate routes [11]. A route object

specifies an aggregate route if any of these attributes, with the exception

Alaettinoglu et. al. Expires October 6, 1999 [Page 46]

Internet Draft RPSL April 6, 1999

of inject, is specified. The origin attribute for an aggregate route is the
AS performing the aggregation, i.e. the aggregator AS. In this section, we
used the term "aggregate" to refer to the route generated, the term
"component" to refer to the routes used to generate the path attributes of
the aggregate, and the term "more specifics" to refer to any route which is
a more specific of the aggregate regardless of whether it was used to form
the path attributes.

The components attribute defines what component routes are used to form the
aggregate. Its syntax is as follows:

 components: [ATOMIC] [[<filter>] [protocol <protocol> <filter> ...]]

where <protocol> is a routing protocol name such as BGP4, OSPF or RIP (valid
names are defined in the dictionary) and <filter> is a policy expression.
The routes that match one of these filters and are learned from the
corresponding protocol are used to form the aggregate. If <protocol> is
omitted, it defaults to any protocol. <filter> implicitly contains an "AND"
term with the more specifics of the aggregate so that only the component
routes are selected. If the keyword ATOMIC is used, the aggregation is done
atomically [11]. If a <filter> is not specified it defaults to more
specifics. If the components attribute is missing, all more specifics
without the ATOMIC keyword is used.

 route: 128.8.0.0/15
 origin: AS1
 components: <^AS2>

 route: 128.8.0.0/15
 origin: AS1
 components: protocol BGP4 {128.8.0.0/16^+}
 protocol OSPF {128.9.0.0/16^+}

 Figure 29: Two aggregate route objects.

Figure 29 shows two route objects. In the first example, more specifics of
128.8.0.0/15 with AS paths starting with AS2 are aggregated. In the second
example, some routes learned from BGP and some routes learned form OSPF are
aggregated.

The aggr-bndry attribute is an AS expression over AS numbers and sets (see
Section 5.6). The result defines the set of ASes which form the aggregation
boundary. If the aggr-bndry attribute is missing, the origin AS is the sole
aggregation boundary. Outside the aggregation boundary, only the aggregate
is exported and more specifics are suppressed. However, within the
boundary, the more specifics are also exchanged.

Alaettinoglu et. al. Expires October 6, 1999 [Page 47]

Internet Draft RPSL April 6, 1999

The aggr-mtd attribute specifies how the aggregate is generated. Its syntax
is as follow:

 aggr-mtd: inbound
 | outbound [<as-expression>]

where <as-expression> is an expression over AS numbers and sets (see
Section 5.6). If <as-expression> is missing, it defaults to AS-ANY. If
outbound aggregation is specified, the more specifics of the aggregate will
be present within the AS and the aggregate will be formed at all inter-AS
boundaries with ASes in <as-expression> before export, except for ASes that
are within the aggregating boundary (i.e. aggr-bndry is enforced regardless
of <as-expression>). If inbound aggregation is specified, the aggregate is
formed at all inter-AS boundaries prior to importing routes into the
aggregator AS. Note that <as-expression> can not be specified with inbound
aggregation. If aggr-mtd attribute is missing, it defaults to "outbound
AS-ANY".

 route: 128.8.0.0/15 route: 128.8.0.0/15
 origin: AS1 origin: AS2
 components: {128.8.0.0/15^-} components: {128.8.0.0/15^-}
 aggr-bndry: AS1 OR AS2 aggr-bndry: AS1 OR AS2
 aggr-mtd: outbound AS-ANY aggr-mtd: outbound AS-ANY

 Figure 30: Outbound multi-AS aggregation example.

Figure 30 shows an example of an outbound aggregation. In this example, AS1
and AS2 are coordinating aggregation and announcing only the less specific
128.8.0.0/15 to outside world, but exchanging more specifics between each
other. This form of aggregation is useful when some of the components are
within AS1 and some are within AS2.

When a set of routes are aggregated, the intent is to export only the
aggregate route and suppress exporting of the more specifics outside the
aggregation boundary. However, to satisfy certain policy and topology
constraints (e.g. a multi-homed component), it is often required to export
some of the components. The export-comps attribute equals an RPSL filter
that matches the more specifics that need to be exported outside the
aggregation boundary. If this attribute is missing, more specifics are not
exported outside the aggregation boundary. Note that, the export-comps
filter contains an implicit "AND" term with the more specifics of the
aggregate.

Figure 31 shows an example of an outbound aggregation. In this example, the
more specific 128.8.8.0/24 is exported outside AS1 in addition to the
aggregate. This is useful, when 128.8.8.0/24 is multi-homed site to AS1

with some other AS.

Alaettinoglu et. al. Expires October 6, 1999 [Page 48]

Internet Draft RPSL April 6, 1999

 route: 128.8.0.0/15
 origin: AS1
 components: {128.8.0.0/15^-}
 aggr-mtd: outbound AS-ANY
 export-comps: {128.8.8.0/24}

 Figure 31: Outbound aggregation with export exception.

The inject attribute specifies which routers perform the aggregation and
when they perform it. Its syntax is as follow:

 inject: [at <router-expression>] ...
 [action <action>]
 [upon <condition>]

where <action> is an action specification (see Section 6.1.1), <condition>
is a boolean expression described below, and <router-expression> is as
described in Section 5.6.

All routers in <router-expression> and in the aggregator AS perform the
aggregation. If a <router-expression> is not specified, all routers inside
the aggregator AS perform the aggregation. The <action> specification may
set path attributes of the aggregate, such as assign a preferences to the
aggregate.

The upon clause is a boolean condition. The aggregate is generated if and
only if this condition is true. <condition> is a boolean expression using
the logical operators AND and OR (i.e. operator NOT is not allowed) over:

 HAVE-COMPONENTS { list of prefixes }
 EXCLUDE { list of prefixes }
 STATIC

The list of prefixes in HAVE-COMPONENTS can only be more specifics of the
aggregate. It evaluates to true when all the prefixes listed are present in
the routing table of the aggregating router. The list can also include
prefix ranges (i.e. using operators ^-, ^+, ^n, and ^n-m). In this case, at
least one prefix from each prefix range needs to be present in the routing
table for the condition to be true. The list of prefixes in EXCLUDE can be
arbitrary. It evaluates to true when none of the prefixes listed is present
in the routing table. The list can also include prefix ranges, and no
prefix in that range should be present in the routing table. The keyword
static always evaluates to true. If no upon clause is specified the
aggregate is generated if an only if there is a component in the routing

Alaettinoglu et. al. Expires October 6, 1999 [Page 49]

Internet Draft RPSL April 6, 1999

table (i.e. a more specific that matches the filter in the components
attribute).

 route: 128.8.0.0/15
 origin: AS1
 components: {128.8.0.0/15^-}
 aggr-mtd: outbound AS-ANY
 inject: at 1.1.1.1 action dpa = 100;
 inject: at 1.1.1.2 action dpa = 110;

 route: 128.8.0.0/15
 origin: AS1
 components: {128.8.0.0/15^-}
 aggr-mtd: outbound AS-ANY
 inject: upon HAVE-COMPONENTS {128.8.0.0/16, 128.9.0.0/16}
 holes: 128.8.8.0/24

 Figure 32: Examples of inject.

Figure 32 shows two examples. In the first case, the aggregate is injected
at two routers each one setting the dpa path attribute differently. In the
second case, the aggregate is generated only if both 128.8.0.0/16 and
128.9.0.0/16 are present in the routing table, as opposed to the first case
where the presence of just one of them is sufficient for injection.

The holes attribute lists the component address prefixes which are not
reachable through the aggregate route (perhaps that part of the address
space is unallocated). The holes attribute is useful for diagnosis
purposes. In Figure 32, the second example has a hole, namely 128.8.8.0/24.
This may be due to a customer changing providers and taking this part of the
address space with it.

8.1.1 Interaction with policies in aut-num class

An aggregate formed is announced to other ASes only if the export policies
of the AS allows exporting the aggregate. When the aggregate is formed, the
more specifics are suppressed from being exported except to the ASes in
aggr-bndry and except the components in export-comps. For such exceptions
to happen, the export policies of the AS should explicitly allow exporting
of these exceptions.

If an aggregate is not formed (due to the upon clause), then the more
specifics of the aggregate can be exported to other ASes, but only if the
export policies of the AS allows it. In other words, before a route
(aggregate or more specific) is exported it is filtered twice, once based on
the route objects, and once based on the export policies of the AS.

Alaettinoglu et. al. Expires October 6, 1999 [Page 50]

Internet Draft RPSL April 6, 1999

 route: 128.8.0.0/16
 origin: AS1

 route: 128.9.0.0/16
 origin: AS1

 route: 128.8.0.0/15
 origin: AS1
 aggr-bndry: AS1 or AS2 or AS3
 aggr-mtd: outbound AS3 or AS4 or AS5
 components: {128.8.0.0/16, 128.9.0.0/16}
 inject: upon HAVE-COMPONENTS {128.9.0.0/16, 128.8.0.0/16}

 aut-num: AS1
 export: to AS2 announce AS1
 export: to AS3 announce AS1 and not {128.9.0.0/16}
 export: to AS4 announce AS1
 export: to AS5 announce AS1
 export: to AS6 announce AS1

 Figure 33: Interaction with policies in aut-num class.

In Figure 33 shows an interaction example. By examining the route objects,
the more specifics 128.8.0.0/16 and 128.9.0.0/16 should be exchanged between
AS1, AS2 and AS3 (i.e. the aggregation boundary). Outbound aggregation is
done to AS4 and AS5 and not to AS3, since AS3 is in the aggregation
boundary. The aut-num object allows exporting both components to AS2, but
only the component 128.8.0.0/16 to AS3. The aggregate can only be formed if
both components are available. In this case, only the aggregate is
announced to AS4 and AS5. However, if one of the components is not
available the aggregate will not be formed, and any available component or
more specific will be exported to AS4 and AS5. Regardless of aggregation is
performed or not, only the more specifics will be exported to AS6 (it is not
listed in the aggr-mtd attribute).

When doing an inbound aggregation, configuration generators may eliminating
the aggregation statements on routers where import policy of the AS
prohibits importing of any more specifics.

8.1.2 Ambiguity resolution with overlapping aggregates

When several aggregate routes are specified and they overlap, i.e. one is
less specific of the other, they must be evaluated more specific to less
specific order. When an outbound aggregation is performed for a peer, the
aggregate and the components listed in the export-comps attribute for that
peer are available for generating the next less specific aggregate. The

Alaettinoglu et. al. Expires October 6, 1999 [Page 51]

Internet Draft RPSL April 6, 1999

components that are not specified in the export-comps attribute are not
available. A route is exportable to an AS if it is the least specific
aggregate exportable to that AS or it is listed in the export-comps
attribute of an exportable route. Note that this is a recursive definition.

 route: 128.8.0.0/15
 origin: AS1
 aggr-bndry: AS1 or AS2
 aggr-mtd: outbound
 inject: upon HAVE-COMPONENTS {128.8.0.0/16, 128.9.0.0/16}

 route: 128.10.0.0/15
 origin: AS1
 aggr-bndry: AS1 or AS3
 aggr-mtd: outbound
 inject: upon HAVE-COMPONENTS {128.10.0.0/16, 128.11.0.0/16}
 export-comps: {128.11.0.0/16}

 route: 128.8.0.0/14
 origin: AS1
 aggr-bndry: AS1 or AS2 or AS3
 aggr-mtd: outbound
 inject: upon HAVE-COMPONENTS {128.8.0.0/15, 128.10.0.0/15}
 export-comps: {128.10.0.0/15}

 Figure 34: Overlapping aggregations.

In Figure 34, AS1 together with AS2 aggregates 128.8.0.0/16 and 128.9.0.0/16
into 128.8.0.0/15. Together with AS3, AS1 aggregates 128.10.0.0/16 and
128.11.0.0/16 into 128.10.0.0/15. But altogether they aggregate these four
routes into 128.8.0.0/14. Assuming all four components are available, a
router in AS1 for an outside AS, say AS4, will first generate 128.8.0.0/15
and 128.10.0.0/15. This will make 128.8.0.0/15, 128.10.0.0/15 and its
exception 128.11.0.0/16 available for generating 128.8.0.0/14. The router
will then generate 128.8.0.0/14 from these three routes. Hence for AS4,
128.8.0.0/14 and its exception 128.10.0.0/15 and its exception 128.11.0.0/16
will be exportable.

For AS2, a router in AS1 will only generate 128.10.0.0/15. Hence,
128.10.0.0/15 and its exception 128.11.0.0/16 will be exportable. Note that
128.8.0.0/16 and 128.9.0.0/16 are also exportable since they did not
participate in an aggregate exportable to AS2.

Similarly, for AS3, a router in AS1 will only generate 128.8.0.0/15. In
this case 128.8.0.0/15, 128.10.0.0/16, 128.11.0.0/16 are exportable.

Alaettinoglu et. al. Expires October 6, 1999 [Page 52]

Internet Draft RPSL April 6, 1999

8.2 Specifying Static Routes

The inject attribute can be used to specify static routes by using "upon
static" as the condition:

 inject: [at <router-expression>] ...
 [action <action>]
 upon static

In this case, the routers in <router-expression> executes the <action> and
injects the route to the interAS routing system statically. <action> may
set certain route attributes such as a next-hop router or a cost.

In the following example, the router 7.7.7.1 injects the route 128.7.0.0/16.
The next-hop routers (in this example, there are two next-hop routers) for
this route are 7.7.7.2 and 7.7.7.3 and the route has a cost of 10 over
7.7.7.2 and 20 over 7.7.7.3.

 route: 128.7.0.0/16
 origin: AS1
 inject: at 7.7.7.1 action next-hop = 7.7.7.2; cost = 10; upon static
 inject: at 7.7.7.1 action next-hop = 7.7.7.3; cost = 20; upon static

9 inet-rtr Class

Routers are specified using the inet-rtr class. The attributes of the
inet-rtr class are shown in Figure 35. The inet-rtr attribute is a valid
DNS name of the router described. Each alias attribute, if present, is a
canonical DNS name for the router. The local-as attribute specifies the AS
number of the AS which owns/operates this router.

 Attribute Value Type
 inet-rtr <dns-name> mandatory, single-valued, class key
 alias <dns-name> optional, multi-valued
 local-as <as-number> mandatory, single-valued
 ifaddr see description in text mandatory, multi-valued
 peer see description in text optional, multi-valued
 member-of list of <rtr-set-names> optional, multi-valued

 Figure 35: inet-rtr Class Attributes

The value of an ifaddr attribute has the following syntax:

Alaettinoglu et. al. Expires October 6, 1999 [Page 53]

Internet Draft RPSL April 6, 1999

 <ipv4-address> masklen <integer> [action <action>]

The IP address and the mask length are mandatory for each interface.
Optionally an action can be specified to set other parameters of this
interface.

Figure 36 presents an example inet-rtr object. The name of the router is
``amsterdam.ripe.net''. ``amsterdam1.ripe.net'' is a canonical name for the
router. The router is connected to 4 networks. Its IP addresses and mask
lengths in those networks are specified in the ifaddr attributes.

 inet-rtr: Amsterdam.ripe.net
 alias: amsterdam1.ripe.net
 local-as: AS3333
 ifaddr: 192.87.45.190 masklen 24
 ifaddr: 192.87.4.28 masklen 24
 ifaddr: 193.0.0.222 masklen 27
 ifaddr: 193.0.0.158 masklen 27
 peer: BGP4 192.87.45.195 asno(AS3334), flap_damp()

 Figure 36: inet-rtr Objects

Each peer attribute, if present, specifies a protocol peering with another
router. The value of a peer attribute has the following syntax:

 <protocol> <ipv4-address> <options>
 | <protocol> <inet-rtr-name> <options>
 | <protocol> <rtr-set-name> <options>
 | <protocol> <peering-set-name> <options>

where <protocol> is a protocol name, <ipv4-address> is the IP address of the
peer router, and <options> is a comma separated list of peering options for
<protocol>. Instead of the peer's IP address, its inet-rtr-name can be
used. Possible protocol names and attributes are defined in the dictionary
(please see Section 7). In the above example, the router has a BGP peering
with the router 192.87.45.195 in AS3334 and turns the flap damping on when
importing routes from this router.

Instead of a single peer, a group of peers can be specified by using the
<rtr-set-name> and <peering-set-name> forms. If <peering-set-name> form is
being used only the peerings in the corresponding peering set that are with
this router are included. Figure 37 shows an example inet-rtr object with
peering groups.

Alaettinoglu et. al. Expires October 6, 1999 [Page 54]

Internet Draft RPSL April 6, 1999

 rtr-set: rtrs-ibgp-peers
 members: 1.1.1.1, 2.2.2.2, 3.3.3.3

 peering-set: prng-ebgp-peers
 peering: AS3334 192.87.45.195
 peering: AS3335 192.87.45.196

 inet-rtr: Amsterdam.ripe.net
 alias: amsterdam1.ripe.net
 local-as: AS3333
 ifaddr: 192.87.45.190 masklen 24
 ifaddr: 192.87.4.28 masklen 24
 ifaddr: 193.0.0.222 masklen 27
 ifaddr: 193.0.0.158 masklen 27
 peer: BGP4 rtrs-ibgp-peers asno(AS3333), flap_damp()
 peer: BGP4 prng-ebgp-peers asno(PeerAS), flap_damp()

 Figure 37: inet-rtr Object with peering groups

10 Extending RPSL

Our experience with earlier routing policy languages and data formats
(PRDB [2], RIPE-81 [8], and RIPE-181 [7]) taught us that RPSL had to be
extensible. As a result, extensibility was a primary design goal for RPSL.
New routing protocols or new features to existing routing protocols can be
easily handled using RPSL's dictionary class. New classes or new attributes
to the existing classes can also be added.

This section provides guidelines for extending RPSL. These guidelines are
designed with an eye toward maintaining backward compatibility with existing
tools and databases. We next list the available options for extending RPSL
from the most preferred to the least preferred order.

10.1 Extensions by changing the dictionary class

The dictionary class is the primary mechanism provided to extend RPSL.
Dictionary objects define routing policy attributes, types, and routing
protocols.

We recommend updating the RPSL dictionary to include appropriate
rp-attribute and protocol definitions as new path attributes or router
features are introduced. For example, in an earlier version of the RPSL
document, it was only possible to specify that a router performs route flap
damping on a peer, but it was not possible to specify the parameters of

route flap damping. Later the parameters were added by changing the

Alaettinoglu et. al. Expires October 6, 1999 [Page 55]

Internet Draft RPSL April 6, 1999

dictionary.

When changing the dictionary, full compatibility should be maintained. For
example, in our flap damping case, we made the parameter specification
optional in case this level of detail was not desired by some ISPs. This
also achieved compatibility. Any object registered without the parameters
will continue to be valid. Any tool based on RPSL is expected to do a
default action on routing policy attributes that they do not understand
(e.g. issue a warning and otherwise ignore). Hence, old tools upon
encountering a flap damping specification with parameters will ignore the
parameters.

10.2 Extensions by adding new attributes to existing classes

New attributes can be added to any class. To ensure full compatibility, new
attributes should not contradict the semantics of the objects they are
attached to. Any tool that uses the IRR should be designed so that it
ignores attributes that it doesn't understand. Most existing tools adhere
to this design principle.

We recommend adding new attributes to existing classes when a new aspect of
a class is discovered. For example, RPSL route class extends its RIPE-181
predecessor by including several new attributes that enable aggregate and
static route specification.

10.3 Extensions by adding new classes

New classes can be added to RPSL to store new types of policy data.
Providing full compatibility is straight forward as long as existing classes
are still understood. Since a tool should only query the IRR for the
classes that it understand, full compatibility should not be a problem in
this case.

Before adding a new class, one should question if the information contained
in the objects of the new class could have better belonged to some other
class. For example, if the geographic location of a router needs to be
stored in IRR, it may be tempting to add a new class called, say
router-location class. However, the information better belongs to the
inet-rtr class, perhaps in a new attribute called location.

10.4 Extensions by changing the syntax of existing RPSL attributes

If all of the methods described above fail to provide the desired extension,
it may be necessary to change the syntax of RPSL. Any change in RPSL syntax

Alaettinoglu et. al. Expires October 6, 1999 [Page 56]

Internet Draft RPSL April 6, 1999

must provide backwards compatibility, and should be considered only as a
last resort since full compatibility may not be achievable. However, we
require that the old syntax to be still valid.

11 Security Consideration

This document describes RPSL, a language for expressing routing policies.
The language defines a maintainer (mntner class) object which is the entity
which controls or "maintains" the objects stored in a database expressed by
RPSL. Requests from maintainers can be authenticated with various techniques
as defined by the "auth" attribute of the maintainer object.

The exact protocols used by IRR's to communicate RPSL objects is beyond the
scope of this document, but it is envisioned that several techniques may be
used, ranging from interactive query/update protocols to store and forward
protocols similar to or based on electronic mail (or even voice telephone
calls). Regardless of which protocols are used in a given situation, it is
expected that appropriate security techniques such as IPSEC, TLS or PGP/MIME
will be utilized.

12 Acknowledgements

We would like to thank Jessica Yu, Randy Bush, Alan Barrett, Bill Manning,
Sue Hares, Ramesh Govindan, Kannan Varadhan, Satish Kumar, Craig Labovitz,
Rusty Eddy, David J. LeRoy, David Whipple, Jon Postel, Deborah Estrin,
Elliot Schwartz, Joachim Schmitz, Mark Prior, Tony Przygienda, David
Woodgate, Rob Coltun, Sanjay Wadhwa, Ardas Cilingiroglu, and the
participants of the IETF RPS Working Group for various comments and
suggestions.

References

 [1] Internet routing registry. procedures.
http://www.ra.net/RADB.tools.docs/, http://www.ripe.net/db/doc.html.

 [2] Nsfnet policy routing database (prdb). Maintained by MERIT Network
 Inc., Ann Arbor, Michigan. Contents available from
 nic.merit.edu.:/nsfnet/announced.networks/nets.tag.now by anonymous
 ftp.

 [3] C. Alaettinouglu, T. Bates, E. Gerich, D. Karrenberg, D. Meyer,
 M. Terpstra, and C. Villamizer. Routing policy specification language
 (rpsl). Request for Comment RFC-2280, Network Information Center,

http://www.ra.net/RADB.tools.docs/
http://www.ripe.net/db/doc.html
https://datatracker.ietf.org/doc/html/rfc2280

Alaettinoglu et. al. Expires October 6, 1999 [Page 57]

Internet Draft RPSL April 6, 1999

 January 1998.

 [4] C. Alaettinouglu, D. Meyer, and J. Schmitz. Application of routing
 policy specification language (rpsl) on the internet. Internet Draft

draft-ietf-rps-appl-rpsl-01, July 1997. Work in progress.

 [5] T. Bates. Specifying an `internet router' in the routing registry.
 Technical Report RIPE-122, RIPE, RIPE NCC, Amsterdam, Netherlands,
 October 1994.

 [6] T. Bates, E. Gerich, L. Joncheray, J-M. Jouanigot, D. Karrenberg,
 M. Terpstra, and J. Yu. Representation of ip routing policies in a
 routing registry. Technical Report ripe-181, RIPE, RIPE NCC,
 Amsterdam, Netherlands, October 1994.

 [7] T. Bates, E. Gerich, L. Joncheray, J-M. Jouanigot, D. Karrenberg,
 M. Terpstra, and J. Yu. Representation of ip routing policies in a
 routing registry. Technical Report RFC-1786, Network Information
 Center, March 1995.

 [8] T. Bates, J-M. Jouanigot, D. Karrenberg, P. Lothberg, and M. Terpstra.
 Representation of ip routing policies in the ripe database. Technical
 Report ripe-81, RIPE, RIPE NCC, Amsterdam, Netherlands, February 1993.

 [9] R. Chandra, P. Traina, and T. Li. Bgp communities attribute. Request
 for Comment RFC-1997, Network Information Center, August 1996.

[10] D. Crocker. Standard for the format of arpa internet text messages.
 Request for Comment RFC-822, Network Information Center, August 1982.

[11] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain
 Routing (CIDR): an Address Assignment and Aggregation Strategy, 1993.

[12] D. Karrenberg and T. Bates. Description of inter-as networks in the
 ripe routing registry. Technical Report RIPE-104, RIPE, RIPE NCC,
 Amsterdam, Netherlands, December 1993.

[13] D. Karrenberg and M. Terpstra. Authorisation and notification of
 changes in the ripe database. Technical Report ripe-120, RIPE, RIPE
 NCC, Amsterdam, Netherlands, October 1994.

[14] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
 Prentice-Hall, 1978.

[15] D. Kessens, W. Woeber, and D. Conrad. Ride referencing. Internet Draft
draft-kessens-ride-referencing-00.txt, Network Information Center,

 August 1997.

[16] A. Lord and M. Terpstra. Ripe database template for networks and
 persons. Technical Report ripe-119, RIPE, RIPE NCC, Amsterdam,

https://datatracker.ietf.org/doc/html/draft-ietf-rps-appl-rpsl-01
https://datatracker.ietf.org/doc/html/rfc1786
https://datatracker.ietf.org/doc/html/rfc1997
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/draft-kessens-ride-referencing-00.txt

 Netherlands, October 1994.

Alaettinoglu et. al. Expires October 6, 1999 [Page 58]

Internet Draft RPSL April 6, 1999

[17] A. M. R. Magee. Ripe ncc database documentation. Technical Report
 RIPE-157, RIPE, RIPE NCC, Amsterdam, Netherlands, May 1997.

[18] P. V. Mockapetris. Domain names - concepts and facilities. Request for
 Comment RFC-1034, Network Information Center, November 1987.

[19] Y. Rekhter. Inter-domain routing protocol (idrp). Journal of
 Internetworking Research and Experience, 4:61--80, 1993.

[20] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). Request for
 Comment RFC-1771, Network Information Center, March 1995.

[21] C. Villamizar, C. Alaettinouglu, D. Meyer, S. Murphy, and C. Orange.
 Routing policy system security. Internet Draft draft-ietf-rps-auth-01,
 Network Information Center, May 1998.

[22] C. Villamizar, R. Chandra, and R. Govindan. Bgp route flap damping.
 Internet Draft draft-ietf-idr-route-damp-00, Network Information
 Center, October 1997.

[23] J. Zsako. Pgp authentication for ripe database updates. Internet Draft
draft-zsako-ripe-dbsec-pgp-authent-00, Network Information Center,

 July 1998.

A Routing Registry Sites

The set of routing registries as of November 1996 are RIPE, RADB, CANet, MCI
and ANS. You may contact one of these registries to find out the current
list of registries.

B Grammar Rules

In this section we provide formal grammar rules for RPSL. Basic data types
are defined in Section 2. We do not provide formal grammar rules for
attributes whose values are of basic types or list of basic types. The
rules are written using the input language of GNU Bison parser. Hence, they
can be cut and pasted to that program.

//**** Generic Attributes ***

changed_attribute: ATTR_CHANGED TKN_EMAIL TKN_INT

//**** aut-num class **

//// as_expression //

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/draft-ietf-rps-auth-01
https://datatracker.ietf.org/doc/html/draft-ietf-idr-route-damp-00
https://datatracker.ietf.org/doc/html/draft-zsako-ripe-dbsec-pgp-authent-00

Alaettinoglu et. al. Expires October 6, 1999 [Page 59]

Internet Draft RPSL April 6, 1999

opt_as_expression:
| as_expression

as_expression: as_expression OP_OR as_expression_term
| as_expression_term

as_expression_term: as_expression_term OP_AND as_expression_factor
| as_expression_term KEYW_EXCEPT as_expression_factor
| as_expression_factor

as_expression_factor: '(' as_expression ')'
| as_expression_operand

as_expression_operand: TKN_ASNO
| TKN_ASNAME

//// router_expression //

opt_router_expression:
| router_expression

opt_router_expression_with_at:
| KEYW_AT router_expression

router_expression: router_expression OP_OR router_expression_term
| router_expression_term

router_expression_term: router_expression_term OP_AND router_expression_factor
| router_expression_term KEYW_EXCEPT router_expression_factor
| router_expression_factor

router_expression_factor: '(' router_expression ')'
| router_expression_operand

router_expression_operand: TKN_IPV4
| TKN_DNS
| TKN_RTRSNAME

//// peering //

peering: as_expression opt_router_expression opt_router_expression_with_at
| TKN_PRNGNAME

//// action ///

opt_action:
| KEYW_ACTION action

action: single_action

| action single_action

Alaettinoglu et. al. Expires October 6, 1999 [Page 60]

Internet Draft RPSL April 6, 1999

single_action: TKN_RP_ATTR '.' TKN_WORD '(' generic_list ')' ';'
| TKN_RP_ATTR TKN_OPERATOR list_item ';'
| TKN_RP_ATTR '(' generic_list ')' ';'
| TKN_RP_ATTR '[' generic_list ']' ';'
| ';'

//// filter ///

filter: filter OP_OR filter_term
| filter filter_term %prec OP_OR
| filter_term

filter_term : filter_term OP_AND filter_factor
| filter_factor

filter_factor : OP_NOT filter_factor
| '(' filter ')'
| filter_operand

filter_operand: KEYW_ANY
| '<' filter_aspath '>'
| filter_rp_attribute
| TKN_FLTRNAME
| filter_prefix

filter_prefix: filter_prefix_operand OP_MS
| filter_prefix_operand

filter_prefix_operand: TKN_ASNO
| KEYW_PEERAS
| TKN_ASNAME
| TKN_RSNAME
| '{' opt_filter_prefix_list '}'

opt_filter_prefix_list:
| filter_prefix_list

filter_prefix_list: filter_prefix_list_prefix
| filter_prefix_list ',' filter_prefix_list_prefix

filter_prefix_list_prefix: TKN_PRFXV4
| TKN_PRFXV4RNG

filter_aspath: filter_aspath '|' filter_aspath_term
| filter_aspath_term

filter_aspath_term: filter_aspath_term filter_aspath_closure
| filter_aspath_closure

filter_aspath_closure: filter_aspath_closure '*'

Alaettinoglu et. al. Expires October 6, 1999 [Page 61]

Internet Draft RPSL April 6, 1999

| filter_aspath_closure '?'
| filter_aspath_closure '+'
| filter_aspath_factor

filter_aspath_factor: '^'
| '$'
| '(' filter_aspath ')'
| filter_aspath_no

filter_aspath_no: TKN_ASNO
| KEYW_PEERAS
| TKN_ASNAME
| '.'
| '[' filter_aspath_range ']'
| '[' '^' filter_aspath_range ']'

filter_aspath_range:
| filter_aspath_range TKN_ASNO
| filter_aspath_range KEYW_PEERAS
| filter_aspath_range '.'
| filter_aspath_range TKN_ASNO '-' TKN_ASNO
| filter_aspath_range TKN_ASNAME

filter_rp_attribute: TKN_RP_ATTR '.' TKN_WORD '(' generic_list ')'
| TKN_RP_ATTR TKN_OPERATOR list_item
| TKN_RP_ATTR '(' generic_list ')'
| TKN_RP_ATTR '[' generic_list ']'

//// peering action pair //

import_peering_action_list: KEYW_FROM peering opt_action
| import_peering_action_list KEYW_FROM peering opt_action

export_peering_action_list: KEYW_TO peering opt_action
| export_peering_action_list KEYW_TO peering opt_action

//// import/export factor ///

import_factor: import_peering_action_list KEYW_ACCEPT filter

import_factor_list: import_factor ';'
| import_factor_list import_factor ';'

export_factor: export_peering_action_list KEYW_ANNOUNCE filter

export_factor_list: export_factor ';'
| export_factor_list export_factor ';'

//// import/export term ///

import_term: import_factor ';'

Alaettinoglu et. al. Expires October 6, 1999 [Page 62]

Internet Draft RPSL April 6, 1999

| '{' import_factor_list '}'

export_term: export_factor ';'
| '{' export_factor_list '}'

//// import/export expression ///

import_expression: import_term
| import_term KEYW_REFINE import_expression
| import_term KEYW_EXCEPT import_expression

export_expression: export_term
| export_term KEYW_REFINE export_expression
| export_term KEYW_EXCEPT export_expression

//// protocol ///

opt_protocol_from:
| KEYW_PROTOCOL tkn_word

opt_protocol_into:
| KEYW_INTO tkn_word

//**** import/export attributes ***

import_attribute: ATTR_IMPORT
| ATTR_IMPORT opt_protocol_from opt_protocol_into import_factor

export_attribute: ATTR_EXPORT
| ATTR_EXPORT opt_protocol_from opt_protocol_into export_factor

opt_default_filter:
| KEYW_NETWORKS filter

default_attribute: ATTR_DEFAULT KEYW_TO peering

filter_attribute: ATTR_FILTER filter

peering_attribute: ATTR_PEERING peering

//**** inet-rtr class ***

ifaddr_attribute: ATTR_IFADDR TKN_IPV4 KEYW_MASKLEN TKN_INT opt_action

//// peer attribute ///

opt_peer_options:
| peer_options

peer_options: peer_option

| peer_options ',' peer_option

Alaettinoglu et. al. Expires October 6, 1999 [Page 63]

Internet Draft RPSL April 6, 1999

peer_option: tkn_word '(' generic_list ')'

peer_id: TKN_IPV4
| TKN_DNS
| TKN_RTRSNAME
| TKN_PRNGNAME

peer_attribute: ATTR_PEER tkn_word peer_id opt_peer_options

//**** route class **

aggr_bndry_attribute: ATTR_AGGR_BNDRY as_expression

aggr_mtd_attribute: ATTR_AGGR_MTD KEYW_INBOUND
| ATTR_AGGR_MTD KEYW_OUTBOUND opt_as_expression

//// inject attribute ///

opt_inject_expression:
| KEYW_UPON inject_expression

inject_expression: inject_expression OP_OR inject_expression_term
| inject_expression_term

inject_expression_term: inject_expression_term OP_AND inject_expression_factor
| inject_expression_factor

inject_expression_factor: '(' inject_expression ')'
| inject_expression_operand

inject_expression_operand: KEYW_STATIC
| KEYW_HAVE_COMPONENTS '{' opt_filter_prefix_list '}'
| KEYW_EXCLUDE '{' opt_filter_prefix_list '}'

inject_attribute: ATTR_INJECT opt_router_expression_with_at opt_action
 opt_inject_expression

//// components attribute ///

opt_atomic:
| KEYW_ATOMIC

components_list:
| filter
| components_list KEYW_PROTOCOL tkn_word filter

components_attribute: ATTR_COMPONENTS opt_atomic components_list

//**** route-set **

Alaettinoglu et. al. Expires October 6, 1999 [Page 64]

Internet Draft RPSL April 6, 1999

opt_rs_members_list: /* empty list */
| rs_members_list

rs_members_list: rs_member
| rs_members_list ',' rs_member

rs_member: TKN_ASNO
| TKN_ASNO OP_MS
| TKN_ASNAME
| TKN_ASNAME OP_MS
| TKN_RSNAME
| TKN_RSNAME OP_MS
| TKN_PRFXV4
| TKN_PRFXV4RNG

rs_members_attribute: ATTR_RS_MEMBERS opt_rs_members_list

//**** dictionary ***

rpattr_attribute: ATTR_RP_ATTR TKN_WORD methods
| ATTR_RP_ATTR TKN_RP_ATTR methods

methods: method
| methods method

method: TKN_WORD '(' ')'
| TKN_WORD '(' typedef_type_list ')'
| TKN_WORD '(' typedef_type_list ',' TKN_3DOTS ')'
| KEYW_OPERATOR TKN_OPERATOR '(' typedef_type_list ')'
| KEYW_OPERATOR TKN_OPERATOR '(' typedef_type_list ',' TKN_3DOTS ')'

//// typedef attribute ///

typedef_attribute: ATTR_TYPEDEF TKN_WORD typedef_type

typedef_type_list: typedef_type
| typedef_type_list ',' typedef_type

typedef_type: KEYW_UNION typedef_type_list
| KEYW_RANGE KEYW_OF typedef_type
| TKN_WORD
| TKN_WORD '[' TKN_INT ',' TKN_INT ']'
| TKN_WORD '[' TKN_REAL ',' TKN_REAL ']'
| TKN_WORD '[' enum_list ']'
| KEYW_LIST '[' TKN_INT ':' TKN_INT ']' KEYW_OF typedef_type
| KEYW_LIST KEYW_OF typedef_type

enum_list: tkn_word
| enum_list ',' tkn_word

//// protocol attribute ///

Alaettinoglu et. al. Expires October 6, 1999 [Page 65]

Internet Draft RPSL April 6, 1999

protocol_attribute: ATTR_PROTOCOL tkn_word protocol_options

protocol_options:
| protocol_options protocol_option

protocol_option: KEYW_MANDATORY method
| KEYW_OPTIONAL method

//**** Token Definitions **

//// flex macros used in token definitions //////////////////////////////
INT [[:digit:]]+
SINT [+-]?{INT}
REAL [+-]?{INT}?\.{INT}({WS}*E{WS}*[+-]?{INT})?
NAME [[:alpha:]]([[:alnum:]_-]*[[:alnum:]])?
ASNO AS{INT}
ASNAME AS-[[:alnum:]_-]*[[:alnum:]]
RSNAME RS-[[:alnum:]_-]*[[:alnum:]]
RTRSNAME RTRS-[[:alnum:]_-]*[[:alnum:]]
PRNGNAME PRNG-[[:alnum:]_-]*[[:alnum:]]
FLTRNAME FLTR-[[:alnum:]_-]*[[:alnum:]]
IPV4 [0-9]+(\.[0-9]+){3,3}
PRFXV4 {IPV4}\/[0-9]+
PRFXV4RNG {PRFXV4}("^+"|"^-"|"^"{INT}|"^"{INT}-{INT})
ENAMECHAR [^()<>,;:\\\"\.[\] \t\r]
ENAME ({ENAMECHAR}+(\.{ENAMECHAR}+)*\.?)|(\"[^\"@\\\r\n]+\")
DNAME [[:alnum:]_-]+
//// Token Definitions //
TKN_INT {SINT}
TKN_INT {INT}:{INT} if each {INT} is two octets
TKN_INT {INT}.{INT}.{INT}.{INT} if each {INT} is one octet
TKN_REAL {REAL}
TKN_STRING Same as in programming language C
TKN_IPV4 {IPV4}
TKN_PRFXV4 {PRFXV4}
TKN_PRFXV4RNG {PRFXV4RNG}
TKN_ASNO {ASNO}
TKN_ASNAME (({ASNO}|peeras|{ASNAME}):)*{ASNAME}\
 (:({ASNO}|peeras|{ASNAME}))*
TKN_RSNAME (({ASNO}|peeras|{RSNAME}):)*{RSNAME}\
 (:({ASNO}|peeras|{RSNAME}))*
TKN_RTRSNAME (({ASNO}|peeras|{RTRSNAME}):)*{RTRSNAME}\
 (:({ASNO}|peeras|{RTRSNAME}))*
TKN_PRNGNAME (({ASNO}|peeras|{PRNGNAME}):)*{PRNGNAME}\
 (:({ASNO}|peeras|{PRNGNAME}))*
TKN_FLTRNAME (({ASNO}|peeras|{FLTRNAME}):)*{FLTRNAME}\
 (:({ASNO}|peeras|{FLTRNAME}))*
TKN_BOOLEAN true|false

TKN_RP_ATTR {NAME} if defined in dictionary
TKN_WORD {NAME}
TKN_DNS {DNAME}("."{DNAME})+
TKN_EMAIL {ENAME}@({DNAME}("."{DNAME})+|{IPV4})

Alaettinoglu et. al. Expires October 6, 1999 [Page 66]

Internet Draft RPSL April 6, 1999

C Changes from RFC 2280

RFC 2280 [3] contains an earlier version of RPSL. This section summarizes
the changes since then. They are as follows:

 o It is now possible to write integers as sequence of four 1-octet
 integers (e.g. 1.1.1.1) or as sequence of two 2-octet integers (e.g.
 3561:70). Please see Section 2.

 o The definition of address prefix range is extended so that an address
 prefix is also an address prefix range. Please see Section 2.

 o The semantics for a range operator applied to a set containing address
 prefix ranges is defined (e.g. {30.0.0.0/8^24-28}^27-30). Please see

Section 2.

 o All dates are now in UTC. Please see Section 2.

 o Plus ('+') character is added to space and tab characters to split an
 attribute's value to multiple lines (i.e. by starting the following
 lines with a space, a tab or a plus ('+') character). Please see

Section 2.

 o The withdrawn attribute of route class is removed from the language.

 o filter-set class is introduced. Please see Section 5.4.

 o rtr-set class is introduced. Please see Section 5.5.

 o peering-set class is introduced. Please see Section 5.6.

 o Filters can now refer to filter-set names. Please see Section 5.4.

 o Peerings can now refer to peering-set, rtr-set names. Both local and
 peer routers can be specified using router expressions. Please see

Section 5.6.

 o The peer attribute of the inet-rtr class can refer to peering-set,
 rtr-set names. Please see Section 9.

 o The syntax and semantics of union, and list types and typedef attribute
 have changed. Please see Section 7.

 o In the initial dictionary, the typedef attribute defining the
 community_elm, rp-attribute defining the community attribute has

https://datatracker.ietf.org/doc/html/rfc2280
https://datatracker.ietf.org/doc/html/rfc2280

Alaettinoglu et. al. Expires October 6, 1999 [Page 67]

Internet Draft RPSL April 6, 1999

 changed. Please see Section 7.

 o Guideliness for extending RPSL is added. Please see Section 10.

 o Formal grammar rules are added. Please see Appendix B.

D Authors' Addresses

 Cengiz Alaettinoglu
 USC Information Sciences Institute
 email: cengiz@isi.edu

 Curtis Villamizar
 ANS
 email: curtis@ans.net

 Elise Gerich
 At Home Network
 email: epg@home.net

 David Kessens
 Qwest Communications
 email: David.Kessens@qwest.net

 David Meyer
 University of Oregon
 email: meyer@antc.uoregon.edu

 Tony Bates
 Cisco Systems, Inc.
 email: tbates@cisco.com

 Daniel Karrenberg
 RIPE Network Coordination Centre (NCC)
 email: dfk@ripe.net

 Marten Terpstra
 c/o Bay Networks, Inc.
 email: marten@BayNetworks.com

Alaettinoglu et. al. Expires October 6, 1999 [Page 68]

