
Network Working Group P. Lei
Internet-Draft Cisco Systems
Expires: April 9, 2006 P. Conrad
 University of Delaware
 October 6, 2005

Services Provided By Reliable Server Pooling
draft-ietf-rserpool-service-02.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 9, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The Reliable Server Pooling architecture (abbreviated "RSerPool", and
 defined in [3]), provides a set of services and protocols for
 building fault tolerant and highly available client/server
 applications. This memo describes the semantics of the services that
 RSerPool provides to upper layer protocols.

Lei & Conrad Expires April 9, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Services Provided by RSerPool October 2005

Table of Contents

1. Introduction . 3
2. Conventions Used In This Document 4
3. Example Application Scenarios 4
3.1. Example Scenario for Failover Without RSerPool 4
3.2. Example Scenario Using RSerPool Basic Mode 5
3.3. Example Scenario Using RSerPool Enhanced Mode 7

4. Service Primitives . 8
4.1. Initialization . 9
4.2. PE Registration Services 9
4.3. PE Selection Services 9
4.4. RSerPool Managed Data Channel 10
4.5. Failover Services . 11
4.5.1. State Cookie Exchange 11
4.5.2. Failover Callback Function 11
4.5.3. Business Card . 13

5. Transport Mappings . 13
5.1. Defined Transport Mappings 13
5.2. Transport Mappings Requirements 14
5.2.1. Mappings: Mandatory Requirements 14
5.2.2. Mappings: Optional Requirements 14
5.2.3. Mappings: Other Requirements 15

6. Security Considerations 15
7. IANA Considerations . 15
8. Acknowledgements . 15
9. References . 16

 Authors' Addresses . 17
 Intellectual Property and Copyright Statements 18

Lei & Conrad Expires April 9, 2006 [Page 2]

Internet-Draft Services Provided by RSerPool October 2005

1. Introduction

 The Reliable Server Pooling architecture is defined in [3]. The
 central idea of this architecture is to provide client applications
 ("pool users") with the ability to select a server (a "pool element")
 from among a group of servers providing equivalent service (a
 "pool"). The pool is accessed via an identifier called a "pool
 handle". The RSerPool architecture supports high-availabilty and
 load balancing by enabling a pool user to identify the most
 appropriate server from the server pool at a given time. The
 architecture also supports failover to an alternate server when
 needed.

 This memo describes how an upper layer protocol or application for a
 pool user or pool element uses the RSerPool architecture and
 protocols. Specifically, it describes how the ASAP protocol [5] and
 transport protocols (SCTP, TCP, etc.) can be utilized to realize
 highly available services between pool users and pool elements.

 The purpose of this document is to describe:

 1. the precise services provided by RSerPool to the upper layer,

 2. the tradeoffs in choosing which services to utilize,

 3. how applications must be designed for each of these services,

 4. how applications written over various transports (SCTP, TCP, and
 others) can be mapped into these services.

 RSerPool services can be used in one of two modes: "Basic Mode" and
 "Enhanced Mode". Basic Mode provides a smaller set of services than
 Enhanced Mode, but offers imposes fewer restrictions on the
 application layer protocols that can be supported. Enhanced Mode
 provides extra capabilities, including some features that require
 applications to exchange application data messages via RSerPool
 service primitives (a restriction not present in Basic Mode).

 For Enhanced Mode, the RSerPool data exchange primitives are
 implemented by multiplexing the ASAP messages and application data
 over a single transport protocol connection or association. This
 memo defines how to do this multiplexing over SCTP. This memo also
 describes the requirments needed to extend support to other transport
 protocols as required.

 Note that while RSerPool services are divided into Basic and Enhanced
 Modes, both modes assume a full implementation of the ASAP protocol.
 The purpose of dividing RSerPool services into two modes is solely to

Lei & Conrad Expires April 9, 2006 [Page 3]

Internet-Draft Services Provided by RSerPool October 2005

 provide more flexibility for applications to interact with RSerPool.
 In particular, Basic Mode provides an easy migration path for legacy
 applications to take advantage of many useful RSerPool services,
 including load balancing and high availability. Enhanced Mode
 extends the services provided by Basic Mode with enhanced failover
 capabilities.

2. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

3. Example Application Scenarios

 To illustrate the differences between Basic and Enhanced Mode, this
 section decribes example failover scenarios for:

 an application written directly over a transport layer protocol,
 not utilizing RSerPool

 an application using RSerPool Basic Mode, and

 an application using RSerPool Enhanced Mode.

3.1. Example Scenario for Failover Without RSerPool

 Consider a typical client/server application that does not use a
 reliable server pooling framework of any kind. Typically, the server
 is specified by a DNS name. At some point, the application
 translates this name to an IP address (via DNS), and subsequently
 makes initial contact with the server to begin a session, via SCTP,
 TCP, UDP, or other transport protocol. If the client loses contact
 or fails to make contact with the server (either due to server
 failure, or a failure in the network) the client must either abandon
 the session, or try to contact another server.

 In this scenario, the client must first determine that a failure took
 place. There are several ways that a client application may
 determine that a server failed, including the following:

 1. The client may have sent a request to the server, and may time
 out waiting for a response, or may receive a message such as "no
 route to host", "port not available", or "connection refused".

https://datatracker.ietf.org/doc/html/rfc2119

Lei & Conrad Expires April 9, 2006 [Page 4]

Internet-Draft Services Provided by RSerPool October 2005

 2. The client may have sent a request to the server, or may have
 tried to initiate a connection or association and may have
 received a connection/association failure error.

 3. The client may already have established a connection to server,
 but at some point receives an indication from the transport layer
 that the connection failed.

 Suppose that the client application has a feature by which the user
 can enter the hostname of a secondary server to contact in the event
 of failure. Once the application determines that a failure took
 place on the primary server, the application can then attempt to
 resolve the hostname of the secondary server, and contact the
 secondary server to establish a session there. This process can be
 iterated to a tertiary server, and so forth.

 In this scenario, the identification of these alternate servers is an
 additional burden placedd on the end user. Furthermore, there is no
 capability in this model to dynamically update the identity of the
 alternate servers based on current availablity or reachability. DNS
 has some capabilities that can be used to help, but there are
 significant limitations to these capabilities (See [4] for a
 discussion of this point).

3.2. Example Scenario Using RSerPool Basic Mode

 Now consider the same client/server application mentioned in
Section 3.1. First we describe what the application programmer must

 do to modify the code to use RSerPool Basic Mode. We then describe
 the benefits that these modifications provide.

 For pool user ("client") applications, if an ASAP implementation is
 available on the client system, there are typically only three
 modifications required to the application source code:

 1. Instead of specifying the hostnames of primary, secondary,
 tertiary servers, etc., the application user specifies a pool
 handle.

 2. Instead of using a DNS based service (e.g. the Unix library
 function gethostbyname()) to translate from a hostname to an IP
 address, the application will invoke an RSerPool service
 primitive GETPRIMARYSERVER that takes as input a pool handle, and
 returns the IP address of the primary server. The application
 then uses that IP address just as it would have used the IP
 address returned by the DNS in the previous scenario.

Lei & Conrad Expires April 9, 2006 [Page 5]

Internet-Draft Services Provided by RSerPool October 2005

 3. Without the use of additional RSerPool services, failure
 detection is application specific just as in the previous
 scenario. However, when failure is detected on the primary
 server, instead of invoking DNS translation again on the hostname
 of a secondary server, the application invokes the service
 primitive GETNEXTSERVER, which performs two functions in a single
 operation.

 1. First it indicates to the RSerPool layer the failure of the
 server returned by a previous GETPRIMARYSERVER or
 GETNEXTSERVER call.

 2. Second, it provides the IP address of the next server that
 should be contacted, according to the best information
 available to the RSerPool layer at the present time (e.g. set
 of available pool elements, pool element policy in effect for
 the pool, etc.).

 For pool element ("server") applications where an ASAP implementation
 is available, two changes are required to the application source
 code:

 1. The server should invoke the REGISTER service primitive upon
 startup to add itself into the server pool using an appropriate
 pool handle. This also includes the address(es) protocol or
 mapping id, port (if required by the mapping), and pooling
 policy(s).

 2. The server should invoke the DEREGISTER service primitive to
 remove itself from the server pool when shutting down.

 When using these RSerPool services, RSerPool provides benefits that
 are limited (as compared to utilizing all services, described in

Section 3.3), but nevertheless quite useful as compared to not using
 RSerPool at all (as in Section 3.1). First, the client user need
 only supply a single string, i.e. the pool handle, rather than a list
 of servers. Second, the decision as to which server is to be used
 can be determined dynamically by the server selection mechanism (i.e.
 a "pool policy" performed by ASAP; see [3]). Finally, when failures
 occur, these are reported to the pool via signaling present in ASAP
 [5]) and ENRP [6], other clients will eventually know (once this
 failure is confirmed by other elements of the RSerPool architecture)
 that this server has failed.

 Utilizing this subset of services is useful for:

 applications built over connectionless protocols such as UDP that
 cannot easily be adapted to the transport layer requirements

Lei & Conrad Expires April 9, 2006 [Page 6]

Internet-Draft Services Provided by RSerPool October 2005

 required for enhanced services (see section Section 5)

 applications running on systems which do not provide an
 appropriate mapping layer for the desired transport protcol

 an expedient way to provide some of the benefits of RSerPool to
 legacy applications (regardless of the transport protocol used)

 However, to take full advantage of the RSerPool framework,
 utilization of the complete set of Enhanced Mode services as
 described in the next section is recommended.

3.3. Example Scenario Using RSerPool Enhanced Mode

 Finally, consider the same client/server application as in
Section 3.1, but this time, modified to take advantage of RSerPool

 Enhanced Mode services. As in the Section 3.1, we first describe the
 modifications needed, then we describe the benefits provided.

 When the full suite of RSerPool services are used, all communication
 between the pool user and the pool element is mediated by the
 RSerPool framework, including session establishment and teardown, and
 the sending and receiving of data. Accordingly, it is necessary to
 modify the application to use the service primitives (i.e. the API)
 provided by RSerPool, rather than the transport layer primitives
 provided by TCP, SCTP, or whatever transport protocol is being used.

 As in the previous case, sessions (rather than connections or
 associations) are established, and the destination endpoint is
 specified as a pool handle rather than as a list of IP addresses with
 a port number. However, failover from one pool element to another is
 fully automatic, and can be transparent to the application:

 The RSerPool framework control channel provides maintainance
 functions to keep pool element lists, policies, etc. current.

 Since the application data (e.g. data channel) is managed by the
 RSerPool framework, unsent data (data not yet submitted by
 RSerPool to the underlying transport protocol) is automatically
 redirected to the newly selected pool element upon failover. If
 the underlying transport layer supports retrieval of unsent data
 (as in SCTP), retrieved unsent data can also be automatically re-
 sent to the newly selected pool element.

 An application server (pool element) can provide a state cookie
 (described in Section 4.5.1) that is automatically passed on to
 another pool element (by the ASAP layer at the pool user) in the
 event of a failover. This state cookie can be used to assist the

Lei & Conrad Expires April 9, 2006 [Page 7]

Internet-Draft Services Provided by RSerPool October 2005

 application at the new pool element in recreating whatever state
 is needed to continue a session or transaction that was
 interrupted by a failure in the communication between a pool user
 and the original pool element.

 The application client (pool user) can provide a callback function
 (described in Section 4.5.2) that is invoked on the pool user side
 in the case of a failover. This callback function can execute any
 application specific failover code, such as generating a special
 message (or sequence of messages) that helps the new pool element
 construct any state needed to continue an in-process session.

 Suppose in a particular peer-to-peer application, PU A is
 communicating with PE B, and it so happens that PU A is also a PE
 in pool X. PU A can pass a "business card" to PE B identifying it
 as a member of pool X. In the event of a failure at A, or a
 failure in the communication link between A and B, PE B can use
 the information in the business card to contact an equivalent PE
 to PU A from pool X.

 Additionally, if the application at PU A is aware of some
 particular PEs of pool X that would be preferred for B to contact
 in the event that A becomes unreachable from B, PU A can provide
 that list to the ASAP layer, and it will be included in A's
 business card. (See Section 4.5.3)).

 Retrofitting an existing application for Enhanced Mode requires more
 application programmer effort than retrofitting an application for
 Basic Mode. In particular, all use of the transport layer's
 primitives (e.g. the calls to the sockets API) must be replaced by
 the use of the RSerPool primitives (e.g. the RSerPool API). This can
 be mitigated by making the RSerPool API as close to existing
 transport APIs as possible. However, the benefit is that failure
 detection and failover is automated in this case. This automatic
 failure detection takes advantage of heartbeat mechanisms that are
 provided either in the underlying transport protocol, or in a mapping
 defined on top of that protocol (see Section 4.5).

 Provided that developers of APIs for RSerPool stay close to familiar
 APIs for existing transport protocols, the effort of writing a new
 applications over RSerPool Enhanced Mode need not be significantly
 different from writing the same application directly over a supported
 transport protocol or mapping.

4. Service Primitives

 Upper layer protocols and applications may "choose" to use these

Lei & Conrad Expires April 9, 2006 [Page 8]

Internet-Draft Services Provided by RSerPool October 2005

 primitive services as needed. By selecting and using the appropriate
 set of service primitives, a range of failover scenarios may be
 supported. These service primitives are described in the sub-
 sections that follow.

4.1. Initialization

 The INITIALIZE service is used to establish a service access point to
 communicate with the ASAP layer on the local host. This is the first
 service accessed by either a PU or a PE.

4.2. PE Registration Services

 Pool Elements ("server") must use the following services to add or
 remove themselves from server pools:

 REGISTER, to add the pool element into a server pool using {pool
 handle, mapping mode, protocol or mapping id, port, policy info}
 where mapping mode is defined in Section 5. A response result
 code is returned.

 DEREGISTER, to remove the pool element from a server pool using
 {pool handle, mapping mode, protocol or mapping id, port, policy
 info} where mapping mode is defined in Section 5. A response
 result code is returned.

4.3. PE Selection Services

 When automatic failover is enabled, selection of a new pool element
 according to the pool policy in place is automatically performed by
 the RSerPool framework in case of a detected failure (e.g. provides
 automatic failover). No application intervention is required.

 Automatic failover may be enabled by setting the appropriate send
 flag when used in conjuction with data channel services (described in

Section 4.4) or explicitly during initialization when data channel
 services are not used.

 FAILOVER_INDICATION, delivered by callback, indicates that a
 failover has occurred and that any required application level
 state recovery should be performed. The newly selected pool
 element handle is provided.

 Business Card services: when automatic failover is used, the
 exchange of business cards for rendezvous services is
 automatically performed by the RSerPool framework (e.g. no
 application intervention is required.

Lei & Conrad Expires April 9, 2006 [Page 9]

Internet-Draft Services Provided by RSerPool October 2005

 When automatic failover is not enabled, failover detection and
 selection of an alternate PE must be done by the upper layer/
 application. The following primitives are provided:

 GET_PRIMARY_SERVER, takes as input a pool handle and returns the
 {IP address, transport protocol, transport protocol port} of the
 primary server.

 GET_NEXT_SERVER has a dual meaning. First, it indicates to the
 RSerPool layer the failure of the server returned by a previous
 GET_PRIMARY_SERVER or GET_NEXT_SERVER call. Second, it provides
 the {IP address, transport protocol, transport protocol port} of
 the next server that should be contacted, according to the best
 information available to the RSerPool layer at the present time.
 The appropriate pool policy for server selection for the pool
 should be used for selecting the next server.

4.4. RSerPool Managed Data Channel

 The RSerPool framework provides these services to send and receive
 application layer data, which are used in place of the direct call of
 transport level system functions (e.g. send/sendto, recv/recvfrom)
 and provides additional functionality to those calls.

 DATA_SEND_REQUEST, to send data to a pool element by using a pool
 handle, specific pool element handle, or by transport address.
 When sending to a pool handle, the specific pool element handle
 chosen is returned. In the case that data is sent to a pool
 handle, or specific pool element handle, the user can request
 automatic resending (on a best-effort basis) if the original pool
 element selected is unreachable. (However, it is ultimately the
 application's responsibility to detect and recover from errors,
 using acknowledgements at the application layer if needed.)

 When sending to a specific transport address, this primitive is
 considered a "pass thru" to the underlying transport, and no
 failover services are performed.

 In each case, appropriate error code(s) are returned in the event
 of failure. (see [5] for more detail).

 DATA_RECEIVED_NOTIFICATION, delivered by callback, to indicate
 that data has been received from a pool element and to pass that
 data to the application layer protocol. An application layer
 acknowledgement request can be indicated along with the data.

Lei & Conrad Expires April 9, 2006 [Page 10]

Internet-Draft Services Provided by RSerPool October 2005

4.5. Failover Services

 The charter of the RSerPool Working Group specifically states that
 transaction failover is out of scope for RSerPool, i.e. "if a server
 fails during processing of a transaction this transaction may be
 lost. Some services may provide a way to handle the failure, but
 this is not guaranteed." Accordingly, the RSerPool framework
 provides three "hooks" for applications to provide their own
 application-specific failover mechanism(s), one on the PE side (State
 Cookie Exchange), one on the PU side (Failover Callback), and one for
 entities that are combination of PU/PE (business card).

4.5.1. State Cookie Exchange

 SET_COOKIE: This is invoked by a PE to set the state cookie that
 is sent periodically over the control channel, when present, from
 a PE to a PU. The most recently received cookie is cached by the
 PU; in the event of failover, it is forwarded to the new PE.

 COOKIE_INDICATION: This is invoked by callback at a PE, when that
 PE receives a cookie from a PU. This cookie is an indication that
 the PU has failed over to the current PE from some other PE. The
 contents of the cookie are provided to the PE prior to any
 data.indication for messages arriving from the PU that sent the
 cookie. This provides a hook by which a PE "X" can send a "hint"
 to its successor PE "Y", in the event that one of X's PU's fails
 over from X to Y. PE "Y" can use the contents of the cookie to
 establish application layer state prior to processing resent or
 new messages from the PU. The PU application layer is not
 involved in any way in this exchange; it is handled automatically
 by the ASAP layer.

4.5.2. Failover Callback Function

 AUTHOR'S NOTE (PTC): the service defined in this section is not a
 part of section 4 of the current version ASAP draft. It should
 either be added to the ASAP draft, or this service should be removed
 from the services draft, after discussion on the list. Open
 question: does the cookie feature eliminate the need for this
 feature?

 An PU that establishing a session with a PE can specify a callback
 function that is invoked whenever a failover has taken place. This
 callback function is invoked immediately after the new transport
 layer connection/ association is established with a new server, and
 gives the application the opportunity to send one or more messages
 that may help the server to resume any transaction or session that
 was in progress when the first server failed. In essence, this

Lei & Conrad Expires April 9, 2006 [Page 11]

Internet-Draft Services Provided by RSerPool October 2005

 allows an application designed to put the reestablishment of state
 into the PU side instead of the PE side, if desired.

 This service that complements the cookie feature, in the following
 way: the cookie feature provides failover hooks on the PE side, where
 the callback is a failover hook for the PU side. The on-the-wire
 impact is that it is important that the ASAP entity should invoke the
 failover callback (if any is registered) prior to resending any
 messages from previous DATA_SEND_REQUEST primitives.

 Note that if both a state cookie from a PU and a failover callback
 are present, the state cookie should be sent before the failover
 callback is issued.

 As a simple example of how such a callback is useful, consider a file
 transfer service built using RSerPool. Let us assume that some FTP
 mirroring software is used to maintain mirrored sites, and that the
 actual mirroring is out of scope. However, we would like to use
 RSerPool to select a server from among the available mirror sites,
 and to failover in the middle of a file transfer if a primary server
 fails.

 For this example, assume that a simple request/response protocol is
 used, where one request message results in one or more response
 messages. Each request message contains the filename, and the offset
 desired within the file, (default zero.) Each response message
 contains some portion of the file, along with the offset, length of
 the portion in this message, and the length of the entire file.

 A single request is sufficient to result in a sequence of response
 messages from the requested offset to the end of the file.

 In this protocol, all that is needed for failover is for the
 application to:

 keep track of the lowest byte that it has not yet received from
 the server,

 provide a callback function that reissues the request to the new
 server, replacing the offset with this number.

 When there is no failover, only one request message is sent and the
 minimum number of response messages are returned; in the event of
 failover(s), single new request message is sent for each failover
 that occurs.

 While this is a simple example, for more complex application
 requirements, the failover callback could be used in a variety of

Lei & Conrad Expires April 9, 2006 [Page 12]

Internet-Draft Services Provided by RSerPool October 2005

 ways:

 The client might send security credentials for authentication by
 the server, and/or to provide a "key" by which the server could
 locate and setup state by accessing some application-specific (and
 out-of-scope) state sharing mechanism used by the servers.

 The client might keep track of various synchronization points in
 the transaction, and use the failover callback to replay message
 from a recent synchronization point.

4.5.3. Business Card

 This section TBD... describe a service primitive
 Set.BusinessCard.PE.List. What should the parameters be? This
 service primitive should also be defined in Section 4 of the ASAP
 draft.

5. Transport Mappings

 While SCTP is the preferred transport layer protocol for applications
 built for RSerPool failover mode (for reasons explained shortly), it
 is also possible to use other transport protocols as well (e.g. TCP)
 if an SCTP implementation is not available on the client and/or
 server. However, there are certain features present in SCTP that are
 required if the RSerPool framework is to function in failover mode.
 When a transport protocol other than SCTP is used, these features
 must be provided by an "adaption layer" (also called a "shim
 protocol") that sits between the base transport protocol (e.g. TCP)
 and the RSerPool layer. We refer to these "adaptation layers" or
 "shim protocols" as "mappings" as the idea is that the requirements
 of the RSerPool framework are "mapped" onto the capabilities of the
 underlying protocol (e.g. SCTP or TCP).

5.1. Defined Transport Mappings

 In order to support the RSerPool framework over a variety of
 transport protocols and configurations, several mappings are defined
 to provide RSerPool services over a given transport protocol. Each
 mapping translates the requirements of the RSerPool framework onto
 the capabilities of the transport protocol desired (e.g. SCTP, TCP,
 etc.). Initially, three mappings are defined:

 NO_MAPPING (0x00): With this mapping, no RserPool control channel
 is provided and the application specific communication between a
 pool user and the pool element (e.g. data channel) is out of scope
 of RSerPool. However, pool elements can register the application

Lei & Conrad Expires April 9, 2006 [Page 13]

Internet-Draft Services Provided by RSerPool October 2005

 specific communication "protocol" and "port", and thus can be
 provided to pool users.

 SCTP (0x01): SCTP transport is used for the RSerPool control
 channel. The data channel MAY be multiplexed onto the same SCTP
 association, if desired. This mapping is the preferred mapping.

 TCP (0x02): TCP transport is used for the RSerPool control
 channel. The data channel MAY be multiplexed onto the same TCP
 connection, if desired.

 A particular pool element might support any combination of these
 mappings in order to support a variety of pool users with different
 capabilities (i.e. different mapping support). In this case, pool
 elements should register each mapping that it supports with its
 pool(s).

5.2. Transport Mappings Requirements

5.2.1. Mappings: Mandatory Requirements

 These features MUST be present in any mapping of the RSerPool
 framework mode to TCP (or any other transport protocol):

 1. Message orientation, which facilitates application re-
 synchronization during failover. Messages must be "framed" in
 order to allow for undelivered message retrieval from the
 transport protocol.

 2. A heartbeat mechanism to monitor the health of an association or
 connection.

 3. A mechanism to transport and differentiate between control
 channel messages (e.g. ASAP messages) and data channel messages.
 For example in SCTP, the payload protocol identifier (PPID) may
 be used.

 4. [NOTE: retrieval was eliminated here as a requirement, now that
 failover is best effort.]

5.2.2. Mappings: Optional Requirements

 There are several additional features that are present in SCTP that
 are lacking in TCP. While these features are not crucial to
 RSerPool, providing them in the mapping layer makes it easier for an
 application layer programmer to write to a single API. This single
 API can then be mapped over both SCTP and TCP, as well as any other
 transport protocol for which a mapping is provided. Since these

Lei & Conrad Expires April 9, 2006 [Page 14]

Internet-Draft Services Provided by RSerPool October 2005

 features are not essential for RSerPool, they are optional in any
 defined mapping. However, appropriate error messages or indications
 should be provided when these features are not available. These
 features include:

 1. Support for multiple streams

 2. Support for unordered delivery of messages

5.2.3. Mappings: Other Requirements

 There are some features of SCTP that a mapping may not be able to
 provide, because they would require access to transport layer
 internals, or modifications in the transport layer itself. The
 services provided by the RSerPool layer to the application should
 therefore provide mechanisms for the upper layer to access these
 features when present (e.g. in SCTP), but also provide appropriate
 error messages or indications that these features are not available
 when they cannot be provided. These features include:

 1. Application access to the RTT and RTO estimates

 2. Application access to the Path MTU value

 3. Application access to set the lifetime parameter on outgoing SCTP
 messages

6. Security Considerations

 [Open Issue TBD: Security issues are not discussed in this memo at
 this time, but will be added in a later version of this draft.]

7. IANA Considerations

 [Open Issue TBD: Will there be an enumeration of the various
 transport layer mappings that must be registered with IANA?]

8. Acknowledgements

 The authors wish to thank Maureen Stillman, Qiaobing Xie, Michael
 Tuexen, Randall Stewart, and many others for their invaluable
 comments.

Lei & Conrad Expires April 9, 2006 [Page 15]

Internet-Draft Services Provided by RSerPool October 2005

9. References

 [1] Bradner, S., "The Internet Standards Process -- Revision 3",
BCP 9, RFC 2026, October 1996.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Tuexen, M., "Architecture for Reliable Server Pooling",
draft-ietf-rserpool-arch-10 (work in progress), July 2005.

 [4] Loughney, J., "Comparison of Protocols for Reliable Server
 Pooling", draft-ietf-rserpool-comp-10 (work in progress),
 July 2005.

 [5] Stewart, R., "Aggregate Server Access Protocol (ASAP)",
draft-ietf-rserpool-asap-12 (work in progress), July 2005.

 [6] Stewart, R., "Endpoint Handlespace Redundancy Protocol (ENRP)",
draft-ietf-rserpool-enrp-12 (work in progress), July 2005.

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-arch-10
https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-comp-10
https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-asap-12
https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-enrp-12

Lei & Conrad Expires April 9, 2006 [Page 16]

Internet-Draft Services Provided by RSerPool October 2005

Authors' Addresses

 Peter Lei
 Cisco Systems
 8735 W Higgins Rd, Suite 300
 Chicago, IL 60631
 US

 Phone: +1 773 695 8201
 Email: peterlei@cisco.com

 Phillip T. Conrad
 University of Delaware
 Dept. of Computer and Information Sciences
 103 Smith Hall
 Newark, DE 19716
 US

 Phone: +1 302 831 8622
 Email: conrad@acm.org
 URI: http://udel.edu/~pconrad

http://udel.edu/~pconrad

Lei & Conrad Expires April 9, 2006 [Page 17]

Internet-Draft Services Provided by RSerPool October 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Lei & Conrad Expires April 9, 2006 [Page 18]

