
INTERNET-DRAFT Fred Baker
Expiration: August 1999 Cisco
File: draft-ietf-rsvp-md5-08.txt Bob Lindell
 Mohit Talwar
 USC/ISI

 RSVP Cryptographic Authentication

 Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet
 Engineering Task Force (IETF), its areas, and its working
 groups. Note that other groups may also distribute working
 documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed
 at http://www.ietf.org/shadow.html.

 Abstract

 This document describes the format and use of RSVP's INTEGRITY
 object to provide hop-by-hop integrity and authentication of
 RSVP messages.

1. Introduction

Baker, et. al. Expiration: August 1999 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-md5-08.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

The Resource ReSerVation Protocol RSVP [1] is a protocol for setting up
distributed state in routers and hosts, and in particular for reserving
resources to implement integrated service. RSVP allows particular users
to obtain preferential access to network resources, under the control of
an admission control mechanism. Permission to make a reservation will
depend both upon the availability of the requested resources along the
path of the data, and upon satisfaction of policy rules.

To ensure the integrity of this admission control mechanism, RSVP
requires the ability to protect its messages against corruption and
spoofing. This document defines a mechanism to protect RSVP message
integrity hop-by-hop. The proposed scheme transmits an authenticating
digest of the message, computed using a secret Authentication Key and a
keyed-hash algorithm. This scheme provides protection against forgery
or message modification. The INTEGRITY object of each RSVP message is
tagged with a one-time-use sequence number. This allows the message
receiver to identify playbacks and hence to thwart replay attacks. The
proposed mechanism does not afford confidentiality, since messages stay
in the clear; however, the mechanism is also exportable from most
countries, which would be impossible were a privacy algorithm to be
used. Note: this document uses the terms "sender" and "receiver"
differently from [1]. They are used here to refer to systems that face
each other across an RSVP hop, the "sender" being the system generating
RSVP messages.

The message replay prevention algorithm is quite simple. The sender
generates packets with monotonically increasing sequence numbers. In
turn, the receiver only accepts packets that have a larger sequence
number than the previous packet. To start this process, a receiver
handshakes with the sender to get an initial sequence number. This memo
discusses ways to relax the strictness of the in-order delivery of
messages as well as techniques to generate monotonically increasing
sequence numbers that are robust across sender failures and restarts.

The proposed mechanism is independent of a specific cryptographic
algorithm, but the document describes the use of Keyed-Hashing for
Message Authentication using HMAC-MD5 [7]. As noted in [7], there exist
stronger hashes, such as HMAC-SHA1; where warranted, implementations
will do well to make them available. However, in the general case, [7]
suggests that HMAC-MD5 is adequate to the purpose at hand and has
preferable performance characteristics. [7] also offers source code and
test vectors for this algorithm, a boon to those who would test for
interoperability. HMAC-MD5 is required as a baseline to be universally
included in RSVP implementations providing cryptographic authentication,
with other proposals optional (see Section 6 on Conformance
Requirements).

The RSVP checksum MAY be disabled (set to zero) when the INTEGRITY

Baker, et. al. Expiration: August 1999 [Page 2]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

object is included in the message, as the message digest is a much
stronger integrity check.

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [8].

1.2. Why not use the Standard IPSEC Authentication Header?

One obvious question is why, since there exists a standard
authentication mechanism, IPSEC [3,5], we would choose not to use it.
This was discussed at length in the working group, and the use of IPSEC
was rejected for the following reasons.

The security associations in IPSEC are based on destination address. It
is not clear that RSVP messages are well defined for either source or
destination based security associations, as a router must forward PATH
and PATH TEAR messages using the same source address as the sender
listed in the SENDER TEMPLATE. RSVP traffic may otherwise not follow
exactly the same path as data traffic. Using either source or
destination based associations would require opening a new security
association among the routers for which a reservation traverses.

In addition, it was noted that neighbor relationships between RSVP
systems are not limited to those that face one another across a
communication channel. RSVP relationships across non-RSVP clouds, such
as those described in Section 2.9 of [1], are not necessarily visible to
the sending system. These arguments suggest the use of a key management
strategy based on RSVP router to RSVP router associations instead of
IPSEC.

2. Data Structures

2.1. INTEGRITY Object Format

An RSVP message consists of a sequence of "objects," which are type-
length-value encoded fields having specific purposes. The information
required for hop-by-hop integrity checking is carried in an INTEGRITY
object. The same INTEGRITY object type is used for both IPv4 and IPv6.

Baker, et. al. Expiration: August 1999 [Page 3]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

The INTEGRITY object has the following format:

 Keyed Message Digest INTEGRITY Object: Class = 4, C-Type = 1

 +-------------+-------------+-------------+-------------+
 | Flags | 0 (Reserved)| |
 +-------------+-------------+ +
 | Key Identifier |
 +-------------+-------------+-------------+-------------+
 | Sequence Number |
 | |
 +-------------+-------------+-------------+-------------+
 | |
 + +
 | |
 + Keyed Message Digest |
 | |
 + +
 | |
 +-------------+-------------+-------------+-------------+

 o Flags: An 8-bit field with the following format:

 Flags

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | H | |
 | F | 0 |
 +---+---+---+---+---+---+---+---+

 Currently only one flag (HF) is defined. The remaining flags
 are reserved for future use and MUST be set to 0.

 o Bit 0: Handshake Flag (HF) concerns the integrity
 handshake mechanism (Section 4.3). Message senders
 willing to respond to integrity handshake messages SHOULD
 set this flag to 1 whereas those that will reject
 integrity handshake messages SHOULD set this to 0.

 o Key Identifier: An unsigned 48-bit number that MUST be unique

Baker, et. al. Expiration: August 1999 [Page 4]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

 for a given sender. Locally unique Key Identifiers can be
 generated using some combination of the address (IP or MAC or
 LIH) of the sending interface and the key number. The
 combination of the Key Identifier and the sending system's IP
 address uniquely identifies the security association (Section

2.2).

 o Sequence Number: An unsigned 64-bit monotonically increasing,
 unique sequence number.

 Sequence Number values may be any monotonically increasing
 sequence that provides the INTEGRITY object [of each RSVP
 message] with a tag that is unique for the associated key's
 lifetime. Details on sequence number generation are presented
 in Section 3.

 o Keyed Message Digest: The digest MUST be a multiple of 4
 octets long. For HMAC-MD5, it will be 16 bytes long.

2.2. Security Association

The sending and receiving systems maintain a security association for
each authentication key that they share. This security association
includes the following parameters:

 o Authentication algorithm and algorithm mode being used.

 o Key used with the authentication algorithm.

 o Lifetime of the key.

 o Associated sending interface and other security association
 selection criteria [REQUIRED at Sending System].

 o Source Address of the sending system [REQUIRED at Receiving
 System].

 o Latest sending sequence number used with this key identifier

Baker, et. al. Expiration: August 1999 [Page 5]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

 [REQUIRED at Sending System].

 o List of last N sequence numbers received with this key
 identifier [REQUIRED at Receiving System].

3. Generating Sequence Numbers

In this section we describe methods that could be chosen to generate the
sequence numbers used in the INTEGRITY object of an RSVP message. As
previous stated, there are two important properties that MUST be
satisfied by the generation procedure. The first property is that the
sequence numbers are unique, or one-time, for the lifetime of the
integrity key that is in current use. A receiver can use this property
to unambiguously distinguish between a new or a replayed message. The
second property is that the sequence numbers are generated in
monotonically increasing order, modulo 2^64. This is required to
greatly reduce the amount of saved state, since a receiver only needs to
save the value of the highest sequence number seen to avoid a replay
attack. Since the starting sequence number might be arbitrarily large,
the modulo operation is required to accommodate sequence number roll-
over within some key's lifetime. This solution draws from TCP's
approach [9].

The sequence number field is chosen to be a 64-bit unsigned quantity.
This is large enough to avoid exhaustion over the key lifetime. For
example, if a key lifetime was conservatively defined as one year, there
would be enough sequence number values to send RSVP messages at an
average rate of about 585 gigaMessages per second. A 32-bit sequence
number would limit this average rate to about 136 messages per second.

The ability to generate unique monotonically increasing sequence numbers
across a failure and restart implies some form of stable storage, either
local to the device or remotely over the network. Three sequence number
generation procedures are described below.

3.1. Simple Sequence Numbers

The most straightforward approach is to generate a unique sequence
number using a message counter. Each time a message is transmitted for
a given key, the sequence number counter is incremented. The current
value of this counter is continually or periodically saved to stable
storage. After a restart, the counter is recovered using this stable
storage. If the counter was saved periodically to stable storage, the

Baker, et. al. Expiration: August 1999 [Page 6]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

count should be recovered by increasing the saved value to be larger
than any possible value of the counter at the time of the failure. This
can be computed, knowing the interval at which the counter was saved to
stable storage and incrementing the stored value by that amount.

3.2. Sequence Numbers Based on a Real Time Clock

Most devices will probably not have the capability to save sequence
number counters to stable storage for each key. A more universal
solution is to base sequence numbers on the stable storage of a real
time clock. Many computing devices have a real time clock module that
includes stable storage of the clock. These modules generally include
some form of nonvolatile memory to retain clock information in the event
of a power failure.

In this approach, we could use an NTP based timestamp value as the
sequence number. The roll-over period of an NTP timestamp is about 136
years, much longer than any reasonable lifetime of a key. In addition,
the granularity of the NTP timestamp is fine enough to allow the
generation of an RSVP message every 200 picoseconds for a given key.
Many real time clock modules do not have the resolution of an NTP
timestamp. In these cases, the least significant bits of the timestamp
can be generated using a message counter, which is reset every clock
tick. For example, when the real time clock provides a resolution of 1
second, the 32 least significant bits of the sequence number can be
generated using a message counter. The remaining 32 bits are filled
with the 32 least significant bits of the timestamp. Assuming that the
recovery time after failure takes longer than one tick of the real time
clock, the message counter for the low order bits can be safely reset to
zero after a restart.

3.3. Sequence Numbers Based on a Network Recovered Clock

If the device does not contain any stable storage of sequence number
counters or of a real time clock, it could recover the real time clock
from the network using NTP. Once the clock has been recovered following
a restart, the sequence number generation procedure would be identical
to the procedure described above.

4. Message Processing

Implementations SHOULD allow specification of interfaces that are to be

Baker, et. al. Expiration: August 1999 [Page 7]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

secured, for either sending messages, or receiving them, or both. The
sender must ensure that all RSVP messages sent on secured sending
interfaces include an INTEGRITY object, generated using the appropriate
Key. Receivers verify whether RSVP messages, except of the type
"Integrity Challenge" (Section 4.3), arriving on a secured receiving
interface contain the INTEGRITY object. If the INTEGRITY object is
absent, the receiver discards the message.

Security associations are simplex - the keys that a sending system uses
to sign its messages may be different from the keys that its receivers
use to sign theirs. Hence, each association is associated with a unique
sending system and (possibly) multiple receiving systems.

Each sender SHOULD have distinct security associations (and keys) per
secured sending interface (or LIH). While administrators may configure
all the routers and hosts on a subnet (or for that matter, in their
network) using a single security association, implementations MUST
assume that each sender may send using a distinct security association
on each secured interface. At the sender, security association
selection is based on the interface through which the message is sent.
This selection MAY include additional criteria, such as the destination
address (when sending the message unicast, over a broadcast LAN with a
large number of hosts) or user identities at the sender or receivers
[2]. Finally, all intended message recipients should participate in
this security association. Route flaps in a non RSVP cloud might cause
messages for the same receiver to be sent on different interfaces at
different times. In such cases, the receivers should participate in all
possible security associations that may be selected for the interfaces
through which the message might be sent.

Receivers select keys based on the Key Identifier and the sending
system's IP address. The Key Identifier is included in the INTEGRITY
object. The sending system's address can be obtained either from the
RSVP_HOP object, or if that's not present (as is the case with PathErr
and ResvConf messages) from the IP source address. Since the Key
Identifier is unique for a sender, this method uniquely identifies the
key.

The integrity mechanism slightly modifies the processing rules for RSVP
messages, both when including the INTEGRITY object in a message sent
over a secured sending interface and when accepting a message received
on a secured receiving interface. These modifications are detailed
below.

4.1. Message Generation

Baker, et. al. Expiration: August 1999 [Page 8]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

For an RSVP message sent over a secured sending interface, the message
is created as described in [1], with these exceptions:

 (1) The RSVP checksum field is set to zero. If required, an RSVP
 checksum can be calculated when the processing of the
 INTEGRITY object is complete.

 (2) The INTEGRITY object is inserted in the appropriate place, and
 its location in the message is remembered for later use.

 (3) The sending interface and other appropriate criteria (as
 mentioned above) are used to determine the Authentication Key
 and the hash algorithm to be used.

 (4) The unused flags and the reserved field in the INTEGRITY
 object MUST be set to 0. The Handshake Flag (HF) should be
 set according to rules specified in Section 2.1.

 (5) The sending sequence number MUST be updated to ensure a
 unique, monotonically increasing number. It is then placed in
 the Sequence Number field of the INTEGRITY object.

 (6) The Keyed Message Digest field is set to zero.

 (7) The Key Identifier is placed into the INTEGRITY object.

 (8) An authenticating digest of the message is computed using the
 Authentication Key in conjunction with the keyed-hash
 algorithm. When the HMAC-MD5 algorithm is used, the hash
 calculation is described in [7].

 (9) The digest is written into the Cryptographic Digest field of
 the INTEGRITY object.

4.2. Message Reception

When the message is received on a secured receiving interface, and is

Baker, et. al. Expiration: August 1999 [Page 9]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

not of the type "Integrity Challenge", it is processed in the following
manner:

 (1) The RSVP checksum field is saved and the field is subsequently
 set to zero.

 (2) The Cryptographic Digest field of the INTEGRITY object is
 saved and the field is subsequently set to zero.

 (3) The Key Identifier field and the sending system address are
 used to uniquely determine the Authentication Key and the hash
 algorithm to be used. Processing of this packet might be
 delayed when the Key Management System (Appendix 1) is queried
 for this information.

 (4) A new keyed-digest is calculated using the indicated algorithm
 and the Authentication Key.

 (5) If the calculated digest does not match the received digest,
 the message is discarded without further processing.

 (6) If the message is of type "Integrity Response", verify that
 the CHALLENGE object identically matches the originated
 challenge. If it matches, save the sequence number in the
 INTEGRITY object as the largest sequence number received to
 date.

 Otherwise, for all other RSVP Messages, the sequence number is
 validated to prevent replay attacks, and messages with invalid
 sequence numbers are ignored by the receiver.

 When a message is accepted, the sequence number of that
 message could update a stored value corresponding to the
 largest sequence number received to date. Each subsequent
 message must then have a larger (modulo 2^64) sequence number
 to be accepted. This simple processing rule prevents message
 replay attacks, but it must be modified to tolerate limited
 out-of-order message delivery. For example, if several
 messages were sent in a burst (in a periodic refresh generated
 by a router, or as a result of a tear down function), they
 might get reordered and then the sequence numbers would not be
 received in an increasing order.

Baker, et. al. Expiration: August 1999 [Page 10]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

 An implementation SHOULD allow administrative configuration
 that sets the receiver's tolerance to out-of-order message
 delivery. A simple approach would allow administrators to
 specify a message window corresponding to the worst case
 reordering behavior. For example, one might specify that
 packets reordered within a 32 message window would be
 accepted. If no reordering can occur, the window is set to
 one.

 The receiver must store a list of all sequence numbers seen
 within the reordering window. A received sequence number is
 valid if (a) it is greater than the maximum sequence number
 received or (b) it is a past sequence number lying within the
 reordering window and not recorded in the list. Acceptance of
 a sequence number implies adding it to the list and removing a
 number from the lower end of the list. Messages received with
 sequence numbers lying below the lower end of the list or
 marked seen in the list are discarded.

When an "Integrity Challenge" message is received on a secured sending
interface it is processed in the following manner:

 (1) An "Integrity Response" message is formed using the Challenge
 object received in the challenge message.

 (2) The message is sent back to the receiver, based on the source
 IP address of the challenge message, using the "Message
 Generation" steps outlined above. The selection of the
 Authentication Key and the hash algorithm to be used is
 determined by the key identifier supplied in the challenge
 message.

4.3. Integrity Handshake at Restart or Initialization of the Receiver

To obtain the starting sequence number for a live Authentication Key,
the receiver MAY initiate an integrity handshake with the sender. This
handshake consists of a receiver's Challenge and the sender's Response,
and may be either initiated during restart or postponed until a message
signed with that key arrives.

Once the receiver has decided to initiate an integrity handshake for a
particular Authentication Key, it identifies the sender using the
sending system's address configured in the corresponding security

Baker, et. al. Expiration: August 1999 [Page 11]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

association. The receiver then sends an RSVP Integrity Challenge
message to the sender. This message contains the Key Identifier to
identify the sender's key and MUST have a unique challenge cookie that
is based on a local secret to prevent guessing. see Section 2.5.3 of
[4]). It is suggested that the cookie be an MD5 hash of a local secret
and a timestamp to provide uniqueness (see Section 9).

An RSVP Integrity Challenge message will carry a message type of 11.
The message format is as follows:

 <Integrity Challenge message> ::= <Common Header> <CHALLENGE>

The CHALLENGE object has the following format:

 CHALLENGE Object: Class = 16, C-Type = 1

 +-------------+-------------+-------------+-------------+
 | 0 (Reserved) | |
 +-------------+-------------+ +
 | Key Identifier |
 +-------------+-------------+-------------+-------------+
 | Challenge Cookie |
 | |
 +-------------+-------------+-------------+-------------+

The sender accepts the "Integrity Challenge" without doing an integrity
check. It returns an RSVP "Integrity Response" message that contains
the original CHALLENGE object. It also includes an INTEGRITY object,
signed with the key specified by the Key Identifier included in the
"Integrity Challenge".

An RSVP Integrity Response message will carry a message type of 12. The
message format is as follows:

 <Integrity Response message> ::= <Common Header> <INTEGRITY>
 <CHALLENGE>

The "Integrity Response" message is accepted by the receiver
(challenger) only if the returned CHALLENGE object matches the one sent
in the "Integrity Challenge" message. This prevents replay of old
"Integrity Response" messages. If the match is successful, the receiver
saves the Sequence Number from the INTEGRITY object as the latest

Baker, et. al. Expiration: August 1999 [Page 12]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

sequence number received with the key identifier included in the
CHALLENGE.

If a response is not received within a given period of time, the
challenge is repeated. When the integrity handshake successfully
completes, the receiver begins accepting normal RSVP signaling messages
from that sender and ignores any other "Integrity Response" messages.

The Handshake Flag (HF) is used to allow implementations the flexibility
of not including the integrity handshake mechanism. By setting this
flag to 1, message senders that implement the integrity handshake
distinguish themselves from those that do not. Receivers SHOULD NOT
attempt to handshake with senders whose INTEGRITY object has HF = 0.

An integrity handshake may not be necessary in all environments. A
common use of RSVP integrity will be between peering domain routers,
which are likely to be processing a steady stream of RSVP messages due
to aggregation effects. When a router restarts after a crash, valid
RSVP messages from peering senders will probably arrive within a short
time. Assuming that replay messages are injected into the stream of
valid RSVP messages, there may be only a small window of opportunity for
a replay attack before a valid message is processed. This valid message
will set the largest sequence number seen to a value greater than any
number that had been stored prior to the crash, preventing any further
replays.

On the other hand, not using an integrity handshake could allow exposure
to replay attacks if there is a long period of silence from a given
sender following a restart of a receiver. Hence, it SHOULD be an
administrative decision whether or not the receiver performs an
integrity handshake with senders that are willing to respond to
"Integrity Challenge" messages, and whether it accepts any messages from
senders that refuse to do so. These decisions will be based on
assumptions related to a particular network environment.

5. Key Management

It is likely that the IETF will define a standard key management
protocol. It is strongly desirable to use that key management protocol
to distribute RSVP Authentication Keys among communicating RSVP
implementations. Such a protocol would provide scalability and
significantly reduce the human administrative burden. The Key
Identifier can be used as a hook between RSVP and such a future
protocol. Key management protocols have a long history of subtle flaws
that are often discovered long after the protocol was first described in
public. To avoid having to change all RSVP implementations should such

Baker, et. al. Expiration: August 1999 [Page 13]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

a flaw be discovered, integrated key management protocol techniques were
deliberately omitted from this specification.

5.1. Key Management Procedures

Each key has a lifetime associated with it that is recorded in all
systems (sender and receivers) configured with that key. The concept of
a "key lifetime" merely requires that the earliest (KeyStartValid) and
latest (KeyEndValid) times that the key is valid be programmable in a
way the system understands. Certain key generation mechanisms, such as
Kerberos or some public key schemes, may directly produce ephemeral
keys. In this case, the lifetime of the key is implicitly defined as
part of the key.

In general, no key is ever used outside its lifetime (but see Section
5.3). Possible mechanisms for managing key lifetime include the Network
Time Protocol and hardware time-of-day clocks.

To maintain security, it is advisable to change the RSVP Authentication
Key on a regular basis. It should be possible to switch the RSVP
Authentication Key without loss of RSVP state or denial of reservation
service, and without requiring people to change all the keys at once.
This requires an RSVP implementation to support the storage and use of
more than one active RSVP Authentication Key at the same time. Hence
both the sender and receivers might have multiple active keys for a
given security association.

Since keys are shared between a sender and (possibly) multiple
receivers, there is a region of uncertainty around the time of key
switch-over during which some systems may still be using the old key and
others might have switched to the new key. The size of this uncertainty
region is related to clock synchrony of the systems. Administrators
should configure the overlap between the expiration time of the old key
(KeyEndValid) and the validity of the new key (KeyStartValid) to be at
least twice the size of this uncertainty interval. This will allow the
sender to make the key switch-over at the midpoint of this interval and
be confident that all receivers are now accepting the new key. For the
duration of the overlap in key lifetimes, a receiver must be prepared to
authenticate messages using either key.

During a key switch-over, it will be necessary for each receiver to
handshake with the sender using the new key. As stated before, a
receiver has the choice of initiating a handshake during the switchover
or postponing the handshake until the receipt of a message using that
key.

Baker, et. al. Expiration: August 1999 [Page 14]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

5.2. Key Management Requirements

Requirements on an implementation are as follows:

 o It is strongly desirable that a hypothetical security breach
 in one Internet protocol not automatically compromise other
 Internet protocols. The Authentication Key of this
 specification SHOULD NOT be stored using protocols or
 algorithms that have known flaws.

 o An implementation MUST support the storage and use of more
 than one key at the same time, for both sending and receiving
 systems.

 o An implementation MUST associate a specific lifetime (i.e.,
 KeyStartValid and KeyEndValid) with each key and the
 corresponding Key Identifier.

 o An implementation MUST support manual key distribution (e.g.,
 the privileged user manually typing in the key, key lifetime,
 and key identifier on the console). The lifetime may be
 infinite.

 o If more than one algorithm is supported, then the
 implementation MUST require that the algorithm be specified
 for each key at the time the other key information is entered.

 o Keys that are out of date MAY be automatically deleted by the
 implementation.

 o Manual deletion of active keys MUST also be supported.

 o Key storage SHOULD persist across a system restart, warm or
 cold, to ease operational usage.

5.3. Pathological Case

Baker, et. al. Expiration: August 1999 [Page 15]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

It is possible that the last key for a given security association has
expired. When this happens, it is unacceptable to revert to an
unauthenticated condition, and not advisable to disrupt current
reservations. Therefore, the system should send a "last authentication
key expiration" notification to the network manager and treat the key as
having an infinite lifetime until the lifetime is extended, the key is
deleted by network management, or a new key is configured.

6. Conformance Requirements

To conform to this specification, an implementation MUST support all of
its aspects. The HMAC-MD5 authentication algorithm defined in [7] MUST
be implemented by all conforming implementations. A conforming
implementation MAY also support other authentication algorithms such as
NIST's Secure Hash Algorithm (SHA). Manual key distribution as
described above MUST be supported by all conforming implementations.
All implementations MUST support the smooth key roll over described
under "Key Management Procedures."

Implementations SHOULD support a standard key management protocol for
secure distribution of RSVP Authentication Keys once such a key
management protocol is standardized by the IETF.

7. Kerberos generation of RSVP Authentication Keys

Kerberos[10] MAY be used to generate the RSVP Authentication key used in
generating a signature in the Integrity Object sent from a RSVP sender
to a receiver. Kerberos key generation avoids the use of shared keys
between RSVP senders and receivers such as hosts and routers. Kerberos
allows for the use of trusted third party keying relationships between
security principals (RSVP sender and receivers) where the Kerberos key
distribution center(KDC) establishes an ephemeral session key that is
subsequently shared between RSVP sender and receivers. In the multicast
case all receivers of a multicast RSVP message MUST share a single key
with the KDC (e.g. the receivers are in effect the same security
principal with respect to Kerberos).

The Key information determined by the sender MAY specify the use of
Kerberos in place of configured shared keys as the mechanism for
establishing a key between the sender and receiver. The Kerberos
identity of the receiver is established as part of the sender's
interface configuration or it can be established through other
mechanisms. When generating the first RSVP message for a specific key
identifier the sender requests a Kerberos service ticket and gets back

Baker, et. al. Expiration: August 1999 [Page 16]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

an ephemeral session key and a Kerberos ticket from the KDC. The sender
encapsulates the ticket and the identity of the sender in an Identity
Policy Object[2]. The sender includes the Policy Object in the RSVP
message. The session key is then used by the sender as the RSVP
Authentication key in section 4.1 step (3) and is stored as Key
information associated with the key identifier.

Upon RSVP Message reception, the receiver retrieves the Kerberos Ticket
from the Identity Policy Object, decrypts the ticket and retrieves the
session key from the ticket. The session key is the same key as used by
the sender and is used as the key in section 4.2 step (3). The receiver
stores the key for use in processing subsequent RSVP messages.

Kerberos tickets have lifetimes and the sender MUST NOT use tickets that
have expired. A new ticket MUST be requested and used by the sender for
the receiver prior to the ticket expiring.

7.1. Optimization when using Kerberos Based Authentication

Kerberos tickets are relatively long (> 500 bytes) and it is not
necessary to send a ticket in every RSVP message. The ephemeral session
key can be cached by the sender and receiver and can be used for the
lifetime of the Kerberos ticket. In this case, the sender only needs to
include the Kerberos ticket in the first Message generated. Subsequent
RSVP messages use the key identifier to retrieve the cached key (and
optionally other identity information) instead of passing tickets from
sender to receiver in each RSVP message.

A receiver may not have cached key state with an associated Key
Identifier due to reboot or route changes. If the receiver's policy
indicates the use of Kerberos keys for integrity checking, the receiver
can send an integrity Challenge message back to the sender. Upon
receiving an integrity Challenge message a sender MUST send an Identity
object that includes the Kerberos ticket in the integrity Response
message, thereby allowing the receiver to retrieve and store the session
key from the Kerberos ticket for subsequent Integrity checking.

8. Acknowledgments

This document is derived directly from similar work done for OSPF and
RIP Version II, jointly by Ran Atkinson and Fred Baker. Significant
editing was done by Bob Braden, resulting in increased clarity.
Significant comments were submitted by Steve Bellovin, who actually
understands this stuff. Matt Crawford and Dan Harkins helped revise the

Baker, et. al. Expiration: August 1999 [Page 17]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

document.

9. References

[1] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S. Jamin,
 "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
 Specification". RFC 2205, September 1997.

[2] S. Yadav, et. al., "Identity Representation for RSVP", Work in
 Progress, January 1999

[3] Atkinson, R., and S. Kent, "Security Architecture for the Internet
 Protocol", RFC 2401, November 1998.

[4] Maughan, D., Schertler, M., Schneider, M., and J. Turner, "Internet
 Security Association and Key Management Protocol (ISAKMP)", RFC

2408, November 1998.

[5] Kent, S., and R. Atkinson, "IP Authentication Header", RFC 2402,
 November 1998.

[6] Kent, S., and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

[7] Krawczyk, Bellare, and Canetti, "HMAC: Keyed-Hashing for Message
 Authentication", RFC 2104, March 1996.

[8] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, Harvard University, March 1997.

[9] Postel, Jon, "Transmission Control Protocol", RFC 793, September
 1981.

[10] Kohl, J. and Neuman, C. , "The Kerberos Network Authentication
 Service (V5)", RFC 1510, September 1993.

10. Security Considerations

This entire memo describes and specifies an authentication mechanism for
RSVP that is believed to be secure against active and passive attacks.

The quality of the security provided by this mechanism depends on the
strength of the implemented authentication algorithms, the strength of
the key being used, and the correct implementation of the security

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1510

Baker, et. al. Expiration: August 1999 [Page 18]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

mechanism in all communicating RSVP implementations. This mechanism
also depends on the RSVP Authentication Keys being kept confidential by
all parties. If any of these assumptions are incorrect or procedures
are insufficiently secure, then no real security will be provided to the
users of this mechanism.

While the handshake "Integrity Response" message is integrity-checked,
the handshake "Integrity Challenge" message is not. This was done
intentionally to avoid the case when both peering routers do not have a
starting sequence number for each other's key. Consequently, they will
each keep sending handshake "Integrity Challenge" messages that will be
dropped by the other end. Moreover, requiring only the response to be
integrity-checked eliminates a dependency on an security association in
the opposite direction.

This, however, lets an intruder generate fake handshaking challenges
with a certain challenge cookie. It could then save the response and
attempt to play it against a receiver that is in recovery. If it was
lucky enough to have guessed the challenge cookie used by the receiver
at recovery time it could use the saved response. This response would
be accepted, since it is properly signed, and would have a smaller
sequence number for the sender because it was an old message. This
opens the receiver up to replays. Still, it seems very difficult to
exploit. It requires not only guessing the challenge cookie (which is
based on a locally known secret) in advance, but also being able to
masquerade as the receiver to generate a handshake "Integrity Challenge"
with the proper IP address and not being caught.

Confidentiality is not provided by this mechanism. If confidentiality
is required, IPSEC ESP [6] may be the best approach, although it is
subject to the same criticisms as IPSEC Authentication, and therefore
would be applicable only in specific environments. Protection against
traffic analysis is also not provided. Mechanisms such as bulk link
encryption might be used when protection against traffic analysis is
required.

11. Authors' Addresses

Baker, et. al. Expiration: August 1999 [Page 19]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

Fred Baker
Cisco Systems
519 Lado Drive
Santa Barbara,
California 93111
Phone: (408) 526-4257
Email: fred@cisco.com

Bob Lindell
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
Phone: (310) 822-1511
Email: lindell@ISI.EDU

Mohit Talwar
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
Phone: (310) 822-1511
Email: mtalwar@ISI.EDU

12. Appendix 1: Key Management Interface

This appendix describes a generic interface to Key Management. This
description is at an abstract level realizing that implementations may
need to introduce small variations to the actual interface.

At the start of execution, RSVP would use this interface to obtain the
current set of relevant keys for sending and receiving messages. During
execution, RSVP can query for specific keys given a Key Identifier and
Source Address, discover newly created keys, and be informed of those
keys that have been deleted. The interface provides both a polling and
asynchronous upcall style for wider applicability.

12.1. Data Structures

Information about keys is returned using the following KeyInfo data
structure:

Baker, et. al. Expiration: August 1999 [Page 20]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

 KeyInfo {
 Key Type (Send or Receive)
 KeyIdentifier
 Key
 Authentication Algorithm Type and Mode
 KeyStartValid
 KeyEndValid
 Status (Active or Deleted)
 Outgoing Interface (for Send only)
 Other Outgoing Security Association Selection Criteria
 (for Send only, optional)
 Sending System Address (for Receive Only)
 }

12.2. Default Key Table

This function returns a list of KeyInfo data structures corresponding to
all of the keys that are configured for sending and receiving RSVP
messages and have an Active Status. This function is usually called at
the start of execution but there is no limit on the number of times that
it may be called.

 KM_DefaultKeyTable() -> KeyInfoList

12.3. Querying for Unknown Receive Keys

When a message arrives with an unknown Key Identifier and Sending System
Address pair, RSVP can use this function to query the Key Management
System for the appropriate key. The status of the element returned, if
any, must be Active.

 KM_GetRecvKey(INTEGRITY Object, SrcAddress) -> KeyInfo

12.4. Polling for Updates

This function returns a list of KeyInfo data structures corresponding to

Baker, et. al. Expiration: August 1999 [Page 21]

INTERNET-DRAFT RSVP Cryptographic Authentication February 1999

any incremental changes that have been made to the default key table or
requested keys since the last call to either KM_KeyTablePoll,
KM_DefaultKeyTable, or KM_GetRecvKey. The status of some elements in
the returned list may be set to Deleted.

 KM_KeyTablePoll() -> KeyInfoList

12.5. Asynchronous Upcall Interface

Rather than repeatedly calling the KM_KeyTablePoll(), an implementation
may choose to use an asynchronous event model. This function registers
interest to key changes for a given Key Identifier or for all keys if no
Key Identifier is specified. The upcall function is called each time a
change is made to a key.

 KM_KeyUpdate (Function [, KeyIdentifier])

where the upcall function is parameterized as follows:

 Function (KeyInfo)

Baker, et. al. Expiration: August 1999 [Page 22]

