
 Internet Draft Jim Boyle
 Expiration: January 25, 1998 MCI
 File: draft-ietf-rsvp-pepci-00.txt Ron Cohen
 Class Data Systems
 Laura Cunningham
 MCI
 David Durham
 Intel
 Arun Sastry
 Cisco
 Raj Yavatkar
 Intel

 Protocol for Exchange of PoliCy Information (PEPCI)

 July 25, 1997

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet- Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Boyle et. al. Expires January 25, 1998 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-pepci-00.txt

Internet Draft PEPCI July 25, 1997

Abstract

 This document describes a simple client/server model for supporting
 policy for RSVP, and is designed to be extensible so that other kinds
 of client types may be supported in the future. The model does not
 make any assumptions about the algorithm of the policy server, but is
 based on the server returning a single priority value in response to
 a policy request. The objective is to use this very basic model to
 begin policy experimentation.

1. Introduction

 This document describes Protocol for Exchange of PoliCy Information
 (PEPCI) which can be used to exchange policy information between a
 policy server and its clients. The policy clients are expected to be
 RSVP routers, that must exercise policy-based admission control over
 RSVP usage. We assume that at least one policy server exists in each
 routing domain. The basic model of interaction between a policy
 server and its clients is compatible with the RSVP extensions for
 policy control [EXT].

 A chief objective of our proposal is to begin with a simple design
 for easy/quick deployment, testing, and experimentation. The main
 characteristics of the proposed protocol include:

 1. The protocol uses TCP as the transport protocol for reliable
 exchange of messages between policy clients and a server.
 Therefore, no additional mechanisms are necessary for reliable
 communication between a server and its clients.

 2. The protocol is designed to leverage off existing RSVP
 implementations and makes extensive use of RSVP-like self-
 identifying objects.

 3. Even though the protocol is mainly intended for administration
 and enforcement of policies in conjunction with RSVP, the protocol
 may be extended for administration of other policies such as
 multicast group access and network security.

 4. The protocol relies on existing protocols for message
 authentication. Namely IPSEC [IPSEC] can be used to authenticate
 and secure the channel between the LPM and the server and RSVP MD5
 message authentication [MD5] can be used for inter-node
 authentication.

Boyle et. al. Expires January 25, 1998 [Page 2]

Internet Draft PEPCI July 25, 1997

 5. Messages are exchanged asynchronously and there is no need for
 error control or specific sequencing of messages.

1.1. Basic Model

 We assume that each participating router has a Local Policy Module
 (LPM) [LPM] and may communicate with a policy server for policy
 decisions. It is assumed that most communication with a policy
 server will be done by border routers upon entry of an RSVP message
 into a routing domain, although this protocol is not restricted to
 such a model.

 A policy client establishes a TCP connection to the policy server to
 begin communication and uses the connection to send requests to and
 receive responses from the server. Communication between client and
 server is mainly in the form of a request/response exchange, though
 the server may occasionally send an unsolicited response to the
 client to force a change to a previously approved state.

 The response from the server is in the form of Accept(Priority). The
 priority returned by the policy server is a non-negative integer
 indicating priority. Higher numbers indicate higher priority, and the
 LPM interprets 0 as an indicator to completely deny the request. A
 single policy value indicating priority enables the routers to sort
 and kill sessions without requiring server intervention. For example,
 suppose a router has already successfully admitted and installed a
 reservation with priority 5. Later, if a new reservation request
 comes in and is approved by the policy server at priority 10, but
 cannot be admitted due to local admission control at the client, the
 client can remove the previously admitted reservation (with priority
 5) to make room for the newer, higher priority reservation.

 The LPM keeps state of known RSVP messages and processes policy as
 part of admission control. In particular, the LPM keeps track of the
 priority associated with each reservation message received. When a
 new PATH or RESV message is received, the LPM sends a new request
 message to the server. The client includes RSVP objects from the
 message in question and establishes a request identification handle
 (RIH) for future reference to this message. It should be noted that
 this is done rather early in RSVP processing [RSVPPROC]. The server
 responds with ACCEPT/REJECT indication and may optionally include
 objects that provide for modification of the original message. If
 the message is accepted, it is further processed by RSVP including
 RESV merging with other messages if necessary. If RESV messages are
 merged, the client may end up with several policy objects to merge.

Boyle et. al. Expires January 25, 1998 [Page 3]

Internet Draft PEPCI July 25, 1997

 This is resolved by attaching the Policy Object of the "largest"
 downstream RESV to the forwarded RESV message. In the event of a
 "tie" (i.e. there are multiple reservations that can be considered
 the "largest" reservation), we will include the policy objects from
 all the reservations.

Boyle et. al. Expires January 25, 1998 [Page 4]

Internet Draft PEPCI July 25, 1997

 For example, if a router receives two RESV messages for the same
 session, it will check with the policy server separately for each
 message and then keep track of the priority received as part of the
 RSB for each message. When the two RESVs are successfully merged, the
 merged RESV is forwarded with the policy object of the "larger"
 original message. If the higher priority reservation is later torn
 down, the existing reservation would then revert to the next
 "largest" reservation. The RSVP implementation must keep track of
 the associated priority. This could result in the lower priority
 reservation "riding" the priority of a higher reservation and then
 being torn down once the higher priority reservation is gone and
 other reservations pre-empt the lower priority one. This is
 considered acceptable as a side effect of merging benefits.

 Under this model, both the policy server and its client maintain
 state associated with a particular request. Failure of a client or
 the server is detected by the loss of a TCP connection. Upon
 failure, a client connects to a new server and the new server syncs
 up with the client.

Boyle et. al. Expires January 25, 1998 [Page 5]

Internet Draft PEPCI July 25, 1997

2. The Protocol

 This section describes the message formats and objects used by the
 LPM and Policy Server.

2.1 Common Header

 Each PEPCI message consists of the PEPCI header followed by a number
 of client-specific objects.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 |Version|Flags | Client Type | Op Code |
 +--------------+--------------+--------------+--------------+
 | RIH |
 +--------------+--------------+--------------+--------------+
 | Message Length |
 +--------------+--------------+--------------+--------------+

 The fields in the header are:
 Version: 4 bits
 PEPCI version number. Current version is 1.

 Flags: 4 bits
 Flag bits

 Client Type: 16 bits
 The type identification for the policy client Interpretation of
 all encapsulated objects is relative to the client type. The
 client type of 1 indicates an RSVP client using RSVP V1
 objects. In the future, further types may be defined to
 accommodate types of policies other than bandwidth and to
 accommodate new versions of RSVP.

Boyle et. al. Expires January 25, 1998 [Page 6]

Internet Draft PEPCI July 25, 1997

 Op Code: 8 bits
 The PEPCI operations:
 1 = Request Query (RQ)
 2 = Request Response (RR)
 3 = Request Allowed (RA)
 4 = Delete Request (DRQ)
 5 = Synchronize State Req (SSQ)
 6 = Synchronize State Resp (SSR)
 7 = Unsolicited Response (USR)

 RIH (Request Identification Handle): 32 bits
 Client side value to uniquely identify message/association.
 For example, an RSVP client will provide a handle to identify a
 reservation request so that subsequent operations that apply to
 the same message can be easily identified. Similarly, if PATH
 control is desired, an RSVP client would send the RSVP objects
 associated with the PATH to the server and supply a RIH handle
 for future references to this PATH state.

 Message Length: 32 bits
 Size of message in bytes. This includes all encapsulated
 objects, but not including the standard PEPCI header.

Boyle et. al. Expires January 25, 1998 [Page 7]

Internet Draft PEPCI July 25, 1997

2.2 Object Formats

 All the objects follow the RSVP object format; each object consists
 of one or more 32-bit words with a one-word header, with the
 following format:

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | Length (bytes) | Class-Num | C-Type |
 +-------------+-------------+-------------+-------------+
 | |
 // (Object contents) //
 | |
 +-------------+-------------+-------------+-------------+

 The Class Numbers are chosen to start with high values so as not to
 conflict with Class Number values already defined for RSVP objects.
 The choice of PEPCI specific class numbers ensures that PEPCI-
 specific objects are never forwarded beyond the policy client.

2.2.1 RSVP Objects

 RSVP Objects can be copied as is into PEPCI messages. The first
 Request Query which initializes the RIH for the message includes a
 large portion of the RSVP message. In a PATH message, for instance,
 there is no relevant information in the Integrity object and the
 relevant information in the RSVP common header is included with the
 PEPCI context object. So, the initial PEPCI request query from the
 LPM to the server about an RSVP PATH message includes all the
 remaining RSVP objects starting with the session object. These are
 not encapsulated into PEPCI objects. RESV RSVP messages will contain
 the Session, Flowspec, Style, and, if applicable, the Filter objects.
 The server can return a Policy Object within a Request Response which
 the LPM must substitute for the Policy Object(s) that the router
 received within that RSVP message.

Boyle et. al. Expires January 25, 1998 [Page 8]

Internet Draft PEPCI July 25, 1997

2.2.2 Priority Object

 As stated earlier, the priority object is used to specify the
 relative priorities among different reservation requests. A priority
 of zero indicates a DENY.

 A priority value is encoded as an unsigned, 16-bit integer value.

 Class-Num = 128, C-Type = 1
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Priority | //// Reserved //// |
 +--------------+--------------+--------------+--------------+

2.2.3 Handle Object

 The handle object is designed to carry a handle that identifies a
 particular association (such as a complete reservation request or
 parts such as a particular PATH state).

 The handle is a 32-bit number chosen by a policy client at the time
 of sending a new request to the policy server.

 Handles are optional for both the client and server, and there is no
 special negotiation needed (between the client and server) to
 determine the usage of the handle.

 Class-Num = 129, C-Type = 1

 +--------------+--------------+--------------+--------------+
 | Request Identification Handle |
 +--------------+--------------+--------------+--------------+

Boyle et. al. Expires January 25, 1998 [Page 9]

Internet Draft PEPCI July 25, 1997

2.2.4 Reason Code Object

 A one octet, integer value used to provide additional reasons for a
 particular response or a particular delete state notification.

 Class-Num = 130, C-Type = 1

 +--------------+--------------+--------------+--------------+
 | Reason code | /////// RESERVED /////// |
 +--------------+--------------+--------------+--------------+

2.2.5 Hold Off Timer Object

 The Hold Off Timer is used to specify the length of time for which a
 given policy is valid, or the length of time the LPM should wait
 before asking the policy server for a new policy value for a given
 RIH. This timer acts as a simple mechanism to prevent denial of
 service attacks on a policy server. It also works to ensure that
 policy information must be renewed periodically.

 Times are encoded as 32-bit integer values and are in units of
 seconds. The time value is treated as a delta from the point at
 which the LPM receives the message containing the Hold Off Timer.

 LPM implementation of this object is mandatory for clients, but its
 use by servers is optional.

 Class-Num = 131, C-Type = 1

 +--------------+--------------+--------------+--------------+
 | Hold Off Timer |
 +--------------+--------------+--------------+--------------+

Boyle et. al. Expires January 25, 1998 [Page 10]

Internet Draft PEPCI July 25, 1997

2.2.6 Interface Object

 The interface object is used to identify particular interfaces on a
 router. It is a 32-bit integer field whose value is the same as the
 SNMP ifIndex value for that interface.

 There are two types of interfaces : incoming interfaces and outgoing
 interfaces. An incoming interface is the interface on which the RSVP
 message was received, and an outgoing interface is one on which the
 RSVP message is being forwarded.

 in-interface:
 Class-Num = 132, C-Type = 1

 out-interface
 Class-Num = 133, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | ifIndex |
 +--------------+--------------+--------------+--------------+

2.2.7 Context Object

 The context object carries the RSVP message type (PATH, RESV, etc.)
 of the RSVP message that triggered the query.

 Class-Num = 134, C-Type = 1
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | RSVP MsgType | //// Reserved //// |
 +--------------+--------------+--------------+--------------+

Boyle et. al. Expires January 25, 1998 [Page 11]

Internet Draft PEPCI July 25, 1997

2.3 Request Query (RQ) LPM -> Policy Server

 The client establishes a Request Identification Handle (RIH) which
 the server maintains a state for, and uses to refer to this RSVP
 message. It also sends portions of the RSVP message so Policy Servers
 of varying complexity can use any information from the message
 without requiring that the LPM make a determination of what to parse
 out and send to the server.

 Once a RIH is established with a new request, any subsequent
 modifications of the request can be made using the RQ message with a
 previously established RIH. For example, when a change in a
 reservation happens on a refresh (or some other means such as SNMP-
 based state change on a router), the router will simply supply the
 new information in a RQ message with the existing RIH associated with
 the reservation state.

 The format of the Request Query message is as follows:

 <Request Query> ::= <Common Header>
 <Context><in-interface>
 <RSVP Objects>
 [<Additional objects>]

 The additional objects are optional and can give more information on
 the RSVP state. For example, in queries with Path context, the
 additional objects may be a list of out-interface objects which
 specify the outgoing interfaces on which this Path message is going
 to be forwarded. Similarly, we can have a Reservation query with
 multiple objects for the associated PATH states, e.g.

 <Request Query> ::= <Common Header>
 <Context=RESV><in-interface>
 <RSVP RESV Objects>
 <associated path handle #1>
 <associated path handle #2>
 <associated path handle #3>

Boyle et. al. Expires January 25, 1998 [Page 12]

Internet Draft PEPCI July 25, 1997

2.4. Request Response (RR) Policy Server -> LPM

 The server responds to the RQ with a RR message that includes the
 associated RIH and the response. The priority value included in the
 response indicates the result such as Deny (priority = 0 means
 Reject) or Accept. In addition, the response may optionally include
 policy objects (OUT_POLICY), whose structure is defined in [EXT], to
 replace the incoming policy object(s). This assumes wholesale
 replacement of a previously received policy object(s) with
 appropriate modifications.

 In order to avoid the issue of keeping track of which Request Query a
 particular response belongs to, it is important that, for a given
 RIH, there be at most one outstanding response per query. This
 essentially means that the client should not issue more than one RQ
 (for a given RIH) before it receives a corresponding RR.

 The format of the Request Response message is as follows:

 <Request Response> ::= <Common Header>
 <Priority>
 [<Hold Off Timer>]
 [<OUT_POLICY>]
 [<Additional objects>]

 The additional objects are optional and can give more information on
 replacement of policy objects, and can permit the extension of policy
 enforcement capabilities. For example, the additional objects may
 carry <out-interface><OUT_POLICY> pairs, indicating that when
 forwarding the message out that particular interface, the policy
 object associated with this interface should supersede the policy
 object received. This may be useful in multicast cases where
 different policy objects should be forwarded out different
 interfaces. The exact format of additional objects is left for future
 work. A router that does not support these additional objects should
 ignore them.

Boyle et. al. Expires January 25, 1998 [Page 13]

Internet Draft PEPCI July 25, 1997

2.5. Request Allowed (RA) LPM -> Policy Server

 This message serves as an acknowledgment to the server that a
 particular request response has been acted upon.

 <Request Allowed> ::== <Common Header>
 <Priority>

2.6. Delete Request (DRQ) LPM -> Policy Server

 This message indicates to the server that the PATH or RESV state has
 been deleted. This will be used by the server to initiate appropriate
 clean up actions. Reasons may include: PATH_ or RESV_TEAR, pre-
 emption, SNMP, loss of soft state.

 The format of the Delete Request message is as follows:

 <Delete Request> ::= <Common Header>
 <Reason Code Object>

 Reason Code: 16 bits

 Reason Code = 0 Unknown
 1 Priority Changed
 2 Pre-empted
 3 TEAR
 4 SNMP request
 5 Loss of Soft State

Boyle et. al. Expires January 25, 1998 [Page 14]

Internet Draft PEPCI July 25, 1997

2.7. Synchronize State Request (SSQ) Policy Server -> LPM;

 The server uses this message to request a list of state that has been
 approved and not yet deleted. A case where this would be used is in
 server connection startup time. A long or short response may be
 provided, and is indicated by a bit in the flag value. A short
 answer provides just a list of RIH values with their current priority
 and their context and incoming interface. A long answer additionally
 provides the original RSVP message along with the OUT_POLICY object.

 Flag: LONG_ANSWER 0x1

 Each RSVP message is sent in a separate policy message.

 The format of the Synchronize State Query message is as follows:

 <Synchronize State> ::= <Common Header>

 If the RIH is specified (a nonzero value), the server queries about
 the state of a particular request. RIH=0 indicates that server
 wishes to synchronize all the state.

2.8. Synchronize State Response (SSR) LPM -> Policy Server

 The format of the Synchronize State Response message is as follows:

 <Synchronize State> ::= <Common Header>
 <Priority #1><Handle #1>
 <Context><in-Interface>
 If Long:
 <RSVP Object><OUT-POLICY>
 endIf Long:
 <Priority #2><Handle #2>
 <Context><in-Interface>
 If Long:
 <RSVP Object><OUT-POLICY>
 endIf Long:

Boyle et. al. Expires January 25, 1998 [Page 15]

Internet Draft PEPCI July 25, 1997

2.9 Unsolicited Response (USR) Policy Server -> LPM

 The server can also send an unsolicited response to a client. One
 example where this can happen is when a policy change is made at the
 server, and a corresponding change needs to be effected at the client
 (e.g. change a policy for a particular reservation to DENY, so that
 reservation needs to be deleted.)

 The format for an USR is the same as that for a RR.

2.10 ResvErr and PathErr control

 Policy control over RSVP Error messages is left as an option. RSVP
 error messages carry policy objects which may add information to the
 RSVP nodes along the way.

 Policy error messages generated by the router after the server has
 denied a query request should carry the policy objects returned in
 the query response.

 Error messages received from other routers are handled much like Path
 and Resv messages. Since policy error messages do not create states,
 the only PEPCI messages used are Request Query and Request Response.
 The router should use a temporary handle that will allow it to match
 reply to response, but otherwise has no significance.

Boyle et. al. Expires January 25, 1998 [Page 16]

Internet Draft PEPCI July 25, 1997

3. Operation

 This section lists some sample exchanges between policy servers and
 LPM clients.

3.1. Client receives a new RSVP message, gets permission from Policy
server, and, later, deletes the state when RESV is torn down.

 Client -> Server: RQ
 "RIH=4, RSVP objects incl. policy data"
 Server -> Client: RR
 "RIH=4, Priority=5, OUT-POLICY"
 Client -> Server: RA
 "RIH=4, Priority=5"
 Client -> Server: DRQ
 "RIH=4, Reason Code = TEAR"

 Client gets another RESV for the same session. We assume that
 the client first checks with the policy server and then does
 local merging, before forwarding the resulting policy objects
 within the merged RESV towards PHOP(s).

 Client -> Server: RQ
 "RIH=11, objects in new incoming RESV inc' policy data"
 Server -> Client: RR
 "RIH=11, Priority=6, OUT-POLICY"
 Client -> Server: RA
 "RIH=11, Priority=6"

3.2. Server changes priority of an existing request.

 Server -> Client: USR
 "RIH=4, NewPriority = 10, Reason Code = 1, OUT-POLICY"
 Client -> Server: RA
 "RIH=4, Priority=10"

 or, Server decides to pre-empt or abort a request accepted
 earlier by sending an USR with priority zero

 Server -> Client: USR
 "RIH=4, NewPriority = 0, Reason Code = 1, OUT-POLICY"
 Client -> Server: DRQ
 "RIH=4, Reason Code = Preempt"

Boyle et. al. Expires January 25, 1998 [Page 17]

Internet Draft PEPCI July 25, 1997

3.3. Example of use of handle objects

 Client receives a PATH message, first contact the server for
 PATH control

 Client -> Server: RQ
 "RIH = 100, RSVP objects in the PATH message,
 policy data"
 Server -> Client: RR
 "RIH = 100, OUT_POLICY"

 Later, the client receives a RESV for the same session and wishes to
 include the PATH state info in its request. It uses RIH=100
 (previously established handle) to associate the relevant PATH state
 with its NEW request as in:

 Client -> Server: RQ
 "RIH=7, RSVP objects, Policy data, Handle = 100"

 Server examines the information in the Query and the information
 about the Path state stored from previous query on Path and reaches a
 policy decision:

 Server -> Client: RR
 "RIH=7, priority = 1, OUT-Policy"

Boyle et. al. Expires January 25, 1998 [Page 18]

Internet Draft PEPCI July 25, 1997

3.4. Server inquires about RIH 4.

 Server -> Client: SSQ (Long)
 "RIH=4"
 Client -> Server: SSR (Long)
 "RIH=4, Priority=10, OUT-POLICY,
 RSVP Objects "

3.5 Server requests a list of state.

 Server -> Client: SSQ(Long, RIH=0)
 Client -> Server: SSR(Long)
 "RIH=2, Context, In-Interface,
 Priority=1, OUT-POLICY, RSVP_MESSAGE
 RIH=4, Context, In-Interface,
 Priority=10, OUT-POLICY, RSVP_MESSAGE
 RIH=5, Context, In-Interface,
 Priority=10, OUT-POLICY, RSVP_MESSAGE
 RIH=8, Context, In-Interface,
 Priority=100, OUT-POLICY, RSVP_MESSAGE"

3.6 State Torn Down

 Client -> Server: DRQ
 "RIH=4, Reason=Tear"

3.7 Admission error handling

 The client receives a RESV message and determines that this
 reservation was previously admitted using handle 100. Assuming that
 the flowspec of the new reservation is different, we might have
 something like:

 Client -> Server: RQ
 "RIH=100 NewFlowSpec, Policy data"
 Server -> Client: RR
 "RIH=100, Priority=4"

 The client tries to admit the reservation. If it fails, it tries to
 preempt installed reservations with lower priority. If it is still
 unable to admit the reservation, it does not send a RA indication,
 and performs the admission error operations as defined in [RSVP],
 including sending a ResvErr frame. According to [RSVP] the client
 should still keep the old active installed reservation. The client

Boyle et. al. Expires January 25, 1998 [Page 19]

Internet Draft PEPCI July 25, 1997

 will send a DRQ to the server only if it deletes an active
 (RESV/PATH) state. In order to keep the server in sync, the client
 will reissue a query to approve its active state:

 Client -> Server: RQ
 "RIH=100 ActiveFlowSpec, Policy data"
 Server -> Client: RR
 "RIH=100, Priority=4"
 Client -> Server: RA
 "RIH=100, Priority=4"

3.8 ADSPEC control

 The following example describes a possible use of PEPCI to control
 ADSPEC values. The receiver uses the ADSPEC values received in the
 PATH message to decide on what QoS parameters are sent in the RESV
 message. The server may want to update the parameter AVAILABLE-PATH
 BANDWIDTH [INSCH] in the ADSPEC. This value carries information about
 the maximum bandwidth the receiver can successfully reserve due to
 physical resources limitations and bandwidth policy limitations.

 Client -> Server: RQ
 "RIH=12, Path objects including Adspec, out-intfc 2 "

 Server pulls the ADSPEC from the request, and updates the Available
 path bandwidth parameter.

 Server -> Client: RR
 "RIH=12, Priority=2, out-intfc=2, newAdspec "

 Client updates the values in newAdspec, if necessary, and sends it in
 the PATH message sent via interface 2.

Boyle et. al. Expires January 25, 1998 [Page 20]

Internet Draft PEPCI July 25, 1997

4. Security

 As mentioned in Section 2, security of RSVP messages is provided by
 inter-router MD5 authentication. This assumes a chain-of-trust model
 for inter LPM authentication. Security between LPM and server is
 provided by IPSEC.

 To ensure an LPM is talking to the correct policy server involves two
 issues: authentication of the policy client and server using a shared
 secret, and consistent proof that the connection remains valid. The
 shared secret requires manual configuration of keys, which is a
 maintenance issue. For validation of the connection, IPSEC AH will be
 used.

5. Open issues

6. References

[RSVP] Braden, R. ed., "Resource ReSerVation Protocol (RSVP) -
Functional Specification." Internet-Draft, draft-ietf-rsvp-spec-16.txt,
June 1997.

[EXT] Herzog, S., "RSVP Extensions for Policy Control." Internet-
Draft, draft-ietf-rsvp-policy-ext-02.txt, April 1997

[INSCH] Shenker, S., Wroclawski, J., "General Characterization
Parameters for Integrated Service Network Elements" Internet-Draft,
draft-ietf-intserv-charac-02.txt, October 1996

[IPSEC] Atkinson, R., "Security Architecture for the Internet
Protocol." RFC1825, August 1995.

[MD5] Baker, F., "RSVP Cryptographic Authentication." Internet-Draft,
draft-ietf-rsvp-md5-03.txt, May 1997.

[LPM] Herzog, S., "Local Policy Modules (LPM): Policy Control for
RSVP." Internet-Draft, draft-ietf-rsvp-policy-lpm-01.ps, November 1996.

[RSVPPROC] Braden, R., Zhang, L., "Resource ReSerVation Protocol (RSVP)
- Version 1 Message Processing Rules." Internet-Draft, draft-ietf-
rsvp-procrules-00.txt, November 1996.

Boyle et. al. Expires January 25, 1998 [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-spec-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-ext-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-intserv-charac-02.txt
https://datatracker.ietf.org/doc/html/rfc1825
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-md5-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-lpm-01
https://datatracker.ietf.org/doc/html/draft-ietf

Internet Draft PEPCI July 25, 1997

6. Author Information and Acknowledgments

 Thanks Fred!

 Jim Boyle Ron Cohen
 MCI Class Data Systems
 2100 Reston Parkway 13 Hasadna St.
 Reston, VA 20191 Ra'anana 43650 Israel
 703.715.7006 972.9.7462020
 jboyle@mci.net ronc@classdata.com

 Laura Cunningham David Durham
 MCI Intel
 2100 Reston Parkway 2111 NE 25th Avenue
 Reston, VA 20191 Hillsboro, OR 97124
 703.715.7085 503.264.6232
 lcunning@mci.net David_Durham@ccm.jf.intel.com

 Arun Sastry Raj Yavatkar
 Cisco Systems Intel
 210 W Tasman Drive 2111 NE 25th Avenue
 San Jose, CA 95134 Hillsboro, OR 97124
 408.526.7685 503.264.9077
 asastry@cisco.com yavatkar@ibeam.intel.com

Boyle et. al. Expires January 25, 1998 [Page 22]

