
Internet Draft Shai Herzog
Expiration: December 1996 USC/ISI
File: draft-ietf-rsvp-policy-lpm-00.txt

 Local Policy Modules (LPM):

 Policy Enforcement for Resource Reservation Protocols

 June 12, 1996

Status of Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This memo describes a set of building blocks for policy based
 admission control in RSVP and similar resource reservation protocols.
 We describe an interface between RSVP and Local Policy Modules (LPM);
 this interface provides RSVP with policy related information, and
 allows local policy modules to support various accounting and access
 control policies.

Shai Herzog Expiration: December 1996 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-lpm-00.txt

Internet Draft Local Policy Modules (LPM) June 1996

1. Introduction

 The current admission process in RSVP uses resource (capacity) based
 admission control; we expand this model to include policy based
 admission control as well, in one atomic operation. Policy admission
 control is enforced at border/policy nodes by Local Policy Modules
 (LPMs). LPMs based their admission decision, among other factors, on
 the contents of POLICY_DATA objects that are carried inside RSVP
 messages. LPMs are responsible for receiving, processing, and
 forwarding POLICY_DATA objects. Subject to the applicable bilateral
 agreements, and local policies, LPMs may also rewrite and modify the
 POLICY_DATA objects as the pass through policy nodes.

 In this document, we describe the range of policies that can be
 supported, however, we recommend that you read this document along
 side with its policy reference document~[HER96b]. This document
 describes a generic framework for policy enforcement; we do not
 advocate any specific access control policies since we believe that
 standardization of policies (as opposed to the framework) may require
 significantly more research and better understanding of the
 tradeoffs.

 Section provides a general description of the RSVP/LPM interface,
 Section~ specified the internal representation of POLICY_ELEMENT
 objects, Section~ describes the detailed interface between RSVP and
 the LPM, and Section~ provides a peek into some of the more important
 LPM implementation internals.

2. The RSVP/LPM interface

 Unless we are willing to declare a single monolithic access policy we
 need to accommodate varying, independent access control mechanisms in
 RSVP (e.g., over different regions of the Internet, internal
 accounting vs. inter-provider accounting, quota vs. advanced
 reservations, etc.). Each mechanism can have its own, type-specific
 internal format, can be configured for local needs (e.g., policy data
 rewrite (conversion) table, etc.), and can be added and removed from
 nodes with little or no impact on other mechanisms.

 2.1 POLICY_DATA objects

 RSVP messages may carry optional POLICY_DATA objects. Policy data
 objects are a general container for policy related information
 that could assist local RSVP nodes along the reserved path in
 their policy decisions. Policy information may originate from
 end-users, however, it can also be created or converted at the
 core of the network. POLICY_DATA objects contain an optional list
 of FILTER_SPEC objects which identify the flows it is associated

Shai Herzog Expiration: December 1996 [Page 2]

Internet Draft Local Policy Modules (LPM) June 1996

 with: we expect that some access control mechanisms to use session
 POLICY_DATA objects (with wildcard FILTER_SPEC) while others may
 require the full power of per-flow object semantics. Generally, we
 assume that POLICY_DATA objects can be carried by any RSVP
 message, (e.g., Path, Resv, ResvErr, etc.).

 2.2 Modular Context

 Before RSVP accepts a reservation it must check for access
 authorization. This is where local policy modules take effect,
 verifying access rights to local resources (i.e. links, clouds,
 etc.). Figure illustrates the context for the proposed design:
 RSVP interfaces to the LPM to handle input and output of
 POLICY_DATA objects and to check the status of reservations.
 Conceptually, a reservation must be accepted both physically and
 administratively; physically, by traditional admission control
 (based on congestion) and administratively by the local access
 policy enforced by the LPM. This dual admission must be atomic and
 this atomicity is represented by the "accept/reject" module. In
 this document, we concentrate only on the highlighted modules: the
 RSVP and the LPM interfaces. The RSVP interface is defined by
 describing the functionality that is expected from RSVP in order
 to support access control. It includes the handling of incoming
 messages, scheduling outgoing messages, and performing status
 checks. The LPM interface describes the services the LPM
 provides, through a set of LPM functions. However, we do not
 define how RSVP should check the status of reservations (it could
 be done by calling the LPM directly, through an accept/reject
 module, or in other ways). [Note 1]

[Note 1] The RSVP admission process is unidirectional and does not
include upcalls to RSVP, e.g., there is no upcall to notify RSVP that a
previously made reservation was canceled or preempted. We do however
anticipate that once the initial access control architecture is in
place, later changes to the RSVP spec, would define an "accept/reject"
module, and associated status update upcalls to RSVP.

Shai Herzog Expiration: December 1996 [Page 3]

Internet Draft Local Policy Modules (LPM) June 1996

 +--------------------+
 | RSVP |
 +--------------------+
 /|\ /|\
 Resv. status | | In/Outgoing objects
 \|/ \|/
 +---------------+ +---------------+
 | Accept/Reject |<---->| LPM |
 +---------------+ +---------------+
 /|\
 |
 \|/
 +---------------+
 | Ad. Control |
 +---------------+
 Figure 1: The modular context of access control

 2.3 Local Policy Modules

 Local Policy Modules (LPMs) can be configured locally, to a
 particular access policy. LPMs have three basic functions: first,
 to receive incoming policy data objects, second, to update the
 access/accounting status of reservations, and third, to build
 accounting/policy data objects for outgoing RSVP messages (The LPM
 message flow outline is illustrated in figure). LPMs maintain
 local access state for supporting the LPM operations, and this
 state must remain consistent with RSVP's state.

 2.3.1 Processing incoming messages

 RSVP calls the LPM for object processing each time it receives
 a POLICY_DATA object. The LPM processes, stores the object's
 information, and returns a status code to RSVP. The status code
 reports the success/failure of object processing, but does not
 reflect the acceptance of the reservation. The status of a
 reservation must be checked separately (see Section for more
 details).

Shai Herzog Expiration: December 1996 [Page 4]

Internet Draft Local Policy Modules (LPM) June 1996

 +--+
 | RSVP |
 | |
 ************** ************************************>
 <=============*========*======== =====================
 | * * || || |
 | * * ***||******||******************>
 | * * * || || ===============
 +--------*--------*--*----||------||----||-----+
 * * * || || ||
 */ ** || \||/ \||/
 +--------*--------*-------||------||----||-----+
 | ********** +==============+
 | LPM: Common Layer |
 +--+
 /|\ /|\ /|\
 | | |
 \|/ \|/ \|/
 +-----------+ +-----------+ +-----------+
 | Handler 0 | | Handler 1 |<----+ Handler 2 |
 +-----------+ +-----------+ +-----------+
 Figure 2: LPM and RSVP: message flow outline

 2.3.2 Processing outgoing messages

 When RSVP generates an outgoing message it calls the LPM. The
 LPM assembles the outgoing policy data objects and hands them
 to RSVP for placing inside the outgoing message.

 2.3.3 Reservation status updates

 The concept of access control assumes that even previously
 admitted reservations are conditional, in a sense that changes
 in access status may trigger some action against the associated
 reservation (i.e., cancel it, allow its preemption, etc.).
 Therefore, the access control mechanism must periodically check
 for reservation status changes (like quota exhaustion) and take
 the appropriate measures. Reservation status should also be
 checked when system events require it, (e.g., the arrival of a
 new policy data object with updated information). Status
 checks may be limited to the scope of the change (e.g., only
 the interface from which the new RSVP message arrived).

Shai Herzog Expiration: December 1996 [Page 5]

Internet Draft Local Policy Modules (LPM) June 1996

 2.3.4 Optional debiting for Reservations

 The simplest form of access control performs a binary task:
 accept or reject a reservation. More advanced policies may
 require the LPM to perform book keeping (i.e., usage quota
 enforcement or even cost recovery). To achieve such tasks, the
 LPM can be configured to perform debiting. Debiting is not
 part of the LPM interface, and can be configured as an option
 into the status update: when RSVP queries the LPM about the
 status of a reservation, the LPM may perform debiting, and
 update the status of the reservation according to the debiting
 result. The debiting process is based on two separate
 functions: determining "cost", and actual debiting. These two
 functions can be fully independent from each other, and most
 likely be carried out by different handlers.

 In multicast environments, with upstream merging, it is very
 likely that a reservation will be debited against multiple
 network entities that represent the aggregated credentials of
 the downstream receivers. This raises the issue of the "sharing
 model". The sharing model defines how the reservation is
 shared among the different policy data objects. [Note 2]

 The sharing model, and the selection of cost allocation and
 actual debiting mechanisms is an issue of LPM local
 configuration, and is not discussed in this document.

 2.3.5 Security issues

 Hop-by-hop authentication mechanism:

 The RSVP security mechanism proposed in [BAK96] relies on hop-
 by-hop authentication. This form of authentication creates
 a chain of trust that is only as strong as its weakest
 element (in our case, the weakest router). As long as we
 believe that all RSVP nodes are policy nodes as well, then
 RSVP security is sufficient for the entire RSVP message,
 including POLICY_DATA objects. This however is not the
 case when policy is only enforced at boundary nodes.

[Note 2] Sharing model examples: (1) Each policy object is allocated the
full cost, (2) The cost is divided equally between the different objects
(3) The cost is attributed to an arbitrary object (4) The cost allocated
relative to some criteria like the number of downstream receivers, the
size of the organization, the amount of pre-purchased capacity
(remaining quota), etc.

Shai Herzog Expiration: December 1996 [Page 6]

Internet Draft Local Policy Modules (LPM) June 1996

 Security over clouds:

 If policies are only enforced at cloud entry and exit
 points, then RSVP's security is insufficient to protect
 policy objects, since from a policy enforcement
 perspective, the in-cloud nodes are unsecured. We propose
 a "policy data tunneling" approach, where the logical
 policy topology is discovered automatically, and security
 is enforced over the logical topology. When policy
 objects are created at border routers, they are
 encapsulated in a security envelope (described in Sections
 and ref security-issues). The envelop is forwarded as-is
 over the cloud, and is only removed by the cloud border
 (exit) node.

 2.4 Default handling of policy data objects

 Because we do not expect (or desire) that every RSVP node will be
 capable of processing all types of policy data objects, it is
 essential that RSVP define default handling of such unrecognized
 objects, and that this default handling be required from any
 RSVP/LPM implementation. The general concept is that RSVP play
 the role of a repeater (or a tunnel) by forwarding the received
 objects without modification. Implementation details are an part
 of the internal LPM architecture, described in Section .

3. POLICY_ELEMENT objects: internal representation

 The contents of the POLICY_ELEMENT is opaque to RSVP; the format we
 describe here is only visible to the LPM. POLICY_ELEMENT objects are
 made of a list of policy particles. Policy particles have a length, a
 policy type (PType) and a type specific format.

 +-------------+-------------+-------------+-------------+
 | Length | 20 | CType |
 +---------------------------+-------------+-------------+
 | Policy Particles (list) |
 +---+

 Individual policy particle has the following format

 +---------------------------+---------------------------+
 | Length | PType |
 +---------------------------+---------------------------+
 | Ptype specific format |
 +---+

Shai Herzog Expiration: December 1996 [Page 7]

Internet Draft Local Policy Modules (LPM) June 1996

4. LPM calls

 The LPM maintains access control state per flow. This state is
 complementary to the RSVP state, and both are semantically attached
 by flow handles, for all the LPM calls.

 4.1 Success codes

 All the LPM calls report success/failure status. This report is
 made of three components: (1) a return code of the lpm function,
 that reports the general success of the call (2) a global variable
 "lpm_errno" that reports specific reason code (similar to the
 errno in Unix), and (3) a global variable "lpm_eflgs" used for
 flags set by the LPM call.

 4.2 Flow handles (fh)

 The LPM uses Flow Handles (fh) to associate RSVP flows with LPM
 state. RSVP obtains flow handles by calling "lpm_open()", which
 is called only once for each session or flow, upon the first
 arrival of a POLICY_DATA object associated with that flow or
 session. RSVP obtains the flow handle and stores it in the flow's
 data structures, for future lpm calls.

 When an RSVP message is fragmented, POLICY_DATA objects may be out
 of order, and may reside in separate packets. The responsibility
 of associating a POLICY_DATA object with a particular flow (and
 its flow handles (fh)) lies "always" with RSVP. The FILTER_SPEC
 object inside the POLICY_DATA object is visible to RSVP, and
 should be used by it to aid in this classification. [Note 3]

 It is important to note that under no circumstances should this
 classification be left to the LPM.

 4.3 Associating source and receiver objects

 The access status of a reservation may depend on policy data
 objects originating from the source, receivers or both. For
 instance, a lecture can be sponsored by the source that would
 provide the necessary credentials. If the LPM architecture is to
 support source based policies, it must be able to associate source
 objects with reservation state. Some associations are trivial

[Note 3] The FILTER_SPEC object is opaque to the LPM and the only reason
it is included inside the POLICY_DATA object is to allow RSVP to
associate the object with its corresponding flow.

Shai Herzog Expiration: December 1996 [Page 8]

Internet Draft Local Policy Modules (LPM) June 1996

 (like in the case of fixed filter (FF) reservation style) but some
 are more complicated (as in WF reservations). Since the LPM
 architecture associates flow handles with individual source state,
 it is the responsibility of RSVP to map reservations to their list
 of associated sources. The list takes the form of a list of flow
 handles, and can be passed on to LPM functions through a pair of
 parameters, "int fh_num" and "int *fn_vec").

 4.4 LPM calls format

 lpm_open (int *fh)

 When RSVP first encounters POLICY_DATA objects, it calls the LPM's
 "lpm_open" routine. The LPM builds internal control blocks and
 places the flow handle value in fh, for future reference.

 All incoming POLICY_DATA objects are passed by RSVP to the LPM:

 lpm_in (int fh_num, int *fh_vec, int vif, RSVP_HOP *hop, int
 mtype, POLICY_DATA *polp, int ttd)

 Parameter "vif" describes the input virtual interface [Note 4]
 from which the RSVP message was received, "hop" describes the
 node that sent the RSVP message (previous hop/next hop), and
 "mtype" describes the type (and implicitly, the direction) of the
 RSVP message (i.e., Path, Resv etc.). Parameter "polp" points to
 the policy data object, and "ttd" provides a timeout (time to die)
 value for the policy data object.

 When RSVP is ready for output, it queries the LPM:

 lpm_out (int fh_num, int *fh_vec, int vif, RSVP_HOP *hop, int
 mtype, POLICY_DATA **polp)

 The parameters are similar to those for "lpm_in". A successful
 call places a pointer to the outgoing POLICY_DATA object in
 "polp"; Notice that the output process is performed separately for
 each outgoing RSVP message, but is required to maintain

[Note 4] The term Virtual Interface (vif) is borrowed from DVMRP
terminology, although, for LPM purposes it can be any integer index that
RSVP associates with specific interfaces, independently from any routing
protocol.

Shai Herzog Expiration: December 1996 [Page 9]

Internet Draft Local Policy Modules (LPM) June 1996

 consistency and atomicity even if some LPM status had changed in
 between outputs of different outgoing RSVP messages. Notice that
 there is no formal limit on the size of the resulting POLICY_DATA
 object. If the resulting object is too large to be sent in a
 single RSVP message it is RSVP's responsibility to perform
 semantic fragmentation because it has the unique knowledge about
 available message space. An alternative solution would be to
 provide an lpm_fragment() service to help RSVP in this task.

 Checking the status of an existing reservation is done by calling:

 lpm_status (int fh_session, int fh_num, int *fh_vec, int vif, int
 cur_time, int phy_resv_handle, Object_header
 *phy_resv_flwspec, int ind)

 Status is checked individually for each outgoing (reserved) link.
 Parameter "fh_session" specifies the flow handle associated with
 the session, "phy_resv_handle" identifies the physical reservation
 (e.g., ISPS, etc.), and "phy_resv_flwspec" describes the current,
 merged FlowSpec of the reservation. The value of "cur_time"
 describe the current RSVP time, which allows the LPM to timeout
 old state (state with earlier time to die values). Parameter
 "ind" is used to have different flavors of status checks:
 "LPM_STATF_AGE": setting this flag ages (and times
 out) LPM state associated with the specified fh. Status checks may
 be periodic or event driven; this flag is set only for periodic
 status checks. "LPM_STATF_RECALC": Status checks may involve
 calculations over multiple outgoing interfaces, and thus need only
 be done once for all interfaces before individual per-interface
 status is reported. This bit is set on for the first vif checked
 and is reset for the rest. [Note 5]

 Status checks with "ind" set to 0 simply report values that were
 already calculated before and do not age the LPM state.

 If RSVP prunes branches from the reservation tree, it must notify
 the LPM by calling:

 lpm_prune (int fh_num, int *fh_vec, int vif, RSVP_HOP *hop, int
 mtype)

[Note 5] This is an optimization. While useless, there should be no harm
in recalculating status parameters, for each outgoing interface.

Shai Herzog Expiration: December 1996 [Page 10]

Internet Draft Local Policy Modules (LPM) June 1996

 (The details of this call is described in Section).

 When RSVP deletes an entire flow state, it must notify the LPM:

 lpm_close (int fh)

 Upon this notification, the LPM finishes its accounting for this
 reservation (final debits/credits) and deletes all internal state
 associated with fh.

 Initializing the LPM is done once only, in the initialization
 phase of RSVP, by calling.

 lpm_config (void)

 4.5 State Maintenance

 LPM state must remain consistent with the corresponding RSVP
 state. State is created when POLICY_DATA objects are passed to the
 LPM and can be updated or removed through several possible
 mechanisms that correspond to RSVP's state management mechanisms:

 Timeout:

 When new POLICY_DATA objects cease to arrive (as a result of
 either change of policy or fragmentation loss) the locally
 stored state begins to age. Each POLICY_ELEMENT/FILTER_SPEC
 pair is subject to a timer, and when the timer goes off, the
 state should be deleted. The timer mechanism should be
 similar to that of RSVP and both should remained synchronized
 in the following way: each time RSVP hands over a policy
 object to the LPM (lpm_in()) it provides the LPM with time-
 to-die value ("current-timer + time-to-live) ". Each time
 RSVP verifies the status of a reservation (lpm_status()), it
 provides the current timer value, forcing all pieces of
 information with an earlier timeout value to be purged.

 Teardown

 From a network security standpoint, creating new policy state
 requires the similar integrity protection as tearing it down.
 We propose a very simple mechanism for tearing down state:
 the state created by sending POLICY_ELEMENT Pe_i is torn down
 by sending -Pe_i (the same object marked as teardown). In
 this case, the LPM would locate the original state, compare
 it with the teardown object, if a match is found, tear it

Shai Herzog Expiration: December 1996 [Page 11]

Internet Draft Local Policy Modules (LPM) June 1996

 down. We define each POLICY_ELEMENT as a pair of two CTypes,
 thus effectively splitting the CType range of POLICY_ELEMENT
 objects in two. Given a POLICY_ELEMENT i, Pe_i represents an
 updated state, while Pe_i+1 represents teardown state of
 CType i (-Pe_i).

 Pruning When the shape of the reserved tree changes due to routing
 updates or RSVP teardown messages, RSVP purges the state of
 the pruned link, and must also call "lpm_prune()" to purge
 the corresponding LPM state.

 Closing: The call "lpm_close(fh)" purges all the state associated
 with the handle fh. Closing a flow handle is done when RSVP
 no longer maintains any state associated with that flow (a
 sender quits, the session is over, etc.).

5. LPM internals

 This section describes the current internal design of the LPM. While
 this design is not part of the mandatory specification we recommend
 following it.

 5.1 LPM configurations

 LPM configuration can be general, for all handlers, but can also
 be type/handler specific. (e.g., a specific handler's rewrite
 conversion table for policy data objects). Configuration may be
 expressed in a simple configuration file or even through a
 configuration language.

Shai Herzog Expiration: December 1996 [Page 12]

Internet Draft Local Policy Modules (LPM) June 1996

 +---+
 | RSVP |
 | Incoming Resv: Resv-header,LPM-header,P1,P2,P3,P4 |
 | | |
 +---+-----------------+
 | LPM: Common Layer \|/ |
 | lpm_in() +-------- LPM-header,P1,P2,P3,P4 |
 | / / | \ |
 +-----------+-----+-----+-----+-----+-----+-----+-----+-----+
 | | P1| | P2| | P3| | P4| |
 | | \|/ | \|/ | \|/ | \|/ |
 | | | | | |
 | Handler 0 | Handler 1 | Handler 2 | Handler 4 | Handler 5 |
 +-----------+-----------+-----------+-----------+-----------+
 Figure 3: Disassembly of an incoming Resv message with POLICY_DATA
 objects

 5.2 The LPM layered Design

 The internal format of POLICY_DATA objects is PType specific,
 allowing up to 65535 independent types. Our design allow each
 specific PType to be handled by a separate handler, and allow such
 handlers to be added and configured independently. Clearly,
 handlers are allowed to handler more than one PTypes.

 The LPM is divided into two layers: a PType specific layer and a
 common layer (figure). The PType specific layer provides a set
 of locally configured independent handlers, one for each PType
 supported by the local node. The common layer provides the glue
 between RSVP and the PType specific layer by multiplexing RSVP's
 lpm calls into individual, PType specific calls.

 On input, the common layer disassembles the incoming POLICY_DATA
 object, dispatches the internal objects to their PType specific
 handlers, and aggregates the return code status (figure). On
 output, it collects the internal objects from all active handlers,
 and assembles them into a single POLICY_DATA object (figure).

 On status queries, the common layer queries all the active
 handlers, and combines their individual status responses into a
 single status result. We use the following rule: a reservation is
 approved by the common layer, if there is at least one handler
 that approves it, and none other rejects it. PType specific
 handlers can accept, reject or be neutral in their responses.
 [Note 6]

[Note 6] A policy data object that determines cost is a good example for

Shai Herzog Expiration: December 1996 [Page 13]

Internet Draft Local Policy Modules (LPM) June 1996

 +---+
 | RSVP |
 | Outgoing Resv: Resv-header,LPM-header,P1,P2,P3,P4 |
 | /|\ |
 +---+-----------------+
 | LPM: Common Layer | |
 | lpm_out() +-------> LPM-header,P1,P2,P3,P4 |
 | / / /|\ \ |
 +-----------+-----+-----+-----+-----+-----+-----+-----+-----+
 | | P1| | P2| | P3| | P4| |
 | | | | | | | | | |
 | | | | | |
 | Handler 0 | Handler 1 | Handler 2 | Handler 4 | Handler 5 |
 +-----------+-----------+-----------+-----------+-----------+
 Figure 4: Assembly of POLICY_DATA objects for an outgoing Resv message

 5.3 Interaction between handlers

 It is reasonable to assume that independent PTypes may require
 some interaction between their handlers. Consider the case where
 policy object type-1 is a credential type (defines a user
 identity) and a type-2 is an accounting type (determines cost), a
 possible interaction could be to let type-2 determine the cost,
 and let type-1 perform the actual debiting according to the user
 identity. Such interaction has two basic requirements: order
 dependency and export capability. Order dependency is required
 because type-2 must calculate the cost before type-1. Export
 capability is needed to allow type-2 to export the calculation
 results to type-1. Our implementation allows the ordering or
 handlers to be expressed as part of local LPM configuration. It
 also provides internal support for function calls between
 independent handlers (in order to obtain exported state).

 Consider the case where type-3 and type-4 also perform accounting.
 The proposed architecture is flexible enough to allow local
 configuration to select the handler that determines the debited
 cost: type-2, type-3 or type-4.

a neutral handler. It provide information about how much the flow costs,
but does not perform actual debiting.

Shai Herzog Expiration: December 1996 [Page 14]

Internet Draft Local Policy Modules (LPM) June 1996

 5.4 Default handling of policy data objects

 In~[HER96c] we define the default handling of unrecognized POLICY_DATA
 objects. If an RSVP node is LPM capable, it may be more beneficial
 for the LPM to take that burden off from RSVP and perform it
 itself. We propose the use of CType 0 for default handling: In a
 policy node, only unrecognized objects would be handled by handler
 PType 0. In a non-policy node, all objects are unrecognized, and
 therefore should all are handled as PType 0, regardless of their
 actual PType. PType 0 is regarded as a reserved type.

6. Acknowledgment

 This document incorporates inputs from Deborah Estrin, Scott Shenker
 and Bob Braden and feedback from RSVP collaborators.

References

[BAK96] F. Baker. RSVP Cryptographic Authentication "Internet-Draft",
draft-ietf-rsvp-md5-02.txt, 1996.

[HER96c] RSVP Extensions for Policy Control. "Internet-Draft", draft-
ietf-rsvp-policy-ext-00.[ps,txt].

[HER96b] Accounting and Access Control Policies for Resource
 Reservation Protocols. "Internet-Draft", draft-ietf-rsvp-policy-

arch-00.[ps,txt].

Shai Herzog Expiration: December 1996 [Page 15]

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-md5-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-ext-00
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-ext-00
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-arch-00
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-policy-arch-00

