
Internet Draft R. Braden
Expiration: December 1997 ISI
File: draft-ietf-rsvp-rapi-00.txt D. Hoffman
 Sun Microsystems

 RAPI -- An RSVP Application Programming Interface

 Version 5

 June 16, 1997

Status of Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet- Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This memo describes version 5 of RAPI, a specific API (application
 programming interface) for RSVP. The RAPI interface is one
 realization of the generic API contained in the RSVP Functional
 Specification document, and it is being published for information
 only. The RAPI interface is based upon a client library, whose calls
 are described here.

1. Introduction

 An Internet application uses some "API" (Application Programming
 Interface) in order to request enhanced quality-of-service (QoS). A
 local RSVP control program will then use the RSVP protocol to
 propagate the QoS request through the routers along path(s) for the

Braden, Hoffman Expiration: December 1997 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-rapi-00.txt

Internet Draft RAPI v.5 June 1997

 data flow. Each router may accept or deny the request, depending
 upon its available resources. In the case of failure, the local RSVP
 control program will return the decision to the requesting
 application via the API.

 This document describes a particular RSVP API implementation known as
 "RAPI". RAPI is based on a client library linked with the
 application. This document describes the calls to that library.
 There is at least one other documented API for RSVP, based on
 sockets.

 The following diagram shows RAPI's implementation model. RSVP is
 implemented on a host by a user-level daemon program. The procedures
 of the RSVP client library module interact with the local RSVP daemon
 program through a Unix-domain socket. RAPI refers to the interface
 between the application and the RSVP client library.

 H O S T . R O U T E R
 (RAPI) .
 v .
 _____________v .
 | |_______ .
 | x RSVP | .
 | x Client| .
 | Application x Lib | ____________ . _____________
 | x rtns | | | . | | |
 | x_______| | RSVP | . | RSVP |
 | | | | Daemon | . | Daemon |
 |_____________| | |____________| . |_____________|
 | | | . | . | | |
 USER | | | . | . | | |
 ===========|======|========|===V====|=====. | | |
 KERNEL | |_<____>_| . |___<_____>___| | |__>
 | UNIX Pipe . RSVP messages | RSVP
 | . . |
 | _____V______ . _____V______
 | | | . | |
 | | Packet | . | Packet |
 += DATA====> | Classifier | =DATA==> | Classifier | ==>
 |& Scheduler | . |& Scheduler |
 | (if any) | . | |
 |____________| . |____________|

Braden, Hoffman Expiration: December 1997 [Page 2]

Internet Draft RAPI v.5 June 1997

 1.1 Reservation Model

 RSVP performs the signaling necessary to make a resource
 reservation for a simplex data flow sent to a unicast or multicast
 destination address. Although RSVP distinguishes senders from
 receivers, the same application may act in both roles.

 RSVP assigns QoS to an specific multipoint-to-multipoint data flow
 known as a "session". A session is defined by a particular
 transport protocol, IP destination address, and destination port.
 In order to receive data packets for a particular multicast
 session, a host must have joined the corresponding IP multicast
 group using the setsockopt call IP_ADD_MEMBERSHIP.

 A data source, or "sender", is defined by an IP source address and
 a source port. A given session may have multiple senders S1, S2,
 ... Sn, and if the destination is a multicast address, multiple
 "receivers" R1, R2, ... Rm. In the current version of RSVP, the
 ports used by RSVP for defining sessions and senders are
 restricted to be TCP/UDP port numbers.

 Under RSVP, QoS requests are made by the data receivers. A QoS
 request contains a "flowspec" together with a "filter spec". The
 flowspec includes an "Rspec", which defines the desired QoS and is
 used to control the packet scheduling mechanism in the router or
 host, and also a "Tspec", which defines the traffic expected by
 the receiver. The filter spec controls packet classification to
 determine which sender(s)' data packets receive the corresponding
 QoS.

 The detailed manner in which reservations from different receivers
 are shared in the Internet is controlled by a reservation
 parameter known as the "reservation style". The RSVP Functional
 Specification contains a definition and explanation of the
 different reservation styles.

 1.2 API Outline

 Using the RAPI interface, an application uses the txt _session()
 call to define an "API session" for sending a single simplex data
 flow and/or receiving such a data flow. The txt _sender() call
 may then be used to register as a data sender, and/or the
 txt _reserve() call may be used to make a QoS reservation as a
 data receiver.The txt _sender and/or txt _reserve calls may be
 repeated with different parameters to dynamically modify the state
 at any time or they can be issued in null forms that retract the
 corresponding registration. The application can call

Braden, Hoffman Expiration: December 1997 [Page 3]

Internet Draft RAPI v.5 June 1997

 txt _release() to close the session and delete all of its resource
 reservations. The relationship among the RAPI library calls is
 summarized by the RAPI state diagram shown below. Rapi_sender(0)
 and txt _reserve(0) represent null calls in that diagram.

 Note that a single API session, defined by a single txt _session
 call, can define only one sender at a time. More than one API
 session may be established for the same RSVP session. For
 example, suppose an application sends multiple UDP data flows,
 distinguished by source port. It will call txt _session and
 txt _sender separately for each of these flows.

 The txt _session call allows the application to specify an "
 upcall" (or "callback") routine that will be invoked to signal
 RSVP state change and error events. There are five types of
 upcalls.

 o PATH_EVENT and RESV_EVENT upcalls signal the arrival or
 change of path state and reservation state, respectively, and
 deliver the relevant state information to the application.

 o PATH_ERROR and RESV_ERROR upcalls signal the corresponding
 errors.

 o PATH_CONFIRM upcalls signal the arrival of a CONFIRM message.

 The upcall routine is invoked indirectly (and synchronously) by
 the application, using the following mechanism.

 o The application issues the RAPI library call txt _getfd() to
 learn the file descriptor of the Unix socket used by the API.

 o The application detects read events on this file descriptor,
 either passing it directly in a select call or passing it to
 the notifier of another library (such as XLib, tk/tcl, RPC,
 etc.).

 o When a read event on the file descriptor is signaled, the
 application calls txt _dispatch(). This drives the API to
 execute the upcall routine if appropriate.

Braden, Hoffman Expiration: December 1997 [Page 4]

Internet Draft RAPI v.5 June 1997

 RAPI State Diagram

 +---------+
 | Closed |<-----+
 +---------+ |
 | |
 txt _session |
 | |
 +----+ | txt _release
 PATH_EVENT | V V |
 | +---------+ |
 +---| |------+
 | Session |
 +----------| |----------+
 txt _sender +---------+ txt _reserve
 | ^ ^ |
 txt _sender or | | | | txt _reserve or
 PATH_EVENT or | rapi_sender(0) | | PATH_EVENT or
 RESV_EVENT or | | | | CONFIRM_EVENT
 PATH_ERROR | | | | or RESV_ERROR
 +----+ | | rapi_reserve(0) | +----+
 | V V | | V V |
 | +---------+ | | +---------+ |
 +---| |------+ +------| |---+
 | Send | | Rcv |
 +-------| |<-----+ +----->| |-------+
 | +---------+ | | +---------+ | | |
 | | | | | |
 | | rapi_reserve(0) | | |
 | | | | | |
 | | | rapi_sender(0) | |
 | | | | | |
 | rapi_reserve | | rapi_sender |
 | | +---------+ | |
 | +--------->| |<---------+ |
 | | SendRcv | |
 | rapi_sender or +---| | |
 | rapi_reserve or | +---------+ |
 | PATH_EVENT or | ^ | |
 | RESV_EVENT or +----+ | |
 | CONFIRM_EVENT | |
 | or PATH_ERROR | |
 | or RESV_ERROR | |
 | rapi_release rapi_release
 rapi_release V |
 | +--------+ |
 +----------------------->| Closed |<----------------------+
 +--------+

Braden, Hoffman Expiration: December 1997 [Page 5]

Internet Draft RAPI v.5 June 1997

 A synchronous error in a RAPI library routine returns an
 appropriate error code. Asynchronous RSVP errors are delivered to
 the application via the RAPI upcall routine. Text messages for
 synchronous and asynchronous error codes will be found in the file
 "rapi_err.h".

 The first rapi_session() call in a particular instance of the RAPI
 library opens a Unix-domain RAPI socket to the RSVP daemon and
 passes the session registration request across it. If the
 application (or the daemon) crashes without properly closing the
 RAPI socket, the other side will be notified to perform a cleanup.
 In particular, if the user process terminates without explicitly
 closing the RAPI session, the daemon will delete the corresponding
 reservation state from the routers.

Braden, Hoffman Expiration: December 1997 [Page 6]

Internet Draft RAPI v.5 June 1997

2. CLIENT LIBRARY SERVICES

 The RSVP API provides the client library calls defined in this
 section. To use these calls, the application should include the file
 "rapi_lib.h" and "rsvp_intserv.h".

 A. Create a Session

 The rapi_session call creates an API session. If it succeeds,
 the call returns an opaque but non-zero session handle for use
 in subsequent calls related to this API session. If the call
 fails synchronously, it returns zero (NULL_SID) and stores a
 RAPI error code into an integer variable pointed to by the
 "errnop" parameter.

 After a successful rapi_session call has been made, the
 application may receive upcalls of type RAPI_PATH_EVENT for the
 API session.

 unsigned int rapi_session(

 struct sockaddr *Dest, /* Session: (Dst addr, port) */
 int Protid, /* Protocol Id */
 int flags, /* flags */
 int (*Event_rtn)(), /* Address of upcall routine */
 void *Event_arg, /* App argument to upcall */
 int *errnop /* Place to return error code*/
)

 The parameters are as follows.

 o "Dest"

 This required parameter points to a sockaddr structure
 defining the destination IP (V4 or V6) address and a port
 number to which data will be sent. The "Dest" and "Protid"
 parameters define an RSVP session. If the "Protid"
 specifies UDP or TCP transport, the port corresponds to the
 appropriate transport port number.

 o "Protid"

 The IP protocol ID for the session. If it is omitted
 (i.e., zero), 17 (UDP) is assumed.

 o "flags"

Braden, Hoffman Expiration: December 1997 [Page 7]

Internet Draft RAPI v.5 June 1997

 RAPI_GPI_SESSION (0x40) -- If set, this flag requests that
 this API session be defined in the GPI format used by the
 IPSEC extension of RSVP. If this flag is set, the port
 number included in "Dest" is considered "virtual" (see the
 IPSEC specification for details), and any sender template
 and filter specifications must be in GPI format.

 RAPI_USE_INTSERV (0X10) -- If set, IntServ formats are
 used in upcalls; otherwise, the Simplified format is used
 (see Section 4 below).

 o "Event_rtn"

 This parameter is a pointer to an upcall routine that will
 be invoked to notify the application of RSVP errors and
 state change events. The parameter may be NULL if there is
 no such routine.

 o "Event_arg"

 This optional parameter points to an argument that will be
 passed in any invocation of the upcall routine.

 o "errnop"

 The address of an integer into which a RAPI error code will
 be returned.

 An application can have multiple API sessions registered for the
 same or different RSVP sessions at the same time. There can be
 at most one sender associated with each API session; however, an
 application can announce multiple senders for a given RSVP
 session by announcing each sender in a separate API session.

 Two API sessions for the same RSVP session, if they are
 receiving data, are assumed to have joined the same multicast
 group and will receive the same data packets. At present, if
 two or more such sessions issue "rapi_reserve" calls, their
 reservation parameters must agree or the results will be
 undefined. There is no check for such a conflict.
 Furthermore, the code does not disallow multiple API sessions
 for the same sender (defined by the host interface and the local
 UDP port) within the same RSVP session, i.e., for the same data
 flow. If these API sessions are created by different
 application processes on the local host, the data packets they
 send will be merged but their sender declarations will not be.

 B. Specify Sender Parameters

Braden, Hoffman Expiration: December 1997 [Page 8]

Internet Draft RAPI v.5 June 1997

 An application must issue a rapi_sender call if it intends to
 send a flow of data for which receivers may make reservations.
 This call defines, redefines, or deletes the parameters of that
 flow. A rapi_sender call may be issued more than once for the
 same API session; the most recent one takes precedence.

 If there is a synchronous error, rapi_sender() returns a RAPI
 error code; otherwise, it returns zero. Once a successful
 rapi_sender call has been made, the application may receive
 upcalls of type RAPI_RESV_EVENT or RAPI_PATH_ERROR.

 int rapi_sender(
 int Sid, /* Session ID */
 int flags, /* Flags */
 struct sockaddr *LHost, /* Local Host */
 rapi_filter_t *SenderTemplate, /* Sender template */
 rapi_tspec_t *SenderTspec, /* Sender Tspec */
 rapi_adspec_t *SenderAdspec, /* Sender Adspec */
 rapi_policy_t *SenderPolicy, /* Sender policy data */
 int TTL; /* Multicast data TTL */
)

 The parameters are as follows.

 o "Sid"

 This required parameter must be a session ID returned by a
 successful rapi_session call.

 o "flags"

 No flags are currently defined for this call.

 o "LHost"

 This optional parameter may point to a sockaddr structure
 specifying the IP source address and the UDP source port
 from which data will be sent, or it may be NULL.

 If the IP source address is INADDR_ANY, the API will use
 the default IP (V4 or V6) address of the local host. This
 is sufficient unless the host is multihomed. The port
 number may be zero if the protocol for the session does not
 have ports.

 A NULL "LHost" parameter indicates that the application
 wishes to withdraw its registration as a sender. In this

Braden, Hoffman Expiration: December 1997 [Page 9]

Internet Draft RAPI v.5 June 1997

 case, the following parameters will all be ignored.

 o "SenderTemplate"

 This optional parameter may be a pointer to a RAPI filter
 spec structure (see Section 4) specifying the format of
 data packets to be sent, or it may be NULL.

 If this parameter is omitted (NULL), a sender template will
 be created internally from the "Dest" and "LHost"
 parameters. If a "SenderTemplate" parameter is present,
 the "LHost" parameter will be ignored.

 This parameter is required in order to declare the sender
 template for a session using IPSEC, i.e., a session created
 with the RAP_GPI_SESSION flag set.

 o "SenderTspec"

 This required parameter is a pointer to a Tspec that
 defines the traffic that this sender will create.

 o "SenderAdspec"

 This optional parameter may point to a RAPI Adspec
 structure (see Section 4), or it may be NULL.

 o "SenderPolicy"

 This optional parameter may be a pointer to a sender policy
 data structure, or it may be NULL.

 o "TTL"

 This parameter specifies the IP TTL (Time-to-Live) value
 with which multicast data will be sent. It allows RSVP to
 send its control messages with the same TTL scope as the
 data packets.

Braden, Hoffman Expiration: December 1997 [Page 10]

Internet Draft RAPI v.5 June 1997

 C. Make, Modify, or Delete a Reservation

 The rapi_reserve procedure is called to make, modify, or delete
 a resource reservation for a session. The call may be repeated
 with different parameters, allowing the application to modify or
 remove the reservation; the latest call will take precedence.
 Depending upon the parameters, each call may or may not result
 in new Admission Control calls, which could fail asynchronously.

 If there is a synchronous error in this call, rapi_reserve()
 returns a RAPI error code; otherwise, it returns zero. Once
 this call has been successful, the application may receive an
 upcall of type RAPI_RESV_ERROR or RAPI_RESV_CONFIRM.

 An admission control failure (e.g., refusal of the QoS request)
 will be reported asynchronously by an upcall of type
 RAPI_RESV_ERROR. A " No Path State" error code indicates that
 RSVP state from one or more of the senders specified in
 "filter_list" has not (yet) propagated all the way to the
 receiver; it may also indicate that one or more of the specified
 senders has closed its API and that its RSVP state has been
 deleted from the routers.

 int rapi_reserve(

 int Sid, /* Session ID */
 int flags,
 struct sockaddr *RHost, /* Receive host addr*/
 int StyleId, /* Style ID */
 rapi_stylex_t *Style_Ext, /* Style extension */
 rapi_policy_t *Rcvr_Policy, /* Receiver policy */

 int FilterSpecNo, /* # of filter specs */
 rapi_filter_t *FilterSpec_list, /* List of filt specs*/
 int FlowspecNo, /* # of flowspecs */
 rapi_flowspec_t *Flowspec_list /* List of flowspecs*/
)

 The parameters are as follows:

 o "Sid"

 This required parameter must be a session ID returned by a
 successful rapi_session call.

 o "flags"

Braden, Hoffman Expiration: December 1997 [Page 11]

Internet Draft RAPI v.5 June 1997

 Setting the RAPI_REQ_CONFIRM flag will request confirmation
 of the reservation, by means of a confirmation upcall (type
 RAPI_RESV_CONFIRM).

 o "RHost"

 This optional parameter may be used to define the interface
 address on which data will be received. It is useful for a
 multi-homed host. If it is omitted or the host address is
 INADDR_ANY, the default interface will be assumed.

 o "StyleId"

 This required parameter specifies the reservation style id
 (values defined below).

 o "Style_Ext"

 This optional parameter is a pointer to a style-dependent
 extension to the parameter list, if any.

 o "Rcvr_Policy"

 This optional parameter is a pointer to a policy data
 structure, or it is NULL.

 o "FilterSpec_list", "FilterSpecNo"

 The "FilterSpec_list" parameter is a pointer to an area
 containing a sequential vector of RAPI filter spec objects.
 The number of objexts in this vector is specified in
 "FilterSpecNo". If "FilterSpecNo" is zero, the
 "FilterSpec_list" parameter will be ignored.

 o "Flowspec_list", "FlowspecNo"

 The "Flowspec_list" parameter is a pointer to an area
 containing a sequential vector of RAPI flow spec objects.
 The number of objects in this vector is specified in
 "FlowspecNo". If "FlowspecNo" is zero, the "Flowspec_list"
 parameter will be ignored.

 If FlowspecNo is zero, the rapi_reserve call will remove the
 current reservation(s) for the specified session, and
 FilterSpec_list and Flowspec_list will be ignored. Otherwise,
 the parameters depend upon the style, as follows.

 o Wildcard Filter (WF)

Braden, Hoffman Expiration: December 1997 [Page 12]

Internet Draft RAPI v.5 June 1997

 Use "StyleId" = RAPI_RSTYLE_WILDCARD. The "Flowspec_list"
 parameter may be empty (to delete the reservation) or else
 point to a single flowspec. The "FilterSpec_list"
 parameter may be empty or it may point to a single filter
 spec containing appropriate wildcard(s).

 o Fixed Filter (FF)

 Use "StyleId" = RAPI_RSTYLE_FIXED. "FilterSpecNo" must
 equal "FlowspecNo". Entries in "Flowspec_list" and
 "FilterSpec_list" parameters will correspond in pairs.

 o Shared Explicit (SE)

 Use "StyleId" = RAPI_RSTYLE_SE. The "Flowspec_list"
 parameter should point to a single flowspec. The "
 FilterSpec_list" parameter may point to a list of any
 length.

Braden, Hoffman Expiration: December 1997 [Page 13]

Internet Draft RAPI v.5 June 1997

 D. Remove a Session

 The rapi_release call removes the reservation, if any, and the
 state corresponding to a given session handle. This call will
 be made implicitly if the application terminates without closing
 its RSVP sessions. If the session handle is invalid, the call
 returns a corresponding RAPI error code; otherwise, it returns
 zero.

 int {
7777777777777778 r99a99p99i9999r99e99l99e99a99s99e99}99(9999u99n99s99i99g99n99e99d9999i99n99t9999S99i99d9999)77777777777777778.fi

 E. Get File Descriptor

 The rapi_getfd call may be used by the application to obtain the
 file descriptor associated with the Unix socket connected to the
 RSVP daemon, after a rapi_session() call has completed
 successfully and before rapi_release() is called. When a socket
 read event is signaled on this file descriptor, the application
 should call rapi_dispatch(), described below.

 int {777r99a99p99i9999g99e99t7777d} (unsigned int Sid)

 If Sid is illegal or undefined, this call returns -1; otherwise,
 it returns the file descriptor.

 F. Dispatch API Event

 The application should call this routine whenever a read event
 is signaled on the file descriptor returned by rapi_getfd().
 Rapi_dispatch() may be called at any time, but it will generally
 have no effect unless there is a pending event associated with
 the Unix pipe. Calling this routine may result in one or more
 upcalls to the application from any of the open API sessions
 known to this instance of the library.

 int rapi_dispatch()

 If this call encounters an error, rapi_dispatch() returns a RAPI
 error code; otherwise, it returns zero,

 G. RAPI Version

 int rapi_version()

 This call returns a single integer that defines the version of
 the interface. The returned value is composed of a major number
 and a minor number, encoded as 100*major + minor. This call may

Braden, Hoffman Expiration: December 1997 [Page 14]

Internet Draft RAPI v.5 June 1997

 be used by an application to adapt to different versions.

 The API described in this document has major version number 5.

 H. Upcalls

 An upcall (invoked by a call to rapi_dispatch()) executes the
 procedure whose address was specified by the "Event_rtn" in the
 rapi_register call.

 event_upcall(

 unsigned int Sid, /* Session ID */
 int EventType, /* Event type */

 int Style, /* Resv style */
 int ErrorCode, /* (error event): err code */
 int ErrorValue, /* (error event): err value*/
 struct sockaddr *ErrorNode, /* Node that detected error*/
 unsigned char ErrorFlags,

 int FilterSpecNo, /* # of filter specs in list*/
 rapi_filter_t *FilterSpec_list,
 int FlowspecNo, /* # of flowspecs in list */
 rapi_spec_t *Flowspec_list,
 int AdspecNo, /* # of ADSPECs in list */
 rapi_adspec_t *Adspec_list,
 void *Event_arg /* Supplied by application */

 The following parameters are used in the upcall:

 o "Sid"

 This parameter must be a session ID returned by a
 successful rapi_register call.

 o "EventType"

 Upcall event types.

 o "Style"

 This parameter contains the style of the reservation; it is
 non-zero only for a RAPI_RESV_EVENT or RAPI_RESV_ERROR
 upcall.

 o "ErrorCode, ErrorValue"

Braden, Hoffman Expiration: December 1997 [Page 15]

Internet Draft RAPI v.5 June 1997

 These values encode the error cause, and they are set only
 for a RAPI_PATH_ERROR or RAPI_RESV_ERROR event. ErrorCode
 values are defined in "rapi_lib.h" and corresponding text
 strings are defined in "rapi_err.h".

 o "ErrorNode"

 This is the IP (V4 or V6) address of the node that detected
 the error, and it is set only for a RAPI_PATH_ERROR or
 RAPI_RESV_ERROR event.

 o "ErrorFlags"

 These error flags are set only for a RAPI_PATH_ERROR or
 RAPI_RESV_ERROR event.

 RAPI_ERRF_InPlace (0x01) -- The reservation failed, but
 another reservation (presumably smaller) reservation is
 still in place on the same interface.

 RAPI_ERRF_NotGuilty (0x02) -- The reservation failed, but
 the request from this client was merged with a larger
 reservation upstream, so this client's reservation might
 not have caused the failure.

 o "FilterSpec_list", "FilterSpecNo"

 The "FilterSpec_list" parameter is a pointer to a malloc'd
 area containing a sequential vector of RAPI filter spec or
 sender template objects. The number of objexts in this
 vector is specified in "FilterSpecNo". If "FilterSpecNo"
 is zero, the "FilterSpec_list" parameter will be NULL.

 o "Flowspec_list", "FlowspecNo"

 The "Flowspec_list" parameter is a pointer to an area
 containing a sequential vector of RAPI flowspec or Tspec
 objects. The number of objects in this vector is specified
 in "FlowspecNo". If "FlowspecNo" is zero, the
 "Flowspec_list" parameter will be NULL.

 o "Adspec_list", "AdspecNo"

 The "Adspec_list" parameter is a pointer to an area
 containing a sequential vector of RAPI adspec objects. The
 number of objects in this vector is specified in
 "AdspecNo". If "AdspecNo" is zero, the "Adspec_list"
 parameter will be NULL.

Braden, Hoffman Expiration: December 1997 [Page 16]

Internet Draft RAPI v.5 June 1997

 o "Event_arg"

 This is the value supplied in the rapi_register call.

 When the application's upcall procedure returns, the API will
 free any areas pointed to by "Flowspec_list" or
 "FilterSpec_list"; the application must copy any values it wants
 to save.

 The specific parameters depend upon "EventType", which may have
 one of the following values.

 o RAPI_PATH_EVENT

 A path event indicates that RSVP sender ("Path") state from
 a remote node has arrived or changed at the local node. A
 RAPI_PATH_EVENT upcall containing the complete current list
 of senders (or possibly no senders, after a path teardown)
 in the path state for the specified session will be
 triggered whenever the path state changes.

 "FilterSpec_list", "Flowspec_list", and "Adspec_list" will
 be of equal length, and corresponding entries will contain
 sender templates, sender Tspecs, and Adspecs, respectively,
 for all senders known at this node. In general, a missing
 object will be indicated by an empty RAPI object.

 RAPI_PATH_EVENT upcalls are enabled by the initial
 rapi_session call.

 o RAPI_RESV_EVENT

 A reservation event upcall indicates that reservation state
 has arrived or changed at the node, implying (but not
 assuring) that reservations have been established or
 deleted along the entire data path to one or more
 receivers. RAPI_RESV_EVENT upcalls containing the current
 reservation state for the API session will be triggered
 whenever the reservation state changes.

 "Flowspec_list" will either contain one flowspec object or
 be empty (if the state has been torn down), and
 "FilterSpec_list" will contain zero or more corresponding
 filter spec objects. "Adspec_list" will be empty.

 RAPI_RESV_EVENT upcalls are enabled by a rapi_sender call;
 the sender template from the latter call will match the
 filter spec returned in a reservation event upcall.

Braden, Hoffman Expiration: December 1997 [Page 17]

Internet Draft RAPI v.5 June 1997

 o RAPI_PATH_ERROR

 A path error upcall indicates that an asynchronous error
 has been found in the sender information specified in a
 rapi_sender call.

 The "ErrorCode" and "ErrorValue" parameters will specify
 the error. "FilterSpec_list" and "Flowspec_list" will each
 contain one object, the sender template and corresponding
 sender Tspec (if any) in error, while "Adspec_list" will be
 empty. If there is no sender Tspec, the object in
 "Flowspec_list" will be an empty RAPI object. The
 "Adspec_list" will be empty.

 Path Error upcalls are enabled by a rapi_sender call, and
 the sender Tspec in that call will match the sender Tspec
 returned in a subsequent path error upcall.

 o RAPI_RESV_ERROR

 A reservation error upcall indicates that an asynchronous
 reservation error has occurred.

 The "ErrorCode" and "ErrorValue" parameters will specify
 the error. "Flowspec_list" will contain one flowspec,
 while "FilterSpec_list" may contain zero or more
 corresponding filter specs. "Adspec_list" will be empty.

 o RAPI_RESV_CONFIRM

 A confirmation upcall indicates that a reservation has been
 made at least up to an intermediate merge point, and
 probably (but not necessarily) all the way to at least one
 sender. A confirmation upcall is enabled by a rapi_reserve
 call with the RAPI_REQ_CONFIRM flag set, and at most one
 confirmation upcall will result from each such call.

 The parameters of a confirmation upcall are the same as
 those for a reservation event upcall.

 The accompanying table summarizes the upcalls; here n is a non-
 negative integer.

Braden, Hoffman Expiration: December 1997 [Page 18]

Internet Draft RAPI v.5 June 1997

 Upcall Enabled by FilterSpecNo FlowspecNo AdspecNo

 Path event rapi_session n n n

 Path error rapi_sender 1 1 0

 Resv event rapi_sender 1 or 0 1 or 0 0

 Resv error rapi_reserve n 1 0

 Confirm rapi_reserve 1 1 0

 Table 1: Summary of Upcall Types

3. RAPI FORMATTING ROUTINES

 For convenience of applications, RAPI includes standard routines for
 displaying the contents of a RAPI flowspec object or Tspec object.
 To use these routines, include the file "rapi_lib.h".

 A. Format a Flowspec

 The rapi_fmt_flowspec() call formats a given RAPI flowspec into
 a buffer of given address and size. The output is truncated if
 the size is too small.

 void rapi_fmt_flowspec(

 rapi_flowspec_t *specp, /* Addr of RAPI flowspec*/
 char *buffer, /* Addr of buffer */
 int length /* Length of buffer */
)

 B. Format a Tspec

 The rapi_fmt_tspec() call formats a given RAPI Tspec into a
 buffer of given address and size. The output is truncated if
 the size is too small.

 void rapi_fmt_tspec(

 rapi_tspec_t *tspecp, /* Addr of RAPI Tspec */
 char *buffer, /* Addr of buffer */
 int length /* Length of buffer */
)

Braden, Hoffman Expiration: December 1997 [Page 19]

Internet Draft RAPI v.5 June 1997

 C. Format an Adspec

 The rapi_fmt_adspec() call formats a given RAPI Adspec into a
 buffer of given address and size. The output is truncated if
 the size is too small.

 void rapi_fmt_adspec(

 rapi_adspec_t *adspecp, /* Addr of RAPI Adspec */
 char *buffer, /* Addr of buffer */
 int length /* Length of buffer */
)

 D. Format a Filter Spec

 The rapi_fmt_filtspec() call formats a given RAPI Filter Spec
 into a buffer of given address and size. The output is
 truncated if the size is too small.

 void rapi_fmt_filtspec(

 rapi_filter_t *filtp, /* Addr of RAPI Filt Spec*/
 char *buffer, /* Addr of buffer */
 int length /* Length of buffer */
)

Braden, Hoffman Expiration: December 1997 [Page 20]

Internet Draft RAPI v.5 June 1997

4. RAPI OBJECTS

 Flowspecs, filter specs, sender templates, and sender Tspecs are
 encoded as variable-length RAPI objects.

 Every RAPI object begins with a header consisting of two words, the
 total length of the object in bytes and the type, respectively. An
 empty object consists only of a header, with type zero and length 8
 bytes.

 Integrated services data structures are defined in: draft-ietf-
intserv-rsvp-01.txt.

 o Flowspecs

 There are two formats for RAPI flowspecs. For more details, see
 "rapi_lib.h" and "rsvp_intserv.h".

 - RAPI_FLOWSTYPE_Simplified

 This is a "simplified" format. It consists of a simple
 list of parameters needed for either Guaranteed or
 Controlled Load service, using the service type
 QOS_GUARANTEED or QOS_CNTR_LOAD, respectively. The RAPI
 client library routines will map this format to/from an
 appropriate Integrated Services data structure.

 - RAPI_FLOWSTYPE_Intserv

 This flowspec must be a fully formatted Integrated Services
 flowspec data structure.

 o Sender Tspecs

 There are two formats for RAPI Sender Tspecs. For more details,
 see "rapi_lib.h" and "rsvp_intserv.h".

 - RAPI_TSPECTYPE_Simplified

 This is a "simplified" format, consisting of a simple list
 of parameters with the service type QOS_TSPEC. The RAPI
 client library routines will map this format to/from an
 appropriate Integrated Services data structure.

 - RAPI_TSPECTYPE_Intserv

 This flowspec must be a fully formatted Integrated Services
 Tspec data structure.

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-rsvp-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-intserv-rsvp-01.txt

Braden, Hoffman Expiration: December 1997 [Page 21]

Internet Draft RAPI v.5 June 1997

 o Adspecs

 There are two formats for RAPI Adspecs. For more details, see
 "rapi_lib.h" and "rsvp_intserv.h".

 - RAPI_ADSTYPE_Simplified

 This is a "simplified" format, consisting of a list of
 Adspec parameters for all possible services. The RAPI
 client library routines will map this format to/from an
 appropriate Integrated Services data structure.

 - RAPI_ADSTYPE_Intserv

 This flowspec must be a fully formatted Integrated Services
 Tspec data structure.

 In an upcall, a flowspec, sender Tspec, or Adspec is by default
 delivered in simplified format; however, if the RAPI_USE_INTSERV
 flag is set in the rapi_session call, then the IntServ format is
 used in upcalls.

 o Filter Specs and Sender Templates

 There are two formats for these objects.

 - RAPI_FILTERFORM_BASE (RAPI_FILTERFORM_BASE6)

 This object consists of only a socket address structure,
 defining the IP (V4 or V6) address and port.

 - RAPI_FILTERFORM_GPI (RAPI_FILTERFORM_GPI6)

 This object consists of only an address structure, defining
 the IP (V4 or V6) address and a 32-bit Generalized Port
 Identifier. It is recommended for all IPSEC applications.
 Other non-TCP/non-UDP transports may also utilize this
 format in the future.

 o Policy Data Objects

 (Not yet supported)

Braden, Hoffman Expiration: December 1997 [Page 22]

Internet Draft RAPI v.5 June 1997

APPENDIX A. Implementation

 This section contains some general remarks on the implementation of
 this API that is distributed with the ISI release of RSVP code.

 A.1 Protocols

 There are three protocol interfaces involved in invoking RSVP via
 the API.

 1. Procedure Call Interface to Application

 The term "RAPI" (RSVP API) is used for the procedure call
 interface to applications, and for the data structures
 ("objects") used in that interface. This document is
 primarily concerned with the RAPI interface. This interface
 is realized by procedures included in the library routine
 librsvp.a, which is compiled from rapi_lib.c and rapi_fmt.c.

 2. Application - Daemon Protocol

 The term "API" is used in the code for the local protocol
 across the Unix socket between the librsvp.a routines and the
 RSVP daemon rsvpd. This protocol generally use RSVP object
 bodies but RAPI object framing.

 3. RSVP Protocol

 The RSVP protocol is used in the Internet between RSVP daemon
 programs.

 The code is organized to make these three interfaces logically
 independent, so they can be changed independently. Each of these
 three protocol interfaces has an independent version number,
 defined in rapi_lib.h, rsvp_api.h, and rsvp.h for RAPI, API, and
 RSVP, respectively.

 The RAPI call library librsvp.a includes routines that convert
 objects between RAPI and API formats. Similarly, the file
 rsvp_api.c included in the RSVP daemon includes routines that
 convert between the API representation and the RSVP
 representation. In some cases, these conversion procedures are
 identity transformations (i.e., pure copies); however, they
 provide the structure to allow any of the three interfaces to be
 changed in the future.

 There are two different object framing conventions. RAPI and API
 objects have a two-word header -- a total length in bytes and a

Braden, Hoffman Expiration: December 1997 [Page 23]

Internet Draft RAPI v.5 June 1997

 format code -- and a body. RSVP objects have a one-word header.
 In general, objects in the API interface (i.e., across the Unix
 socket) carry the two-word RAPI object header, but their body is
 that of the corresponding RSVP object. Therefore, the API<->RSVP
 conversion in rsvp_api.c simply maps the framing convention.

 In the RAPI interface, the application is given some choice of
 data formats. For example, QoS control objects (i.e., flowspecs,
 Tspecs, and Adspecs) can be represented in either the RSVP (really
 Int-Serv) format, which has complex packing, or in the more
 convenient Simplified format. The RAPI library routines map
 between Simplified format and Int-Serv format, which is used
 across the API.

 A.2 RAPI Sessions

 Each instance of the RAPI library routines keeps a local (to the
 application process) table of open RAPI sessions; the index into
 this table is the session handle (a_sid) used locally. The RSVP
 daemon keeps its own table of RAPI sessions. From the daemon's
 viewpoint, a RAPI session is defined by the triple: (fd, pid,
 a_sid), where fd is the file descriptor for the Unix socket, pid
 is the Unix process id, and a_sid is an application session id
 received over fd from pid.

APPENDIX B. Implementation Restrictions

 This Appendix summarizes the features of the interface that have not
 been implemented in the latest (4.1a6) release of the ISI reference
 implementation of RSVP.

 o The RAPI_FILTERFORM_GPI and RAPI_FILTERFORM_GPI objects and the
 session flag RAPI_GPI_SESSION are implemented in RAPI and the
 API, but the IPSEC extensions are not yet fully implemented in
 RSVP.

 o The "SenderAdspec", and "SenderPolicy" parameters in a
 rapi_sender call are not implemented.

 o The "Style_Ext" and "Rcvr_Policy" parameters in a rapi_reserve
 call are not implemented.

Braden, Hoffman Expiration: December 1997 [Page 24]

Internet Draft RAPI v.5 June 1997

APPENDIX C. CHANGES

 This document describes major version 5 of RAPI. This version has
 the following differences from previous versions:

 o The "Legacy" format has been removed.

 o The rapi_fmt_filtspec() routine has been added.

 o The two session flags RAPI_GPI_SESSION and RAPI_USE_INTSERV have
 been defined.

 o The ErrorNode parameter in an upcall has been changed from a
 sockaddr to a pointer to a sockaddr structure, to accommodate
 IPv6.

 o IPv4-specific Socket structures sockaddr_in have been changed to
 the more general form sockaddr, to accomodate IPv6. The calling
 application should supply the appropriate form, sockaddr_in or
 sockaddr_in6, and cast it into a sockaddr for the call.

Braden, Hoffman Expiration: December 1997 [Page 25]

