
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track C. Jennings
Expires: September 4, 2012 Cisco Systems, Inc.
 March 3, 2012

Javascript Session Establishment Protocol
draft-ietf-rtcweb-jsep-00

Abstract

 This document proposes a mechanism for allowing a Javascript
 application to fully control the signaling plane of a multimedia
 session, and discusses how this would work with existing signaling
 protocols.

 This document is an input document for discussion. It should be
 discussed in the RTCWEB WG list, rtcweb@ietf.org.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 26, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Uberti Expires September 4, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSEP March 3, 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
 Terminology . 5

2. JSEP Approach . 5
3. Other Approaches Considered 6
4. Semantics and Syntax . 7
4.1. Signaling Model . 7
4.2. Session Descriptions 7
4.3. Session Description Format 8
4.4. Separation of Signaling and ICE State Machines 9
4.5. ICE Candidate Trickling 9
4.6. ICE Candidate Format 10

5. Media Setup Overview . 10
5.1. Initiating the Session 10
5.1.1. Generating An Offer 11
5.1.2. Applying the Offer 11
5.1.3. Initiating ICE . 11
5.1.4. Serializing the Offer and Candidates 11

5.2. Receiving the Session 12
5.2.1. Receiving the Offer 12
5.2.2. Initiating ICE . 12
5.2.3. Handling ICE Messages 12
5.2.4. Generating the Answer 12
5.2.5. Applying the Answer 13
5.2.6. Serializing the Answer 13

5.3. Completing the Session 13
5.3.1. Receiving the Answer 13

5.4. Updates to the Session 13
6. Proposed WebRTC API changes 14
6.1. PeerConnection API . 14
6.1.1 MediaHints . 15
6.1.2 createOffer . 16
6.1.3 createAnswer . 16
6.1.4 SDP_OFFER, SDP_PRANSWER, and SDP_ANSWER 17
6.1.5 setLocalDescription 17
6.1.6 setRemoteDescription 18
6.1.7 localDescription . 18
6.1.8 remoteDescription 18
6.1.9 IceOptions . 19
6.1.10 startIce . 19
6.1.11 processIceMessage 19

7. Example API Flows . 20

Uberti Expires September 4, 2012 [Page 2]

Internet-Draft JSEP March 3, 2012

7.1. Call using ROAP . 20
7.2. Call using XMPP . 20
7.3. Adding video to a call, using XMPP 22
7.4. Simultaneous add of video streams, using XMPP 22
7.5. Call using SIP . 23
7.6. Handling early media (e.g. 1-800-FEDEX), using SIP 24

8. Example Application . 24
9. Security Considerations . 26
10. IANA Considerations . 26
11. Acknowledgements . 26
12. References . 26
12.1. Normative References 26
12.2. Informative References 27

Appendix A. Open Issues . 27
Appendix B. Change log . 27

 Authors' Addresses . 27

Uberti Expires September 4, 2012 [Page 3]

Internet-Draft JSEP March 3, 2012

1. Introduction

 The general thinking behind WebRTC call setup has been to fully
 specify and control the media plane, but to leave the signaling plane
 up to the application as much as possible. The rationale is that
 different applications may prefer to use different protocols, such as
 the existing SIP or Jingle call signaling protocols, or something
 custom to the particular application, perhaps for a novel use case.
 In this approach, the key information that needs to be exchanged is
 the multimedia session description, which specifies the necessary
 transport and media configuration information necessary to establish
 the media plane.

 The original spec for WebRTC attempted to implement this protocol-
 agnostic signaling by providing a mechanism to exchange session
 descriptions in the form of SDP blobs. Upon starting a session, the
 browser would generate a SDP blob, which would be passed to the
 application for transport over its preferred signaling protocol. On
 the remote side, this blob would be passed into the browser from the
 application, and the browser would then generate a blob of its own in
 response. Upon transmission back to the initiator, this blob would be
 plugged into their browser, and the handshake would be complete.

 Experimentation with this mechanism turned up several shortcomings,
 which generally stemmed from there being insufficient context at the
 browser to fully determine the meaning of a SDP blob. For example,
 determining whether a blob is an offer or an answer, or
 differentiating a new offer from a retransmit.

 The ROAP proposal, specified in http://tools.ietf.org/html/draft-
jennings-rtcweb-signaling-01, attempted to resolve these issues by

 providing additional structure in the messaging - in essence, to
 create a generic signaling protocol that specifies how the browser
 signaling state machine should operate. However, even though the
 protocol is abstracted, the state machine forces a least-common-
 denominator approach on the signaling interactions. For example, in
 Jingle, the call initiator can provide additional ICE candidates even
 after the initial offer has been sent, which allows the offer to be
 sent immediately for quicker call startup. However, in the browser
 state machine, there is no notion of sending an updated offer before
 the initial offer has been responded to, rendering this functionality
 impossible.

 While specific concerns like this could be addressed by modifying the
 generic protocol, others would likely be discovered later. The main
 reason this mechanism is inflexible is because it embeds a signaling
 state machine within the browser. Since the browser generates the
 session descriptions on its own, and fully controls the possible

http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01

Uberti Expires September 4, 2012 [Page 4]

Internet-Draft JSEP March 3, 2012

 states and advancement of the signaling state machine, modification
 of the session descriptions or use of alternate state machines
 becomes difficult or impossible.

 The browser environment also has its own challenges that cause
 problems for an embedded signaling state machine. One of these is
 that the user may reload the web page at any time. If this happens,
 and the state machine is being run at a server, the server can simply
 push the current state back down to the page and resume the call
 where it left off. If instead the state machine is run at the browser
 end, and is instantiated within, for example, the PeerConnection
 object, that state machine will be reinitialized when the page is
 reloaded and the JavaScript re-executed. This actually complicates
 the design of any interoperability service, as all cases where an
 offer or answer has already been generated but is now "forgotten"
 must now be handled by trying to move the client state machine
 forward to the same state it had been in previously in order to match
 what has already been delivered to and/or answered by the far side,
 or handled by ensuring that aborts are cleanly handled from every
 state and the negotiation rapidly restarted.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. JSEP Approach

 To resolve these issues, this document proposes the Javascript
 Session Establishment Protocol (JSEP) that pulls the signaling state
 machine out of the browser and into Javascript. This mechanism
 effectively removes the browser almost completely from the core
 signaling flow; the only interface needed is a way for the
 application to pass in the local and remote session descriptions
 negotiated by whatever signaling mechanism is used, and a way to
 interact with the ICE state machine.

 JSEP's handling of session descriptions is simple and
 straightforward. Whenever an offer/answer exchange is needed, the
 initiating side creates an offer by calling a createOffer() API on
 PeerConnection. The application can do massaging of that offer, if it
 wants to, and then uses it to set up its local config via a
 setLocalDescription() API. The offer is then sent off to the remote
 side over its preferred signaling mechanism (e.g. WebSockets); upon
 receipt of that offer, the remote party installs it using a
 setRemoteDescription() API.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Uberti Expires September 4, 2012 [Page 5]

Internet-Draft JSEP March 3, 2012

 When the call is accepted, the callee uses a createAnswer() API to
 generate an appropriate answer, applies it using
 setLocalDescription(), and sends the answer back to the initiator
 over the signaling channel. When the offerer gets that answer, it
 installs it using setRemoteDescription(), and initial setup is
 complete. This process can be repeated for additional offer/answer
 exchanges.

 Regarding ICE, in this approach we decouple the ICE state machine
 from the overall signaling state machine; the ICE state machine must
 remain in the browser, given that only the browser has the necessary
 knowledge of candidates and other transport info. While transport has
 typically been lumped in with session descriptions, performing this
 separation it provides additional flexibility. In protocols that
 decouple session descriptions from transport, such as Jingle, the
 transport information can be sent separately; in protocols that
 don't, such as SIP, the information can be easily aggregated and
 recombined. Sending transport information separately can allow for
 faster ICE and DTLS startup, since the necessary roundtrips can occur
 while waiting for the remote side to accept the session.

 The JSEP approach does come with a minor downside. As the application
 now is responsible for driving the signaling state machine, slightly
 more application code is necessary to perform call setup; the
 application must call the right APIs at the right times, and convert
 the session desciptions and ICE information into the defined messages
 of its chosen signaling protocol, instead of simply forwarding the
 messages emitted from the browser.

 One way to mitigate this is to provide a Javascript library that
 hides this complexity from the developer, which would implement the
 state machine and serialization of the desired signaling protocol.
 For example, this library could convert easily adapt the JSEP API
 into the exact ROAP API, thereby implementing the ROAP signaling
 protocol. Such a library could of course also implement other popular
 signaling protocols, including SIP or Jingle. In this fashion we can
 enable greater control for the experienced developer without forcing
 any additional complexity on the novice developer.

3. Other Approaches Considered

 Another approach that was considered for JSEP was to move the
 mechanism for generating offers and answers out of the browser as
 well. This approach would add a getCapabilities API which would
 provide the application with the information it needed in order to
 generate session descriptions. This increases the amount of work that
 the application needs to do; it needs to know how to generate session
 descriptions from capabilities, and especially how to generate the

Uberti Expires September 4, 2012 [Page 6]

Internet-Draft JSEP March 3, 2012

 correct answer from an arbitrary offer and available capabilities.
 While this could certainly be addressed by using a library like the
 one mentioned above, some experimentation also indicates that coming
 up with a sufficiently complete getCapabilities API is a nontrivial
 undertaking. Nevertheless, if we wanted to go down this road, JSEP
 makes it significantly easier; if a getCapabilities API is added in
 the future, the application can generate session descriptions
 accordingly and pass those to the
 setLocalDescription/setRemoteDescription APIs added by JSEP. (Even
 with JSEP, an application could still perform its own browser
 fingerprinting and generate approximate session descriptions as a
 result.)

 Note also that while JSEP transfers more control to Javascript, it is
 not intended to be an example of a "low-level" API. The general
 argument against a low-level API is that there are too many necessary
 API points, and they can be called in any order, leading to something
 that is hard to specify and test. In the approach proposed here,
 control is performed via session descriptions; this requires only a
 few APIs to handle these descriptions, and they are evaluated in a
 specific fashion, which reduces the number of possible states and
 interactions.

4. Semantics and Syntax

4.1. Signaling Model

 JSEP does not specify a particular signaling model or state machine,
 other than the generic need to exchange RFC 3264 offers and answers
 in order for both sides of the session to know how to conduct the
 session. JSEP provides mechanisms to create offers and answers, as
 well as to apply them to a PeerConnection. However, the actual
 mechanism by which these offers and answers are communicated to the
 remote side, including addressing, retransmission, forking, and glare
 handling, is left entirely up to the application.

4.2. Session Descriptions

 In order to establish the media plane, PeerConnection needs specific
 parameters to indicate what to transmit to the remote side, as well
 as how to handle the media that is received. These parameters are
 determined by the exchange of session descriptions in offers and
 answers, and there are certain details to this process that must be
 handled in the JSEP APIs.

 Whether a session description was sent or received affects the
 meaning of that description. For example, the list of codecs sent to
 a remote party indicates what the local side is willing to decode,

https://datatracker.ietf.org/doc/html/rfc3264

Uberti Expires September 4, 2012 [Page 7]

Internet-Draft JSEP March 3, 2012

 and what the remote party should send. Not all parameters follow this
 rule; the SRTP parameters [RFC4568] sent to a remote party indicate
 what the local side will use to encrypt, and thereby how the remote
 party should expect to receive.

 In addition, various RFCs put different conditions on the format of
 offers versus answers. For example, a offer may propose multiple SRTP
 configurations, but an answer may only contain a single SRTP
 configuration.

 Lastly, while the exact media parameters are only known only after a
 offer and an answer have been exchanged, it is possible for the
 offerer to receive media after they have sent an offer and before
 they have received an answer. To properly process incoming media in
 this case, the offerer's media handler must be aware of the details
 of the offerer before the answer arrives.

 Therefore, in order to handle session descriptions properly,
 PeerConnection needs:

 1. To know if a session description pertains to the local or
 remote side.

 2. To know if a session description is an offer or an answer.

 3. To allow the offer to be specified independently of the answer.

 JSEP addresses this by adding both a setLocalDescription and a
 setRemoteDescription method, and both these methods take as a first
 parameter either the value SDP_OFFER, SDP_PRANSWER (for a non-final
 answer) or SDP_ANSWER (for a final answer). This satisfies the
 requirements listed above for both the offerer, who first calls
 setLocalDescription(SDP_OFFER, sdp) and then later
 setRemoteDescription(SDP_ANSWER, sdp), as well as for the answerer,
 who first calls setRemoteDescription(SDP_OFFER, sdp) and then later
 setLocalDescription(SDP_ANSWER, sdp).

 While it could be possible to implicitly determine the value of the
 offer/answer argument inside of PeerConnection, requiring it to be
 specified explicitly seems substantially more robust, allowing
 invalid combinations (i.e. an answer before an offer) to generate an
 appropriate error.

4.3. Session Description Format

 In the current WebRTC specification, session descriptions are
 formatted as SDP messages. While this format is not optimal for
 manipulation from Javascript, it is widely accepted, and frequently

https://datatracker.ietf.org/doc/html/rfc4568

Uberti Expires September 4, 2012 [Page 8]

Internet-Draft JSEP March 3, 2012

 updated with new features. Any alternate encoding of session
 descriptions would have to keep pace with the changes to SDP, at
 least until the time that this new encoding eclipsed SDP in
 popularity. As a result, JSEP continues to use SDP as the internal
 representation for its session descriptions.

 However, to simplify Javascript processing, and provide for future
 flexibility, the SDP syntax is encapsulated within a
 SessionDescription object, which can be constructed from SDP, and be
 serialized out to SDP. If we were able to agree on a JSON format for
 session descriptions, we could easily enable this object to
 generate/expect JSON.

 Other methods may be added to SessionDescription in the future to
 simplify handling of SessionDescriptions from Javascript.

4.4. Separation of Signaling and ICE State Machines

 Previously, PeerConnection operated two state machines, referred to
 in the spec as an "ICE Agent", which handles the establishment of
 peer-to-peer connectivity, and an "SDP Agent", which handles the
 state of the offer-answer signaling. The states of these state
 machines were exposed through the iceState and sdpState attributes on
 PeerConnection, with an additional readyState attribute that
 reflected the high-level state of the PeerConnection.

 JSEP does away with the SDP Agent within the browser; this
 functionality is now controlled directly by the application, which
 uses the setLocalDescription and setRemoteDescription APIs to tell
 PeerConnection what SDP has been negotiated. The ICE Agent remains in
 the browser, as it still needs to perform gathering of candidates,
 connectivity checking, and related ICE functionality.

 The net effect of this is that sdpState goes away, and
 processSignalingMessage becomes processIceMessage, which now
 specifically handles incoming ICE candidates. To allow the
 application to control exactly when it wants to start ICE negotiation
 (e.g. either on receipt of the call, or only after accepting the
 call), a startIce method has been added.

4.5. ICE Candidate Trickling

 Candidate trickling is a technique through which a caller may
 incrementally provide candidates to the callee after the initial
 offer has been dispatched. This allows the callee to begin acting
 upon the call and setting up the ICE (and perhaps DTLS) connections
 immediately, without having to wait for the caller to allocate all
 possible candidates, resulting in faster call startup in many cases.

Uberti Expires September 4, 2012 [Page 9]

Internet-Draft JSEP March 3, 2012

 JSEP supports optional candidate trickling by providing APIs that
 provide control and feedback on the ICE candidate gathering process.
 Applications that support candidate trickling can send the initial
 offer immediately and send individual candidates when they get a
 callback with a new candidate; applications that do not support this
 feature can simply wait for the callback that indicates gathering is
 complete, and simply create and send their offer, with all the
 candidates, at this time.

 To be clear, aplications that do not make use of candidate tricking
 can ignore processIceMessage entirely, and use IceCallback solely to
 indicate when candidate gathering is complete.

4.6. ICE Candidate Format

 As with session descriptions, we choose to provide an IceCandidate
 object that provides some abstraction, but can be easily converted
 to/from SDP a=candidate lines.

 The IceCandidate object has a field to indicate which m= line it
 should be associated with, and a method to convert to a SDP
 representation, ex:

 a=candidate:1 1 UDP 1694498815 66.77.88.99 10000 typ host

 Currently, a=candidate lines are the only thing that are contained
 within IceCandidate, as this is the only information that is needed
 that is not present in the initial offer (i.e. for trickle
 candidates).

5. Media Setup Overview

 The example here shows a typical call setup using the JSEP model. We
 assume the following architecture in this example, where UA is
 synonymous with "browser", and JS is synonymous with "web
 application":

 OffererUA <-> OffererJS <-> WebServer <-> AnswererJS <-> AnswererUA

5.1. Initiating the Session

 The initiator creates a PeerConnection, installs its IceCallback, and
 adds the desired MediaStreams (presumably obtained via getUserMedia).
 The PeerConnection is in the NEW state.

 OffererJS->OffererUA: var pc = new PeerConnection(config, iceCb);
 OffererJS->OffererUA: pc.addStream(stream);

Uberti Expires September 4, 2012 [Page 10]

Internet-Draft JSEP March 3, 2012

5.1.1. Generating An Offer

 The initiator then creates a session description to offer to the
 callee. This description includes the codecs and other necessary
 session parameters, as well as information about each of the streams
 that has been added (e.g. SSRC, CNAME, etc.) The created description
 includes all parameters that the offerer's UA supports; if the
 initiator wants to influence the created offer, they can pass in a
 MediaHints object to createOffer that allows for customization (e.g.
 if the initiator wants to receive but not send video). The initiator
 can also directly manipulate the created session description as well,
 perhaps if it wants to change the priority of the offered codecs.

 OffererJS->OffererUA: var offer = pc.createOffer(null);

5.1.2. Applying the Offer

 The initiator then instructs the PeerConnection to use this offer as
 the local description for this session, i.e. what codecs it will use
 for received media, what SRTP keys it will use for sending media (if
 using SDES), etc. In order that the UA handle the description
 properly, the initiator marks it as an offer when calling
 setLocalDescription; this indicates to the UA that multiple
 capabilities have been offered, but this set may be pared back later,
 when the answer arrives.

 Since the local user agent must be prepared to receive media upon
 applying the offer, this operation will cause local decoder resources
 to be allocated, based on the codecs indicated in the offer.

 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer);

5.1.3. Initiating ICE

 The initiator can now start the ICE process of candidate generation
 and connectivity checking. This results in callbacks to the
 application's IceCallback. Candidates are provided to the IceCallback
 as they are allocated, with the |moreToFollow| argument set to true
 if there are still allocations pending; when the last allocation
 completes or times out, this callback will be invoked with
 |moreToFollow| set to false.

 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: iceCallback(candidate, ...);

5.1.4. Serializing the Offer and Candidates

 At this point, the offerer is ready to send its offer to the callee

Uberti Expires September 4, 2012 [Page 11]

Internet-Draft JSEP March 3, 2012

 using its preferred signaling protocol. Depending on the protocol, it
 can either send the initial session description first, and then
 "trickle" the ICE candidates as they are given to the application, or
 it can wait for all the ICE candidates to be collected, and then send
 the offer and list of candidates all at once.

5.2. Receiving the Session

 Through the chosen signaling protocol, the recipient is notified of
 an incoming session request. It creates a PeerConnection, and
 installs its own IceCallback.

 AnswererJS->AnswererUA: var pc = new PeerConnection(config, iceCb);

5.2.1. Receiving the Offer

 The recipient converts the received offer from its signaling protocol
 into SDP format, and supplies it to its PeerConnection, again marking
 it as an offer. As a remote description, the offer indicates what
 codecs the remote side wants to use for receiving, as well as what
 SRTP keys it will use for sending. The setting of the remote
 description causes callbacks to be issued, informing the application
 of what kinds of streams are present in the offer.

 This step will also cause encoder resources to be allocated, based on
 the codecs specified in |offer|.

 AnswererJS->AnswererUA: pc.setRemoteDescription(SDP_OFFER, offer);
 AnswererUA->AnswererJS: onAddStream(stream);

5.2.2. Initiating ICE

 The recipient then starts its own ICE state machine, to allow
 connectivity to be established as quickly as possible.

 AnswererJS->AnswererUA: pc.startIce();
 AnswererUA->AnswererJS: iceCallback(candidate, ...);

5.2.3. Handling ICE Messages

 If ICE candidates from the remote site were included in the offer,
 the ICE Agent will automatically start trying to use them. Otherwise,
 if ICE candidates are sent separately, they are passed into the
 PeerConnection when they arrive.

 AnswererJS->AnswererUA: pc.processIceMessage(candidate);

5.2.4. Generating the Answer

Uberti Expires September 4, 2012 [Page 12]

Internet-Draft JSEP March 3, 2012

 Once the recipient has decided to accept the session, it generates an
 answer session description. This process performs the appropriate
 intersection of codecs and other parameters to generate the correct
 answer. As with the offer, MediaHints can be provided to influence
 the answer that is generated, and/or the application can post-process
 the answer manually.

 AnswererJS->AnswererUA: pc.createAnswer(offer, null);

5.2.5. Applying the Answer

 The recipient then instructs the PeerConnection to use the answer as
 its local description for this session, i.e. what codecs it will use
 to receive media, etc. It also marks the description as an answer,
 which tells the UA that these parameters are final. This causes the
 PeerConnection to move to the ACTIVE state, and transmission of media
 by the answerer to start.

 AnswererJS->AnswererUA: pc.setLocalDescription(SDP_ANSWER, answer);
 AnswererUA->OffererUA: <media>

5.2.6. Serializing the Answer

 As with the offer, the answer (with or without candidates) is now
 converted to the desired signaling format and sent to the initiator.

5.3. Completing the Session

5.3.1. Receiving the Answer

 The initiator converts the answer from the signaling protocol and
 applies it as the remote description, marking it as an answer. This
 causes the PeerConnection to move to the ACTIVE state, and
 transmission of media by the offerer to start.

 OffererJS->OffererUA: pc.setRemoteDescription(SDP_ANSWER, answer);
 OffererUA->AnswererUA: <media>

5.4. Updates to the Session

 Updates to the session are handled with a new offer/answer exchange.
 However, since media will already be flowing at this point, the new
 offerer needs to support both its old session description as well as
 the new one it has offered, until the change is accepted by the
 remote side.

 Note also that in an update scenario, the roles may be reversed, i.e.
 the update offerer can be different than the original offerer.

Uberti Expires September 4, 2012 [Page 13]

Internet-Draft JSEP March 3, 2012

6. Proposed WebRTC API changes

6.1. PeerConnection API

 The text below indicates the recommended changes to the
 PeerConnection API to implement the JSEP functionality. Methods
 marked with a [+] are new/proposed; methods marked with a [-] have
 been removed in this proposal.

 [Constructor (in DOMString configuration, in IceCallback iceCb)]
 interface PeerConnection {
 // creates a blob of SDP to be provided as an offer.
 [+] SessionDescription createOffer (MediaHints hints);
 // creates a blob of SDP to be provided as an answer.
 [+] SessionDescription createAnswer (DOMString offer,
 MediaHints hints);
 // actions, for setLocalDescription/setRemoteDescription
 [+] const unsigned short SDP_OFFER = 0x100;
 [+] const unsigned short SDP_PRANSWER = 0x200;
 [+] const unsigned short SDP_ANSWER = 0x300;
 // sets the local session description
 [+] void setLocalDescription (unsigned short action,
 SessionDescription desc);
 // sets the remote session description
 [+] void setRemoteDescription (unsigned short action,
 SessionDescription desc);
 // returns the current local session description
 [+] readonly SessionDescription localDescription;
 // returns the current remote session description
 [+] readonly SessionDescription remoteDescription;
 [-] void processSignalingMessage (DOMString message);
 const unsigned short NEW = 0; // initial state
 [+] const unsigned short OPENING = 1; // local or remote desc set
 const unsigned short ACTIVE = 2; // local and remote desc set
 const unsigned short CLOSED = 3; // ended state
 readonly attribute unsigned short readyState;
 // starts ICE connection/handshaking
 [+] void startIce (optional IceOptions options);
 // processes received ICE information
 [+] void processIceMessage (IceCandidate candidate);
 const unsigned short ICE_GATHERING = 0x100;
 const unsigned short ICE_WAITING = 0x200;
 const unsigned short ICE_CHECKING = 0x300;
 const unsigned short ICE_CONNECTED = 0x400;
 const unsigned short ICE_COMPLETED = 0x500;
 const unsigned short ICE_FAILED = 0x600;
 const unsigned short ICE_CLOSED = 0x700;
 readonly attribute unsigned short iceState;

Uberti Expires September 4, 2012 [Page 14]

Internet-Draft JSEP March 3, 2012

 [-] const unsigned short SDP_IDLE = 0x1000;
 [-] const unsigned short SDP_WAITING = 0x2000;
 [-] const unsigned short SDP_GLARE = 0x3000;
 [-] readonly attribute unsigned short sdpState;
 void addStream (MediaStream stream, MediaStreamHints hints);
 void removeStream (MediaStream stream);
 readonly attribute MediaStream[] localStreams;
 readonly attribute MediaStream[] remoteStreams;
 void close ();
 [rest of interface omitted]
 };

 [Constructor (in DOMString sdp)]
 interface SessionDescription {
 // adds the specified candidate to the description
 void addCandidate(IceCandidate candidate);
 // serializes the description to SDP
 DOMString toSdp();
 };

 [Constructor (in DOMString label, in DOMString candidateLine)]
 interface IceCandidate {
 // the m= line this candidate is associated with
 readonly DOMString label;
 // creates a SDP-ized form of this candidate
 DOMString toSdp();
 };

6.1.1 MediaHints

 MediaHints is an object that can be passed into createOffer or
 createAnswer to affect the type of offer/answer that is generated.

 The following properties can be set on MediaHints:

 has_audio: boolean

 Indicates whether we want to receive audio; defaults to true if we
 have audio streams, else false

 has_video: boolean

 Indicates whether we want to receive video; defaults to true if we
 have video streams, else false

 As an example, MediaHints could be used to create a session that
 transmits only audio, but is able to receive video from the remote
 side, by forcing the inclusion of a m=video line even when no video

Uberti Expires September 4, 2012 [Page 15]

Internet-Draft JSEP March 3, 2012

 sources are provided.

6.1.2 createOffer

 The createOffer method generates a blob of SDP that contains a RFC
3264 offer with the supported configurations for the session,

 including descriptions of the local MediaStreams attached to this
 PeerConnection, the codec/RTP/RTCP options supported by this
 implementation, and any candidates that have been gathered by the ICE
 Agent. The |hints| parameter may be supplied to provide additional
 control over the generated offer.

 As an offer, the generated SDP will contain the full set of
 capabilities supported by the session (as opposed to an answer, which
 will include only a specific negotiated subset to use); for each SDP
 line, the generation of the SDP must follow the appropriate process
 for generating an offer. In the event createOffer is called after the
 session is established, createOffer will generate an offer that is
 compatible with the current session, incorporating any changes that
 have been made to the session since the last complete offer-answer
 exchange, such as addition or removal of streams. If no changes have
 been made, the offer will be identical to the current local
 description.

 Session descriptions generated by createOffer must be immediately
 usable by setLocalDescription; if a system has limited resources
 (e.g. a finite number of decoders), createOffer should return an
 offer that reflects the current state of the system, so that
 setLocalDescription will succeed when it attempts to acquire those
 resources.

 Calling this method does not change the state of the PeerConnection;
 its use is not required.

 A TBD exception is thrown if the |hints| parameter is malformed.

6.1.3 createAnswer

 The createAnswer method generates a blob of SDP that contains a RFC
3264 SDP answer with the supported configuration for the session that

 is compatible with the parameters supplied in |offer|. Like
 createOffer, the returned blob contains descriptions of the local
 MediaStreams attached to this PeerConnection, the codec/RTP/RTCP
 options negotiated for this session, and any candidates that have
 been gathered by the ICE Agent. The |hints| parameter may be supplied
 to provide additional control over the generated answer.

 As an answer, the generated SDP will contain a specific configuration

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264

Uberti Expires September 4, 2012 [Page 16]

Internet-Draft JSEP March 3, 2012

 that specifies how the media plane should be established. For each
 SDP line, the generation of the SDP must follow the appropriate
 process for generating an answer.

 Session descriptions generated by createAnswer must be immediately
 usable by setLocalDescription; like createOffer, the returned
 description should reflect the current state of the system.

 Calling this method does not change the state of the PeerConnection;
 its use is not required.

 A TBD exception is thrown if the |hints| parameter is malformed, or
 the |offer| parameter is missing or malformed.

6.1.4 SDP_OFFER, SDP_PRANSWER, and SDP_ANSWER

 The SDP_XXXX enums serve as arguments to setLocalDescription and
 setRemoteDescription. They provide information as to how the
 |description| parameter should be parsed, and how the media state
 should be changed.

 SDP_OFFER indicates that a description should be parsed as an offer;
 said description may include many possible media configurations. A
 description used as a SDP_OFFER may be applied anytime the
 PeerConnection is in a stable state, or as an update to a previously
 sent but unanswered SDP_OFFER.

 SDP_PRANSWER indicates that a description should be parsed as an
 answer, but not a final answer, and so should not result in the
 starting of media transmission. A description used as a SDP_PRANSWER
 may be applied as a response to a SDP_OFFER, or an update to a
 previously sent SDP_PRANSWER.

 SDP_ANSWER indicates that a description should be parsed as an
 answer, and the offer-answer exchange should be considered complete.
 A description used as a SDP_ANSWER may be applied as a response to a
 SDP_OFFER, or an update to a previously send SDP_PRANSWER.

6.1.5 setLocalDescription

 The setLocalDescription method instructs the PeerConnection to apply
 the supplied SDP blob as its local configuration. The |type|
 parameter indicates whether the blob should be processed as an offer
 (SDP_OFFER), provisional answer (SDP_PRANSWER), or final answer
 (SDP_ANSWER); offers and answers are checked differently, using the
 various rules that exist for each SDP line.

 This API changes the local media state; among other things, it sets

Uberti Expires September 4, 2012 [Page 17]

Internet-Draft JSEP March 3, 2012

 up local resources for receiving and decoding media. In order to
 successfully handle scenarios where the application wants to offer to
 change from one media format to a different, incompatible format, the
 PeerConnection must be able to simultaneously support use of both the
 old and new local descriptions (e.g. support codecs that exist in
 both descriptions) until a final answer is received, at which point
 the PeerConnection can fully adopt the new local description, or roll
 back to the old description if the remote side denied the change.

 Changes to the state of media transmission will only occur when a
 final answer is successfully applied.

 A TBD exception is thrown if |description| is invalid. A TBD
 exception is thrown if there are insufficient local resources to
 apply |description|.

6.1.6 setRemoteDescription

 The setRemoteDescription method instructs the PeerConnection to apply
 the supplied SDP blob as the desired remote configuration. As in
 setLocalDescription, the |type| parameter indicates how the blob
 should be processed.

 This API changes the local media state; among other things, it sets
 up local resources for sending and encoding media.

 Changes to the state of media transmission will only occur when a
 final answer is successfully applied.

 A TBD exception is thrown if |description| is invalid. A TBD
 exception is thrown if there are insufficient local resources to
 apply |description|.

6.1.7 localDescription

 The localDescription method returns a copy of the current local
 configuration, i.e. what was most recently passed to
 setLocalDescription, plus any local candidates that have been
 generated by the ICE Agent.

 A null object will be returned if the local description has not yet
 been established.

6.1.8 remoteDescription

 The remoteDescription method returns a copy of the current remote
 configuration, i.e. what was most recently passed to
 setRemoteDescription, plus any remote candidates that have been

Uberti Expires September 4, 2012 [Page 18]

Internet-Draft JSEP March 3, 2012

 supplied via processIceMessage.

 A null object will be returned if the remote description has not yet
 been established.

6.1.9 IceOptions

 IceOptions is an object that can be passed into startIce to restrict
 the candidates that are provided to the application and used for
 connectivity checks. This can be useful if the application wants to
 only use TURN candidates for privacy reasons, or only local + STUN
 candidates for cost reasons.

 The following properties can be set on IceOptions:

 use_candidates: "all", "no_relay", "only_relay"

 Indicates what types of local candidates should be used; defaults
 to "all"

6.1.10 startIce

 The startIce method starts or updates the ICE Agent process of
 gathering local candidates and pinging remote candidates. The
 |options| argument can be used to restrict which types of local
 candidates are provided to the application and used for pinging; this
 can be used to limit the use of TURN candidates by a callee to avoid
 leaking location information prior to the call being accepted.

 This call may result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

 A TBD exception will be thrown if |options| is malformed.

6.1.11 processIceMessage

 The processIceMessage method provides a remote candidate to the ICE
 Agent, which will be added to the remote description. If startIce has
 been called, connectivity checks will be sent to the new candidates.

 This call will result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

 A TBD exception will be thrown if |candidate| is missing or
 malformed.

Uberti Expires September 4, 2012 [Page 19]

Internet-Draft JSEP March 3, 2012

7. Example API Flows

 Below are several sample flows for the new PeerConnection and library
 APIs, demonstrating when the various APIs are called in different
 situations and with various transport protocols.

7.1. Call using ROAP

 This example demonstrates a ROAP call, without the use of trickle
 candidates.

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: iceCallback(candidate, false);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer.toSdp());
 OffererJS->AnswererJS: {"type":"OFFER", "sdp":"<offer>"}

 // OFFER arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS->AnswererUA: pc.setRemoteDescription(SDP_OFFER, msg.sdp);
 AnswererUA->AnswererJS: onaddstream(remoteStream);
 AnswererJS->AnswererUA: pc.startIce();
 AnswererUA->OffererUA: iceCallback(candidate, false);

 // Answerer accepts call
 AnswererJS->AnswererUA: peer.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = peer.createAnswer(msg.offer, null);
 AnswererJS->AnswererUA: peer.setLocalDescription(SDP_ANSWER, answer);
 AnswererJS->OffererJS: {"type":"ANSWER","sdp":"<answer>"}

 // ANSWER arrives at Offerer
 OffererJS->OffererUA: peer.setRemoteDescription(ANSWER, answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Answerer)
 AnswererUA->AnswererJS: onopen();
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererJS->AnswererJS: {"type":"OK" }
 OffererUA->AnswererUA: Media

7.2. Call using XMPP

Uberti Expires September 4, 2012 [Page 20]

Internet-Draft JSEP March 3, 2012

 This example demonstrates an XMPP call, making use of trickle
 candidates.

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer);
 OffererJS: xmpp = createSessionInitiate(offer);
 OffererJS->AnswererJS: <jingle action="session-initiate"/>

 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: iceCallback(cand);
 OffererJS: createTransportInfo(cand, ...);
 OffererJS->AnswererJS: <jingle action="transport-info"/>

 // session-initiate arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS: offer = parseSessionInitiate(xmpp);
 AnswererJS->AnswererUA: pc.setRemoteDescription(SDP_OFFER, offer);
 AnswererUA->AnswererJS: onaddstream(remoteStream);

 // transport-infos arrive at Answerer
 AnswererJS->AnswererUA: candidates = parseTransportInfo(xmpp);
 AnswererJS->AnswererUA: pc.processIceMessage(candidates);
 AnswererJS->AnswererUA: pc.startIce();
 AnswererUA->AnswererJS: iceCallback(cand, ...)
 AnswererJS: createTransportInfo(cand);
 AnswererJS->OffererJS: <jingle action="transport-info"/>

 // transport-infos arrive at Offerer
 OffererJS->OffererUA: candidates = parseTransportInfo(xmpp);
 OffererJS->OffererUA: pc.processIceMessage(candidates);

 // Answerer accepts call
 AnswererJS->AnswererUA: peer.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = peer.createAnswer(offer, null);
 AnswererJS: xmpp = createSessionAccept(answer);
 AnswererJS->AnswererUA: pc.setLocalDescription(SDP_ANSWER, answer);
 AnswererJS->OffererJS: <jingle action="session-accept"/>

 // session-accept arrives at Offerer
 OffererJS: answer = parseSessionAccept(xmpp);
 OffererJS->OffererUA: peer.setRemoteDescription(ANSWER, answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Answerer)
 AnswererUA->AnswererJS: onopen();

Uberti Expires September 4, 2012 [Page 21]

Internet-Draft JSEP March 3, 2012

 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererUA->AnswererUA: Media

7.3. Adding video to a call, using XMPP

 This example demonstrates an XMPP call, where the XMPP content-add
 mechanism is used to add video media to an existing session. For
 simplicity, candidate exchange is not shown.

 Note that the offerer for the change to the session may be different
 than the original call offerer.

 // Offerer adds video stream
 OffererJS->OffererUA: pc.addStream(videoStream)
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS: xmpp = createContentAdd(offer);
 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer);
 OffererJS->AnswererJS: <jingle action="content-add"/>

 // content-add arrives at Answerer
 AnswererJS: offer = parseContentAdd(xmpp);
 AnswererJS->AnswererUA: pc.setRemoteDescription(SDP_OFFER, offer);
 AnswererJS->AnswererUA: answer = pc.createAnswer(offer, null);
 AnswererJS->AnswererUA: pc.setLocalDescription(SDP_ANSWER, answer);
 AnswererJS: xmpp = createContentAccept(answer);
 AnswererJS->OffererJS: <jingle action="content-accept"/>

 // content-accept arrives at Offerer
 OffererJS: answer = parseContentAccept(xmpp);
 OffererJS->OffererUA: pc.setRemoteDescription(SDP_ANSWER, answer);

7.4. Simultaneous add of video streams, using XMPP

 This example demonstrates an XMPP call, where new video sources are
 added at the same time to a call that already has video; since adding
 these sources only affects one side of the call, there is no
 conflict. The XMPP description-info mechanism is used to indicate the
 new sources to the remote side.

 // Offerer and "Answerer" add video streams at the same time
 OffererJS->OffererUA: pc.addStream(offererVideoStream2)
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS: xmpp = createDescriptionInfo(offer);
 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer);

Uberti Expires September 4, 2012 [Page 22]

Internet-Draft JSEP March 3, 2012

 OffererJS->AnswererJS: <jingle action="description-info"/>

 AnswererJS->AnswererUA: pc.addStream(answererVideoStream2)
 AnswererJS->AnswererUA: offer = pc.createOffer(null);
 AnswererJS: xmpp = createDescriptionInfo(offer);
 AnswererJS->AnswererUA: pc.setLocalDescription(SDP_OFFER, offer);
 AnswererJS->OffererJS: <jingle action="description-info"/>

 // description-info arrives at "Answerer", and is acked
 AnswererJS: offer = parseDescriptionInfo(xmpp);
 AnswererJS->OffererJS: <iq type="result/> // ack

 // description-info arrives at Offerer, and is acked
 OffererJS: offer = parseDescriptionInfo(xmpp);
 OffererJS->AnswererJS: <iq type="result/> // ack

 // ack arrives at Offerer; remote offer is used as an answer
 OffererJS->OffererUA: pc.setRemoteDescription(SDP_ANSWER, offer);

 // ack arrives at "Answerer"; remote offer is used as an answer
 AnswererJS->AnswererUA: pc.setRemoteDescription(SDP_ANSWER, offer);

7.5. Call using SIP

 This example demonstrates a simple SIP call (e.g. where the client
 talks to a SIP proxy over WebSockets).

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: iceCallback(candidate, false);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer);
 OffererJS: sip = createInvite(offer);-
 OffererJS->AnswererJS: SIP INVITE w/ SDP

 // INVITE arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS: offer = parseInvite(sip);
 AnswererJS->AnswererUA: pc.setRemoteDescription(SDP_OFFER, offer);
 AnswererUA->AnswererJS: onaddstream(remoteStream);
 AnswererJS->AnswererUA: pc.startIce();
 AnswererUA->OffererUA: iceCallback(candidate, false);

 // Answerer accepts call
 AnswererJS->AnswererUA: peer.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = peer.createAnswer(offer, null);

Uberti Expires September 4, 2012 [Page 23]

Internet-Draft JSEP March 3, 2012

 AnswererJS: sip = createResponse(200, answer);
 AnswererJS->AnswererUA: peer.setLocalDescription(SDP_ANSWER, answer);
 AnswererJS->OffererJS: 200 OK w/ SDP

 // 200 OK arrives at Offerer
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: peer.setRemoteDescription(ANSWER, answer);
 OffererUA->OffererJS: onaddstream(remoteStream);
 OffererJS->AnswererJS: ACK

 // ICE Completes (at Answerer)
 AnswererUA->AnswererJS: onopen();
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererUA->AnswererUA: Media

7.6. Handling early media (e.g. 1-800-FEDEX), using SIP

 This example demonstrates how early media could be handled; for
 simplicity, only the offerer side of the call is shown.

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: iceCallback(candidate, false);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription(SDP_OFFER, offer);
 OffererJS: sip = createInvite(offer);
 OffererJS->AnswererJS: SIP INVITE w/ SDP

 // 180 Ringing is received by offerer, w/ SDP
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription(SDP_PRANSWER, answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererUA->AnswererUA: Media

 // 200 OK arrives at Offerer
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription(SDP_ANSWER, answer);
 OffererJS->AnswererJS: ACK

8. Example Application

Uberti Expires September 4, 2012 [Page 24]

Internet-Draft JSEP March 3, 2012

 The following example demonstrates a simple video calling
 application, roughly corresponding to the flow in Example 7.1.

 var signalingChannel = createSignalingChannel();
 var pc = null;
 var hasCandidates = false;

 function start(isCaller) {
 // create a PeerConnection and hook up the IceCallback
 pc = new webkitPeerConnection(
 "", function (candidate, moreToFollow) {
 if (!moreToFollow) {
 hasCandidates = true;
 maybeSignal(isCaller);
 }
 });

 // get the local stream and show it in the local video element
 navigator.webkitGetUserMedia(
 {"audio": true, "video": true}, function (localStream) {
 selfView.src = webkitURL.createObjectURL(localStream);
 pc.addStream(localStream);
 maybeSignal(isCaller);
 }

 // once remote stream arrives, show it in the remote video element
 pc.onaddstream = function(evt) {
 remoteView.src = webkitURL.createObjectURL(evt.stream);
 };

 // if we're the caller, create and install our offer,
 // and start candidate generation
 if (isCaller) {
 offer = pc.createOffer(null);
 pc.setLocalDescription(SDP_OFFER, offer);
 pc.startIce();
 }
 }

 function maybeSignal(isCaller) {
 // only signal once we have a local stream and local candidates
 if (localStreams.size() == 0 || !hasCandidates) return;
 if (isCaller) {
 offer = pc.localDescription;
 signalingChannel.send(
 JSON.stringify({ "type": "offer", "sdp": offer }));
 } else {
 // if we're the callee, generate, apply, and send the answer

Uberti Expires September 4, 2012 [Page 25]

Internet-Draft JSEP March 3, 2012

 answer = pc.createAnswer(pc.remoteDescription, null);
 pc.setLocalDescription(SDP_ANSWER, answer);
 signalingChannel.send(
 JSON.stringify({ "type": "answer", "sdp": answer }));
 }
 }

 signalingChannel.onmessage = function(evt) {
 var msg = JSON.parse(evt.data);
 if (msg.type == "offer") {
 // create the PeerConnection
 start(false);
 // feed the received offer into the PeerConnection and
 // start candidate generation
 pc.setRemoteDescription(PeerConnection.SDP_OFFER, msg.sdp);
 pc.startIce();
 } else if (msg.type == "answer") {
 // feed the answer into the PeerConnection to complete setup
 pc.setRemoteDescription(PeerConnection.SDP_ANSWER, msg.sdp);
 }

9. Security Considerations

 TODO

10. IANA Considerations

 This document requires no actions from IANA.

11. Acknowledgements

 Harald Alvestrand, Dan Burnett, Neil Stratford, Eric Rescorla, and
 Anant Narayanan all provided valuable feedback on this proposal.
 Matthew Kaufman provided the observation that keeping state out of
 the browser allows a call to continue even if the page is reloaded.
 Adam Bergvist provided a code example that served as the basis for
 the example in Section 8.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June 2002.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264

Uberti Expires September 4, 2012 [Page 26]

Internet-Draft JSEP March 3, 2012

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

12.2. Informative References

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media Streams",

RFC 4568, July 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", RFC 5245, April 2010.

 [webrtc-api] Bergkvist, Burnett, Jennings, Narayanan, "WebRTC 1.0:
 Real-time Communication Between Browsers", October 2011.

 Available at http://dev.w3.org/2011/webrtc/editor/webrtc.html

Appendix A. Open Issues

 - Determine list of exceptions that can be thrown by each method.
 Leaning toward something like a PCException, a la

https://developer.mozilla.org/en/IndexedDB/IDBDatabaseException

 - Need callback to indicate that the transport is down, e.g.
 ICE_DISCONNECTED or ondisconnected().

Appendix B. Change log

 00: Migrated from draft-uberti-rtcweb-jsep-02.

Authors' Addresses

 Justin Uberti
 Google
 5 Cambridge Center
 Cambridge, MA 02142

 Email: justin@uberti.name

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: fluffy@cisco.com

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5245
http://dev.w3.org/2011/webrtc/editor/webrtc.html
https://developer.mozilla.org/en/IndexedDB/IDBDatabaseException
https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-jsep-02

Uberti Expires September 4, 2012 [Page 27]

