
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track C. Jennings
Expires: April 25, 2013 Cisco
 October 22, 2012

Javascript Session Establishment Protocol
draft-ietf-rtcweb-jsep-02

Abstract

 This document proposes a mechanism for allowing a Javascript
 application to fully control the signaling plane of a multimedia
 session, and discusses how this would work with existing signaling
 protocols.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Uberti & Jennings Expires April 25, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSEP October 2012

Table of Contents

1. Introduction . 3
2. Other Approaches Considered 5
3. Terminology . 6
4. Semantics and Syntax . 7
4.1. Signaling Model . 7
4.2. Session Descriptions and State Machine 7
4.3. Session Description Format 9
4.4. ICE . 10
4.4.1. ICE Candidate Trickling 10
4.4.1.1. ICE Candidate Format 10

4.5. Interactions With Forking 11
4.5.1. Sequential Forking 11
4.5.2. Parallel Forking 12

4.6. Session Rehydration 13
5. Interface . 14
5.1. SDP Requirements . 14
5.2. Methods . 15
5.2.1. createOffer . 15
5.2.2. createAnswer . 15
5.2.3. SessionDescriptionType 16
5.2.3.1. Creating Answers 17

5.2.4. setLocalDescription 17
5.2.5. setRemoteDescription 18
5.2.6. localDescription 18
5.2.7. remoteDescription 18
5.2.8. updateIce . 18
5.2.9. addIceCandidate 19

6. Configurable SDP Parameters 20
7. Security Considerations 21
8. IANA Considerations . 22
9. Acknowledgements . 23
10. References . 24
10.1. Normative References 24
10.2. Informative References 24

Appendix A. JSEP Implementation Examples 26
A.1. Example API Flows . 26
A.1.1. Call using ROAP 26
A.1.2. Call using XMPP 27
A.1.3. Adding video to a call, using XMPP 28
A.1.4. Simultaneous add of video streams, using XMPP 28
A.1.5. Call using SIP . 29

 A.1.6. Handling early media (e.g. 1-800-GO FEDEX), using
 SIP . 30

Appendix B. Change log . 32
 Authors' Addresses . 33

Uberti & Jennings Expires April 25, 2013 [Page 2]

Internet-Draft JSEP October 2012

1. Introduction

 The thinking behind WebRTC call setup has been to fully specify and
 control the media plane, but to leave the signaling plane up to the
 application as much as possible. The rationale is that different
 applications may prefer to use different protocols, such as the
 existing SIP or Jingle call signaling protocols, or something custom
 to the particular application, perhaps for a novel use case. In this
 approach, the key information that needs to be exchanged is the
 multimedia session description, which specifies the necessary
 transport and media configuration information necessary to establish
 the media plane.

 The browser environment also has its own challenges that cause
 problems for an embedded signaling state machine. One of these is
 that the user may reload the web page at any time. If this happens,
 and the state machine is being run at a server, the server can simply
 push the current state back down to the page and resume the call
 where it left off.

 This document describes the Javascript Session Establishment Protocol
 (JSEP) that pulls the signaling state machine out of the browser and
 into Javascript. This mechanism effectively removes the browser
 almost completely from the core signaling flow; the only interface
 needed is a way for the application to pass in the local and remote
 session descriptions negotiated by whatever signaling mechanism is
 used, and a way to interact with the ICE state machine.

 JSEP's handling of session descriptions is simple and
 straightforward. Whenever an offer/answer exchange is needed, the
 initiating side creates an offer by calling a createOffer() API. The
 application optionally modifies that offer, and then uses it to set
 up its local config via the setLocalDescription() API. The offer is
 then sent off to the remote side over its preferred signaling
 mechanism (e.g., WebSockets); upon receipt of that offer, the remote
 party installs it using the setRemoteDescription() API.

 When the call is accepted, the callee uses the createAnswer() API to
 generate an appropriate answer, applies it using
 setLocalDescription(), and sends the answer back to the initiator
 over the signaling channel. When the offerer gets that answer, it
 installs it using setRemoteDescription(), and initial setup is
 complete. This process can be repeated for additional offer/answer
 exchanges.

 Regarding ICE, JSEP decouples the ICE state machine from the overall
 signaling state machine, as the ICE state machine must remain in the
 browser, because only the browser has the necessary knowledge of

Uberti & Jennings Expires April 25, 2013 [Page 3]

Internet-Draft JSEP October 2012

 candidates and other transport info. Performing this separation also
 provides additional flexibility; in protocols that decouple session
 descriptions from transport, such as Jingle, the transport
 information can be sent separately; in protocols that don't, such as
 SIP, the information can be used in the aggregated form. Sending
 transport information separately can allow for faster ICE and DTLS
 startup, since the necessary roundtrips can occur while waiting for
 the remote side to accept the session.

 The JSEP approach does come with a minor downside. As the
 application now is responsible for driving the signaling state
 machine, slightly more application code is necessary to perform call
 setup; the application must call the right APIs at the right times,
 and convert the session descriptions and ICE information into the
 defined messages of its chosen signaling protocol, instead of simply
 forwarding the messages emitted from the browser.

 One way to mitigate this is to provide a Javascript library that
 hides this complexity from the developer, which would implement the
 state machine and serialization of the desired signaling protocol.
 For example, this library could convert easily adapt the JSEP API
 into the exact ROAP API [I-D.jennings-rtcweb-signaling], thereby
 implementing the ROAP signaling protocol. Such a library could of
 course also implement other popular signaling protocols, including
 SIP or Jingle. In this fashion we can enable greater control for the
 experienced developer without forcing any additional complexity on
 the novice developer.

Uberti & Jennings Expires April 25, 2013 [Page 4]

Internet-Draft JSEP October 2012

2. Other Approaches Considered

 Another approach that was considered for JSEP was to move the
 mechanism for generating offers and answers out of the browser as
 well. Instead of providing createOffer/createAnswer methods within
 the browser, this approach would instead expose a getCapabilities API
 which would provide the application with the information it needed in
 order to generate its own session descriptions. This increases the
 amount of work that the application needs to do; it needs to know how
 to generate session descriptions from capabilities, and especially
 how to generate the correct answer from an arbitrary offer and the
 supported capabilities. While this could certainly be addressed by
 using a library like the one mentioned above, it basically forces the
 use of said library even for a simple example. Exposing createOffer/
 createAnswer avoids that problem, but still allows applications to
 generate their own offers/answers if they choose, using the
 description generated by createOffer as an indication of the
 browser's capabilities.

 Note also that while JSEP transfers more control to Javascript, it is
 not intended to be an example of a "low-level" API. The general
 argument against a low-level API is that there are too many necessary
 API points, and they can be called in any order, leading to something
 that is hard to specify and test. In the approach proposed here,
 control is performed via session descriptions; this requires only a
 few APIs to handle these descriptions, and they are evaluated in a
 specific fashion, which reduces the number of possible states and
 interactions.

Uberti & Jennings Expires April 25, 2013 [Page 5]

Internet-Draft JSEP October 2012

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Uberti & Jennings Expires April 25, 2013 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft JSEP October 2012

4. Semantics and Syntax

4.1. Signaling Model

 JSEP does not specify a particular signaling model or state machine,
 other than the generic need to exchange RFC 3264 offers and answers
 in order for both sides of the session to know how to conduct the
 session. JSEP provides mechanisms to create offers and answers, as
 well as to apply them to a session. However, the actual mechanism by
 which these offers and answers are communicated to the remote side,
 including addressing, retransmission, forking, and glare handling, is
 left entirely up to the application.

 +-----------+ +-----------+
 | Web App |<--- App-Specific Signaling -->| Web App |
 +-----------+ +-----------+
 ^ ^
 | SDP | SDP
 V V
 +-----------+ +-----------+
 | Browser |<----------- Media ------------>| Browser |
 +-----------+ +-----------+

 Figure 1: JSEP Signaling Model

4.2. Session Descriptions and State Machine

 In order to establish the media plane, the user agent needs specific
 parameters to indicate what to transmit to the remote side, as well
 as how to handle the media that is received. These parameters are
 determined by the exchange of session descriptions in offers and
 answers, and there are certain details to this process that must be
 handled in the JSEP APIs.

 Whether a session description was sent or received affects the
 meaning of that description. For example, the list of codecs sent to
 a remote party indicates what the local side is willing to decode,
 and what the remote party should send. Not all parameters follow
 this rule; for example, the SRTP parameters [RFC4568] sent to a
 remote party indicate what the local side will use to encrypt, and
 thereby how the remote party should expect to receive.

 In addition, various RFCs put different conditions on the format of
 offers versus answers. For example, a offer may propose multiple
 SRTP configurations, but an answer may only contain a single SRTP
 configuration.

 Lastly, while the exact media parameters are only known only after a

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4568

Uberti & Jennings Expires April 25, 2013 [Page 7]

Internet-Draft JSEP October 2012

 offer and an answer have been exchanged, it is possible for the
 offerer to receive media after they have sent an offer and before
 they have received an answer. To properly process incoming media in
 this case, the offerer's media handler must be aware of the details
 of the offerer before the answer arrives.

 Therefore, in order to handle session descriptions properly, the user
 agent needs:

 1. To know if a session description pertains to the local or remote
 side.

 2. To know if a session description is an offer or an answer.

 3. To allow the offer to be specified independently of the answer.

 JSEP addresses this by adding both a setLocalDescription and a
 setRemoteDescription method and having session description objects
 contain a type field indicating the type of session description being
 supplied. This satisfies the requirements listed above for both the
 offerer, who first calls setLocalDescription(sdp [offer]) and then
 later setRemoteDescription(sdp [answer]), as well as for the
 answerer, who first calls setRemoteDescription(sdp [offer]) and then
 later setLocalDescription(sdp [answer]). While it could be possible
 to implicitly determine the value of the offer/answer argument,
 requiring it to be specified explicitly is more robust, allowing
 invalid combinations (i.e. an answer before an offer) to generate an
 appropriate error.

 JSEP also allows for an answer to be treated as provisional by the
 application. Provisional answers provide a way for an answerer to
 communicate initial session parameters back to the offerer, in order
 to allow the session to begin, while allowing a final answer to be
 specified later. This concept of a final answer is important to the
 offer/answer model; when such an answer is received, any extra
 resources allocated by the caller can be released, now that the exact
 session configuration is known. These "resources" can include things
 like extra ICE components, TURN candidates, or video decoders.
 Provisional answers, on the other hand, do no such deallocation
 results; as a result, multiple dissimilar provisional answers can be
 received and applied during call setup.

 In [RFC3264], the constraints at the signaling level is that only one
 offer can be outstanding for a given session but from the media stack
 level, a new offer can be generated at any point. For example, when
 using SIP for signaling, if one offer is sent, then cancelled using a
 SIP CANCEL, another offer can be generated even though no answer was
 received for the first offer. To support this, the JSEP media layer

https://datatracker.ietf.org/doc/html/rfc3264

Uberti & Jennings Expires April 25, 2013 [Page 8]

Internet-Draft JSEP October 2012

 can provide an offer whenever the Javascript application needs one
 for the signaling. The answerer can send back zero or more
 provisional answers, and finally end the offer-answer exchange by
 sending a final answer. The state machine for this is as follows:

 +-----------+
 | |
 | |
 | Stable |<---------------\
 | | |
 | | |
 +-----------+ |
 ^ | |
 | | OFFER |
 ANSWER | | | ANSWER
 | V |
 +-----------+ +-----------+
 | | | |
 | | PRANSWER | |
 | Offer |-------- >| Pranswer |
 | | | |
 | |----\ | |----\
 +-----------+ | +-----------+ |
 ^ | ^ |
 | | | |
 \-----/ \-----/
 OFFER PRANSWER

 Figure 2: JSEP State Machine

 Aside from these state transitions, there is no other difference
 between the handling of provisional ("pranswer") and final ("answer")
 answers.

4.3. Session Description Format

 In the WebRTC specification, session descriptions are formatted as
 SDP messages. While this format is not optimal for manipulation from
 Javascript, it is widely accepted, and frequently updated with new
 features. Any alternate encoding of session descriptions would have
 to keep pace with the changes to SDP, at least until the time that
 this new encoding eclipsed SDP in popularity. As a result, JSEP
 continues to use SDP as the internal representation for its session
 descriptions.

 However, to simplify Javascript processing, and provide for future
 flexibility, the SDP syntax is encapsulated within a
 SessionDescription object, which can be constructed from SDP, and be

Uberti & Jennings Expires April 25, 2013 [Page 9]

Internet-Draft JSEP October 2012

 serialized out to SDP. If future specifications agree on a JSON
 format for session descriptions, we could easily enable this object
 to generate and consume that JSON.

 Other methods may be added to SessionDescription in the future to
 simplify handling of SessionDescriptions from Javascript. Though it
 is unclear exactly what manipulations developer will commonly want to
 do to SDP, it would be simple to write a Javascript library to
 perform these manipulations.

4.4. ICE

 When a new ICE candidate is available, the ICE Agent will notify the
 application via a callback; these candidates will automatically be
 added to the local session description. When all candidates have
 been gathered, the callback will also be invoked to signal that the
 gathering process is complete.

4.4.1. ICE Candidate Trickling

 Candidate trickling is a technique through which a caller may
 incrementally provide candidates to the callee after the initial
 offer has been dispatched; the semantics of "Trickle ICE" are defined
 in [I-D.rescorla-mmusic-ice-trickle]. This process allows the callee
 to begin acting upon the call and setting up the ICE (and perhaps
 DTLS) connections immediately, without having to wait for the caller
 to gather all possible candidates. This results in faster call
 startup in cases where gathering is not performed prior to initating
 the call.

 JSEP supports optional candidate trickling by providing APIs that
 provide control and feedback on the ICE candidate gathering process.
 Applications that support candidate trickling can send the initial
 offer immediately and send individual candidates when they get the
 notified of a new candidate; applications that do not support this
 feature can simply wait for the indication that gathering is
 complete, and then create and send their offer, with all the
 candidates, at this time.

 Upon receipt of trickled candidates, the receiving application will
 supply them to its ICE Agent. This triggers the ICE Agent to start
 using the new remote candidates for connectivity checks.

4.4.1.1. ICE Candidate Format

 As with session descriptions, the syntax of the IceCandidate object
 provides some abstraction, but can be easily converted to and from
 the SDP a=candidate lines.

Uberti & Jennings Expires April 25, 2013 [Page 10]

Internet-Draft JSEP October 2012

 The a=candidate lines are the only SDP information that is contained
 within IceCandidate, as they represent the only information needed
 that is not present in the initial offer (i.e. for trickle
 candidates). This information is carried with the same syntax as the
 "a=candidate" line in SDP. For example:

 a=candidate:1 1 UDP 1694498815 192.0.2.33 10000 typ host

 The IceCandidate object also contains fields to indicate which m=
 line it should be associated with. The m line can be identified in
 one of two ways; either by a m-line index, or a MID. The m-line
 index is a zero-based index, referring to the Nth m-line in the SDP.
 The MID uses the "media stream identification", as defined in [RFC
 3388], to identify the m-line. WebRTC implementations creating an
 ICE Candidate object MUST populate both of these fields.
 Implementations receiving an ICE Candidate object SHOULD use the MID
 if they implement that functionality, or the m-line index, if not.

4.5. Interactions With Forking

 Some call signaling systems allow various types of forking where an
 SDP Offer may be provided to more than one device. For example, SIP

RFC 3261 defines both a "Parallel Search" and "Sequential Search".
 Although these are primarily signaling level issues that are outside
 the scope of JSEP, they do have some impact on the configuration of
 the media plane, which is relevant. When forking is happening at the
 signaling layer, the Javascript application responsible for the
 signaling needs to make the decisions about what media should be sent
 or received at any point of time and which remote endpoint it should
 communicate with. JSEP is used to make sure the media engine can
 make the RTP and media perform as required by the application. The
 basic operations that the applications can have the media engine do
 are:

 Start exchanging media to a given remote peer but keep all the
 resources reserved in the offer.

 Start exchanging media with a given remote peer and free any
 resources in the offer that are not being used.

4.5.1. Sequential Forking

 Sequential forking involves a call being dispatched to multiple
 remote callees, where each callee can accept the call, but only one
 active session ever exists at a time; no mixing of received media is
 performed.

 JSEP handles serial forking well, allowing the application to easily

https://datatracker.ietf.org/doc/html/rfc3261

Uberti & Jennings Expires April 25, 2013 [Page 11]

Internet-Draft JSEP October 2012

 control the policy for selecting the desired remote endpoint. When
 an answer arrives from one of the callees, the application can choose
 to apply it either as a provisional answer, leaving open the
 possibility of using a different answer in the future, or apply it as
 a final answer, ending the setup flow.

 In a "first-one-wins" situation, the first answer will be applied as
 a final answer, and the application will reject any subsequent
 answers. In SIP parlance, this would be ACK + BYE.

 In a "last-one-wins" situation, all answers would be applied as
 provisional answers, and any previous call leg will be terminated.
 At some point, the application will end the setup process, perhaps
 with a timer; at this point, the application could reapply the
 existing remote description as a final answer.

4.5.2. Parallel Forking

 Parallel forking involves a call being dispatched to multiple remote
 callees, where each callee can accept the call, and multiple
 simultaneous active signaling sessions can be established as a
 result. If multiple callees send media at the same time, the
 possibilities for handling this are described in Section 3.1 of RFC

3960. Most SIP devices today only support exchanging media with a
 single device at a time, and do not try to mix multiple early media
 audio sources, as that could result in a confusing situation. For
 example. consider having a European ringback tone mixed together with
 the North American ringback tone - the resulting sound would not be
 like either tone, and would confuse the user. If the signaling
 application wishes to only exchange media with one of the remote
 endpoints at a time, then from a media engine point of view, this is
 exactly like the sequential forking case.

 In the parallel forking case where the Javascript application wishes
 to simultaneously exchange media with multiple peers, the flow is
 slightly more complex, but the Javascript application can follow the
 strategy that RFC 3960 describes using UPDATE. (It is worth noting
 that use cases where this is the desired behavior are very unusual.)
 The UPDATE approach allows the signaling to set up a separate media
 flow for each peer that it wishes to exchange media with. In JSEP,
 this offer used in the UPDATE would be formed by simply creating a
 new PeerConnection and making sure that the same local media streams
 have been added into this new PeerConnection. Then the new
 PeerConnection object would produce a SDP offer that could be used by
 the signaling to perform the UPDATE strategy discussed in RFC 3690.

 As a result of sharing the media streams, the application will end up
 with N parallel PeerConnection sessions, each with a local and remote

https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc3690

Uberti & Jennings Expires April 25, 2013 [Page 12]

Internet-Draft JSEP October 2012

 description and their own local and remote addresses. The media flow
 from these sessions can be managed by specifying SDP direction
 attributes in the descriptions, or the application can choose to play
 out the media from all sessions mixed together. Of course, if the
 application wants to only keep a single session, it can simply
 terminate the sessions that it no longer needs.

4.6. Session Rehydration

 In the event that the local application state is reinitialized,
 either due to a user reload of the page, or a decision within the
 application to reload itself (perhaps to update to a new version), it
 is possible to keep an existing session alive via a process called
 "rehydration".

 With rehydration, the current signaling state is persisted somewhere
 outside of the page, perhaps on the application server, or in browser
 local storage. The page is then reloaded, and a new session object
 is created in Javascript. The saved signaling state is now
 retrieved, and a new PeerConnection object is created for the
 session. At this point a new offer can be generated by the new
 PeerConnection, with new ICE and SDES credentials. This can then be
 used to re-initiate the session with the existing remote endpoint,
 who simply sees the new offer as an in-call renegotiation, and will
 reply with an answer that can be supplied to setRemoteDescription.
 ICE processing proceeds as usual, and as soon as connectivity is
 established, the session will be back up and running again.

 Open Issue: EKR proposed an alternative rehydration approach where
 the actual internal PeerConnection object in the browser was kept
 alive for some time after the web page was killed and provided some
 way for a new page to acquire the old PeerConnection object.

Uberti & Jennings Expires April 25, 2013 [Page 13]

Internet-Draft JSEP October 2012

5. Interface

 This section details the basic operations that must be present to
 implement JSEP functionality. The actual API exposed in the W3C API
 may have somewhat different syntax, but should map easily to these
 concepts.

5.1. SDP Requirements

 Note: The text in this section may not represent working group
 consensus and is put here so that the working group can discuss it
 and find out how to change it such that it does have consensus.

 When generating SDP blobs, either for offers or answers, the
 generated SDP needs to conform to the following specifications.
 Similarly, in order to properly process received SDP blobs,
 implementations need to implement the functionality described in the
 following specifications. This list is derived from
 [I-D.ietf-rtcweb-rtp-usage].

RFC4566 is the base SDP specification and MUST be implemented.

RFC5124 MUST be supported for signaling RTP/SAVPF RTP profile.

RFC5104 MUST be implemented to signal RTCP based feedback.

RFC5761 MUST be implemented to signal multiplexing of RTP and
 RTCP.

RFC5245 MUST be implemented for signaling the ICE candidate lines
 corresponding to each media stream.

RFC3264 MUST be implemented to signal information about media
 direction.

 The RFC5888 grouping framework MUST be implemented for signaling
 the grouping information.

RFC5506 MAY be implemented to signal Reduced-Size RTCP messages.

RFC5576 MAY be implemented to signal RTP SSRC values.

RFC3556 with bandwidth modifiers MAY be supported for specifying
 RTCP bandwidth as a fraction of the media bandwidth, RTCP fraction
 allocated to the senders and setting maximum media bit-rate
 boundaries.

 As required by RFC 4566 Section 5.13 JSEP implementations MUST ignore

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc4566#section-5.13

Uberti & Jennings Expires April 25, 2013 [Page 14]

Internet-Draft JSEP October 2012

 unknown attributes (a=) lines.

 Example SDP for RTCWeb call flows can be found in
 [I-D.nandakumar-rtcweb-sdp].

5.2. Methods

5.2.1. createOffer

 The createOffer method generates a blob of SDP that contains a RFC
3264 offer with the supported configurations for the session,

 including descriptions of the local MediaStreams attached to this
 PeerConnection, the codec/RTP/RTCP options supported by this
 implementation, and any candidates that have been gathered by the ICE
 Agent. A constraints parameters may be supplied to provide
 additional control over the generated offer, e.g. to get a full set
 of session capabilities, or to request a new set of ICE credentials.

 In the initial offer, the generated SDP will contain all desired
 functionality for the session (certain parts that are supported but
 not desired by default may be omitted); for each SDP line, the
 generation of the SDP must follow the appropriate process for
 generating an offer. In the event createOffer is called after the
 session is established, createOffer will generate an offer that is
 compatible with the current session, incorporating any changes that
 have been made to the session since the last complete offer-answer
 exchange, such as addition or removal of streams. If no changes have
 been made, the offer will be identical to the current local
 description.

 Session descriptions generated by createOffer must be immediately
 usable by setLocalDescription; if a system has limited resources
 (e.g. a finite number of decoders), createOffer should return an
 offer that reflects the current state of the system, so that
 setLocalDescription will succeed when it attempts to acquire those
 resources. Because this method may need to inspect the system state
 to determine the currently available resources, it may be implemented
 as an async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not change media state.

5.2.2. createAnswer

 The createAnswer method generates a blob of SDP that contains a RFC
3264 SDP answer with the supported configuration for the session that

 is compatible with the parameters supplied in the offer. Like
 createOffer, the returned blob contains descriptions of the local

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264

Uberti & Jennings Expires April 25, 2013 [Page 15]

Internet-Draft JSEP October 2012

 MediaStreams attached to this PeerConnection, the codec/RTP/RTCP
 options negotiated for this session, and any candidates that have
 been gathered by the ICE Agent. A constraints parameter may be
 supplied to provide additional control over the generated answer.

 As an answer, the generated SDP will contain a specific configuration
 that specifies how the media plane should be established.

 Session descriptions generated by createAnswer must be immediately
 usable by setLocalDescription; like createOffer, the returned
 description should reflect the current state of the system. Because
 this method may need to inspect the system state to determine the
 currently available resources, it may need to be implemented as an
 async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not change media state.

5.2.3. SessionDescriptionType

 Session description objects (RTCSessionDescription) may be of type
 "offer", "pranswer", and "answer". These types provide information
 as to how the description parameter should be parsed, and how the
 media state should be changed.

 "offer" indicates that a description should be parsed as an offer;
 said description may include many possible media configurations. A
 description used as an "offer" may be applied anytime the
 PeerConnection is in a stable state, or as an update to a previously
 sent but unanswered "offer".

 "pranswer" indicates that a description should be parsed as an
 answer, but not a final answer, and so should not result in the
 freeing of allocated resources. It may result in the start of media
 transmission, if the answer does not specify an inactive media
 direction. A description used as a "pranswer" may be applied as a
 response to an "offer", or an update to a previously sent "answer".

 "answer" indicates that a description should be parsed as an answer,
 the offer-answer exchange should be considered complete, and any
 resources (decoders, candidates) that are no longer needed can be
 released. A description used as an "answer" may be applied as a
 response to a "offer", or an update to a previously sent "pranswer".

 The application can use some discretion on whether an answer should
 be applied as provisional or final. For example, in a serial forking
 scenario, an application may receive multiple "final" answers, one
 from each remote endpoint. The application could accept the initial

Uberti & Jennings Expires April 25, 2013 [Page 16]

Internet-Draft JSEP October 2012

 answers as provisional answers, and only apply an answer as final
 when it receives one that meets its criteria (e.g. a live user
 instead of voicemail).

5.2.3.1. Creating Answers

 Most web applications will not need to create answers using the
 "pranswer" type. The general recommendation for a web application
 would be to create an answer more or less immediately after receiving
 the offer, instead of waiting for a human user to provide input.
 Later when the human input is received, the applications can create a
 new offer to update the previous offer/answer pair. Some
 applications may not be able to do this, particularly ones that Some
 application may not be able to do this, particular ones that are
 attempting to gateway to other signaling protocols.

 Consider a typical web application that will set up a data channel,
 an audio channel, and a video channel. When an endpoint receives an
 offer with these channels, it could send an answer accepting the data
 channel for two-way data, and accepting the audio and video tracks as
 receive-only. It could then ask the user if they wanted to transmit
 audio and video to the far end, acquire the local media streams, and
 send a new offer to the remote side moving the audio and video to be
 two-way media. By the time the human has authorized sending media,
 it is likely that the ICE and DTLS handshaking with the remote side
 will already be set up.

5.2.4. setLocalDescription

 The setLocalDescription method instructs the PeerConnection to apply
 the supplied SDP blob as its local configuration. The type field
 indicates whether the blob should be processed as an offer,
 provisional answer, or final answer; offers and answers are checked
 differently, using the various rules that exist for each SDP line.

 This API changes the local media state; among other things, it sets
 up local resources for receiving and decoding media. In order to
 successfully handle scenarios where the application wants to offer to
 change from one media format to a different, incompatible format, the
 PeerConnection must be able to simultaneously support use of both the
 old and new local descriptions (e.g. support codecs that exist in
 both descriptions) until a final answer is received, at which point
 the PeerConnection can fully adopt the new local description, or roll
 back to the old description if the remote side denied the change.

 If setRemoteDescription was previous called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, this will result in the

Uberti & Jennings Expires April 25, 2013 [Page 17]

Internet-Draft JSEP October 2012

 starting of media transmission.

5.2.5. setRemoteDescription

 The setRemoteDescription method instructs the PeerConnection to apply
 the supplied SDP blob as the desired remote configuration. As in
 setLocalDescription, the type field of the indicates how the blob
 should be processed.

 This API changes the local media state; among other things, it sets
 up local resources for sending and encoding media.

 If setRemoteDescription was previous called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, this will result in the
 starting of media transmission.

5.2.6. localDescription

 The localDescription method returns a copy of the current local
 configuration, i.e. what was most recently passed to
 setLocalDescription, plus any local candidates that have been
 generated by the ICE Agent.

 A null object will be returned if the local description has not yet
 been established.

5.2.7. remoteDescription

 The remoteDescription method returns a copy of the current remote
 configuration, i.e. what was most recently passed to
 setRemoteDescription, plus any remote candidates that have been
 supplied via processIceMessage.

 A null object will be returned if the remote description has not yet
 been established.

5.2.8. updateIce

 The updateIce method allows the configuration of the ICE Agent to be
 changed during the session, primarily for changing which types of
 local candidates are provided to the application and used for
 connectivity checks. A callee may initially configure the ICE Agent
 to use only relay candidates, to avoid leaking location information,
 but update this configuration to use all candidates once the call is
 accepted.

 Regardless of the configuration, the gathering process collects all

Uberti & Jennings Expires April 25, 2013 [Page 18]

Internet-Draft JSEP October 2012

 available candidates, but excluded candidates will not be surfaced in
 onicecallback or used for connectivity checks.

 This call may result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

5.2.9. addIceCandidate

 The addIceCandidate method provides a remote candidate to the ICE
 Agent, which will be added to the remote description. Connectivity
 checks will be sent to the new candidate.

 This call will result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

Uberti & Jennings Expires April 25, 2013 [Page 19]

Internet-Draft JSEP October 2012

6. Configurable SDP Parameters

 Note: This section is still very early and is likely to
 significantly change as we get a better understanding of the a) the
 use cases for this b) the implications at the protocol level c)
 feedback from implementors on what they can do.

 The following is a partial list of SDP parameters that an application
 may want to control, in either local or remote descriptions, using
 this API.

 o remove or reorder codecs (m=)

 o change codec attributes (a=fmtp; ptime)

 o enable/disable BUNDLE (a=group)

 o enable/disable RTCP mux (a=rtcp-mux)

 o change send resolution or framerate (TBD)

 o change desired recv resolution or framerate (TBD)

 o change total bandwidth (b=)

 o remove desired AVPF mechanisms (a=rtcp-fb)

 o remove RTP header extensions (a=rtphdr-ext)

 o add/change SSRC grouping (e.g. FID, RTX, etc) (a=ssrc-group)

 o add SSRC attributes (a=ssrc)

 o change media send/recv state (a=sendonly/recvonly/inactive)

 For example, an application could implement call hold by adding an
 a=inactive attribute to its local description, and then applying and
 signaling that description.

Uberti & Jennings Expires April 25, 2013 [Page 20]

Internet-Draft JSEP October 2012

7. Security Considerations

 TODO

Uberti & Jennings Expires April 25, 2013 [Page 21]

Internet-Draft JSEP October 2012

8. IANA Considerations

 This document requires no actions from IANA.

Uberti & Jennings Expires April 25, 2013 [Page 22]

Internet-Draft JSEP October 2012

9. Acknowledgements

 Harald Alvestrand, Dan Burnett, Neil Stratford, Eric Rescorla, Anant
 Narayanan, and Adam Bergkvist all provided valuable feedback on this
 proposal. Suhas Nandakumar provided text and input for SDP
 requirements. Matthew Kaufman provided the observation that keeping
 state out of the browser allows a call to continue even if the page
 is reloaded.

Uberti & Jennings Expires April 25, 2013 [Page 23]

Internet-Draft JSEP October 2012

10. References

10.1. Normative References

 [I-D.rescorla-mmusic-ice-trickle]
 Rescorla, E., Uberti, J., and E. Ivov, "Trickle ICE:
 Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol",

draft-rescorla-mmusic-ice-trickle-00 (work in progress),
 October 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

10.2. Informative References

 [I-D.ietf-rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",

draft-ietf-rtcweb-rtp-usage-04 (work in progress),
 July 2012.

 [I-D.jennings-rtcweb-signaling]
 Jennings, C., Rosenberg, J., and R. Jesup, "RTCWeb Offer/
 Answer Protocol (ROAP)",

draft-jennings-rtcweb-signaling-01 (work in progress),
 October 2011.

 [I-D.nandakumar-rtcweb-sdp]
 Nandakumar, S. and C. Jennings, "SDP for the WebRTC",

draft-nandakumar-rtcweb-sdp-00 (work in progress),
 October 2012.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

https://datatracker.ietf.org/doc/html/draft-rescorla-mmusic-ice-trickle-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-04
https://datatracker.ietf.org/doc/html/draft-jennings-rtcweb-signaling-01
https://datatracker.ietf.org/doc/html/draft-nandakumar-rtcweb-sdp-00
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5245

Uberti & Jennings Expires April 25, 2013 [Page 24]

Internet-Draft JSEP October 2012

 [W3C.WD-webrtc-20111027]
 Bergkvist, A., Burnett, D., Narayanan, A., and C.
 Jennings, "WebRTC 1.0: Real-time Communication Between
 Browsers", World Wide Web Consortium WD WD-webrtc-
 20111027, October 2011,
 <http://www.w3.org/TR/2011/WD-webrtc-20111027>.

Uberti & Jennings Expires April 25, 2013 [Page 25]

http://www.w3.org/TR/2011/WD-webrtc-20111027

Internet-Draft JSEP October 2012

Appendix A. JSEP Implementation Examples

A.1. Example API Flows

 Below are several sample flows for the new PeerConnection and library
 APIs, demonstrating when the various APIs are called in different
 situations and with various transport protocols. For clarity and
 simplicity, the createOffer/createAnswer calls are assumed to be
 synchronous in these examples, whereas the actual APIs are async.

A.1.1. Call using ROAP

 This example demonstrates a ROAP call, without the use of trickle
 candidates.

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererUA->OffererJS: iceCallback(candidate);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS->AnswererJS: {"type":"OFFER", "sdp":offer }

 // OFFER arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", msg.sdp);
 AnswererUA->AnswererJS: onaddstream(remoteStream);
 AnswererUA->OffererUA: iceCallback(candidate);

 // Answerer accepts call
 AnswererJS->AnswererUA: peer.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = peer.createAnswer(msg.sdp, null);
 AnswererJS->AnswererUA: peer.setLocalDescription("answer", answer);
 AnswererJS->OffererJS: {"type":"ANSWER","sdp":answer }

 // ANSWER arrives at Offerer
 OffererJS->OffererUA: peer.setRemoteDescription("answer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Answerer)
 AnswererUA->AnswererJS: onopen();
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererJS->AnswererJS: {"type":"OK" }
 OffererUA->AnswererUA: Media

Uberti & Jennings Expires April 25, 2013 [Page 26]

Internet-Draft JSEP October 2012

A.1.2. Call using XMPP

 This example demonstrates an XMPP call, making use of trickle
 candidates.

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS: xmpp = createSessionInitiate(offer);
 OffererJS->AnswererJS: <jingle action="session-initiate"/>

 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: onicecandidate(cand);
 OffererJS: createTransportInfo(cand);
 OffererJS->AnswererJS: <jingle action="transport-info"/>

 // session-initiate arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS: offer = parseSessionInitiate(xmpp);
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", offer);
 AnswererUA->AnswererJS: onaddstream(remoteStream);

 // transport-infos arrive at Answerer
 AnswererJS->AnswererUA: candidate = parseTransportInfo(xmpp);
 AnswererJS->AnswererUA: pc.addIceCandidate(candidate);
 AnswererUA->AnswererJS: onicecandidate(cand)
 AnswererJS: createTransportInfo(cand);
 AnswererJS->OffererJS: <jingle action="transport-info"/>

 // transport-infos arrive at Offerer
 OffererJS->OffererUA: candidates = parseTransportInfo(xmpp);
 OffererJS->OffererUA: pc.addIceCandidate(candidates);

 // Answerer accepts call
 AnswererJS->AnswererUA: peer.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = peer.createAnswer(offer, null);
 AnswererJS: xmpp = createSessionAccept(answer);
 AnswererJS->AnswererUA: pc.setLocalDescription("answer", answer);
 AnswererJS->OffererJS: <jingle action="session-accept"/>

 // session-accept arrives at Offerer
 OffererJS: answer = parseSessionAccept(xmpp);
 OffererJS->OffererUA: peer.setRemoteDescription("answer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Answerer)

Uberti & Jennings Expires April 25, 2013 [Page 27]

Internet-Draft JSEP October 2012

 AnswererUA->AnswererJS: onopen();
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererUA->AnswererUA: Media

A.1.3. Adding video to a call, using XMPP

 This example demonstrates an XMPP call, where the XMPP content-add
 mechanism is used to add video media to an existing session. For
 simplicity, candidate exchange is not shown.

 Note that the offerer for the change to the session may be different
 than the original call offerer.

 // Offerer adds video stream
 OffererJS->OffererUA: pc.addStream(videoStream)
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS: xmpp = createContentAdd(offer);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS->AnswererJS: <jingle action="content-add"/>

 // content-add arrives at Answerer
 AnswererJS: offer = parseContentAdd(xmpp);
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", offer);
 AnswererJS->AnswererUA: answer = pc.createAnswer(offer, null);
 AnswererJS->AnswererUA: pc.setLocalDescription("answer", answer);
 AnswererJS: xmpp = createContentAccept(answer);
 AnswererJS->OffererJS: <jingle action="content-accept"/>

 // content-accept arrives at Offerer
 OffererJS: answer = parseContentAccept(xmpp);
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);

A.1.4. Simultaneous add of video streams, using XMPP

 This example demonstrates an XMPP call, where new video sources are
 added at the same time to a call that already has video; since adding
 these sources only affects one side of the call, there is no
 conflict. The XMPP description-info mechanism is used to indicate
 the new sources to the remote side.

Uberti & Jennings Expires April 25, 2013 [Page 28]

Internet-Draft JSEP October 2012

 // Offerer and "Answerer" add video streams at the same time
 OffererJS->OffererUA: pc.addStream(offererVideoStream2)
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS: xmpp = createDescriptionInfo(offer);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS->AnswererJS: <jingle action="description-info"/>

 AnswererJS->AnswererUA: pc.addStream(answererVideoStream2)
 AnswererJS->AnswererUA: offer = pc.createOffer(null);
 AnswererJS: xmpp = createDescriptionInfo(offer);
 AnswererJS->AnswererUA: pc.setLocalDescription("offer", offer);
 AnswererJS->OffererJS: <jingle action="description-info"/>

 // description-info arrives at "Answerer", and is acked
 AnswererJS: offer = parseDescriptionInfo(xmpp);
 AnswererJS->OffererJS: <iq type="result"/> // ack

 // description-info arrives at Offerer, and is acked
 OffererJS: offer = parseDescriptionInfo(xmpp);
 OffererJS->AnswererJS: <iq type="result"/> // ack

 // ack arrives at Offerer; remote offer is used as an answer
 OffererJS->OffererUA: pc.setRemoteDescription("answer", offer);

 // ack arrives at "Answerer"; remote offer is used as an answer
 AnswererJS->AnswererUA: pc.setRemoteDescription("answer", offer);

A.1.5. Call using SIP

 This example demonstrates a simple SIP call (e.g. where the client
 talks to a SIP proxy over WebSockets).

Uberti & Jennings Expires April 25, 2013 [Page 29]

Internet-Draft JSEP October 2012

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererUA->OffererJS: onicecandidate(candidate);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS: sip = createInvite(offer);
 OffererJS->AnswererJS: SIP INVITE w/ SDP

 // INVITE arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS: offer = parseInvite(sip);
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", offer);
 AnswererUA->AnswererJS: onaddstream(remoteStream);
 AnswererUA->OffererUA: onicecandidate(candidate);

 // Answerer accepts call
 AnswererJS->AnswererUA: peer.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = peer.createAnswer(offer, null);
 AnswererJS: sip = createResponse(200, answer);
 AnswererJS->AnswererUA: peer.setLocalDescription("answer", answer);
 AnswererJS->OffererJS: 200 OK w/ SDP

 // 200 OK arrives at Offerer
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: peer.setRemoteDescription("answer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);
 OffererJS->AnswererJS: ACK

 // ICE Completes (at Answerer)
 AnswererUA->AnswererJS: onopen();
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererUA->AnswererUA: Media

A.1.6. Handling early media (e.g. 1-800-GO FEDEX), using SIP

 This example demonstrates how early media could be handled; for
 simplicity, only the offerer side of the call is shown.

Uberti & Jennings Expires April 25, 2013 [Page 30]

Internet-Draft JSEP October 2012

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererUA->OffererJS: onicecandidate(candidate);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS: sip = createInvite(offer);
 OffererJS->AnswererJS: SIP INVITE w/ SDP

 // 180 Ringing is received by offerer, w/ SDP
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription("pranswer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Offerer)
 OffererUA->OffererJS: onopen();
 OffererUA->AnswererUA: Media

 // 200 OK arrives at Offerer
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);
 OffererJS->AnswererJS: ACK

Uberti & Jennings Expires April 25, 2013 [Page 31]

Internet-Draft JSEP October 2012

Appendix B. Change log

 Changes in draft -02:

 o Converted from nroff

 o Removed comparisons to old approaches abandoned by the working
 group

 o Removed stuff that has moved to W3C specificaiton

 o Align SDP handling with W3C draft

 o Clarified section on forking.

 Changes in draft -01:

 o Added diagrams for architecture and state machine.

 o Added sections on forking and rehydration.

 o Clarified meaning of "pranswer" and "answer".

 o Reworked how ICE restarts and media directions are controlled.

 o Added list of parameters that can be changed in a description.

 o Updated suggested API and examples to match latest thinking.

 o Suggested API and examples have been moved to an appendix.

 Changes in draft -00:

 o Migrated from draft-uberti-rtcweb-jsep-02.

https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-jsep-02

Uberti & Jennings Expires April 25, 2013 [Page 32]

Internet-Draft JSEP October 2012

Authors' Addresses

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA 98033
 USA

 Email: justin@uberti.name

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: fluffy@iii.ca

Uberti & Jennings Expires April 25, 2013 [Page 33]

