
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track C. Jennings
Expires: August 29, 2013 Cisco
 February 25, 2013

Javascript Session Establishment Protocol
draft-ietf-rtcweb-jsep-03

Abstract

 This document describes the mechanisms for allowing a Javascript
 application to fully control the signaling plane of a multimedia
 session via the interface specified in the W3C RTCPeerConnection API,
 and discusses how this relates to existing signaling protocols.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Uberti & Jennings Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSEP February 2013

Table of Contents

1. Introduction . 4
1.1. General Design of JSEP 4
1.2. Other Approaches Considered 6

2. Terminology . 6
3. Semantics and Syntax . 7
3.1. Signaling Model . 7
3.2. Session Descriptions and State Machine 7
3.3. Session Description Format 10
3.4. ICE . 10
3.4.1. ICE Candidate Trickling 10
3.4.1.1. ICE Candidate Format 11

3.5. Interactions With Forking 11
3.5.1. Sequential Forking 12
3.5.2. Parallel Forking 12

3.6. Session Rehydration 13
4. Interface . 14
4.1. SDP Requirements . 14
4.2. Methods . 15
4.2.1. createOffer . 15
4.2.2. createAnswer . 16
4.2.3. SessionDescriptionType 17
4.2.3.1. Use of Provisional Answers 18
4.2.3.2. Rollback . 18

4.2.4. setLocalDescription 19
4.2.5. setRemoteDescription 19
4.2.6. localDescription 20
4.2.7. remoteDescription 20
4.2.8. updateIce . 20
4.2.9. addIceCandidate 21

5. SDP Interaction Procedures 21
5.1. Constructing an Offer 21
5.2. Generating an Answer 21
5.3. Parsing an Offer . 21
5.4. Parsing an Answer . 21
5.5. Applying a Local Description 21
5.6. Applying a Remote Description 21

6. Configurable SDP Parameters 21
7. Security Considerations 22
8. IANA Considerations . 23
9. Acknowledgements . 23
10. References . 23
10.1. Normative References 23
10.2. Informative References 24

Appendix A. JSEP Implementation Examples 25
A.1. Example API Flows . 25
A.1.1. Call using ROAP 26

Uberti & Jennings Expires August 29, 2013 [Page 2]

Internet-Draft JSEP February 2013

A.1.2. Call using XMPP 26
A.1.3. Adding video to a call, using XMPP 28
A.1.4. Simultaneous add of video streams, using XMPP 28
A.1.5. Call using SIP . 29

 A.1.6. Handling early media (e.g. 1-800-GO FEDEX), using
 SIP . 30

Appendix B. Change log . 31
 Authors' Addresses . 32

Uberti & Jennings Expires August 29, 2013 [Page 3]

Internet-Draft JSEP February 2013

1. Introduction

 This document describes how the W3C WEBRTC RTCPeerConnection
 interface[W3C.WD-webrtc-20111027] is used to control the setup,
 management and teardown of a multimedia session.

1.1. General Design of JSEP

 The thinking behind WebRTC call setup has been to fully specify and
 control the media plane, but to leave the signaling plane up to the
 application as much as possible. The rationale is that different
 applications may prefer to use different protocols, such as the
 existing SIP or Jingle call signaling protocols, or something custom
 to the particular application, perhaps for a novel use case. In this
 approach, the key information that needs to be exchanged is the
 multimedia session description, which specifies the necessary
 transport and media configuration information necessary to establish
 the media plane.

 The browser environment also has its own challenges that pose
 problems for an embedded signaling state machine. One of these is
 that the user may reload the web page at any time. If the browser is
 fully in charge of the signaling state, this will result in the loss
 of the call when this state is wiped by the reload. However, if the
 state can be stored at the server, and pushed back down to the new
 page, the call can be resumed with minimal interruption.

 With these considerations in mind, this document describes the
 Javascript Session Establishment Protocol (JSEP) that allows for full
 control of the signaling state machine from Javascript. This
 mechanism effectively removes the browser almost completely from the
 core signaling flow; the only interface needed is a way for the
 application to pass in the local and remote session descriptions
 negotiated by whatever signaling mechanism is used, and a way to
 interact with the ICE state machine.

 In this document, the use of JSEP is described as if it always occurs
 between two browsers. Note though in many cases it will actually be
 between a browser and some kind of server, such as a gateway or MCU.
 This distinction is invisible to the browser; it just follows the
 instructions it is given via the API.

 JSEP's handling of session descriptions is simple and
 straightforward. Whenever an offer/answer exchange is needed, the
 initiating side creates an offer by calling a createOffer() API. The
 application optionally modifies that offer, and then uses it to set
 up its local config via the setLocalDescription() API. The offer is
 then sent off to the remote side over its preferred signaling

Uberti & Jennings Expires August 29, 2013 [Page 4]

Internet-Draft JSEP February 2013

 mechanism (e.g., WebSockets); upon receipt of that offer, the remote
 party installs it using the setRemoteDescription() API.

 When the call is accepted, the callee uses the createAnswer() API to
 generate an appropriate answer, applies it using
 setLocalDescription(), and sends the answer back to the initiator
 over the signaling channel. When the offerer gets that answer, it
 installs it using setRemoteDescription(), and initial setup is
 complete. This process can be repeated for additional offer/answer
 exchanges.

 Regarding ICE [RFC5245], JSEP decouples the ICE state machine from
 the overall signaling state machine, as the ICE state machine must
 remain in the browser, because only the browser has the necessary
 knowledge of candidates and other transport info. Performing this
 separation also provides additional flexibility; in protocols that
 decouple session descriptions from transport, such as Jingle, the
 transport information can be sent separately; in protocols that
 don't, such as SIP, the information can be used in the aggregated
 form. Sending transport information separately can allow for faster
 ICE and DTLS startup, since the necessary roundtrips can occur while
 waiting for the remote side to accept the session.

 Through its abstraction of signaling, the JSEP approach does require
 the application to be aware of the signaling process. While the
 application does not need to understand the contents of session
 descriptions to set up a call, the application must call the right
 APIs at the right times, convert the session descriptions and ICE
 information into the defined messages of its chosen signaling
 protocol, and perform the reverse conversion on the messages it
 receives from the other side.

 One way to mitigate this is to provide a Javascript library that
 hides this complexity from the developer; said library would
 implement a given signaling protocol along with its state machine and
 serialization code, presenting a higher level call-oriented interface
 to the application developer. For example, this library could easily
 adapt the JSEP API into the API that was proposed for the ROAP
 signaling protocol [I-D.jennings-rtcweb-signaling], which would
 perform a ROAP call setup under the covers, interacting with the
 application only when it needs a signaling message to be sent. In
 the same fashion, one could also implement other popular signaling
 protocols, including SIP or Jingle. This allow JSEP to provide
 greater control for the experienced developer without forcing any
 additional complexity on the novice developer.

https://datatracker.ietf.org/doc/html/rfc5245

Uberti & Jennings Expires August 29, 2013 [Page 5]

Internet-Draft JSEP February 2013

1.2. Other Approaches Considered

 One approach that was considered instead of JSEP was to include a
 lightweight signaling protocol. Instead of providing session
 descriptions to the API, the API would produce and consume messages
 from this protocol. While providing a more high-level API, this put
 more control of signaling within the browser, forcing the browser to
 have to understand and handle concepts like signaling glare. In
 addition, it prevented the application from driving the state machine
 to a desired state, as is needed in the page reload case.

 A second approach that was considered but not chosen was to decouple
 the management of the media control objects from session
 descriptions, instead offering APIs that would control each component
 directly. This was rejected based on a feeling that requiring
 exposure of this level of complexity to the application programmer
 would not be beneficial; it would result in an API where even a
 simple example would require a significant amount of code to
 orchestrate all the needed interactions, as well as creating a large
 API surface that needed to be agreed upon and documented. In
 addition, these API points could be called in any order, resulting in
 a more complex set of interactions with the media subsystem than the
 JSEP approach, which specifies how session descriptions are to be
 evaluated and applied.

 One variation on JSEP that was considered was to keep the basic
 session description-oriented API, but to move the mechanism for
 generating offers and answers out of the browser. Instead of
 providing createOffer/createAnswer methods within the browser, this
 approach would instead expose a getCapabilities API which would
 provide the application with the information it needed in order to
 generate its own session descriptions. This increases the amount of
 work that the application needs to do; it needs to know how to
 generate session descriptions from capabilities, and especially how
 to generate the correct answer from an arbitrary offer and the
 supported capabilities. While this could certainly be addressed by
 using a library like the one mentioned above, it basically forces the
 use of said library even for a simple example. Providing
 createOffer/createAnswer avoids this problem, but still allows
 applications to generate their own offers/answers (to a large extent)
 if they choose, using the description generated by createOffer as an
 indication of the browser's capabilities.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Uberti & Jennings Expires August 29, 2013 [Page 6]

Internet-Draft JSEP February 2013

 document are to be interpreted as described in [RFC2119].

3. Semantics and Syntax

3.1. Signaling Model

 JSEP does not specify a particular signaling model or state machine,
 other than the generic need to exchange SDP media descriptions in the
 fashion described by [RFC3264] (offer/answer) in order for both sides
 of the session to know how to conduct the session. JSEP provides
 mechanisms to create offers and answers, as well as to apply them to
 a session. However, the browser is totally decoupled from the actual
 mechanism by which these offers and answers are communicated to the
 remote side, including addressing, retransmission, forking, and glare
 handling. These issues are left entirely up to the application; the
 application has complete control over which offers and answers get
 handed to the browser, and when.

 +-----------+ +-----------+
 | Web App |<--- App-Specific Signaling -->| Web App |
 +-----------+ +-----------+
 ^ ^
 | SDP | SDP
 V V
 +-----------+ +-----------+
 | Browser |<----------- Media ------------>| Browser |
 +-----------+ +-----------+

 Figure 1: JSEP Signaling Model

3.2. Session Descriptions and State Machine

 In order to establish the media plane, the user agent needs specific
 parameters to indicate what to transmit to the remote side, as well
 as how to handle the media that is received. These parameters are
 determined by the exchange of session descriptions in offers and
 answers, and there are certain details to this process that must be
 handled in the JSEP APIs.

 Whether a session description applies to the local side or the remote
 side affects the meaning of that description. For example, the list
 of codecs sent to a remote party indicates what the local side is
 willing to receive, which, when intersected with the set of codecs
 the remote side supports, specifies what the remote side should send.
 However, not all parameters follow this rule; for example, the SRTP
 parameters [RFC4568] sent to a remote party indicate what the local
 side will use to encrypt, and thereby what the remote party should

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4568

Uberti & Jennings Expires August 29, 2013 [Page 7]

Internet-Draft JSEP February 2013

 expect to receive; the remote party will have to accept these
 parameters, with no option to choose a different value.

 In addition, various RFCs put different conditions on the format of
 offers versus answers. For example, a offer may propose multiple
 SRTP configurations, but an answer may only contain a single SRTP
 configuration.

 Lastly, while the exact media parameters are only known only after a
 offer and an answer have been exchanged, it is possible for the
 offerer to receive media after they have sent an offer and before
 they have received an answer. To properly process incoming media in
 this case, the offerer's media handler must be aware of the details
 of the offer before the answer arrives.

 Therefore, in order to handle session descriptions properly, the user
 agent needs:
 1. To know if a session description pertains to the local or remote
 side.
 2. To know if a session description is an offer or an answer.
 3. To allow the offer to be specified independently of the answer.
 JSEP addresses this by adding both a setLocalDescription and a
 setRemoteDescription method and having session description objects
 contain a type field indicating the type of session description being
 supplied. This satisfies the requirements listed above for both the
 offerer, who first calls setLocalDescription(sdp [offer]) and then
 later setRemoteDescription(sdp [answer]), as well as for the
 answerer, who first calls setRemoteDescription(sdp [offer]) and then
 later setLocalDescription(sdp [answer]).

 JSEP also allows for an answer to be treated as provisional by the
 application. Provisional answers provide a way for an answerer to
 communicate initial session parameters back to the offerer, in order
 to allow the session to begin, while allowing a final answer to be
 specified later. This concept of a final answer is important to the
 offer/answer model; when such an answer is received, any extra
 resources allocated by the caller can be released, now that the exact
 session configuration is known. These "resources" can include things
 like extra ICE components, TURN candidates, or video decoders.
 Provisional answers, on the other hand, do no such deallocation
 results; as a result, multiple dissimilar provisional answers can be
 received and applied during call setup.

 In [RFC3264], the constraint at the signaling level is that only one
 offer can be outstanding for a given session, but from the media
 stack level, a new offer can be generated at any point. For example,
 when using SIP for signaling, if one offer is sent, then cancelled
 using a SIP CANCEL, another offer can be generated even though no

https://datatracker.ietf.org/doc/html/rfc3264

Uberti & Jennings Expires August 29, 2013 [Page 8]

Internet-Draft JSEP February 2013

 answer was received for the first offer. To support this, the JSEP
 media layer can provide an offer whenever the Javascript application
 needs one for the signaling. The answerer can send back zero or more
 provisional answers, and finally end the offer-answer exchange by
 sending a final answer. The state machine for this is as follows:

 setRemote(OFFER) setLocal(PRANSWER)
 /-----\ /-----\
 | | | |
 v | v |
 +---------------+ | +---------------+ |
 | |----/ | |----/
 | | setLocal(PRANSWER) | |
 | Remote-Offer |------------------- >| Local-Pranswer|
 | | | |
 | | | |
 +---------------+ +---------------+
 ^ | |
 | | setLocal(ANSWER) |
setRemote(OFFER) | | |
 | V setLocal(ANSWER) |
 +---------------+ |
 | | |
 | | |
 | Stable |<---------------------------+
 | | |
 | | |
 +---------------+ setRemote(ANSWER) |
 ^ | |
 | | setLocal(OFFER) |
setRemote(ANSWER)| | |
 | V |
 +---------------+ +---------------+
 | | | |
 | | setRemote(PRANSWER) | |
 | Local-Offer |------------------- >|Remote-Pranswer|
 | | | |
 | |----\ | |----\
 +---------------+ | +---------------+ |
 ^ | ^ |
 | | | |
 \-----/ \-----/
 setLocal(OFFER) setRemote(PRANSWER)

 Figure 2: JSEP State Machine

 Aside from these state transitions, there is no other difference
 between the handling of provisional ("pranswer") and final ("answer")

Uberti & Jennings Expires August 29, 2013 [Page 9]

Internet-Draft JSEP February 2013

 answers.

3.3. Session Description Format

 In the WebRTC specification, session descriptions are formatted as
 SDP messages. While this format is not optimal for manipulation from
 Javascript, it is widely accepted, and frequently updated with new
 features. Any alternate encoding of session descriptions would have
 to keep pace with the changes to SDP, at least until the time that
 this new encoding eclipsed SDP in popularity. As a result, JSEP
 currently uses SDP as the internal representation for its session
 descriptions.

 However, to simplify Javascript processing, and provide for future
 flexibility, the SDP syntax is encapsulated within a
 SessionDescription object, which can be constructed from SDP, and be
 serialized out to SDP. If future specifications agree on a JSON
 format for session descriptions, we could easily enable this object
 to generate and consume that JSON.

 Other methods may be added to SessionDescription in the future to
 simplify handling of SessionDescriptions from Javascript. In the
 meantime, it would be simple to write a Javascript library to perform
 these manipulations.

3.4. ICE

 When a new ICE candidate is available, the ICE Agent will notify the
 application via a callback; these candidates will automatically be
 added to the local session description. When all candidates have
 been gathered, the callback will also be invoked to signal that the
 gathering process is complete.

3.4.1. ICE Candidate Trickling

 Candidate trickling is a technique through which a caller may
 incrementally provide candidates to the callee after the initial
 offer has been dispatched; the semantics of "Trickle ICE" are defined
 in [I-D.rescorla-mmusic-ice-trickle]. This process allows the callee
 to begin acting upon the call and setting up the ICE (and perhaps
 DTLS) connections immediately, without having to wait for the caller
 to gather all possible candidates. This results in faster call
 startup in cases where gathering is not performed prior to initating
 the call.

 JSEP supports optional candidate trickling by providing APIs that
 provide control and feedback on the ICE candidate gathering process.
 Applications that support candidate trickling can send the initial

Uberti & Jennings Expires August 29, 2013 [Page 10]

Internet-Draft JSEP February 2013

 offer immediately and send individual candidates when they get the
 notified of a new candidate; applications that do not support this
 feature can simply wait for the indication that gathering is
 complete, and then create and send their offer, with all the
 candidates, at this time.

 Upon receipt of trickled candidates, the receiving application will
 supply them to its ICE Agent. This triggers the ICE Agent to start
 using the new remote candidates for connectivity checks.

3.4.1.1. ICE Candidate Format

 As with session descriptions, the syntax of the IceCandidate object
 provides some abstraction, but can be easily converted to and from
 the SDP candidate lines.

 The candidate lines are the only SDP information that is contained
 within IceCandidate, as they represent the only information needed
 that is not present in the initial offer (i.e. for trickle
 candidates). This information is carried with the same syntax as the
 "candidate-attribute" field defined for ICE. For example:

 candidate:1 1 UDP 1694498815 192.0.2.33 10000 typ host

 The IceCandidate object also contains fields to indicate which m=
 line it should be associated with. The m line can be identified in
 one of two ways; either by a m-line index, or a MID. The m-line
 index is a zero-based index, referring to the Nth m-line in the SDP.
 The MID uses the "media stream identification", as defined in
 [RFC3388] , to identify the m-line. WebRTC implementations creating
 an ICE Candidate object MUST populate both of these fields.
 Implementations receiving an ICE Candidate object SHOULD use the MID
 if they implement that functionality, or the m-line index, if not.

3.5. Interactions With Forking

 Some call signaling systems allow various types of forking where an
 SDP Offer may be provided to more than one device. For example, SIP
 [RFC3261] defines both a "Parallel Search" and "Sequential Search".
 Although these are primarily signaling level issues that are outside
 the scope of JSEP, they do have some impact on the configuration of
 the media plane which is relevant. When forking happens at the
 signaling layer, the Javascript application responsible for the
 signaling needs to make the decisions about what media should be sent
 or received at any point of time, as well as which remote endpoint it
 should communicate with; JSEP is used to make sure the media engine
 can make the RTP and media perform as required by the application.
 The basic operations that the applications can have the media engine

https://datatracker.ietf.org/doc/html/rfc3388
https://datatracker.ietf.org/doc/html/rfc3261

Uberti & Jennings Expires August 29, 2013 [Page 11]

Internet-Draft JSEP February 2013

 do are:
 Start exchanging media to a given remote peer, but keep all the
 resources reserved in the offer.
 Start exchanging media with a given remote peer, and free any
 resources in the offer that are not being used.

3.5.1. Sequential Forking

 Sequential forking involves a call being dispatched to multiple
 remote callees, where each callee can accept the call, but only one
 active session ever exists at a time; no mixing of received media is
 performed.

 JSEP handles sequential forking well, allowing the application to
 easily control the policy for selecting the desired remote endpoint.
 When an answer arrives from one of the callees, the application can
 choose to apply it either as a provisional answer, leaving open the
 possibility of using a different answer in the future, or apply it as
 a final answer, ending the setup flow.

 In a "first-one-wins" situation, the first answer will be applied as
 a final answer, and the application will reject any subsequent
 answers. In SIP parlance, this would be ACK + BYE.

 In a "last-one-wins" situation, all answers would be applied as
 provisional answers, and any previous call leg will be terminated.
 At some point, the application will end the setup process, perhaps
 with a timer; at this point, the application could reapply the
 existing remote description as a final answer.

3.5.2. Parallel Forking

 Parallel forking involves a call being dispatched to multiple remote
 callees, where each callee can accept the call, and multiple
 simultaneous active signaling sessions can be established as a
 result. If multiple callees send media at the same time, the
 possibilities for handling this are described in Section 3.1 of
 [RFC3960]. Most SIP devices today only support exchanging media with
 a single device at a time, and do not try to mix multiple early media
 audio sources, as that could result in a confusing situation. For
 example, consider having a European ringback tone mixed together with
 the North American ringback tone - the resulting sound would not be
 like either tone, and would confuse the user. If the signaling
 application wishes to only exchange media with one of the remote
 endpoints at a time, then from a media engine point of view, this is
 exactly like the sequential forking case.

 In the parallel forking case where the Javascript application wishes

https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960#section-3.1

Uberti & Jennings Expires August 29, 2013 [Page 12]

Internet-Draft JSEP February 2013

 to simultaneously exchange media with multiple peers, the flow is
 slightly more complex, but the Javascript application can follow the
 strategy that [RFC3960] describes using UPDATE. (It is worth noting
 that use cases where this is the desired behavior are very unusual.)
 The UPDATE approach allows the signaling to set up a separate media
 flow for each peer that it wishes to exchange media with. In JSEP,
 this offer used in the UPDATE would be formed by simply creating a
 new PeerConnection and making sure that the same local media streams
 have been added into this new PeerConnection. Then the new
 PeerConnection object would produce a SDP offer that could be used by
 the signaling to perform the UPDATE strategy discussed in [RFC3960] .

 As a result of sharing the media streams, the application will end up
 with N parallel PeerConnection sessions, each with a local and remote
 description and their own local and remote addresses. The media flow
 from these sessions can be managed by specifying SDP direction
 attributes in the descriptions, or the application can choose to play
 out the media from all sessions mixed together. Of course, if the
 application wants to only keep a single session, it can simply
 terminate the sessions that it no longer needs.

3.6. Session Rehydration

 In the event that the local application state is reinitialized,
 either due to a user reload of the page, or a decision within the
 application to reload itself (perhaps to update to a new version), it
 is possible to keep an existing session alive, via a process called
 "rehydration". The explicit goal of rehydration is to carry out this
 session resumption with no interaction with the remote side other
 than normal call signaling messages.

 With rehydration, the current signaling state is persisted somewhere
 outside of the page, perhaps on the application server, or in browser
 local storage. The page is then reloaded, the saved signaling state
 is retrieved, and a new PeerConnection object is created for the
 session. The previously obtained MediaStreams are re-acquired, and
 are given the same IDs as the original session; this ensures the IDs
 in use by the remote side continue to work. Next, a new offer is
 generated by the new PeerConnection; this offer will have new ICE and
 possibly new SDES credentials (since the old ICE and SRTP state has
 been lost). Finally, this offer is used to re-initiate the session
 with the existing remote endpoint, who simply sees the new offer as
 an in-call renegotiation, and replies with an answer that can be
 supplied to setRemoteDescription. ICE processing proceeds as usual,
 and as soon as connectivity is established, the session will be back
 up and running again.

 [OPEN ISSUE: EKR proposed an alternative rehydration approach where

https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc3960

Uberti & Jennings Expires August 29, 2013 [Page 13]

Internet-Draft JSEP February 2013

 the actual internal PeerConnection object in the browser was kept
 alive for some time after the web page was killed and provided some
 way for a new page to acquire the old PeerConnection object.]

4. Interface

 This section details the basic operations that must be present to
 implement JSEP functionality. The actual API exposed in the W3C API
 may have somewhat different syntax, but should map easily to these
 concepts.

4.1. SDP Requirements

 Note: The text in this section may not represent working group
 consensus and is put here so that the working group can discuss it
 and find out how to change it such that it does have consensus.

 When generating SDP blobs, either for offers or answers, the
 generated SDP needs to conform to the following specifications.
 Similarly, in order to properly process received SDP blobs,
 implementations need to implement the functionality described in the
 following specifications. This list is derived from
 [I-D.ietf-rtcweb-rtp-usage].
 R-1 [RFC4566] is the base SDP specification and MUST be
 implemented.
 R-2 The [RFC5888] grouping framework MUST be implemented for
 signaling grouping information, and MUST be used to identify m=
 lines via the a=mid attribute.
 R-3 [RFC5124] MUST be supported for signaling RTP/SAVPF RTP
 profile.
 R-4 [RFC4585] MUST be implemented to signal RTCP based feedback.
 R-5 [RFC5245] MUST be implemented for signaling the ICE candidate
 lines corresponding to each media stream.
 R-6 [RFC5761] MUST be implemented to signal multiplexing of RTP and
 RTCP.
 R-7 The SDP atributes of "sendonly", "recvonly", "inactive", and
 "sendrecv" from [RFC4566] MUST be implemented to signal
 information about media direction.
 R-8 [RFC5576] MUST be implemented to signal RTP SSRC values. [OPEN
 ISSUE; depends on BUNDLE and how we choose to represent
 multiple media sources]
 R-9 [RFC5763] MUST be implemented to signal DTLS certificate
 fingerprints.

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5763

Uberti & Jennings Expires August 29, 2013 [Page 14]

Internet-Draft JSEP February 2013

 R-10 [RFC5506] MAY be implemented to signal Reduced-Size RTCP
 messages.
 R-11 [RFC3556] with bandwidth modifiers MAY be supported for
 specifying RTCP bandwidth as a fraction of the media bandwidth,
 RTCP fraction allocated to the senders and setting maximum
 media bit-rate boundaries.
 R-12 [RFC4568] MAY be implemented to signal SDES SRTP keying
 information.
 R-13 A TBD-draft MUST be supported, in order to signal associations
 between RTP objects and W3C MediaStreams and MediaStreamTracks
 in a standard way. Though there is not yet WG consensus in
 this area, this TBD-draft is very likely to be
 [I-D.alvestrand-mmusic-msid].
 R-14 A TBD-draft MUST be supported to signal the use or multiplexing
 RTP somethings on a single UDP port, in order to avoid
 excessive use of port number resources. Though there is not
 yet WG consensus in this area, this TBD-draft is very likely to
 be [I-D.holmberg-mmusic-sdp-bundle-negotiation].

 As required by [RFC4566] Section 5.13 JSEP implementations MUST
 ignore unknown attributes (a=) lines.

 Example SDP for RTCWeb call flows can be found in
 [I-D.nandakumar-rtcweb-sdp]. [TODO: since we are starting to
 specify how to handle SDP in this document, should these call flows
 be merged into this document, or this link moved to the examples
 section?]

4.2. Methods

4.2.1. createOffer

 The createOffer method generates a blob of SDP that contains a
 [RFC3264] offer with the supported configurations for the session,
 including descriptions of the local MediaStreams attached to this
 PeerConnection, the codec/RTP/RTCP options supported by this
 implementation, and any candidates that have been gathered by the ICE
 Agent. A constraints parameters may be supplied to provide
 additional control over the generated offer. This constraints
 parameter should allow for the following manipulations to be
 performed:
 o To indicate support for a media type even if no MediaStreamTracks
 of that type have been added to the session (e.g., an audio call
 that wants to receive video.)
 o To trigger an ICE restart, for the purpose of reestablishing
 connectivity.

https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4566#section-5.13
https://datatracker.ietf.org/doc/html/rfc3264

Uberti & Jennings Expires August 29, 2013 [Page 15]

Internet-Draft JSEP February 2013

 o For re-offer cases, to request an offer that contains the full set
 of supported capabilities, as opposed to just the currently
 negotiated parameters.

 In the initial offer, the generated SDP will contain all desired
 functionality for the session (certain parts that are supported but
 not desired by default may be omitted); for each SDP line, the
 generation of the SDP must follow the process defined for generating
 an initial offer from the document (listed in Section 4.1) that
 specifies the given SDP line.

 In the event createOffer is called after the session is established,
 createOffer will generate an offer to modify the current session
 based on any changes that have been made to the session, e.g. adding
 or removing MediaStreams, or requesting an ICE restart. For each
 existing stream, the generation of each SDP line must follow the
 process defined for generating an updated offer from the document
 that specfies the given SDP line. For each new stream, the
 generation of the SDP must follow the process of generating an
 initial offer, as mentioned above. If no changes have been made, or
 for SDP lines that are unaffected by the requested changes, the offer
 will only contain the parameters negotiated by the last offer-answer
 exchange.

 Session descriptions generated by createOffer must be immediately
 usable by setLocalDescription; if a system has limited resources
 (e.g. a finite number of decoders), createOffer should return an
 offer that reflects the current state of the system, so that
 setLocalDescription will succeed when it attempts to acquire those
 resources. Because this method may need to inspect the system state
 to determine the currently available resources, it may be implemented
 as an async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not result in candidate gathering, or cause
 media to start or stop flowing.

4.2.2. createAnswer

 The createAnswer method generates a blob of SDP that contains a
 [RFC3264] SDP answer with the supported configuration for the session
 that is compatible with the parameters supplied in the offer. Like
 createOffer, the returned blob contains descriptions of the local
 MediaStreams attached to this PeerConnection, the codec/RTP/RTCP
 options negotiated for this session, and any candidates that have
 been gathered by the ICE Agent. A constraints parameter may be
 supplied to provide additional control over the generated answer.

https://datatracker.ietf.org/doc/html/rfc3264

Uberti & Jennings Expires August 29, 2013 [Page 16]

Internet-Draft JSEP February 2013

 As an answer, the generated SDP will contain a specific configuration
 that specifies how the media plane should be established; for each
 SDP line, the generation of the SDP must follow the process defined
 for generating an answer from the document that specifies the given
 SDP line.

 Session descriptions generated by createAnswer must be immediately
 usable by setLocalDescription; like createOffer, the returned
 description should reflect the current state of the system. Because
 this method may need to inspect the system state to determine the
 currently available resources, it may need to be implemented as an
 async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not trigger candidate gathering or change media
 state.

4.2.3. SessionDescriptionType

 Session description objects (RTCSessionDescription) may be of type
 "offer", "pranswer", and "answer". These types provide information
 as to how the description parameter should be parsed, and how the
 media state should be changed.

 "offer" indicates that a description should be parsed as an offer;
 said description may include many possible media configurations. A
 description used as an "offer" may be applied anytime the
 PeerConnection is in a stable state, or as an update to a previously
 supplied but unanswered "offer".

 "pranswer" indicates that a description should be parsed as an
 answer, but not a final answer, and so should not result in the
 freeing of allocated resources. It may result in the start of media
 transmission, if the answer does not specify an inactive media
 direction. A description used as a "pranswer" may be applied as a
 response to an "offer", or an update to a previously sent "answer".

 "answer" indicates that a description should be parsed as an answer,
 the offer-answer exchange should be considered complete, and any
 resources (decoders, candidates) that are no longer needed can be
 released. A description used as an "answer" may be applied as a
 response to a "offer", or an update to a previously sent "pranswer".

 The only difference between a provisional and final answer is that
 the final answer results in the freeing of any unused resources that
 were allocated as a result of the offer. As such, the application
 can use some discretion on whether an answer should be applied as
 provisional or final, and can change the type of the session

Uberti & Jennings Expires August 29, 2013 [Page 17]

Internet-Draft JSEP February 2013

 description as needed. For example, in a serial forking scenario, an
 application may receive multiple "final" answers, one from each
 remote endpoint. The application could choose to accept the initial
 answers as provisional answers, and only apply an answer as final
 when it receives one that meets its criteria (e.g. a live user
 instead of voicemail).

4.2.3.1. Use of Provisional Answers

 Most web applications will not need to create answers using the
 "pranswer" type. The preferred handling for a web application would
 be to create and send an "inactive" answer more or less immediately
 after receiving the offer, instead of waiting for a human user to
 physically answer the call. Later, when the human input is received,
 the application can create a new "sendrecv" offer to update the
 previous offer/answer pair and start the media flow. This approach
 is preferred because it minimizes the amount of time that the offer-
 answer exchange is left open, in addition to avoiding media clipping
 by ensuring the transport is ready to go by the time the call is
 phyiscally answered. However, some applications may not be able to
 do this, particularly ones that are attempting to gateway to other
 signaling protocols. In these cases, "pranswer" can still allow the
 application to warm up the transport.

 Consider a typical web application that will set up a data channel,
 an audio channel, and a video channel. When an endpoint receives an
 offer with these channels, it could send an answer accepting the data
 channel for two-way data, and accepting the audio and video tracks as
 inactive or receive-only. It could then ask the user to accept the
 call, acquire the local media streams, and send a new offer to the
 remote side moving the audio and video to be two-way media. By the
 time the human has accepted the call and sent the new offer, it is
 likely that the ICE and DTLS handshaking for all the channels will
 already be set up.

4.2.3.2. Rollback

 In certain situations it may be desirable to "undo" a change made to
 setLocalDescription or setRemoteDescription. Consider a case where a
 call is ongoing, and one side wants to change some of the session
 parameters; that side generates an updated offer and then calls
 setLocalDescription. However, the remote side, either before or
 after setRemoteDescription, decides it does not want to accept the
 new parameters, and sends a reject message back to the offerer. Now,
 the offerer, and possibly the answerer as well, need to return to a
 stable state and the previous local/remote description. To support
 this, we introduce the concept of "rollback".

Uberti & Jennings Expires August 29, 2013 [Page 18]

Internet-Draft JSEP February 2013

 A rollback returns the state machine to its previous state, and the
 local or remote description to its previous value. Any resources or
 candidates that were allocated by the new local description are
 discarded; any media that is received will be processed according to
 the previous session description.

 A rollback is performed by supplying a session description of type
 "rollback" to either setLocalDescription or setRemoteDescription,
 depending on which needs to be rolled back (i.e. if the new offer was
 supplied to setLocalDescription, the rollback should be done on
 setLocalDescription as well.)

4.2.4. setLocalDescription

 The setLocalDescription method instructs the PeerConnection to apply
 the supplied SDP blob as its local configuration. The type field
 indicates whether the blob should be processed as an offer,
 provisional answer, or final answer; offers and answers are checked
 differently, using the various rules that exist for each SDP line.

 This API changes the local media state; among other things, it sets
 up local resources for receiving and decoding media. In order to
 successfully handle scenarios where the application wants to offer to
 change from one media format to a different, incompatible format, the
 PeerConnection must be able to simultaneously support use of both the
 old and new local descriptions (e.g. support codecs that exist in
 both descriptions) until a final answer is received, at which point
 the PeerConnection can fully adopt the new local description, or roll
 back to the old description if the remote side denied the change.

 This API indirectly controls the candidate gathering process. When a
 local description is supplied, and the number of transports currently
 in use does not match the number of transports needed by the local
 description, the PeerConnection will create transports as needed and
 begin gathering candidates for them.

 If setRemoteDescription was previous called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media are available to
 send, this will result in the starting of media transmission.

4.2.5. setRemoteDescription

 The setRemoteDescription method instructs the PeerConnection to apply
 the supplied SDP blob as the desired remote configuration. As in
 setLocalDescription, the type field of the indicates how the blob
 should be processed.

Uberti & Jennings Expires August 29, 2013 [Page 19]

Internet-Draft JSEP February 2013

 This API changes the local media state; among other things, it sets
 up local resources for sending and encoding media.

 If setRemoteDescription was previously called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media are available to
 send, this will result in the starting of media transmission.

4.2.6. localDescription

 The localDescription method returns a copy of the current local
 configuration, i.e. what was most recently passed to
 setLocalDescription, plus any local candidates that have been
 generated by the ICE Agent.

 TODO: Do we need to expose accessors for both the current and
 proposed local description?

 A null object will be returned if the local description has not yet
 been established, or if the PeerConnection has been closed.

4.2.7. remoteDescription

 The remoteDescription method returns a copy of the current remote
 configuration, i.e. what was most recently passed to
 setRemoteDescription, plus any remote candidates that have been
 supplied via processIceMessage.

 TODO: Do we need to expose accessors for both the current and
 proposed remote description?

 A null object will be returned if the remote description has not yet
 been established, or if the PeerConnection has been closed.

4.2.8. updateIce

 The updateIce method allows the configuration of the ICE Agent to be
 changed during the session, primarily for changing which types of
 local candidates are provided to the application and used for
 connectivity checks. A callee may initially configure the ICE Agent
 to use only relay candidates, to avoid leaking location information,
 but update this configuration to use all candidates once the call is
 accepted.

 Regardless of the configuration, the gathering process collects all
 available candidates, but excluded candidates will not be surfaced in
 onicecandidate callback or used for connectivity checks.

Uberti & Jennings Expires August 29, 2013 [Page 20]

Internet-Draft JSEP February 2013

 This call may result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

4.2.9. addIceCandidate

 The addIceCandidate method provides a remote candidate to the ICE
 Agent, which, if parsed successfully, will be added to the remote
 description according to the rules defined for Trickle ICE.
 Connectivity checks will be sent to the new candidate.

 This call will result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

5. SDP Interaction Procedures

 This section describes the specific procedures to be followed when
 creating and parsing SDP objects. [Work In Progress]

5.1. Constructing an Offer

5.2. Generating an Answer

5.3. Parsing an Offer

5.4. Parsing an Answer

5.5. Applying a Local Description

5.6. Applying a Remote Description

6. Configurable SDP Parameters

 Note: This section is still very early and is likely to
 significantly change as we get a better understanding of a) the use
 cases for this b) the implications at the protocol level c) feedback
 from implementors on what they can do.

 The following elements of the SDP media description MUST NOT be
 changed between the createOffer and the setLocalDescription, since
 they reflect transport attributes that are solely under browser
 control, and the browser MUST NOT honor an attempt to change them:

Uberti & Jennings Expires August 29, 2013 [Page 21]

Internet-Draft JSEP February 2013

 o The number, type and port number of m-lines.
 o The generated ICE credentials (a=ice-ufrag and a=ice-pwd).
 o The set of ICE candidates and their parameters (a=candidate).

 The following modifications, if done by the browser to a description
 between createOffer/createAnswer and the setLocalDescription, MUST be
 honored by the browser:

 o Remove or reorder codecs (m=)

 The following parameters may be controlled by constraints passed into
 createOffer/createAnswer. As an open issue, these changes may also
 be be performed by manipulating the SDP returned from createOffer/
 createAnswer, as indicated above, as long as the capabilities of the
 endpoint are not exceeded (e.g. asking for a resolution greater than
 what the endpoint can encode):

 o disable BUNDLE (a=group)
 o disable RTCP mux (a=rtcp-mux)
 o change send resolution or framerate
 o change desired recv resolution or framerate
 o change maximum total bandwidth (b=) [OPEN ISSUE: need to clarify
 if this is CT or AS - see section 5.8 of RFC4566]
 o remove desired AVPF mechanisms (a=rtcp-fb)
 o remove RTP header extensions (a=extmap)
 o change media send/recv state (a=sendonly/recvonly/inactive)

 For example, an application could implement call hold by adding an
 a=inactive attribute to its local description, and then applying and
 signaling that description.

 The application can also modify the SDP to reduce the capabilities in
 the offer it sends to the far side in any way the application sees
 fit, as long as it is a valid SDP offer and specifies a subset of
 what the browser is expecting to do.

 As always, the application is solely responsible for what it sends to
 the other party, and all incoming SDP will be processed by the
 browser to the extent of its capabilities. It is an error to assume
 that all SDP is well-formed; however, one should be able to assume
 that any implementation of this specification will be able to
 process, as a remote offer or answer, unmodified SDP coming from any
 other implementation of this specification.

7. Security Considerations

 The intent of the WebRTC protocol suite is to provide an environment

https://datatracker.ietf.org/doc/html/rfc4566#section-5.8

Uberti & Jennings Expires August 29, 2013 [Page 22]

Internet-Draft JSEP February 2013

 that is securable by default: all media is encrypted, keys are
 exchanged in a secure fashion, and the Javascript API includes
 functions that can be used to verify the identity of communication
 partners.

8. IANA Considerations

 This document requires no actions from IANA.

9. Acknowledgements

 Significant text incorporated in the draft as well and review was
 provided by Harald Alvestrand and Suhas Nandakumar. Dan Burnett,
 Neil Stratford, Eric Rescorla, Anant Narayanan, Andrew Hutton,
 Richard Ejzak, and Adam Bergkvist all provided valuable feedback on
 this proposal. Matthew Kaufman provided the observation that keeping
 state out of the browser allows a call to continue even if the page
 is reloaded.

10. References

10.1. Normative References

 [I-D.rescorla-mmusic-ice-trickle]
 Rescorla, E., Uberti, J., and E. Ivov, "Trickle ICE:
 Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol",

draft-rescorla-mmusic-ice-trickle-00 (work in progress),
 October 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3388] Camarillo, G., Eriksson, G., Holler, J., and H.
 Schulzrinne, "Grouping of Media Lines in the Session
 Description Protocol (SDP)", RFC 3388, December 2002.

https://datatracker.ietf.org/doc/html/draft-rescorla-mmusic-ice-trickle-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3388

Uberti & Jennings Expires August 29, 2013 [Page 23]

Internet-Draft JSEP February 2013

 [RFC3960] Camarillo, G. and H. Schulzrinne, "Early Media and Ringing
 Tone Generation in the Session Initiation Protocol (SIP)",

RFC 3960, December 2004.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
 July 2006.

 [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
 Real-time Transport Control Protocol (RTCP)-Based Feedback
 (RTP/SAVPF)", RFC 5124, February 2008.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761, April 2010.

 [RFC5888] Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

10.2. Informative References

 [I-D.alvestrand-mmusic-msid]
 Alvestrand, H., "Cross Session Stream Identification in
 the Session Description Protocol",

draft-alvestrand-mmusic-msid-01 (work in progress),
 October 2012.

 [I-D.holmberg-mmusic-sdp-bundle-negotiation]
 Holmberg, C. and H. Alvestrand, "Multiplexing Negotiation
 Using Session Description Protocol (SDP) Port Numbers",

draft-holmberg-mmusic-sdp-bundle-negotiation-00 (work in
 progress), October 2011.

 [I-D.ietf-rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",

draft-ietf-rtcweb-rtp-usage-04 (work in progress),
 July 2012.

 [I-D.jennings-rtcweb-signaling]

https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/draft-alvestrand-mmusic-msid-01
https://datatracker.ietf.org/doc/html/draft-holmberg-mmusic-sdp-bundle-negotiation-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-04

Uberti & Jennings Expires August 29, 2013 [Page 24]

Internet-Draft JSEP February 2013

 Jennings, C., Rosenberg, J., and R. Jesup, "RTCWeb Offer/
 Answer Protocol (ROAP)",

draft-jennings-rtcweb-signaling-01 (work in progress),
 October 2011.

 [I-D.nandakumar-rtcweb-sdp]
 Nandakumar, S. and C. Jennings, "SDP for the WebRTC",

draft-nandakumar-rtcweb-sdp-00 (work in progress),
 October 2012.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth",

RFC 3556, July 2003.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, April 2009.

 [RFC5576] Lennox, J., Ott, J., and T. Schierl, "Source-Specific
 Media Attributes in the Session Description Protocol
 (SDP)", RFC 5576, June 2009.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [W3C.WD-webrtc-20111027]
 Bergkvist, A., Burnett, D., Narayanan, A., and C.
 Jennings, "WebRTC 1.0: Real-time Communication Between
 Browsers", World Wide Web Consortium WD WD-webrtc-
 20111027, October 2011,
 <http://www.w3.org/TR/2011/WD-webrtc-20111027>.

Appendix A. JSEP Implementation Examples

A.1. Example API Flows

 Below are several sample flows for the new PeerConnection and library
 APIs, demonstrating when the various APIs are called in different
 situations and with various transport protocols. For clarity and
 simplicity, the createOffer/createAnswer calls are assumed to be
 synchronous in these examples, whereas the actual APIs are async.

https://datatracker.ietf.org/doc/html/draft-jennings-rtcweb-signaling-01
https://datatracker.ietf.org/doc/html/draft-nandakumar-rtcweb-sdp-00
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5763
http://www.w3.org/TR/2011/WD-webrtc-20111027

Uberti & Jennings Expires August 29, 2013 [Page 25]

Internet-Draft JSEP February 2013

A.1.1. Call using ROAP

 This example demonstrates a ROAP call, without the use of trickle
 candidates.

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererUA->OffererJS: iceCallback(candidate);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS->AnswererJS: {"type":"OFFER", "sdp":offer }

 // OFFER arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", msg.sdp);
 AnswererUA->AnswererJS: onaddstream(remoteStream);
 AnswererUA->OffererUA: iceCallback(candidate);

 // Answerer accepts call
 AnswererJS->AnswererUA: pc.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = pc.createAnswer(msg.sdp, null);
 AnswererJS->AnswererUA: pc.setLocalDescription("answer", answer);
 AnswererJS->OffererJS: {"type":"ANSWER","sdp":answer }

 // ANSWER arrives at Offerer
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Answerer)
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererJS->AnswererJS: {"type":"OK" }
 OffererUA->AnswererUA: Media

A.1.2. Call using XMPP

 This example demonstrates an XMPP call, making use of trickle
 candidates.

Uberti & Jennings Expires August 29, 2013 [Page 26]

Internet-Draft JSEP February 2013

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS: xmpp = createSessionInitiate(offer);
 OffererJS->AnswererJS: <jingle action="session-initiate"/>

 OffererJS->OffererUA: pc.startIce();
 OffererUA->OffererJS: onicecandidate(cand);
 OffererJS: createTransportInfo(cand);
 OffererJS->AnswererJS: <jingle action="transport-info"/>

 // session-initiate arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS: offer = parseSessionInitiate(xmpp);
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", offer);
 AnswererUA->AnswererJS: onaddstream(remoteStream);

 // transport-infos arrive at Answerer
 AnswererJS->AnswererUA: candidate = parseTransportInfo(xmpp);
 AnswererJS->AnswererUA: pc.addIceCandidate(candidate);
 AnswererUA->AnswererJS: onicecandidate(cand)
 AnswererJS: createTransportInfo(cand);
 AnswererJS->OffererJS: <jingle action="transport-info"/>

 // transport-infos arrive at Offerer
 OffererJS->OffererUA: candidates = parseTransportInfo(xmpp);
 OffererJS->OffererUA: pc.addIceCandidate(candidates);

 // Answerer accepts call
 AnswererJS->AnswererUA: pc.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = pc.createAnswer(offer, null);
 AnswererJS: xmpp = createSessionAccept(answer);
 AnswererJS->AnswererUA: pc.setLocalDescription("answer", answer);
 AnswererJS->OffererJS: <jingle action="session-accept"/>

 // session-accept arrives at Offerer
 OffererJS: answer = parseSessionAccept(xmpp);
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Answerer)
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->AnswererUA: Media

Uberti & Jennings Expires August 29, 2013 [Page 27]

Internet-Draft JSEP February 2013

A.1.3. Adding video to a call, using XMPP

 This example demonstrates an XMPP call, where the XMPP content-add
 mechanism is used to add video media to an existing session. For
 simplicity, candidate exchange is not shown.

 Note that the offerer for the change to the session may be different
 than the original call offerer.

 // Offerer adds video stream
 OffererJS->OffererUA: pc.addStream(videoStream)
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS: xmpp = createContentAdd(offer);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS->AnswererJS: <jingle action="content-add"/>

 // content-add arrives at Answerer
 AnswererJS: offer = parseContentAdd(xmpp);
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", offer);
 AnswererJS->AnswererUA: answer = pc.createAnswer(offer, null);
 AnswererJS->AnswererUA: pc.setLocalDescription("answer", answer);
 AnswererJS: xmpp = createContentAccept(answer);
 AnswererJS->OffererJS: <jingle action="content-accept"/>

 // content-accept arrives at Offerer
 OffererJS: answer = parseContentAccept(xmpp);
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);

A.1.4. Simultaneous add of video streams, using XMPP

 This example demonstrates an XMPP call, where new video sources are
 added at the same time to a call that already has video; since adding
 these sources only affects one side of the call, there is no
 conflict. The XMPP description-info mechanism is used to indicate
 the new sources to the remote side.

Uberti & Jennings Expires August 29, 2013 [Page 28]

Internet-Draft JSEP February 2013

 // Offerer and "Answerer" add video streams at the same time
 OffererJS->OffererUA: pc.addStream(offererVideoStream2)
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS: xmpp = createDescriptionInfo(offer);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS->AnswererJS: <jingle action="description-info"/>

 AnswererJS->AnswererUA: pc.addStream(answererVideoStream2)
 AnswererJS->AnswererUA: offer = pc.createOffer(null);
 AnswererJS: xmpp = createDescriptionInfo(offer);
 AnswererJS->AnswererUA: pc.setLocalDescription("offer", offer);
 AnswererJS->OffererJS: <jingle action="description-info"/>

 // description-info arrives at "Answerer", and is acked
 AnswererJS: offer = parseDescriptionInfo(xmpp);
 AnswererJS->OffererJS: <iq type="result"/> // ack

 // description-info arrives at Offerer, and is acked
 OffererJS: offer = parseDescriptionInfo(xmpp);
 OffererJS->AnswererJS: <iq type="result"/> // ack

 // ack arrives at Offerer; remote offer is used as an answer
 OffererJS->OffererUA: pc.setRemoteDescription("answer", offer);

 // ack arrives at "Answerer"; remote offer is used as an answer
 AnswererJS->AnswererUA: pc.setRemoteDescription("answer", offer);

A.1.5. Call using SIP

 This example demonstrates a simple SIP call (e.g. where the client
 talks to a SIP proxy over WebSockets).

Uberti & Jennings Expires August 29, 2013 [Page 29]

Internet-Draft JSEP February 2013

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererUA->OffererJS: onicecandidate(candidate);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS: sip = createInvite(offer);
 OffererJS->AnswererJS: SIP INVITE w/ SDP

 // INVITE arrives at Answerer
 AnswererJS->AnswererUA: pc = new PeerConnection();
 AnswererJS: offer = parseInvite(sip);
 AnswererJS->AnswererUA: pc.setRemoteDescription("offer", offer);
 AnswererUA->AnswererJS: onaddstream(remoteStream);
 AnswererUA->OffererUA: onicecandidate(candidate);

 // Answerer accepts call
 AnswererJS->AnswererUA: pc.addStream(localStream, null);
 AnswererJS->AnswererUA: answer = pc.createAnswer(offer, null);
 AnswererJS: sip = createResponse(200, answer);
 AnswererJS->AnswererUA: pc.setLocalDescription("answer", answer);
 AnswererJS->OffererJS: 200 OK w/ SDP

 // 200 OK arrives at Offerer
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);
 OffererJS->AnswererJS: ACK

 // ICE Completes (at Answerer)
 AnswererUA->OffererUA: Media

 // ICE Completes (at Offerer)
 OffererUA->AnswererUA: Media

A.1.6. Handling early media (e.g. 1-800-GO FEDEX), using SIP

 This example demonstrates how early media could be handled; for
 simplicity, only the offerer side of the call is shown.

Uberti & Jennings Expires August 29, 2013 [Page 30]

Internet-Draft JSEP February 2013

 // Call is initiated toward Answerer
 OffererJS->OffererUA: pc = new PeerConnection();
 OffererJS->OffererUA: pc.addStream(localStream, null);
 OffererUA->OffererJS: onicecandidate(candidate);
 OffererJS->OffererUA: offer = pc.createOffer(null);
 OffererJS->OffererUA: pc.setLocalDescription("offer", offer);
 OffererJS: sip = createInvite(offer);
 OffererJS->AnswererJS: SIP INVITE w/ SDP

 // 180 Ringing is received by offerer, w/ SDP
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription("pranswer", answer);
 OffererUA->OffererJS: onaddstream(remoteStream);

 // ICE Completes (at Offerer)
 OffererUA->AnswererUA: Media

 // 200 OK arrives at Offerer
 OffererJS: answer = parseResponse(sip);
 OffererJS->OffererUA: pc.setRemoteDescription("answer", answer);
 OffererJS->AnswererJS: ACK

Appendix B. Change log

 Changes in draft-03:

 o Added text describing relationship to W3C specification

 Changes in draft -02:
 o Converted from nroff
 o Removed comparisons to old approaches abandoned by the working
 group
 o Removed stuff that has moved to W3C specificaiton
 o Align SDP handling with W3C draft
 o Clarified section on forking.

 Changes in draft -01:
 o Added diagrams for architecture and state machine.
 o Added sections on forking and rehydration.
 o Clarified meaning of "pranswer" and "answer".
 o Reworked how ICE restarts and media directions are controlled.
 o Added list of parameters that can be changed in a description.
 o Updated suggested API and examples to match latest thinking.
 o Suggested API and examples have been moved to an appendix.

 Changes in draft -00:

https://datatracker.ietf.org/doc/html/draft-03

Uberti & Jennings Expires August 29, 2013 [Page 31]

Internet-Draft JSEP February 2013

 o Migrated from draft-uberti-rtcweb-jsep-02.

Authors' Addresses

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA 98033
 USA

 Email: justin@uberti.name

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: fluffy@iii.ca

https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-jsep-02

Uberti & Jennings Expires August 29, 2013 [Page 32]

