
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track C. Jennings
Expires: September 10, 2015 Cisco
 E. Rescorla, Ed.
 Mozilla
 March 9, 2015

Javascript Session Establishment Protocol
draft-ietf-rtcweb-jsep-09

Abstract

 This document describes the mechanisms for allowing a Javascript
 application to control the signaling plane of a multimedia session
 via the interface specified in the W3C RTCPeerConnection API, and
 discusses how this relates to existing signaling protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Uberti, et al. Expires September 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSEP March 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. General Design of JSEP 3
1.2. Other Approaches Considered 5

2. Terminology . 6
3. Semantics and Syntax . 6
3.1. Signaling Model . 6
3.2. Session Descriptions and State Machine 6
3.3. Session Description Format 10
3.4. ICE . 10
3.4.1. ICE Gathering Overview 10
3.4.2. ICE Candidate Trickling 11
3.4.2.1. ICE Candidate Format 11

3.4.3. ICE Candidate Policy 12
3.4.4. ICE Candidate Pool 13

3.5. Interactions With Forking 13
3.5.1. Sequential Forking 14
3.5.2. Parallel Forking 14

4. Interface . 15
4.1. Methods . 15
4.1.1. Constructor . 15
4.1.2. createOffer . 17
4.1.3. createAnswer . 18
4.1.4. SessionDescriptionType 19
4.1.4.1. Use of Provisional Answers 20
4.1.4.2. Rollback . 20

4.1.5. setLocalDescription 21
4.1.6. setRemoteDescription 21
4.1.7. localDescription 22
4.1.8. remoteDescription 22
4.1.9. canTrickleIceCandidates 22
4.1.10. setConfiguration 23
4.1.11. addIceCandidate 24

5. SDP Interaction Procedures 24
5.1. Requirements Overview 24
5.1.1. Implementation Requirements 24
5.1.2. Usage Requirements 26
5.1.3. Profile Names and Interoperability 26

5.2. Constructing an Offer 27
5.2.1. Initial Offers 27
5.2.2. Subsequent Offers 32
5.2.3. Options Handling 35
5.2.3.1. OfferToReceiveAudio 35
5.2.3.2. OfferToReceiveVideo 35

Uberti, et al. Expires September 10, 2015 [Page 2]

Internet-Draft JSEP March 2015

5.2.3.3. IceRestart 36
5.2.3.4. VoiceActivityDetection 36

5.3. Generating an Answer 36
5.3.1. Initial Answers 36
5.3.2. Subsequent Answers 41
5.3.3. Options Handling 42
5.3.3.1. VoiceActivityDetection 42

5.4. Processing a Local Description 42
5.5. Processing a Remote Description 43
5.6. Parsing a Session Description 43
5.6.1. Session-Level Parsing 44
5.6.2. Media Section Parsing 45
5.6.3. Semantics Verification 47

5.7. Applying a Local Description 47
5.8. Applying a Remote Description 48
5.9. Applying an Answer 48

6. Configurable SDP Parameters 48
7. Examples . 49
7.1. Simple Example . 50
7.2. Normal Examples . 54

8. Security Considerations 65
9. IANA Considerations . 65
10. Acknowledgements . 65
11. References . 66
11.1. Normative References 66
11.2. Informative References 69

Appendix A. Change log . 70
 Authors' Addresses . 73

1. Introduction

 This document describes how the W3C WEBRTC RTCPeerConnection
 interface[W3C.WD-webrtc-20140617] is used to control the setup,
 management and teardown of a multimedia session.

1.1. General Design of JSEP

 The thinking behind WebRTC call setup has been to fully specify and
 control the media plane, but to leave the signaling plane up to the
 application as much as possible. The rationale is that different
 applications may prefer to use different protocols, such as the
 existing SIP or Jingle call signaling protocols, or something custom
 to the particular application, perhaps for a novel use case. In this
 approach, the key information that needs to be exchanged is the
 multimedia session description, which specifies the necessary
 transport and media configuration information necessary to establish
 the media plane.

Uberti, et al. Expires September 10, 2015 [Page 3]

Internet-Draft JSEP March 2015

 With these considerations in mind, this document describes the
 Javascript Session Establishment Protocol (JSEP) that allows for full
 control of the signaling state machine from Javascript. JSEP removes
 the browser almost entirely from the core signaling flow, which is
 instead handled by the Javascript making use of two interfaces: (1)
 passing in local and remote session descriptions and (2) interacting
 with the ICE state machine.

 In this document, the use of JSEP is described as if it always occurs
 between two browsers. Note though in many cases it will actually be
 between a browser and some kind of server, such as a gateway or MCU.
 This distinction is invisible to the browser; it just follows the
 instructions it is given via the API.

 JSEP's handling of session descriptions is simple and
 straightforward. Whenever an offer/answer exchange is needed, the
 initiating side creates an offer by calling a createOffer() API. The
 application optionally modifies that offer, and then uses it to set
 up its local config via the setLocalDescription() API. The offer is
 then sent off to the remote side over its preferred signaling
 mechanism (e.g., WebSockets); upon receipt of that offer, the remote
 party installs it using the setRemoteDescription() API.

 To complete the offer/answer exchange, the remote party uses the
 createAnswer() API to generate an appropriate answer, applies it
 using the setLocalDescription() API, and sends the answer back to the
 initiator over the signaling channel. When the initiator gets that
 answer, it installs it using the setRemoteDescription() API, and
 initial setup is complete. This process can be repeated for
 additional offer/answer exchanges.

 Regarding ICE [RFC5245], JSEP decouples the ICE state machine from
 the overall signaling state machine, as the ICE state machine must
 remain in the browser, because only the browser has the necessary
 knowledge of candidates and other transport info. Performing this
 separation also provides additional flexibility; in protocols that
 decouple session descriptions from transport, such as Jingle, the
 session description can be sent immediately and the transport
 information can be sent when available. In protocols that don't,
 such as SIP, the information can be used in the aggregated form.
 Sending transport information separately can allow for faster ICE and
 DTLS startup, since ICE checks can start as soon as any transport
 information is available rather than waiting for all of it.

 Through its abstraction of signaling, the JSEP approach does require
 the application to be aware of the signaling process. While the
 application does not need to understand the contents of session
 descriptions to set up a call, the application must call the right

https://datatracker.ietf.org/doc/html/rfc5245

Uberti, et al. Expires September 10, 2015 [Page 4]

Internet-Draft JSEP March 2015

 APIs at the right times, convert the session descriptions and ICE
 information into the defined messages of its chosen signaling
 protocol, and perform the reverse conversion on the messages it
 receives from the other side.

 One way to mitigate this is to provide a Javascript library that
 hides this complexity from the developer; said library would
 implement a given signaling protocol along with its state machine and
 serialization code, presenting a higher level call-oriented interface
 to the application developer. For example, libraries exist to adapt
 the JSEP API into an API suitable for a SIP or XMPP. Thus, JSEP
 provides greater control for the experienced developer without
 forcing any additional complexity on the novice developer.

1.2. Other Approaches Considered

 One approach that was considered instead of JSEP was to include a
 lightweight signaling protocol. Instead of providing session
 descriptions to the API, the API would produce and consume messages
 from this protocol. While providing a more high-level API, this put
 more control of signaling within the browser, forcing the browser to
 have to understand and handle concepts like signaling glare. In
 addition, it prevented the application from driving the state machine
 to a desired state, as is needed in the page reload case.

 A second approach that was considered but not chosen was to decouple
 the management of the media control objects from session
 descriptions, instead offering APIs that would control each component
 directly. This was rejected based on a feeling that requiring
 exposure of this level of complexity to the application programmer
 would not be beneficial; it would result in an API where even a
 simple example would require a significant amount of code to
 orchestrate all the needed interactions, as well as creating a large
 API surface that needed to be agreed upon and documented. In
 addition, these API points could be called in any order, resulting in
 a more complex set of interactions with the media subsystem than the
 JSEP approach, which specifies how session descriptions are to be
 evaluated and applied.

 One variation on JSEP that was considered was to keep the basic
 session description-oriented API, but to move the mechanism for
 generating offers and answers out of the browser. Instead of
 providing createOffer/createAnswer methods within the browser, this
 approach would instead expose a getCapabilities API which would
 provide the application with the information it needed in order to
 generate its own session descriptions. This increases the amount of
 work that the application needs to do; it needs to know how to
 generate session descriptions from capabilities, and especially how

Uberti, et al. Expires September 10, 2015 [Page 5]

Internet-Draft JSEP March 2015

 to generate the correct answer from an arbitrary offer and the
 supported capabilities. While this could certainly be addressed by
 using a library like the one mentioned above, it basically forces the
 use of said library even for a simple example. Providing
 createOffer/createAnswer avoids this problem, but still allows
 applications to generate their own offers/answers (to a large extent)
 if they choose, using the description generated by createOffer as an
 indication of the browser's capabilities.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Semantics and Syntax

3.1. Signaling Model

 JSEP does not specify a particular signaling model or state machine,
 other than the generic need to exchange SDP media descriptions in the
 fashion described by [RFC3264] (offer/answer) in order for both sides
 of the session to know how to conduct the session. JSEP provides
 mechanisms to create offers and answers, as well as to apply them to
 a session. However, the browser is totally decoupled from the actual
 mechanism by which these offers and answers are communicated to the
 remote side, including addressing, retransmission, forking, and glare
 handling. These issues are left entirely up to the application; the
 application has complete control over which offers and answers get
 handed to the browser, and when.

 +-----------+ +-----------+
 | Web App |<--- App-Specific Signaling -->| Web App |
 +-----------+ +-----------+
 ^ ^
 | SDP | SDP
 V V
 +-----------+ +-----------+
 | Browser |<----------- Media ------------>| Browser |
 +-----------+ +-----------+

 Figure 1: JSEP Signaling Model

3.2. Session Descriptions and State Machine

 In order to establish the media plane, the user agent needs specific
 parameters to indicate what to transmit to the remote side, as well
 as how to handle the media that is received. These parameters are

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires September 10, 2015 [Page 6]

Internet-Draft JSEP March 2015

 determined by the exchange of session descriptions in offers and
 answers, and there are certain details to this process that must be
 handled in the JSEP APIs.

 Whether a session description applies to the local side or the remote
 side affects the meaning of that description. For example, the list
 of codecs sent to a remote party indicates what the local side is
 willing to receive, which, when intersected with the set of codecs
 the remote side supports, specifies what the remote side should send.
 However, not all parameters follow this rule; for example, the DTLS-
 SRTP parameters [RFC5763] sent to a remote party indicate what
 certificate the local side will use in DTLS setup, and thereby what
 the remote party should expect to receive; the remote party will have
 to accept these parameters, with no option to choose different
 values.

 In addition, various RFCs put different conditions on the format of
 offers versus answers. For example, an offer may propose an
 arbitrary number of media streams (i.e. m= sections), but an answer
 must contain the exact same number as the offer.

 Lastly, while the exact media parameters are only known only after an
 offer and an answer have been exchanged, it is possible for the
 offerer to receive media after they have sent an offer and before
 they have received an answer. To properly process incoming media in
 this case, the offerer's media handler must be aware of the details
 of the offer before the answer arrives.

 Therefore, in order to handle session descriptions properly, the user
 agent needs:

 1. To know if a session description pertains to the local or remote
 side.

 2. To know if a session description is an offer or an answer.

 3. To allow the offer to be specified independently of the answer.

 JSEP addresses this by adding both setLocalDescription and
 setRemoteDescription methods and having session description objects
 contain a type field indicating the type of session description being
 supplied. This satisfies the requirements listed above for both the
 offerer, who first calls setLocalDescription(sdp [offer]) and then
 later setRemoteDescription(sdp [answer]), as well as for the
 answerer, who first calls setRemoteDescription(sdp [offer]) and then
 later setLocalDescription(sdp [answer]).

https://datatracker.ietf.org/doc/html/rfc5763

Uberti, et al. Expires September 10, 2015 [Page 7]

Internet-Draft JSEP March 2015

 JSEP also allows for an answer to be treated as provisional by the
 application. Provisional answers provide a way for an answerer to
 communicate initial session parameters back to the offerer, in order
 to allow the session to begin, while allowing a final answer to be
 specified later. This concept of a final answer is important to the
 offer/answer model; when such an answer is received, any extra
 resources allocated by the caller can be released, now that the exact
 session configuration is known. These "resources" can include things
 like extra ICE components, TURN candidates, or video decoders.
 Provisional answers, on the other hand, do no such deallocation
 results; as a result, multiple dissimilar provisional answers can be
 received and applied during call setup.

 In [RFC3264], the constraint at the signaling level is that only one
 offer can be outstanding for a given session, but at the media stack
 level, a new offer can be generated at any point. For example, when
 using SIP for signaling, if one offer is sent, then cancelled using a
 SIP CANCEL, another offer can be generated even though no answer was
 received for the first offer. To support this, the JSEP media layer
 can provide an offer via the createOffer() method whenever the
 Javascript application needs one for the signaling. The answerer can
 send back zero or more provisional answers, and finally end the
 offer-answer exchange by sending a final answer. The state machine
 for this is as follows:

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires September 10, 2015 [Page 8]

Internet-Draft JSEP March 2015

 setRemote(OFFER) setLocal(PRANSWER)
 /-----\ /-----\
 | | | |
 v | v |
 +---------------+ | +---------------+ |
 | |----/ | |----/
 | | setLocal(PRANSWER) | |
 | Remote-Offer |------------------- >| Local-Pranswer|
 | | | |
 | | | |
 +---------------+ +---------------+
 ^ | |
 | | setLocal(ANSWER) |
 setRemote(OFFER) | |
 | V setLocal(ANSWER) |
 +---------------+ |
 | | |
 | |<---------------------------+
 | Stable |
 | |<---------------------------+
 | | |
 +---------------+ setRemote(ANSWER) |
 ^ | |
 | | setLocal(OFFER) |
 setRemote(ANSWER) | |
 | V |
 +---------------+ +---------------+
 | | | |
 | | setRemote(PRANSWER) | |
 | Local-Offer |------------------- >|Remote-Pranswer|
 | | | |
 | |----\ | |----\
 +---------------+ | +---------------+ |
 ^ | ^ |
 | | | |
 \-----/ \-----/
 setLocal(OFFER) setRemote(PRANSWER)

 Figure 2: JSEP State Machine

 Aside from these state transitions there is no other difference
 between the handling of provisional ("pranswer") and final ("answer")
 answers.

Uberti, et al. Expires September 10, 2015 [Page 9]

Internet-Draft JSEP March 2015

3.3. Session Description Format

 In the WebRTC specification, session descriptions are formatted as
 SDP messages. While this format is not optimal for manipulation from
 Javascript, it is widely accepted, and frequently updated with new
 features. Any alternate encoding of session descriptions would have
 to keep pace with the changes to SDP, at least until the time that
 this new encoding eclipsed SDP in popularity. As a result, JSEP
 currently uses SDP as the internal representation for its session
 descriptions.

 However, to simplify Javascript processing, and provide for future
 flexibility, the SDP syntax is encapsulated within a
 SessionDescription object, which can be constructed from SDP, and be
 serialized out to SDP. If future specifications agree on a JSON
 format for session descriptions, we could easily enable this object
 to generate and consume that JSON.

 Other methods may be added to SessionDescription in the future to
 simplify handling of SessionDescriptions from Javascript. In the
 meantime, Javascript libraries can be used to perform these
 manipulations.

 Note that most applications should be able to treat the
 SessionDescriptions produced and consumed by these various API calls
 as opaque blobs; that is, the application will not need to read or
 change them. The W3C WebRTC API specification will provide
 appropriate APIs to allow the application to control various session
 parameters, which will provide the necessary information to the
 browser about what sort of SessionDescription to produce.

3.4. ICE

3.4.1. ICE Gathering Overview

 JSEP gathers ICE candidates as needed by the application. Collection
 of ICE candidates is referred to as a gathering phase, and this is
 triggered either by the addition of a new or recycled m= line to the
 local session description, or new ICE credentials in the description,
 indicating an ICE restart. Use of new ICE credentials can be
 triggered explicitly by the application, or implicitly by the browser
 in response to changes in the ICE configuration.

 When a new gathering phase starts, the ICE Agent will notify the
 application that gathering is occurring through an event. Then, when
 each new ICE candidate becomes available, the ICE Agent will supply
 it to the application via an additional event; these candidates will
 also automatically be added to the local session description.

Uberti, et al. Expires September 10, 2015 [Page 10]

Internet-Draft JSEP March 2015

 Finally, when all candidates have been gathered, an event will be
 dispatched to signal that the gathering process is complete.

 Note that gathering phases only gather the candidates needed by
 new/recycled/restarting m= lines; other m= lines continue to use
 their existing candidates.

3.4.2. ICE Candidate Trickling

 Candidate trickling is a technique through which a caller may
 incrementally provide candidates to the callee after the initial
 offer has been dispatched; the semantics of "Trickle ICE" are defined
 in [I-D.ietf-mmusic-trickle-ice]. This process allows the callee to
 begin acting upon the call and setting up the ICE (and perhaps DTLS)
 connections immediately, without having to wait for the caller to
 gather all possible candidates. This results in faster media setup
 in cases where gathering is not performed prior to initiating the
 call.

 JSEP supports optional candidate trickling by providing APIs, as
 described above, that provide control and feedback on the ICE
 candidate gathering process. Applications that support candidate
 trickling can send the initial offer immediately and send individual
 candidates when they get the notified of a new candidate;
 applications that do not support this feature can simply wait for the
 indication that gathering is complete, and then create and send their
 offer, with all the candidates, at this time.

 Upon receipt of trickled candidates, the receiving application will
 supply them to its ICE Agent. This triggers the ICE Agent to start
 using the new remote candidates for connectivity checks.

3.4.2.1. ICE Candidate Format

 As with session descriptions, the syntax of the IceCandidate object
 provides some abstraction, but can be easily converted to and from
 the SDP candidate lines.

 The candidate lines are the only SDP information that is contained
 within IceCandidate, as they represent the only information needed
 that is not present in the initial offer (i.e., for trickle
 candidates). This information is carried with the same syntax as the
 "candidate-attribute" field defined for ICE. For example:

 candidate:1 1 UDP 1694498815 192.0.2.33 10000 typ host

 The IceCandidate object also contains fields to indicate which m=
 line it should be associated with. The m= line can be identified in

Uberti, et al. Expires September 10, 2015 [Page 11]

Internet-Draft JSEP March 2015

 one of two ways; either by a m= line index, or a MID. The m= line
 index is a zero-based index, with index N referring to the N+1th m=
 line in the SDP sent by the entity which sent the IceCandidate. The
 MID uses the "media stream identification" attribute, as defined in

[RFC5888], Section 4, to identify the m= line. JSEP implementations
 creating an ICE Candidate object MUST populate both of these fields.
 Implementations receiving an ICE Candidate object MUST use the MID if
 present, or the m= line index, if not (as it could have come from a
 non-JSEP endpoint).

3.4.3. ICE Candidate Policy

 Typically, when gathering ICE candidates, the browser will gather all
 possible forms of initial candidates - host, server reflexive, and
 relay. However, in certain cases, applications may want to have more
 specific control over the gathering process, due to privacy or
 related concerns. For example, one may want to suppress the use of
 host candidates, to avoid exposing information about the local
 network, or go as far as only using relay candidates, to leak as
 little location information as possible (note that these choices come
 with corresponding operational costs). To accomplish this, the
 browser MUST allow the application to restrict which ICE candidates
 are used in a session. In addition, administrators may also wish to
 control the set of ICE candidates, and so the browser SHOULD also
 allow control via local policy, with the most restrictive policy
 prevailing.

 There may also be cases where the application wants to change which
 types of candidates are used while the session is active. A prime
 example is where a callee may initially want to use only relay
 candidates, to avoid leaking location information to an arbitrary
 caller, but then change to use all candidates (for lower operational
 cost) once the user has indicated they want to take the call. For
 this scenario, the browser MUST allow the candidate policy to be
 changed in mid-session, subject to the aforementioned interactions
 with local policy.

 To administer the ICE candidate policy, the browser will determine
 the current setting at the start of each gathering phase. Then,
 during the gathering phase, the browser MUST NOT expose candidates
 disallowed by the current policy to the application, use them as the
 source of connectivity checks, or indirectly expose them via other
 fields, such as the raddr/rport attributes for other ICE candidates.
 Later, if a different policy is specified by the application, the
 application can apply it by kicking off a new gathering phase via an
 ICE restart.

https://datatracker.ietf.org/doc/html/rfc5888#section-4

Uberti, et al. Expires September 10, 2015 [Page 12]

Internet-Draft JSEP March 2015

3.4.4. ICE Candidate Pool

 JSEP applications typically inform the browser to begin ICE gathering
 via the information supplied to setLocalDescription, as this is where
 the app specifies the number of media streams, and thereby ICE
 components, for which to gather candidates. However, to accelerate
 cases where the application knows the number of ICE components to use
 ahead of time, it may ask the browser to gather a pool of potential
 ICE candidates to help ensure rapid media setup.

 When setLocalDescription is eventually called, and the browser goes
 to gather the needed ICE candidates, it SHOULD start by checking if
 any candidates are available in the pool. If there are candidates in
 the pool, they SHOULD be handed to the application immediately via
 the ICE candidate event. If the pool becomes depleted, either
 because a larger-than-expected number of ICE components is used, or
 because the pool has not had enough time to gather candidates, the
 remaining candidates are gathered as usual.

 One example of where this concept is useful is an application that
 expects an incoming call at some point in the future, and wants to
 minimize the time it takes to establish connectivity, to avoid
 clipping of initial media. By pre-gathering candidates into the
 pool, it can exchange and start sending connectivity checks from
 these candidates almost immediately upon receipt of a call. Note
 though that by holding on to these pre-gathered candidates, which
 will be kept alive as long as they may be needed, the application
 will consume resources on the STUN/TURN servers it is using.

3.5. Interactions With Forking

 Some call signaling systems allow various types of forking where an
 SDP Offer may be provided to more than one device. For example, SIP
 [RFC3261] defines both a "Parallel Search" and "Sequential Search".
 Although these are primarily signaling level issues that are outside
 the scope of JSEP, they do have some impact on the configuration of
 the media plane that is relevant. When forking happens at the
 signaling layer, the Javascript application responsible for the
 signaling needs to make the decisions about what media should be sent
 or received at any point of time, as well as which remote endpoint it
 should communicate with; JSEP is used to make sure the media engine
 can make the RTP and media perform as required by the application.
 The basic operations that the applications can have the media engine
 do are:

 o Start exchanging media with a given remote peer, but keep all the
 resources reserved in the offer.

https://datatracker.ietf.org/doc/html/rfc3261

Uberti, et al. Expires September 10, 2015 [Page 13]

Internet-Draft JSEP March 2015

 o Start exchanging media with a given remote peer, and free any
 resources in the offer that are not being used.

3.5.1. Sequential Forking

 Sequential forking involves a call being dispatched to multiple
 remote callees, where each callee can accept the call, but only one
 active session ever exists at a time; no mixing of received media is
 performed.

 JSEP handles sequential forking well, allowing the application to
 easily control the policy for selecting the desired remote endpoint.
 When an answer arrives from one of the callees, the application can
 choose to apply it either as a provisional answer, leaving open the
 possibility of using a different answer in the future, or apply it as
 a final answer, ending the setup flow.

 In a "first-one-wins" situation, the first answer will be applied as
 a final answer, and the application will reject any subsequent
 answers. In SIP parlance, this would be ACK + BYE.

 In a "last-one-wins" situation, all answers would be applied as
 provisional answers, and any previous call leg will be terminated.
 At some point, the application will end the setup process, perhaps
 with a timer; at this point, the application could reapply the
 existing remote description as a final answer.

3.5.2. Parallel Forking

 Parallel forking involves a call being dispatched to multiple remote
 callees, where each callee can accept the call, and multiple
 simultaneous active signaling sessions can be established as a
 result. If multiple callees send media at the same time, the
 possibilities for handling this are described in Section 3.1 of
 [RFC3960]. Most SIP devices today only support exchanging media with
 a single device at a time, and do not try to mix multiple early media
 audio sources, as that could result in a confusing situation. For
 example, consider having a European ringback tone mixed together with
 the North American ringback tone - the resulting sound would not be
 like either tone, and would confuse the user. If the signaling
 application wishes to only exchange media with one of the remote
 endpoints at a time, then from a media engine point of view, this is
 exactly like the sequential forking case.

 In the parallel forking case where the Javascript application wishes
 to simultaneously exchange media with multiple peers, the flow is
 slightly more complex, but the Javascript application can follow the
 strategy that [RFC3960] describes using UPDATE. The UPDATE approach

https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960

Uberti, et al. Expires September 10, 2015 [Page 14]

Internet-Draft JSEP March 2015

 allows the signaling to set up a separate media flow for each peer
 that it wishes to exchange media with. In JSEP, this offer used in
 the UPDATE would be formed by simply creating a new PeerConnection
 and making sure that the same local media streams have been added
 into this new PeerConnection. Then the new PeerConnection object
 would produce a SDP offer that could be used by the signaling to
 perform the UPDATE strategy discussed in [RFC3960].

 As a result of sharing the media streams, the application will end up
 with N parallel PeerConnection sessions, each with a local and remote
 description and their own local and remote addresses. The media flow
 from these sessions can be managed by specifying SDP direction
 attributes in the descriptions, or the application can choose to play
 out the media from all sessions mixed together. Of course, if the
 application wants to only keep a single session, it can simply
 terminate the sessions that it no longer needs.

4. Interface

 This section details the basic operations that must be present to
 implement JSEP functionality. The actual API exposed in the W3C API
 may have somewhat different syntax, but should map easily to these
 concepts.

4.1. Methods

4.1.1. Constructor

 The PeerConnection constructor allows the application to specify
 global parameters for the media session, such as the STUN/TURN
 servers and credentials to use when gathering candidates, as well as
 the initial ICE candidate policy and pool size, and also the BUNDLE
 policy to use.

 If an ICE candidate policy is specified, it functions as described in
Section 3.4.3, causing the browser to only surface the permitted

 candidates to the application, and only use those candidates for
 connectivity checks. The set of available policies is as follows:

 all: All candidates will be gathered and used.

 public: Candidates with private IP addresses [RFC1918] will be
 filtered out. This prevents exposure of internal network details,
 at the cost of requiring relay usage even for intranet calls, if
 the NAT does not allow hairpinning as described in [RFC4787],
 section 6.

https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc4787#section-6
https://datatracker.ietf.org/doc/html/rfc4787#section-6

Uberti, et al. Expires September 10, 2015 [Page 15]

Internet-Draft JSEP March 2015

 relay: All candidates except relay candidates will be filtered out.
 This obfuscates the location information that might be ascertained
 by the remote peer from the received candidates. Depending on how
 the application deploys its relay servers, this could obfuscate
 location to a metro or possibly even global level.

 Although it can be overridden by local policy, the default ICE
 candidate policy MUST be set to allow all candidates, as this
 minimizes use of application STUN/TURN server resources.

 If a size is specified for the ICE candidate pool, this indicates the
 number of ICE components to pre-gather candidates for. Because pre-
 gathering results in utilizing STUN/TURN server resources for
 potentially long periods of time, this must only occur upon
 application request, and therefore the default candidate pool size
 MUST be zero.

 The application can specify its preferred policy regarding use of
 BUNDLE, the multiplexing mechanism defined in
 [I-D.ietf-mmusic-sdp-bundle-negotiation]. By specifying a policy
 from the list below, the application can control how aggressively it
 will try to BUNDLE media streams together. The set of available
 policies is as follows:

 balanced: The application will BUNDLE all media streams of the same
 type together. That is, if there are multiple audio and multiple
 video MediaStreamTracks attached to a PeerConnection, all but the
 first audio and video tracks will be marked as bundle-only, and
 candidates will only be gathered for N media streams, where N is
 the number of distinct media types. When talking to a non-BUNDLE-
 aware endpoint, only the non-bundle-only streams will be
 negotiated. This policy balances desire to multiplex with the
 need to ensure basic audio and video still works in legacy cases.
 Data channels will be in a separate bundle group.

 max-compat: The application will offer BUNDLE, but mark none of its
 streams as bundle-only. This policy will allow all streams to be
 received by non-BUNDLE-aware endpoints, but require separate
 candidates to be gathered for each media stream.

 max-bundle: The application will BUNDLE all of its media streams,
 including data channels, on a single transport. All streams other
 than the first will be marked as bundle-only. This policy aims to

Uberti, et al. Expires September 10, 2015 [Page 16]

Internet-Draft JSEP March 2015

 minimize candidate gathering and maximize multiplexing, at the
 cost of less compatibility with legacy endpoints.

 As it provides the best tradeoff between performance and
 compatibility with legacy endpoints, the default BUNDLE policy MUST
 be set to "balanced".

 The application can specify its preferred policy regarding use of
 RTP/RTCP multiplexing [RFC5761] using one of the following policies:

 negotiate: The browser will gather both RTP and RTCP candidates but
 also will offer "a=rtcp-mux", thus allowing for compatibility with
 either multiplexing or non-multiplexing endpoints.

 require: The browser will only gather RTP candidates. [[OPEN ISSUE:
 how should the answerer behave. https://github.com/rtcweb-
 wg/jsep/issues/114]] This halves the number of candidates that the
 offerer needs to gather.

4.1.2. createOffer

 The createOffer method generates a blob of SDP that contains a
 [RFC3264] offer with the supported configurations for the session,
 including descriptions of the local MediaStreams attached to this
 PeerConnection, the codec/RTP/RTCP options supported by this
 implementation, and any candidates that have been gathered by the ICE
 Agent. An options parameter may be supplied to provide additional
 control over the generated offer. This options parameter should
 allow for the following manipulations to be performed:

 o To indicate support for a media type even if no MediaStreamTracks
 of that type have been added to the session (e.g., an audio call
 that wants to receive video.)

 o To trigger an ICE restart, for the purpose of reestablishing
 connectivity.

 In the initial offer, the generated SDP will contain all desired
 functionality for the session (functionality that is supported but
 not desired by default may be omitted); for each SDP line, the
 generation of the SDP will follow the process defined for generating
 an initial offer from the document that specifies the given SDP line.
 The exact handling of initial offer generation is detailed in

Section 5.2.1 below.

 In the event createOffer is called after the session is established,
 createOffer will generate an offer to modify the current session
 based on any changes that have been made to the session, e.g. adding

https://datatracker.ietf.org/doc/html/rfc5761
https://github.com/rtcweb-
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires September 10, 2015 [Page 17]

Internet-Draft JSEP March 2015

 or removing MediaStreams, or requesting an ICE restart. For each
 existing stream, the generation of each SDP line must follow the
 process defined for generating an updated offer from the RFC that
 specifies the given SDP line. For each new stream, the generation of
 the SDP must follow the process of generating an initial offer, as
 mentioned above. If no changes have been made, or for SDP lines that
 are unaffected by the requested changes, the offer will only contain
 the parameters negotiated by the last offer-answer exchange. The
 exact handling of subsequent offer generation is detailed in

Section 5.2.2. below.

 Session descriptions generated by createOffer must be immediately
 usable by setLocalDescription; if a system has limited resources
 (e.g. a finite number of decoders), createOffer should return an
 offer that reflects the current state of the system, so that
 setLocalDescription will succeed when it attempts to acquire those
 resources. Because this method may need to inspect the system state
 to determine the currently available resources, it may be implemented
 as an async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not result in candidate gathering, or cause
 media to start or stop flowing.

4.1.3. createAnswer

 The createAnswer method generates a blob of SDP that contains a
 [RFC3264] SDP answer with the supported configuration for the session
 that is compatible with the parameters supplied in the most recent
 call to setRemoteDescription, which MUST have been called prior to
 calling createAnswer. Like createOffer, the returned blob contains
 descriptions of the local MediaStreams attached to this
 PeerConnection, the codec/RTP/RTCP options negotiated for this
 session, and any candidates that have been gathered by the ICE Agent.
 An options parameter may be supplied to provide additional control
 over the generated answer.

 As an answer, the generated SDP will contain a specific configuration
 that specifies how the media plane should be established; for each
 SDP line, the generation of the SDP must follow the process defined
 for generating an answer from the document that specifies the given
 SDP line. The exact handling of answer generation is detailed in

Section 5.3. below.

 Session descriptions generated by createAnswer must be immediately
 usable by setLocalDescription; like createOffer, the returned
 description should reflect the current state of the system. Because
 this method may need to inspect the system state to determine the

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires September 10, 2015 [Page 18]

Internet-Draft JSEP March 2015

 currently available resources, it may need to be implemented as an
 async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not trigger candidate gathering or change media
 state.

4.1.4. SessionDescriptionType

 Session description objects (RTCSessionDescription) may be of type
 "offer", "pranswer", or "answer". These types provide information as
 to how the description parameter should be parsed, and how the media
 state should be changed.

 "offer" indicates that a description should be parsed as an offer;
 said description may include many possible media configurations. A
 description used as an "offer" may be applied anytime the
 PeerConnection is in a stable state, or as an update to a previously
 supplied but unanswered "offer".

 "pranswer" indicates that a description should be parsed as an
 answer, but not a final answer, and so should not result in the
 freeing of allocated resources. It may result in the start of media
 transmission, if the answer does not specify an inactive media
 direction. A description used as a "pranswer" may be applied as a
 response to an "offer", or an update to a previously sent "pranswer".

 "answer" indicates that a description should be parsed as an answer,
 the offer-answer exchange should be considered complete, and any
 resources (decoders, candidates) that are no longer needed can be
 released. A description used as an "answer" may be applied as a
 response to a "offer", or an update to a previously sent "pranswer".

 The only difference between a provisional and final answer is that
 the final answer results in the freeing of any unused resources that
 were allocated as a result of the offer. As such, the application
 can use some discretion on whether an answer should be applied as
 provisional or final, and can change the type of the session
 description as needed. For example, in a serial forking scenario, an
 application may receive multiple "final" answers, one from each
 remote endpoint. The application could choose to accept the initial
 answers as provisional answers, and only apply an answer as final
 when it receives one that meets its criteria (e.g. a live user
 instead of voicemail).

 "rollback" is a special session description type implying that the
 state machine should be rolled back to the previous state, as
 described in Section 4.1.4.2. The contents MUST be empty.

Uberti, et al. Expires September 10, 2015 [Page 19]

Internet-Draft JSEP March 2015

4.1.4.1. Use of Provisional Answers

 Most web applications will not need to create answers using the
 "pranswer" type. While it is good practice to send an immediate
 response to an "offer", in order to warm up the session transport and
 prevent media clipping, the preferred handling for a web application
 would be to create and send an "inactive" final answer immediately
 after receiving the offer. Later, when the called user actually
 accepts the call, the application can create a new "sendrecv" offer
 to update the previous offer/answer pair and start the media flow.
 While this could also be done with an inactive "pranswer", followed
 by a sendrecv "answer", the initial "pranswer" leaves the offer-
 answer exchange open, which means that neither side can send an
 updated offer during this time.

 As an example, consider a typical web application that will set up a
 data channel, an audio channel, and a video channel. When an
 endpoint receives an offer with these channels, it could send an
 answer accepting the data channel for two-way data, and accepting the
 audio and video tracks as inactive or receive-only. It could then
 ask the user to accept the call, acquire the local media streams, and
 send a new offer to the remote side moving the audio and video to be
 two-way media. By the time the human has accepted the call and
 triggered the new offer, it is likely that the ICE and DTLS
 handshaking for all the channels will already have finished.

 Of course, some applications may not be able to perform this double
 offer-answer exchange, particularly ones that are attempting to
 gateway to legacy signaling protocols. In these cases, "pranswer"
 can still provide the application with a mechanism to warm up the
 transport.

4.1.4.2. Rollback

 In certain situations it may be desirable to "undo" a change made to
 setLocalDescription or setRemoteDescription. Consider a case where a
 call is ongoing, and one side wants to change some of the session
 parameters; that side generates an updated offer and then calls
 setLocalDescription. However, the remote side, either before or
 after setRemoteDescription, decides it does not want to accept the
 new parameters, and sends a reject message back to the offerer. Now,
 the offerer, and possibly the answerer as well, need to return to a
 stable state and the previous local/remote description. To support
 this, we introduce the concept of "rollback".

 A rollback discards any proposed changes to the session, returning
 the state machine to the stable state, and setting the modified local
 and/or remote description back to their previous values. Any

Uberti, et al. Expires September 10, 2015 [Page 20]

Internet-Draft JSEP March 2015

 resources or candidates that were allocated by the abandoned local
 description are discarded; any media that is received will be
 processed according to the previous local and remote descriptions.
 Rollback can only be used to cancel proposed changes; there is no
 support for rolling back from a stable state to a previous stable
 state. Note that this implies that once the answerer has performed
 setLocalDescription with his answer, this cannot be rolled back.

 A rollback is performed by supplying a session description of type
 "rollback" with empty contents to either setLocalDescription or
 setRemoteDescription, depending on which was most recently used (i.e.
 if the new offer was supplied to setLocalDescription, the rollback
 should be done using setLocalDescription as well).

4.1.5. setLocalDescription

 The setLocalDescription method instructs the PeerConnection to apply
 the supplied SDP blob as its local configuration. The type field
 indicates whether the blob should be processed as an offer,
 provisional answer, or final answer; offers and answers are checked
 differently, using the various rules that exist for each SDP line.

 This API changes the local media state; among other things, it sets
 up local resources for receiving and decoding media. In order to
 successfully handle scenarios where the application wants to offer to
 change from one media format to a different, incompatible format, the
 PeerConnection must be able to simultaneously support use of both the
 old and new local descriptions (e.g. support codecs that exist in
 both descriptions) until a final answer is received, at which point
 the PeerConnection can fully adopt the new local description, or roll
 back to the old description if the remote side denied the change.

 This API indirectly controls the candidate gathering process. When a
 local description is supplied, and the number of transports currently
 in use does not match the number of transports needed by the local
 description, the PeerConnection will create transports as needed and
 begin gathering candidates for them.

 If setRemoteDescription was previous called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media are available to
 send, this will result in the starting of media transmission.

4.1.6. setRemoteDescription

 The setRemoteDescription method instructs the PeerConnection to apply
 the supplied SDP blob as the desired remote configuration. As in

Uberti, et al. Expires September 10, 2015 [Page 21]

Internet-Draft JSEP March 2015

 setLocalDescription, the type field of the indicates how the blob
 should be processed.

 This API changes the local media state; among other things, it sets
 up local resources for sending and encoding media.

 If setLocalDescription was previously called with an offer, and
 setRemoteDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media are available to
 send, this will result in the starting of media transmission.

4.1.7. localDescription

 The localDescription method returns a copy of the current local
 configuration, i.e. what was most recently passed to
 setLocalDescription, plus any local candidates that have been
 generated by the ICE Agent.

 [[OPEN ISSUE: Do we need to expose accessors for both the current and
 proposed local description? https://github.com/rtcweb-wg/jsep/
 issues/16]]

 A null object will be returned if the local description has not yet
 been established.

4.1.8. remoteDescription

 The remoteDescription method returns a copy of the current remote
 configuration, i.e. what was most recently passed to
 setRemoteDescription, plus any remote candidates that have been
 supplied via processIceMessage.

 [[OPEN ISSUE: Do we need to expose accessors for both the current and
 proposed remote description? https://github.com/rtcweb-wg/jsep/
 issues/16]]

 A null object will be returned if the remote description has not yet
 been established.

4.1.9. canTrickleIceCandidates

 The canTrickleIceCandidates property indicates whether the remote
 side supports receiving trickled candidates. There are three
 potential values:

 null: No SDP has been received from the other side, so it is not
 known if it can handle trickle. This is the initial value before
 setRemoteDescription() is called.

https://github.com/rtcweb-wg/jsep/
https://github.com/rtcweb-wg/jsep/

Uberti, et al. Expires September 10, 2015 [Page 22]

Internet-Draft JSEP March 2015

 true: SDP has been received from the other side indicating that it
 can support trickle.

 false: SDP has been received from the other side indicating that it
 cannot support trickle.

 As described in Section 3.4.2, JSEP implementations always provide
 candidates to the application individually, consistent with what is
 needed for Trickle ICE. However, applications can use the
 canTrickleIceCandidates property to determine whether their peer can
 actually do Trickle ICE, i.e., whether it is safe to send an initial
 offer or answer followed later by candidates as they are gathered.
 As "true" is the only value that definitively indicates remote
 Trickle ICE support, an application which compares
 canTrickleIceCandidates against "true" will by default attempt Half
 Trickle on initial offers and Full Trickle on subsequent interactions
 with a Trickle ICE-compatible agent.

4.1.10. setConfiguration

 The setConfiguration method allows the global configuration of the
 PeerConnection, which was initially set by constructor parameters, to
 be changed during the session. The effects of this method call
 depend on when it is invoked, and differ depending on which specific
 parameters are changed:

 o Any changes to the STUN/TURN servers to use affect the next
 gathering phase. If gathering has already occurred, this will
 cause the next call to createOffer to generate new ICE
 credentials, for the purpose of forcing an ICE restart and kicking
 off a new gathering phase, in which the new servers will be used.
 If the ICE candidate pool has a nonzero size, any existing
 candidates will be discarded, and new candidates will be gathered
 from the new servers.

 o Any changes to the ICE candidate policy also affect the next
 gathering phase, in similar fashion to the server changes
 described above. Note though that changes to the policy have no
 effect on the candidate pool, because pooled candidates are not
 surfaced to the application until a gathering phase occurs, and so
 any necessary filtering can still be done on any pooled
 candidates.

 o Any changes to the ICE candidate pool size take effect
 immediately; if increased, additional candidates are pre-gathered;
 if decreased, the now-superfluous candidates are discarded.

Uberti, et al. Expires September 10, 2015 [Page 23]

Internet-Draft JSEP March 2015

 o The BUNDLE and RTCP-multiplexing policies MUST NOT be changed
 after the construction of the PeerConnection.

 This call may result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

4.1.11. addIceCandidate

 The addIceCandidate method provides a remote candidate to the ICE
 Agent, which, if parsed successfully, will be added to the remote
 description according to the rules defined for Trickle ICE.
 Connectivity checks will be sent to the new candidate.

 This call will result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

5. SDP Interaction Procedures

 This section describes the specific procedures to be followed when
 creating and parsing SDP objects.

5.1. Requirements Overview

 JSEP implementations must comply with the specifications listed below
 that govern the creation and processing of offers and answers.

 The first set of specifications is the "mandatory-to-implement" set.
 All implementations must support these behaviors, but may not use all
 of them if the remote side, which may not be a JSEP endpoint, does
 not support them.

 The second set of specifications is the "mandatory-to-use" set. The
 local JSEP endpoint and any remote endpoint must indicate support for
 these specifications in their session descriptions.

5.1.1. Implementation Requirements

 This list of mandatory-to-implement specifications is derived from
 the requirements outlined in [I-D.ietf-rtcweb-rtp-usage].

 R-1 [RFC4566] is the base SDP specification and MUST be
 implemented.

 R-2 [RFC5764] MUST be supported for signaling the UDP/TLS/RTP/SAVPF
 [RFC5764] and TCP/DTLS/RTP/SAVPF
 [I-D.nandakumar-mmusic-proto-iana-registration] RTP profiles.

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5764

Uberti, et al. Expires September 10, 2015 [Page 24]

Internet-Draft JSEP March 2015

 R-3 [RFC5245] MUST be implemented for signaling the ICE credentials
 and candidate lines corresponding to each media stream. The
 ICE implementation MUST be a Full implementation, not a Lite
 implementation.

 R-4 [RFC5763] MUST be implemented to signal DTLS certificate
 fingerprints.

 R-5 [RFC4568] MUST NOT be implemented to signal SDES SRTP keying
 information.

 R-6 The [RFC5888] grouping framework MUST be implemented for
 signaling grouping information, and MUST be used to identify m=
 lines via the a=mid attribute.

 R-7 [I-D.ietf-mmusic-msid] MUST be supported, in order to signal
 associations between RTP objects and W3C MediaStreams and
 MediaStreamTracks in a standard way.

 R-8 The bundle mechanism in
 [I-D.ietf-mmusic-sdp-bundle-negotiation] MUST be supported to
 signal the ability to multiplex RTP streams on a single UDP
 port, in order to avoid excessive use of port number resources.

 R-9 The SDP attributes of "sendonly", "recvonly", "inactive", and
 "sendrecv" from [RFC4566] MUST be implemented to signal
 information about media direction.

 R-10 [RFC5576] MUST be implemented to signal RTP SSRC values and
 grouping semantics.

 R-11 [RFC4585] MUST be implemented to signal RTCP based feedback.

 R-12 [RFC5761] MUST be implemented to signal multiplexing of RTP and
 RTCP.

 R-13 [RFC5506] MUST be implemented to signal reduced-size RTCP
 messages.

 R-14 [RFC4588] MUST be implemented to signal RTX payload type
 associations.

 R-15 [RFC3556] with bandwidth modifiers MAY be supported for
 specifying RTCP bandwidth as a fraction of the media bandwidth,
 RTCP fraction allocated to the senders and setting maximum
 media bit-rate boundaries.

 R-16 TODO: any others?

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/rfc3556

Uberti, et al. Expires September 10, 2015 [Page 25]

Internet-Draft JSEP March 2015

 As required by [RFC4566], Section 5.13, JSEP implementations MUST
 ignore unknown attribute (a=) lines.

5.1.2. Usage Requirements

 All session descriptions handled by JSEP endpoints, both local and
 remote, MUST indicate support for the following specifications. If
 any of these are absent, this omission MUST be treated as an error.

 R-1 ICE, as specified in [RFC5245], MUST be used. Note that the
 remote endpoint may use a Lite implementation; implementations
 MUST properly handle remote endpoints which do ICE-Lite.

 R-2 DTLS [RFC6347] or DTLS-SRTP [RFC5763], MUST be used, as
 appropriate for the media type, as specified in
 [I-D.ietf-rtcweb-security-arch]

5.1.3. Profile Names and Interoperability

 For media m= sections, JSEP endpoints MUST support both the "UDP/TLS/
 RTP/SAVPF" and "TCP/DTLS/RTP/SAVPF" profiles and MUST indicate one of
 these two profiles for each media m= line they produce in an offer.
 For data m= sections, JSEP endpoints must support both the "UDP/DTLS/
 SCTP" and "TCP/DTLS/SCTP" profiles and MUST indicate one of these two
 profiles for each data m= line they produce in an offer. Because ICE
 can select either TCP or UDP transport depending on network
 conditions, both advertisements are consistent with ICE eventually
 selecting either either UDP or TCP.

 Unfortunately, in an attempt at compatibility, some endpoints
 generate other profile strings even when they mean to support one of
 these profiles. For instance, an endpoint might generate "RTP/AVP"
 but supply "a=fingerprint" and "a=rtcp-fb" attributes, indicating its
 willingness to support "(UDP,TCP)/TLS/RTP/SAVPF". In order to
 simplify compatibility with such endpoints, JSEP endpoints MUST
 follow the following rules when processing the media m= sections in
 an offer:

 o The profile in any "m=" line in any answer MUST exactly match the
 profile provided in the offer.

 o Any profile matching the following patterns MUST be accepted:
 "RTP/[S]AVP[F]" and "(UDP/TCP)/TLS/RTP/SAVP[F]"

 o Because DTLS-SRTP is REQUIRED, the choice of SAVP or AVP has no
 effect; support for DTLS-SRTP is determined by the presence of the
 "a=fingerprint" attribute. Note that lack of an "a=fingerprint"
 attribute will lead to negotiation failure.

https://datatracker.ietf.org/doc/html/rfc4566#section-5.13
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5763

Uberti, et al. Expires September 10, 2015 [Page 26]

Internet-Draft JSEP March 2015

 o The use of AVPF or AVP simply controls the timing rules used for
 RTCP feedback. If AVPF is provided, or an "a=rtcp-fb" attribute
 is present, assume AVPF timing, i.e. a default value of "trr-
 int=0". Otherwise, assume that AVPF is being used in an AVP
 compatible mode and use AVP timing, i.e., "trr-int=4".

 o For data m= sections, JSEP endpoints MUST support receiving the
 "UDP/ DTLS/SCTP", "TCP/DTLS/SCTP", or "DTLS/SCTP" (for backwards
 compatibility) profiles.

 Note that re-offers by JSEP endpoints MUST use the correct profile
 strings even if the initial offer/answer exchange used an (incorrect)
 older profile string.

5.2. Constructing an Offer

 When createOffer is called, a new SDP description must be created
 that includes the functionality specified in
 [I-D.ietf-rtcweb-rtp-usage]. The exact details of this process are
 explained below.

5.2.1. Initial Offers

 When createOffer is called for the first time, the result is known as
 the initial offer.

 The first step in generating an initial offer is to generate session-
 level attributes, as specified in [RFC4566], Section 5.
 Specifically:

 o The first SDP line MUST be "v=0", as specified in [RFC4566],
 Section 5.1

 o The second SDP line MUST be an "o=" line, as specified in
[RFC4566], Section 5.2. The value of the <username> field SHOULD

 be "-". The value of the <sess-id> field SHOULD be a
 cryptographically random number. To ensure uniqueness, this
 number SHOULD be at least 64 bits long. The value of the <sess-
 version> field SHOULD be zero. The value of the <nettype>
 <addrtype> <unicast-address> tuple SHOULD be set to a non-
 meaningful address, such as IN IP4 0.0.0.0, to prevent leaking the
 local address in this field. As mentioned in [RFC4566], the
 entire o= line needs to be unique, but selecting a random number
 for <sess-id> is sufficient to accomplish this.

 o The third SDP line MUST be a "s=" line, as specified in [RFC4566],
 Section 5.3; to match the "o=" line, a single dash SHOULD be used
 as the session name, e.g. "s=-". Note that this differs from the

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566#section-5.3
https://datatracker.ietf.org/doc/html/rfc4566#section-5.3

Uberti, et al. Expires September 10, 2015 [Page 27]

Internet-Draft JSEP March 2015

 advice in [RFC4566] which proposes a single space, but as both
 "o=" and "s=" are meaningless, having the same meaningless value
 seems clearer.

 o Session Information ("i="), URI ("u="), Email Address ("e="),
 Phone Number ("p="), Bandwidth ("b="), Repeat Times ("r="), and
 Time Zones ("z=") lines are not useful in this context and SHOULD
 NOT be included.

 o Encryption Keys ("k=") lines do not provide sufficient security
 and MUST NOT be included.

 o A "t=" line MUST be added, as specified in [RFC4566], Section 5.9;
 both <start-time> and <stop-time> SHOULD be set to zero, e.g. "t=0
 0".

 o An "a=msid-semantic:WMS" line MUST be added, as specified in
 [I-D.ietf-mmusic-msid], Section 4.

 The next step is to generate m= sections, as specified in [RFC4566]
 Section 5.14, for each MediaStreamTrack that has been added to the
 PeerConnection via the addStream method. (Note that this method
 takes a MediaStream, which can contain multiple MediaStreamTracks,
 and therefore multiple m= sections can be generated even if addStream
 is only called once.) m=sections MUST be sorted first by the order in
 which the MediaStreams were added to the PeerConnection, and then by
 the alphabetical ordering of the media type for the MediaStreamTrack.
 For example, if a MediaStream containing both an audio and a video
 MediaStreamTrack is added to a PeerConnection, the resultant m=audio
 section will precede the m=video section. If a second MediaStream
 containing an audio MediaStreamTrack was added, it would follow the
 m=video section.

 Each m= section, provided it is not being bundled into another m=
 section, MUST generate a unique set of ICE credentials and gather its
 own unique set of ICE candidates. Otherwise, it MUST use the same
 ICE credentials and candidates as the m= section into which it is
 being bundled. Note that this means that for offers, any m= sections
 which are not bundle-only MUST have unique ICE credentials and
 candidates, since it is possible that the answerer will accept them
 without bundling them.

 For DTLS, all m= sections MUST use the certificate for the identity
 that has been specified for the PeerConnection; as a result, they
 MUST all have the same [RFC4572] fingerprint value, or this value
 MUST be a session-level attribute.

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566#section-5.9
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4572

Uberti, et al. Expires September 10, 2015 [Page 28]

Internet-Draft JSEP March 2015

 Each m= section should be generated as specified in [RFC4566],
 Section 5.14. For the m= line itself, the following rules MUST be
 followed:

 o The port value is set to the port of the default ICE candidate for
 this m= section, but given that no candidates have yet been
 gathered, the "dummy" port value of 9 (Discard) MUST be used, as
 indicated in [I-D.ietf-mmusic-trickle-ice], Section 5.1.

 o To properly indicate use of DTLS, the <proto> field MUST be set to
 "UDP/TLS/RTP/SAVPF", as specified in [RFC5764], Section 8, if the
 default candidate uses UDP transport, or "TCP/DTLS/RTP/SAVPF", as
 specified in[I-D.nandakumar-mmusic-proto-iana-registration] if the
 default candidate uses TCP transport.

 The m= line MUST be followed immediately by a "c=" line, as specified
 in [RFC4566], Section 5.7. Again, as no candidates have yet been
 gathered, the "c=" line must contain the "dummy" value "IN IP6 ::",
 as defined in [I-D.ietf-mmusic-trickle-ice], Section 5.1.

 Each m= section MUST include the following attribute lines:

 o An "a=mid" line, as specified in [RFC5888], Section 4. When
 generating mid values, it is RECOMMENDED that the values be 3
 bytes or less, to allow them to efficiently fit into the RTP
 header extension defined in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 11.

 o An "a=rtcp" line, as specified in [RFC3605], Section 2.1,
 containing the dummy value "9 IN IP6 ::", because no candidates
 have yet been gathered.

 o An "a=msid" line, as specified in [I-D.ietf-mmusic-msid],
 Section 2.

 o An "a=sendrecv" line, as specified in [RFC3264], Section 5.1.

 o For each supported codec, "a=rtpmap" and "a=fmtp" lines, as
 specified in [RFC4566], Section 6. The audio and video codecs
 that MUST be supported are specified in [I-D.ietf-rtcweb-audio]
 (see Section 3) and [I-D.ietf-rtcweb-video] (see Section 5).

 o If this m= section is for media with configurable frame sizes,
 e.g. audio, an "a=maxptime" line, indicating the smallest of the
 maximum supported frame sizes out of all codecs included above, as
 specified in [RFC4566], Section 6.

https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc5764#section-8
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7
https://datatracker.ietf.org/doc/html/rfc5888#section-4
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6

Uberti, et al. Expires September 10, 2015 [Page 29]

Internet-Draft JSEP March 2015

 o For each primary codec where RTP retransmission should be used, a
 corresponding "a=rtpmap" line indicating "rtx" with the clock rate
 of the primary codec and an "a=fmtp" line that references the
 payload type of the primary codec, as specified in [RFC4588],
 Section 8.1.

 o For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,
 as specified in [RFC4566], Section 6. The FEC mechanisms that
 MUST be supported are specified in [I-D.ietf-rtcweb-fec],
 Section 6, and specific usage for each media type is outlined in
 Sections 4 and 5.

 o "a=ice-ufrag" and "a=ice-passwd" lines, as specified in [RFC5245],
 Section 15.4.

 o An "a=ice-options" line, with the "trickle" option, as specified
 in [I-D.ietf-mmusic-trickle-ice], Section 4.

 o An "a=fingerprint" line, as specified in [RFC4572], Section 5; the
 algorithm used for the fingerprint MUST match that used in the
 certificate signature.

 o An "a=setup" line, as specified in [RFC4145], Section 4, and
 clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.
 The role value in the offer MUST be "actpass".

 o An "a=rtcp-mux" line, as specified in [RFC5761], Section 5.1.1.

 o An "a=rtcp-rsize" line, as specified in [RFC5506], Section 5.

 o For each supported RTP header extension, an "a=extmap" line, as
 specified in [RFC5285], Section 5. The list of header extensions
 that SHOULD/MUST be supported is specified in
 [I-D.ietf-rtcweb-rtp-usage], Section 5.2. Any header extensions
 that require encryption MUST be specified as indicated in

[RFC6904], Section 4.

 o For each supported RTCP feedback mechanism, an "a=rtcp-fb"
 mechanism, as specified in [RFC4585], Section 4.2. The list of
 RTCP feedback mechanisms that SHOULD/MUST be supported is
 specified in [I-D.ietf-rtcweb-rtp-usage], Section 5.1.

 o An "a=ssrc" line, as specified in [RFC5576], Section 4.1,
 indicating the SSRC to be used for sending media, along with the
 mandatory "cname" source attribute, as specified in Section 6.1,
 indicating the CNAME for the source. The CNAME must be generated
 in accordance with [RFC7022]. [OPEN ISSUE: How are CNAMEs
 specified for MSTs? Are they randomly generated for each

https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5763#section-5
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc5506#section-5
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5576#section-4.1
https://datatracker.ietf.org/doc/html/rfc7022

Uberti, et al. Expires September 10, 2015 [Page 30]

Internet-Draft JSEP March 2015

 MediaStream? If so, can two MediaStreams be synced? See:
https://github.com/rtcweb-wg/jsep/issues/4]

 o If RTX is supported for this media type, another "a=ssrc" line
 with the RTX SSRC, and an "a=ssrc-group" line, as specified in

[RFC5576], section 4.2, with semantics set to "FID" and including
 the primary and RTX SSRCs.

 o If FEC is supported for this media type, another "a=ssrc" line
 with the FEC SSRC, and an "a=ssrc-group" line with semantics set
 to "FEC-FR" and including the primary and FEC SSRCs, as specified
 in [RFC5956], section 4.3. For simplicity, if both RTX and FEC
 are supported, the FEC SSRC MUST be the same as the RTX SSRC.

 o [OPEN ISSUE: Handling of a=imageattr]

 o If the BUNDLE policy for this PeerConnection is set to "max-
 bundle", and this is not the first m= section, or the BUNDLE
 policy is set to "balanced", and this is not the first m= section
 for this media type, an "a=bundle-only" line.

 Lastly, if a data channel has been created, a m= section MUST be
 generated for data. The <media> field MUST be set to "application"
 and the <proto> field MUST be set to "UDP/DTLS/SCTP" if the default
 candidate uses UDP transport, or "TCP/DTLS/SCTP" if the default
 candidate uses TCP transport [I-D.ietf-mmusic-sctp-sdp]. The "fmt"
 value MUST be set to the SCTP port number, as specified in

Section 4.1. [TODO: update this to use a=sctp-port, as indicated in
 the latest data channel docs]

 Within the data m= section, the "a=mid", "a=ice-ufrag", "a=ice-
 passwd", "a=ice-options", "a=candidate", "a=fingerprint", and
 "a=setup" lines MUST be included as mentioned above, along with an
 "a=sctpmap" line referencing the SCTP port number and specifying the
 application protocol indicated in [I-D.ietf-rtcweb-data-protocol].
 [OPEN ISSUE: the -01 of this document is missing this information.]

 Once all m= sections have been generated, a session-level "a=group"
 attribute MUST be added as specified in [RFC5888]. This attribute
 MUST have semantics "BUNDLE", and MUST include the mid identifiers of
 each m= section. The effect of this is that the browser offers all
 m= sections as one BUNDLE group. However, whether the m= sections
 are bundle-only or not depends on the BUNDLE policy.

 Attributes which SDP permits to either be at the session level or the
 media level SHOULD generally be at the media level even if they are
 identical. This promotes readability, especially if one of a set of
 initially identical attributes is subsequently changed.

https://github
https://datatracker.ietf.org/doc/html/rfc5576#section-4.2
https://datatracker.ietf.org/doc/html/rfc5956#section-4.3
https://datatracker.ietf.org/doc/html/rfc5888

Uberti, et al. Expires September 10, 2015 [Page 31]

Internet-Draft JSEP March 2015

 Attributes other than the ones specified above MAY be included,
 except for the following attributes which are specifically
 incompatible with the requirements of [I-D.ietf-rtcweb-rtp-usage],
 and MUST NOT be included:

 o "a=crypto"

 o "a=key-mgmt"

 o "a=ice-lite"

 Note that when BUNDLE is used, any additional attributes that are
 added MUST follow the advice in [I-D.ietf-mmusic-sdp-mux-attributes]
 on how those attributes interact with BUNDLE.

 Note that these requirements are in some cases stricter than those of
 SDP. Implementations MUST be prepared to accept compliant SDP even
 if it would not conform to the requirements for generating SDP in
 this specification.

5.2.2. Subsequent Offers

 When createOffer is called a second (or later) time, or is called
 after a local description has already been installed, the processing
 is somewhat different than for an initial offer.

 If the initial offer was not applied using setLocalDescription,
 meaning the PeerConnection is still in the "stable" state, the steps
 for generating an initial offer should be followed, subject to the
 following restriction:

 o The fields of the "o=" line MUST stay the same except for the
 <session-version> field, which MUST increment if the session
 description changes in any way, including the addition of ICE
 candidates.

 If the initial offer was applied using setLocalDescription, but an
 answer from the remote side has not yet been applied, meaning the
 PeerConnection is still in the "local-offer" state, an offer is
 generated by following the steps in the "stable" state above, along
 with these exceptions:

 o The "s=" and "t=" lines MUST stay the same.

 o Each "m=" and c=" line MUST be filled in with the port, protocol,
 and address of the default candidate for the m= section, as
 described in [RFC5245], Section 4.3. Each "a=rtcp" attribute line
 MUST also be filled in with the port and address of the

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3

Uberti, et al. Expires September 10, 2015 [Page 32]

Internet-Draft JSEP March 2015

 appropriate default candidate, either the default RTP or RTCP
 candidate, depending on whether RTCP multiplexing is currently
 active or not. Note that if RTCP multiplexing is being offered,
 but not yet active, the default RTCP candidate MUST be used, as
 indicated in [RFC5761], section 5.1.3. In each case, if no
 candidates of the desired type have yet been gathered, dummy
 values MUST be used, as described above.

 o Each "a=mid" line MUST stay the same.

 o Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same, unless
 the ICE configuration has changed (either changes to the supported
 STUN/TURN servers, or the ICE candidate policy), or the
 "IceRestart" option (Section 5.2.3.3 was specified.

 o Within each m= section, for each candidate that has been gathered
 during the most recent gathering phase (see Section 3.4.1), an
 "a=candidate" line MUST be added, as specified in [RFC5245],
 Section 4.3., paragraph 3. If candidate gathering for the section
 has completed, an "a=end-of-candidates" attribute MUST be added,
 as described in [I-D.ietf-mmusic-trickle-ice], Section 9.3.

 o For MediaStreamTracks that are still present, the "a=msid",
 "a=ssrc", and "a=ssrc-group" lines MUST stay the same.

 o If any MediaStreamTracks have been removed, either through the
 removeStream method or by removing them from an added MediaStream,
 their m= sections MUST be marked as recvonly by changing the value
 of the [RFC3264] directional attribute to "a=recvonly". The
 "a=msid", "a=ssrc", and "a=ssrc-group" lines MUST be removed from
 the associated m= sections.

 o If any MediaStreamTracks have been added, and there exist m=
 sections of the appropriate media type with no associated
 MediaStreamTracks (i.e. as described in the preceding paragraph),
 those m= sections MUST be recycled by adding the new
 MediaStreamTrack to the m= section. This is done by adding the
 necessary "a=msid", "a=ssrc", and "a=ssrc-group" lines to the
 recycled m= section, and removing the "a=recvonly" attribute.

 If the initial offer was applied using setLocalDescription, and an
 answer from the remote side has been applied using
 setRemoteDescription, meaning the PeerConnection is in the "remote-
 pranswer" or "stable" states, an offer is generated based on the
 negotiated session descriptions by following the steps mentioned for
 the "local-offer" state above, along with these exceptions: [OPEN
 ISSUE: should this be permitted in the remote-pranswer state?]

https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires September 10, 2015 [Page 33]

Internet-Draft JSEP March 2015

 o If a m= section exists in the current local description, but does
 not have an associated local MediaStreamTrack (possibly because
 said MediaStreamTrack was removed since the last exchange), a m=
 section MUST still be generated in the new offer, as indicated in

[RFC3264], Section 8. The disposition of this section will depend
 on the state of the remote MediaStreamTrack associated with this
 m= section. If one exists, and it is still in the "live" state,
 the new m= section MUST be marked as "a=recvonly", with no
 "a=msid" or related attributes present. If no remote
 MediaStreamTrack exists, or it is in the "ended" state, the m=
 section MUST be marked as rejected, by setting the port to zero,
 as indicated in [RFC3264], Section 8.2.

 o If any MediaStreamTracks have been added, and there exist recvonly
 m= sections of the appropriate media type with no associated
 MediaStreamTracks, or rejected m= sections of any media type,
 those m= sections MUST be recycled, and a local MediaStreamTrack
 associated with these recycled m= sections until all such existing
 m= sections have been used. This includes any recvonly or
 rejected m= sections created by the preceding paragraph.

 In addition, for each non-recycled, non-rejected m= section in the
 new offer, the following adjustments are made based on the contents
 of the corresponding m= section in the current remote description:

 o The m= line and corresponding "a=rtpmap" and "a=fmtp" lines MUST
 only include codecs present in the remote description.

 o The RTP header extensions MUST only include those that are present
 in the remote description.

 o The RTCP feedback extensions MUST only include those that are
 present in the remote description.

 o The "a=rtcp-mux" line MUST only be added if present in the remote
 description.

 o The "a=rtcp-rsize" line MUST only be added if present in the
 remote description.

 The "a=group:BUNDLE" attribute MUST include the mid identifiers
 specified in the BUNDLE group in the most recent answer, minus any m=
 sections that have been marked as rejected, plus any newly added or
 re-enabled m= sections. In other words, the BUNDLE attribute must
 contain all m= sections that were previously bundled, as long as they
 are still alive, as well as any new m= sections.

https://datatracker.ietf.org/doc/html/rfc3264#section-8
https://datatracker.ietf.org/doc/html/rfc3264#section-8.2

Uberti, et al. Expires September 10, 2015 [Page 34]

Internet-Draft JSEP March 2015

5.2.3. Options Handling

 The createOffer method takes as a parameter an RTCOfferOptions
 object. Special processing is performed when generating a SDP
 description if the following options are present.

5.2.3.1. OfferToReceiveAudio

 If the "OfferToReceiveAudio" option is specified, with an integer
 value of N, and M audio MediaStreamTracks have been added to the
 PeerConnection, the offer MUST include N non-rejected m= sections
 with media type "audio", even if N is greater than M. This allows
 the offerer to receive audio, including multiple independent streams,
 even when not sending it; accordingly, the directional attribute on
 the N-M audio m= sections without associated MediaStreamTracks MUST
 be set to recvonly.

 If N is set to a value less than M, the offer MUST mark the m=
 sections associated with the M-N most recently added (since the last
 setLocalDescription) MediaStreamTracks as sendonly. This allows the
 offerer to indicate that it does not want to receive audio on some or
 all of its newly created streams. For m= sections that have
 previously been negotiated, this setting has no effect. [TODO: refer
 to RTCRtpSender in the future]

 For backwards compatibility with pre-standard versions of this
 specification, a value of "true" is interpreted as equivalent to N=1,
 and "false" as N=0.

5.2.3.2. OfferToReceiveVideo

 If the "OfferToReceiveVideo" option is specified, with an integer
 value of N, and M video MediaStreamTracks have been added to the
 PeerConnection, the offer MUST include N non-rejected m= sections
 with media type "video", even if N is greater than M. This allows
 the offerer to receive video, including multiple independent streams,
 even when not sending it; accordingly, the directional attribute on
 the N-M video m= sections without associated MediaStreamTracks MUST
 be set to recvonly.

 If N is set to a value less than M, the offer MUST mark the m=
 sections associated with the M-N most recently added (since the last
 setLocalDescription) MediaStreamTracks as sendonly. This allows the
 offerer to indicate that it does not want to receive video on some or
 all of its newly created streams. For m= sections that have
 previously been negotiated, this setting has no effect. [TODO: refer
 to RTCRtpSender in the future]

Uberti, et al. Expires September 10, 2015 [Page 35]

Internet-Draft JSEP March 2015

 For backwards compatibility with pre-standard versions of this
 specification, a value of "true" is interpreted as equivalent to N=1,
 and "false" as N=0.

5.2.3.3. IceRestart

 If the "IceRestart" option is specified, with a value of "true", the
 offer MUST indicate an ICE restart by generating new ICE ufrag and
 pwd attributes, as specified in [RFC5245], Section 9.1.1.1. If this
 option is specified on an initial offer, it has no effect (since a
 new ICE ufrag and pwd are already generated). Similarly, if the ICE
 configuration has changed, this option has no effect, since new ufrag
 and pwd attributes will be generated automatically. This option is
 primarily useful for reestablishing connectivity in cases where
 failures are detected by the application.

5.2.3.4. VoiceActivityDetection

 If the "VoiceActivityDetection" option is specified, with a value of
 "true", the offer MUST indicate support for silence suppression in
 the audio it receives by including comfort noise ("CN") codecs for
 each offered audio codec, as specified in [RFC3389], Section 5.1,
 except for codecs that have their own internal silence suppression
 support. For codecs that have their own internal silence suppression
 support, the appropriate fmtp parameters for that codec MUST be
 specified to indicate that silence suppression for received audio is
 desired. For example, when using the Opus codec, the "usedtx=1"
 parameter would be specified in the offer. This option allows the
 endpoint to significantly reduce the amount of audio bandwidth it
 receives, at the cost of some fidelity, depending on the quality of
 the remote VAD algorithm.

5.3. Generating an Answer

 When createAnswer is called, a new SDP description must be created
 that is compatible with the supplied remote description as well as
 the requirements specified in [I-D.ietf-rtcweb-rtp-usage]. The exact
 details of this process are explained below.

5.3.1. Initial Answers

 When createAnswer is called for the first time after a remote
 description has been provided, the result is known as the initial
 answer. If no remote description has been installed, an answer
 cannot be generated, and an error MUST be returned.

 Note that the remote description SDP may not have been created by a
 JSEP endpoint and may not conform to all the requirements listed in

https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc3389#section-5.1

Uberti, et al. Expires September 10, 2015 [Page 36]

Internet-Draft JSEP March 2015

Section 5.2. For many cases, this is not a problem. However, if any
 mandatory SDP attributes are missing, or functionality listed as
 mandatory-to-use above is not present, this MUST be treated as an
 error, and MUST cause the affected m= sections to be marked as
 rejected.

 The first step in generating an initial answer is to generate
 session-level attributes. The process here is identical to that
 indicated in the Initial Offers section above.

 The next step is to generate m= sections for each m= section that is
 present in the remote offer, as specified in [RFC3264], Section 6.
 For the purposes of this discussion, any session-level attributes in
 the offer that are also valid as media-level attributes SHALL be
 considered to be present in each m= section.

 The next step is to go through each offered m= section. If there is
 a local MediaStreamTrack of the same type which has been added to the
 PeerConnection via addStream and not yet associated with a m=
 section, and the specific m= section is either sendrecv or recvonly,
 the MediaStreamTrack will be associated with the m= section at this
 time. MediaStreamTracks are assigned to m= sections using the
 canonical order described in Section 5.2.1. If there are more m=
 sections of a certain type than MediaStreamTracks, some m= sections
 will not have an associated MediaStreamTrack. If there are more
 MediaStreamTracks of a certain type than compatible m= sections, only
 the first N MediaStreamTracks will be able to be associated in the
 constructed answer. The remainder will need to be associated in a
 subsequent offer.

 For each offered m= section, if the associated remote
 MediaStreamTrack has been stopped, and is therefore in state "ended",
 and no local MediaStreamTrack has been associated, the corresponding
 m= section in the answer MUST be marked as rejected by setting the
 port in the m= line to zero, as indicated in [RFC3264], Section 6.,
 and further processing for this m= section can be skipped.

 Provided that is not the case, each m= section in the answer should
 then be generated as specified in [RFC3264], Section 6.1. For the m=
 line itself, the following rules must be followed:

 o The port value would normally be set to the port of the default
 ICE candidate for this m= section, but given that no candidates
 have yet been gathered, the "dummy" port value of 9 (Discard) MUST
 be used, as indicated in [I-D.ietf-mmusic-trickle-ice],
 Section 5.1.

https://datatracker.ietf.org/doc/html/rfc3264#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1

Uberti, et al. Expires September 10, 2015 [Page 37]

Internet-Draft JSEP March 2015

 o The <proto> field MUST be set to exactly match the <proto> field
 for the corresponding m= line in the offer.

 The m= line MUST be followed immediately by a "c=" line, as specified
 in [RFC4566], Section 5.7. Again, as no candidates have yet been
 gathered, the "c=" line must contain the "dummy" value "IN IP6 ::",
 as defined in [I-D.ietf-mmusic-trickle-ice], Section 5.1.

 If the offer supports BUNDLE, all m= sections to be BUNDLEd must use
 the same ICE credentials and candidates; all m= sections not being
 BUNDLEd must use unique ICE credentials and candidates. Each m=
 section MUST include the following:

 o If present in the offer, an "a=mid" line, as specified in
[RFC5888], Section 9.1. The "mid" value MUST match that specified

 in the offer.

 o An "a=rtcp" line, as specified in [RFC3605], Section 2.1,
 containing the dummy value "9 IN IP6 ::", because no candidates
 have yet been gathered.

 o If a local MediaStreamTrack has been associated, an "a=msid" line,
 as specified in [I-D.ietf-mmusic-msid], Section 2.

 o Depending on the directionality of the offer, the disposition of
 any associated remote MediaStreamTrack, and the presence of an
 associated local MediaStreamTrack, the appropriate directionality
 attribute, as specified in [RFC3264], Section 6.1. If the offer
 was sendrecv, and the remote MediaStreamTrack is still "live", and
 there is a local MediaStreamTrack that has been associated, the
 directionality MUST be set as sendrecv. If the offer was
 sendonly, and the remote MediaStreamTrack is still "live", the
 directionality MUST be set as recvonly. If the offer was
 recvonly, and a local MediaStreamTrack has been associated, the
 directionality MUST be set as sendonly. If the offer was
 inactive, the directionality MUST be set as inactive.

 o For each supported codec that is present in the offer, "a=rtpmap"
 and "a=fmtp" lines, as specified in [RFC4566], Section 6, and

[RFC3264], Section 6.1. The audio and video codecs that MUST be
 supported are specified in [I-D.ietf-rtcweb-audio] (see Section 3)
 and [I-D.ietf-rtcweb-video] (see Section 5). Note that for
 simplicity, the answerer MAY use different payload types for
 codecs than the offerer, as it is not prohibited by Section 6.1.

 o If this m= section is for media with configurable frame sizes,
 e.g. audio, an "a=maxptime" line, indicating the smallest of the

https://datatracker.ietf.org/doc/html/rfc4566#section-5.7
https://datatracker.ietf.org/doc/html/rfc5888#section-9.1
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1

Uberti, et al. Expires September 10, 2015 [Page 38]

Internet-Draft JSEP March 2015

 maximum supported frame sizes out of all codecs included above, as
 specified in [RFC4566], Section 6.

 o If "rtx" is present in the offer, for each primary codec where RTP
 retransmission should be used, a corresponding "a=rtpmap" line
 indicating "rtx" with the clock rate of the primary codec and an
 "a=fmtp" line that references the payload type of the primary
 codec, as specified in [RFC4588], Section 8.1.

 o For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,
 as specified in [RFC4566], Section 6. The FEC mechanisms that
 MUST be supported are specified in [I-D.ietf-rtcweb-fec],
 Section 6, and specific usage for each media type is outlined in
 Sections 4 and 5.

 o "a=ice-ufrag" and "a=ice-passwd" lines, as specified in [RFC5245],
 Section 15.4.

 o If the "trickle" ICE option is present in the offer, an "a=ice-
 options" line, with the "trickle" option, as specified in
 [I-D.ietf-mmusic-trickle-ice], Section 4.

 o An "a=fingerprint" line, as specified in [RFC4572], Section 5; the
 algorithm used for the fingerprint MUST match that used in the
 certificate signature.

 o An "a=setup" line, as specified in [RFC4145], Section 4, and
 clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.
 The role value in the answer MUST be "active" or "passive"; the
 "active" role is RECOMMENDED.

 o If present in the offer, an "a=rtcp-mux" line, as specified in
[RFC5761], Section 5.1.1. If the "require" RTCP multiplexing

 policy is set and no "a=rtcp-mux" line is present in the offer,
 then the m=line MUST be marked as rejected by setting the port in
 the m= line to zero, as indicated in [RFC3264], Section 6.

 o If present in the offer, an "a=rtcp-rsize" line, as specified in
[RFC5506], Section 5.

 o For each supported RTP header extension that is present in the
 offer, an "a=extmap" line, as specified in [RFC5285], Section 5.
 The list of header extensions that SHOULD/MUST be supported is
 specified in [I-D.ietf-rtcweb-rtp-usage], Section 5.2. Any header
 extensions that require encryption MUST be specified as indicated
 in [RFC6904], Section 4.

https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5763#section-5
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6
https://datatracker.ietf.org/doc/html/rfc5506#section-5
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc6904#section-4

Uberti, et al. Expires September 10, 2015 [Page 39]

Internet-Draft JSEP March 2015

 o For each supported RTCP feedback mechanism that is present in the
 offer, an "a=rtcp-fb" mechanism, as specified in [RFC4585],
 Section 4.2. The list of RTCP feedback mechanisms that SHOULD/
 MUST be supported is specified in [I-D.ietf-rtcweb-rtp-usage],
 Section 5.1.

 o If a local MediaStreamTrack has been associated, an "a=ssrc" line,
 as specified in [RFC5576], Section 4.1, indicating the SSRC to be
 used for sending media.

 o If a local MediaStreamTrack has been associated, and RTX has been
 negotiated for this m= section, another "a=ssrc" line with the RTX
 SSRC, and an "a=ssrc-group" line, as specified in [RFC5576],
 section 4.2, with semantics set to "FID" and including the primary
 and RTX SSRCs.

 o If a local MediaStreamTrack has been associated, and FEC has been
 negotiated for this m= section, another "a=ssrc" line with the FEC
 SSRC, and an "a=ssrc-group" line with semantics set to "FEC-FR"
 and including the primary and FEC SSRCs, as specified in

[RFC5956], section 4.3. For simplicity, if both RTX and FEC are
 supported, the FEC SSRC MUST be the same as the RTX SSRC.

 o [OPEN ISSUE: Handling of a=imageattr]

 If a data channel m= section has been offered, a m= section MUST also
 be generated for data. The <media> field MUST be set to
 "application" and the <proto> field MUST be set to exactly match the
 field in the offer; the "fmt" value MUST be set to the SCTP port
 number, as specified in Section 4.1. [TODO: update this to use
 a=sctp-port, as indicated in the latest data channel docs]

 Within the data m= section, the "a=mid", "a=ice-ufrag", "a=ice-
 passwd", "a=ice-options", "a=candidate", "a=fingerprint", and
 "a=setup" lines MUST be included as mentioned above, along with an
 "a=sctpmap" line referencing the SCTP port number and specifying the
 application protocol indicated in [I-D.ietf-rtcweb-data-protocol].
 [OPEN ISSUE: the -01 of this document is missing this information.]

 If "a=group" attributes with semantics of "BUNDLE" are offered,
 corresponding session-level "a=group" attributes MUST be added as
 specified in [RFC5888]. These attributes MUST have semantics
 "BUNDLE", and MUST include the all mid identifiers from the offered
 BUNDLE groups that have not been rejected. Note that regardless of
 the presence of "a=bundle-only" in the offer, no m= sections in the
 answer should have an "a=bundle-only" line.

https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5576#section-4.1
https://datatracker.ietf.org/doc/html/rfc5576#section-4.2
https://datatracker.ietf.org/doc/html/rfc5576#section-4.2
https://datatracker.ietf.org/doc/html/rfc5956#section-4.3
https://datatracker.ietf.org/doc/html/rfc5888

Uberti, et al. Expires September 10, 2015 [Page 40]

Internet-Draft JSEP March 2015

 Attributes that are common between all m= sections MAY be moved to
 session-level, if explicitly defined to be valid at session-level.

 The attributes prohibited in the creation of offers are also
 prohibited in the creation of answers.

5.3.2. Subsequent Answers

 When createAnswer is called a second (or later) time, or is called
 after a local description has already been installed, the processing
 is somewhat different than for an initial answer.

 If the initial answer was not applied using setLocalDescription,
 meaning the PeerConnection is still in the "have-remote-offer" state,
 the steps for generating an initial answer should be followed,
 subject to the following restriction:

 o The fields of the "o=" line MUST stay the same except for the
 <session-version> field, which MUST increment if the session
 description changes in any way from the previously generated
 answer.

 If any session description was previously supplied to
 setLocalDescription, an answer is generated by following the steps in
 the "have-remote-offer" state above, along with these exceptions:

 o The "s=" and "t=" lines MUST stay the same.

 o Each "m=" and c=" line MUST be filled in with the port and address
 of the default candidate for the m= section, as described in

[RFC5245], Section 4.3. Note, however, that the m= line protocol
 need not match the default candidate, because this protocol value
 must instead match what was supplied in the offer, as described
 above. Each "a=rtcp" attribute line MUST also be filled in with
 the port and address of the appropriate default candidate, either
 the default RTP or RTCP candidate, depending on whether RTCP
 multiplexing is enabled in the answer. In each case, if no
 candidates of the desired type have yet been gathered, dummy
 values MUST be used, as described in the initial answer section
 above.

 o Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same.

 o Within each m= section, for each candidate that has been gathered
 during the most recent gathering phase (see Section 3.4.1), an
 "a=candidate" line MUST be added, as specified in [RFC5245],
 Section 4.3., paragraph 3. If candidate gathering for the section

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-4.3

Uberti, et al. Expires September 10, 2015 [Page 41]

Internet-Draft JSEP March 2015

 has completed, an "a=end-of-candidates" attribute MUST be added,
 as described in [I-D.ietf-mmusic-trickle-ice], Section 9.3.

 o For MediaStreamTracks that are still present, the "a=msid",
 "a=ssrc", and "a=ssrc-group" lines MUST stay the same.

5.3.3. Options Handling

 The createAnswer method takes as a parameter an RTCAnswerOptions
 object. The set of parameters for RTCAnswerOptions is different than
 those supported in RTCOfferOptions; the OfferToReceiveAudio,
 OfferToReceiveVideo, and IceRestart options mentioned in

Section 5.2.3 are meaningless in the context of generating an answer,
 as there is no need to generate extra m= lines in an answer, and ICE
 credentials will automatically be changed for all m= lines where the
 offerer chose to perform ICE restart.

 The following options are supported in RTCAnswerOptions.

5.3.3.1. VoiceActivityDetection

 Silence suppression in the answer is handled as described in
Section 5.2.3.4.

5.4. Processing a Local Description

 When a SessionDescription is supplied to setLocalDescription, the
 following steps MUST be performed:

 o First, the type of the SessionDescription is checked against the
 current state of the PeerConnection:

 * If the type is "offer", the PeerConnection state MUST be either
 "stable" or "have-local-offer".

 * If the type is "pranswer" or "answer", the PeerConnection state
 MUST be either "have-remote-offer" or "have-local-pranswer".

 o If the type is not correct for the current state, processing MUST
 stop and an error MUST be returned.

 o Next, the SessionDescription is parsed into a data structure, as
 described in the Section 5.6 section below. If parsing fails for
 any reason, processing MUST stop and an error MUST be returned.

 o Finally, the parsed SessionDescription is applied as described in
 the Section 5.7 section below.

Uberti, et al. Expires September 10, 2015 [Page 42]

Internet-Draft JSEP March 2015

5.5. Processing a Remote Description

 When a SessionDescription is supplied to setRemoteDescription, the
 following steps MUST be performed:

 o First, the type of the SessionDescription is checked against the
 current state of the PeerConnection:

 * If the type is "offer", the PeerConnection state MUST be either
 "stable" or "have-remote-offer".

 * If the type is "pranswer" or "answer", the PeerConnection state
 MUST be either "have-local-offer" or "have-remote-pranswer".

 o If the type is not correct for the current state, processing MUST
 stop and an error MUST be returned.

 o Next, the SessionDescription is parsed into a data structure, as
 described in the Section 5.6 section below. If parsing fails for
 any reason, processing MUST stop and an error MUST be returned.

 o Finally, the parsed SessionDescription is applied as described in
 the Section 5.8 section below.

5.6. Parsing a Session Description

 [The behavior described herein is a draft version, and needs more
 discussion to resolve various open issues.]

 When a SessionDescription of any type is supplied to setLocal/
 RemoteDescription, the implementation must parse it and reject it if
 it is invalid. The exact details of this process are explained
 below.

 The SDP contained in the session description object consists of a
 sequence of text lines, each containing a key-value expression, as
 described in [RFC4566], Section 5. The SDP is read, line-by-line,
 and converted to a data structure that contains the deserialized
 information. However, SDP allows many types of lines, not all of
 which are relevant to JSEP applications. For each line, the
 implementation will first ensure it is syntactically correct
 according its defining ABNF [TODO: reference], check that it conforms
 to [RFC4566] and [RFC3264] semantics, and then either parse and store
 or discard the provided value, as described below. [TODO: ensure
 that every line is listed below.] If the line is not well-formed, or
 cannot be parsed as described, the parser MUST stop with an error and
 reject the session description. This ensures that implementations do
 not accidentally misinterpret ambiguous SDP.

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires September 10, 2015 [Page 43]

Internet-Draft JSEP March 2015

5.6.1. Session-Level Parsing

 First, the session-level lines are checked and parsed. These lines
 MUST occur in a specific order, and with a specific syntax, as
 defined in [RFC4566], Section 5. Note that while the specific line
 types (e.g. "v=", "c=") MUST occur in the defined order, lines of the
 same type (typically "a=") can occur in any order, and their ordering
 is not meaningful.

 For non-attribute (non-"a=") lines, their sequencing, syntax, and
 semantics, are checked, as mentioned above. The following lines are
 not meaningful in the JSEP context and MAY be discarded once they
 have been checked.

 TODO

 The remaining lines are processed as follows:

 The "c=" line MUST be parsed and stored.

 [OPEN ISSUE: For example, because session-level bandwidth is
 ambiguous when multiple media streams are present, a "b=" line at
 session level is not useful and its value SHOULD be ignored.
 [OPEN ISSUE: is this WG consensus? Are there other non-a= lines
 that we need to do more than just syntactical validation, e.g.
 v=?]

 Specific processing MUST be applied for the following session-level
 attribute ("a=") lines:

 o Any "a=group" lines are parsed as specified in [RFC5888],
 Section 5, and the group's semantics and mids are stored.

 o If present, a single "a=ice-lite" line is parsed as specified in
[RFC5245], Section 15.3, and a value indicating the presence of

 ice-lite is stored.

 o If present, a single "a=ice-ufrag" line is parsed as specified in
[RFC5245], Section 15.4, and the ufrag value is stored.

 o If present, a single "a=ice-pwd" line is parsed as specified in
[RFC5245], Section 15.4, and the password value is stored.

 o If present, a single "a=ice-options" line is parsed as specified
 in [RFC5245], Section 15.5, and the set of specified options is
 stored.

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc5888#section-5
https://datatracker.ietf.org/doc/html/rfc5888#section-5
https://datatracker.ietf.org/doc/html/rfc5245#section-15.3
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.5

Uberti, et al. Expires September 10, 2015 [Page 44]

Internet-Draft JSEP March 2015

 o Any "a=fingerprint" lines are parsed as specified in [RFC4572],
 Section 5, and the set of fingerprint and algorithm values is
 stored.

 o If present, a single "a=setup" line is parsed as specified in
[RFC4145], Section 4, and the setup value is stored.

 o Any "a=extmap" lines are parsed as specified in [RFC5285],
 Section 5, and their values are stored.

 o TODO: msid-semantic, identity, rtcp-rsize, rtcp-mux, and any other
 attribs valid at session level.

 Once all the session-level lines have been parsed, processing
 continues with the lines in media sections.

5.6.2. Media Section Parsing

 Like the session-level lines, the media session lines MUST occur in
 the specific order and with the specific syntax defined in [RFC4566],
 Section 5.

 The "m=" line itself MUST be parsed as described in [RFC4566],
 Section 5.14, and the media, port, proto, and fmt values stored.

 Following the "m=" line, specific processing MUST be applied for the
 following non-attribute lines:

 o The "c=" line, if present, MUST be parsed as specified in
[RFC4566], Section 5.7, and its contents stored.

 o The "b=" line, if present, MUST be parsed as specified in
[RFC4566], Section 5.8, and the bwtype and bandwidth values

 stored.

 Specific processing MUST also be applied for the following attribute
 lines:

 o If present, a single "a=ice-lite" line is parsed as specified in
[RFC5245], Section 15.3, and a value indicating the presence of

 ice-lite is stored.

 o If present, a single "a=ice-ufrag" line is parsed as specified in
[RFC5245], Section 15.4, and the ufrag value is stored.

 o If present, a single "a=ice-pwd" line is parsed as specified in
[RFC5245], Section 15.4, and the password value is stored.

https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7
https://datatracker.ietf.org/doc/html/rfc4566#section-5.8
https://datatracker.ietf.org/doc/html/rfc5245#section-15.3
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4

Uberti, et al. Expires September 10, 2015 [Page 45]

Internet-Draft JSEP March 2015

 o If present, a single "a=ice-options" line is parsed as specified
 in [RFC5245], Section 15.5, and the set of specified options is
 stored.

 o Any "a=fingerprint" lines are parsed as specified in [RFC4572],
 Section 5, and the set of fingerprint and algorithm values is
 stored.

 o If present, a single "a=setup" line is parsed as specified in
[RFC4145], Section 4, and the setup value is stored.

 If the "m=" proto value indicates use of RTP, as decribed in the
Section 5.1.3 section above, the following attribute lines MUST be

 processed:

 o The "m=" fmt value MUST be parsed as specified in [RFC4566],
 Section 5.14, and the individual values stored.

 o Any "a=rtpmap" or "a=fmtp" lines MUST be parsed as specified in
[RFC4566], Section 6, and their values stored.

 o If present, a single "a=ptime" line MUST be parsed as described in
[RFC4566], Section 6, and its value stored.

 o If present, a single direction attribute line (e.g. "a=sendrecv")
 MUST be parsed as described in [RFC4566], Section 6, and its value
 stored.

 o Any "a=ssrc" or "a=ssrc-group" attributes MUST be parsed as
 specified in [RFC5576], Sections 4.1-4.2, and their values stored.

 o Any "a=extmap" attributes MUST be parsed as specified in
[RFC5285], Section 5, and their values stored.

 o Any "a=rtcp-fb" attributes MUST be parsed as specified in
[RFC4585], Section 4.2., and their values stored.

 o If present, a single "a=rtcp-mux" line MUST be parsed as specified
 in [RFC5761], Section 5.1.1, and its presence or absence flagged
 and stored.

 o TODO: a=rtcp-rsize, a=rtcp, a=msid, a=candidate, a=end-of-
 candidates

 Otherwise, if the "m=" proto value indicats use of SCTP, the
 following attribute lines MUST be processed:

https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.1

Uberti, et al. Expires September 10, 2015 [Page 46]

Internet-Draft JSEP March 2015

 o The "m=" fmt value MUST be parsed as specified in
 [I-D.ietf-mmusic-sctp-sdp], Section 4.3, and the application
 protocol value stored.

 o An "a=sctp-port" attribute MUST be present, and it MUST be parsed
 as specified in [I-D.ietf-mmusic-sctp-sdp], Section 5.2, and the
 value stored.

 o TODO: max message size

5.6.3. Semantics Verification

 Assuming parsing completes successfully, the parsed description is
 then evaluated to ensure internal consistency as well as proper
 support for mandatory features. Specifically, the following checks
 are performed:

 o For each m= section, valid values for each of the mandatory-to-use
 features enumerated in Section 5.1.2 MUST be present. These
 values MAY either be present at the media level, or inherited from
 the session level.

 * ICE ufrag and password values

 * DTLS fingerprint and setup values

 If this session description is of type "pranswer" or "answer", the
 following additional checks are applied:

 o The session description must follow the rules defined in
[RFC3264], Section 6.

 o For each m= section, the protocol value MUST exactly match the
 protocol value in the corresponding m= section in the associated
 offer.

5.7. Applying a Local Description

 The following steps are performed at the media engine level to apply
 a local description.

 First, the parsed parameters are checked to ensure that any
 modifications performed fall within those explicitly permitted by

Section 6; otherwise, processing MUST stop and an error MUST be
 returned.

 Next, media sections are processed. For each media section, the
 following steps MUST be performed; if any parameters are out of

https://datatracker.ietf.org/doc/html/rfc3264#section-6

Uberti, et al. Expires September 10, 2015 [Page 47]

Internet-Draft JSEP March 2015

 bounds, or cannot be applied, processing MUST stop and an error MUST
 be returned.

 o TODO

 Finally, if this description is of type "pranswer" or "answer",
 follow the processing defined in the Section 5.9 section below.

5.8. Applying a Remote Description

 TODO

5.9. Applying an Answer

 TODO

6. Configurable SDP Parameters

 It is possible to change elements in the SDP returned from
 createOffer before passing it to setLocalDescription. When an
 implementation receives modified SDP it MUST either:

 o Accept the changes and adjust its behavior to match the SDP.

 o Reject the changes and return an error via the error callback.

 Changes MUST NOT be silently ignored.

 The following elements of the SDP media description MUST NOT be
 changed between the createOffer and the setLocalDescription (or
 between the createAnswer and the setLocalDescription), since they
 reflect transport attributes that are solely under browser control,
 and the browser MUST NOT honor an attempt to change them:

 o The number, type and port number of m= lines.

 o The generated ICE credentials (a=ice-ufrag and a=ice-pwd).

 o The set of ICE candidates and their parameters (a=candidate).

 o The DTLS fingerprint(s) (a=fingerprint).

 The following modifications, if done by the browser to a description
 between createOffer/createAnswer and the setLocalDescription, MUST be
 honored by the browser:

 o Remove or reorder codecs (m=)

Uberti, et al. Expires September 10, 2015 [Page 48]

Internet-Draft JSEP March 2015

 The following parameters may be controlled by options passed into
 createOffer/createAnswer. As an open issue, these changes may also
 be be performed by manipulating the SDP returned from createOffer/
 createAnswer, as indicated above, as long as the capabilities of the
 endpoint are not exceeded (e.g. asking for a resolution greater than
 what the endpoint can encode):

 o [[OPEN ISSUE: This is a placeholder for other modifications, which
 we may continue adding as use cases appear.]]

 Implementations MAY choose to either honor or reject any elements not
 listed in the above two categories, but must do so explicitly as
 described at the beginning of this section. Note that future
 standards may add new SDP elements to the list of elements which must
 be accepted or rejected, but due to version skew, applications must
 be prepared for implementations to accept changes which must be
 rejected and vice versa.

 The application can also modify the SDP to reduce the capabilities in
 the offer it sends to the far side or the offer that it installs from
 the far side in any way the application sees fit, as long as it is a
 valid SDP offer and specifies a subset of what was in the original
 offer. This is safe because the answer is not permitted to expand
 capabilities and therefore will just respond to what is actually in
 the offer.

 As always, the application is solely responsible for what it sends to
 the other party, and all incoming SDP will be processed by the
 browser to the extent of its capabilities. It is an error to assume
 that all SDP is well-formed; however, one should be able to assume
 that any implementation of this specification will be able to
 process, as a remote offer or answer, unmodified SDP coming from any
 other implementation of this specification.

7. Examples

 Note that this example section shows several SDP fragments. To
 format in 72 columns, some of the lines in SDP have been split into
 multiple lines, where leading whitespace indicates that a line is a
 continuation of the previous line. In addition, some blank lines
 have been added to improve readability but are not valid in SDP.

 More examples of SDP for WebRTC call flows can be found in
 [I-D.nandakumar-rtcweb-sdp].

Uberti, et al. Expires September 10, 2015 [Page 49]

Internet-Draft JSEP March 2015

7.1. Simple Example

 This section shows a very simple example that sets up a minimal audio
 / video call between two browsers and does not use trickle ICE. The
 example in the following section provides a more realistic example of
 what would happen in a normal browser to browser connection.

 The flow shows Alice's browser initiating the session to Bob's
 browser. The messages from Alice's JS to Bob's JS are assumed to
 flow over some signaling protocol via a web server. The JS on both
 Alice's side and Bob's side waits for all candidates before sending
 the offer or answer, so the offers and answers are complete. Trickle
 ICE is not used. Both Alice and Bob are using the default policy of
 balanced.

Uberti, et al. Expires September 10, 2015 [Page 50]

Internet-Draft JSEP March 2015

// set up local media state
AliceJS->AliceUA: create new PeerConnection
AliceJS->AliceUA: addStream with stream containing audio and video
AliceJS->AliceUA: createOffer to get offer
AliceJS->AliceUA: setLocalDescription with offer
AliceUA->AliceJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete
AliceUA->AliceJS: onicecandidate event with null candidate
AliceJS->AliceUA: get |offer-A1| from value of localDescription

// |offer-A1| is sent over signaling protocol to Bob
AliceJS->WebServer: signaling with |offer-A1|
WebServer->BobJS: signaling with |offer-A1|

// |offer-A1| arrives at Bob
BobJS->BobUA: create a PeerConnection
BobJS->BobUA: setRemoteDescription with |offer-A1|
BobUA->BobJS: onaddstream event with remoteStream

// Bob accepts call
BobJS->BobUA: addStream with local media
BobJS->BobUA: createAnswer
BobJS->BobUA: setLocalDescription with answer
BobUA->BobJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete
BobUA->BobJS: onicecandidate event with null candidate
BobJS->BobUA: get |answer-A1| from value of localDescription

// |answer-A1| is sent over signaling protocol to Alice
BobJS->WebServer: signaling with |answer-A1|
WebServer->AliceJS: signaling with |answer-A1|

// |answer-A1| arrives at Alice
AliceJS->AliceUA: setRemoteDescription with |answer-A1|
AliceUA->AliceJS: onaddstream event with remoteStream

// media flows
BobUA->AliceUA: media sent from Bob to Alice
AliceUA->BobUA: media sent from Alice to Bob

 The SDP for |offer-A1| looks like:

 v=0
 o=- 4962303333179871722 1 IN IP4 0.0.0.0
 s=-
 t=0 0

Uberti, et al. Expires September 10, 2015 [Page 51]

Internet-Draft JSEP March 2015

 a=msid-semantic:WMS
 a=group:BUNDLE a1 v1
 m=audio 56500 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.1
 a=mid:a1
 a=rtcp:56501 IN IP4 192.0.2.1
 a=msid:47017fee-b6c1-4162-929c-a25110252400
 f83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:ETEn1v9DoTMB9J4r
 a=ice-pwd:OtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=ssrc:1732846380 cname:EocUG1f0fcg/yvY7
 a=candidate:3348148302 1 udp 2113937151 192.0.2.1 56500
 typ host
 a=candidate:3348148302 2 udp 2113937151 192.0.2.1 56501
 typ host
 a=end-of-candidates

 m=video 56502 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 192.0.2.1
 a=rtcp:56503 IN IP4 192.0.2.1
 a=mid:v1
 a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:BGKkWnG5GmiUpdIV
 a=ice-pwd:mqyWsAjvtKwTGnvhPztQ9mIf
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04

Uberti, et al. Expires September 10, 2015 [Page 52]

Internet-Draft JSEP March 2015

 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=ssrc:1366781083 cname:EocUG1f0fcg/yvY7
 a=ssrc:1366781084 cname:EocUG1f0fcg/yvY7
 a=ssrc-group:FID 1366781083 1366781084
 a=candidate:3348148302 1 udp 2113937151 192.0.2.1 56502
 typ host
 a=candidate:3348148302 2 udp 2113937151 192.0.2.1 56503
 typ host
 a=end-of-candidates

 The SDP for |answer-A1| looks like:

 v=0
 o=- 6729291447651054566 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=msid-semantic:WMS
 m=audio 20000 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.2
 a=mid:a1
 a=rtcp:20000 IN IP4 192.0.2.2
 a=msid:PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1a0
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:6sFvz2gdLkEwjZEr
 a=ice-pwd:cOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=ssrc:3429951804 cname:Q/NWs1ao1HmN4Xa5
 a=candidate:2299743422 1 udp 2113937151 192.0.2.2 20000
 typ host

Uberti, et al. Expires September 10, 2015 [Page 53]

Internet-Draft JSEP March 2015

 a=end-of-candidates

 m=video 20001 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 192.0.2.2
 a=rtcp 20001 IN IP4 192.0.2.2
 a=mid:v1
 a=msid:PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1v0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:6sFvz2gdLkEwjZEr
 a=ice-pwd:cOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=rtcp-mux
 a=rtcp-rsize
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=ssrc:3229706345 cname:Q/NWs1ao1HmN4Xa5
 a=ssrc:3229706346 cname:Q/NWs1ao1HmN4Xa5
 a=ssrc-group:FID 3229706345 3229706346
 a=candidate:2299743422 1 udp 2113937151 192.0.2.2 20001
 typ host
 a=end-of-candidates

7.2. Normal Examples

 This section shows a typical example of a session between two
 browsers setting up an audio channel and a data channel. Trickle ICE
 is used in full trickle mode with a bundle policy of max-bundle, an
 RTCP mux policy of require, and a single TURN server. Later, two
 video flows, one for the presenter and one for screen sharing, are
 added to the session. This example shows Alice's browser initiating
 the session to Bob's browser. The messages from Alice's JS to Bob's
 JS are assumed to flow over some signaling protocol via a web server.

 // set up local media state
 AliceJS->AliceUA: create new PeerConnection
 AliceJS->AliceUA: addStream that contains audio track
 AliceJS->AliceUA: createDataChannel to get data channel
 AliceJS->AliceUA: createOffer to get |offer-B1|
 AliceJS->AliceUA: setLocalDescription with |offer-B1|

 // |offer-B1| is sent over signaling protocol to Bob

Uberti, et al. Expires September 10, 2015 [Page 54]

Internet-Draft JSEP March 2015

 AliceJS->WebServer: signaling with |offer-B1|
 WebServer->BobJS: signaling with |offer-B1|

 // |offer-B1| arrives at Bob
 BobJS->BobUA: create a PeerConnection
 BobJS->BobUA: setRemoteDescription with |offer-B1|
 BobUA->BobJS: onaddstream with audio track from Alice

 // candidates are sent to Bob
 AliceUA->AliceJS: onicecandidate event with |candidate-B1| (host)
 AliceJS->WebServer: signaling with |candidate-B1|
 AliceUA->AliceJS: onicecandidate event with |candidate-B2| (srflx)
 AliceJS->WebServer: signaling with |candidate-B2|
 AliceUA->AliceJS: onicecandidate event with |candidate-B3| (relay)
 AliceJS->WebServer: signaling with |candidate-B3|

 WebServer->BobJS: signaling with |candidate-B1|
 BobJS->BobUA: addIceCandidate with |candidate-B1|
 WebServer->BobJS: signaling with |candidate-B2|
 BobJS->BobUA: addIceCandidate with |candidate-B2|
 WebServer->BobJS: signaling with |candidate-B3|
 BobJS->BobUA: addIceCandidate with |candidate-B3|

 // Bob accepts call
 BobJS->BobUA: addStream with local audio stream
 BobJS->BobUA: createDataChannel to get data channel
 BobJS->BobUA: createAnswer to get |answer-B1|
 BobJS->BobUA: setLocalDescription with |answer-B1|

 // |answer-B1| is sent to Alice
 BobJS->WebServer: signaling with |answer-B1|
 WebServer->AliceJS: signaling with |answer-B1|
 AliceJS->AliceUA: setRemoteDescription with |answer-B1|
 AliceUA->AliceJS: onaddstream event with audio track from Bob

 // candidates are sent to Alice
 BobUA->BobJS: onicecandidate event with |candidate-B4| (host)
 BobJS->WebServer: signaling with |candidate-B4|
 BobUA->BobJS: onicecandidate event with |candidate-B5| (srflx)
 BobJS->WebServer: signaling with |candidate-B5|
 BobUA->BobJS: onicecandidate event with |candidate-B6| (relay)
 BobJS->WebServer: signaling with |candidate-B6|

 WebServer->AliceJS: signaling with |candidate-B4|
 AliceJS->AliceUA: addIceCandidate with |candidate-B4|
 WebServer->AliceJS: signaling with |candidate-B5|
 AliceJS->AliceUA: addIceCandidate with |candidate-B5|
 WebServer->AliceJS: signaling with |candidate-B6|

Uberti, et al. Expires September 10, 2015 [Page 55]

Internet-Draft JSEP March 2015

 AliceJS->AliceUA: addIceCandidate with |candidate-B6|

 // data channel opens
 BobUA->BobJS: ondatachannel event
 AliceUA->AliceJS: ondatachannel event
 BobUA->BobJS: onopen
 AliceUA->AliceJS: onopen

 // media is flowing between browsers
 BobUA->AliceUA: audio+data sent from Bob to Alice
 AliceUA->BobUA: audio+data sent from Alice to Bob

 // some time later Bob adds two video streams
 // note, no candidates exchanged, because of BUNDLE
 BobJS->BobUA: addStream with first video stream
 BobJS->BobUA: addStream with second video stream
 BobJS->BobUA: createOffer to get |offer-B2|
 BobJS->BobUA: setLocalDescription with |offer-B2|

 // |offer-B2| is sent to Alice
 BobJS->WebServer: signaling with |offer-B2|
 WebServer->AliceJS: signaling with |offer-B2|
 AliceJS->AliceUA: setRemoteDescription with |offer-B2|
 AliceUA->AliceJS: onaddstream event with first video stream
 AliceUA->AliceJS: onaddstream event with second video stream
 AliceJS->AliceUA: createAnswer to get |answer-B2|
 AliceJS->AliceUA: setLocalDescription with |answer-B2|

 // |answer-B2| is sent over signaling protocol to Bob
 AliceJS->WebServer: signaling with |answer-B2|
 WebServer->BobJS: signaling with |answer-B2|
 BobJS->BobUA: setRemoteDescription with |answer-B2|

 // media is flowing between browsers
 BobUA->AliceUA: audio+video+data sent from Bob to Alice
 AliceUA->BobUA: audio+video+data sent from Alice to Bob

 The SDP for |offer-B1| looks like:

Uberti, et al. Expires September 10, 2015 [Page 56]

Internet-Draft JSEP March 2015

 v=0
 o=- 4962303333179871723 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=msid-semantic:WMS
 a=group:BUNDLE a1 d1
 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP6 ::
 a=rtcp:9 IN IP6 ::
 a=mid:a1
 a=msid:57017fee-b6c1-4162-929c-a25110252400
 e83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=ssrc:1732846380 cname:FocUG1f0fcg/yvY7

 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP6 ::
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass

 The SDP for |candidate-B1| looks like:

 candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host

Uberti, et al. Expires September 10, 2015 [Page 57]

Internet-Draft JSEP March 2015

 The SDP for |candidate-B2| looks like:

 candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556

 The SDP for |candidate-B3| looks like:

 candidate:3671762466 1 udp 41819903 22.33.44.55 61405 typ relay
 raddr 11.22.33.44 rport 52546

 The SDP for |answer-B1| looks like:

Uberti, et al. Expires September 10, 2015 [Page 58]

Internet-Draft JSEP March 2015

 v=0
 o=- 7729291447651054566 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=msid-semantic:WMS
 a=group:BUNDLE a1 d1
 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP6 ::
 a=rtcp:9 IN IP6 ::
 a=mid:a1
 a=msid:QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1a0
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=ice-options:trickle
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=ssrc:4429951804 cname:Q/NWs1ao1HmN4Xa5

 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP6 ::
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=ice-options:trickle
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active

 The SDP for |candidate-B4| looks like:

 candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host

 The SDP for |candidate-B5| looks like:

Uberti, et al. Expires September 10, 2015 [Page 59]

Internet-Draft JSEP March 2015

 candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665

 The SDP for |candidate-B6| looks like:

 candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay
 raddr 55.66.77.88 rport 64532

 The SDP for |offer-B2| looks like: (note the increment of the version
 number in the o= line, and the c= and a=rtcp lines, which indicate
 the local candidate that was selected)

 v=0
 o=- 7729291447651054566 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=msid-semantic:WMS
 a=group:BUNDLE a1 d1 v1 v2
 m=audio 64532 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 55.66.77.88
 a=rtcp:64532 IN IP4 55.66.77.88
 a=mid:a1
 a=msid:QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1a0
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=ice-options:trickle
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=ssrc:4429951804 cname:Q/NWs1ao1HmN4Xa5
 a=candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host
 a=candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665
 a=candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay
 raddr 55.66.77.88 rport 64532
 a=end-of-candidates

Uberti, et al. Expires September 10, 2015 [Page 60]

Internet-Draft JSEP March 2015

 m=application 64532 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 55.66.77.88
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=ice-options:trickle
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:actpass
 a=candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host
 a=candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665
 a=candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay
 raddr 55.66.77.88 rport 64532
 a=end-of-candidates

 m=video 64532 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 55.66.77.88
 a=rtcp:64532 IN IP4 55.66.77.88
 a=mid:v1
 a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=ssrc:1366781083 cname:Q/NWs1ao1HmN4Xa5
 a=ssrc:1366781084 cname:Q/NWs1ao1HmN4Xa5
 a=ssrc-group:FID 1366781083 1366781084
 a=candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host
 a=candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665
 a=candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay

Uberti, et al. Expires September 10, 2015 [Page 61]

Internet-Draft JSEP March 2015

 raddr 55.66.77.88 rport 64532
 a=end-of-candidates

 m=video 64532 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 55.66.77.88
 a=rtcp:64532 IN IP4 55.66.77.88
 a=mid:v1
 a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=ssrc:2366781083 cname:Q/NWs1ao1HmN4Xa5
 a=ssrc:2366781084 cname:Q/NWs1ao1HmN4Xa5
 a=ssrc-group:FID 2366781083 2366781084
 a=candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host
 a=candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665
 a=candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay
 raddr 55.66.77.88 rport 64532
 a=end-of-candidates

 The SDP for |answer-B2| looks like: (note the use of setup:passive to
 maintain the existing DTLS roles, and the use of a=recvonly to
 indicate that the video streams are one-way)

 v=0
 o=- 4962303333179871723 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=msid-semantic:WMS
 a=group:BUNDLE a1 d1 v1 v2
 m=audio 52546 UDP/TLS/RTP/SAVPF 96 0 8 97 98

Uberti, et al. Expires September 10, 2015 [Page 62]

Internet-Draft JSEP March 2015

 c=IN IP4 11.22.33.44
 a=rtcp:52546 IN IP4 11.22.33.44
 a=mid:a1
 a=msid:57017fee-b6c1-4162-929c-a25110252400
 e83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=ssrc:1732846380 cname:FocUG1f0fcg/yvY7
 a=candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host
 a=candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556
 a=candidate:3671762466 1 udp 41819903 22.33.44.55 61405 typ relay
 raddr 11.22.33.44 rport 52546
 a=end-of-candidates

 m=application 52546 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 11.22.33.44
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host
 a=candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556
 a=candidate:3671762466 1 udp 41819903 22.33.44.55 61405 typ relay
 raddr 11.22.33.44 rport 52546
 a=end-of-candidates

Uberti, et al. Expires September 10, 2015 [Page 63]

Internet-Draft JSEP March 2015

 m=video 52546 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 11.22.33.44
 a=rtcp:52546 IN IP4 11.22.33.44
 a=mid:v1
 a=recvonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host
 a=candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556
 a=candidate:3671762466 1 udp 41819903 22.33.44.55 61405 typ relay
 raddr 11.22.33.44 rport 52546
 a=end-of-candidates

 m=video 52546 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 11.22.33.44
 a=rtcp:52546 IN IP4 11.22.33.44
 a=mid:v2
 a=recvonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=ice-options:trickle
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack

Uberti, et al. Expires September 10, 2015 [Page 64]

Internet-Draft JSEP March 2015

 a=rtcp-fb:100 nack pli
 a=candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host
 a=candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556
 a=candidate:3671762466 1 udp 41819903 22.33.44.55 61405 typ relay
 raddr 11.22.33.44 rport 52546
 a=end-of-candidates

8. Security Considerations

 The IETF has published separate documents
 [I-D.ietf-rtcweb-security-arch] [I-D.ietf-rtcweb-security] describing
 the security architecture for WebRTC as a whole. The remainder of
 this section describes security considerations for this document.

 While formally the JSEP interface is an API, it is better to think of
 it is an Internet protocol, with the JS being untrustworthy from the
 perspective of the browser. Thus, the threat model of [RFC3552]
 applies. In particular, JS can call the API in any order and with
 any inputs, including malicious ones. This is particularly relevant
 when we consider the SDP which is passed to setLocalDescription().
 While correct API usage requires that the application pass in SDP
 which was derived from createOffer() or createAnswer() (perhaps
 suitably modified as described in Section 6, there is no guarantee
 that applications do so. The browser MUST be prepared for the JS to
 pass in bogus data instead.

 Conversely, the application programmer MUST recognize that the JS
 does not have complete control of browser behavior. One case that
 bears particular mention is that editing ICE candidates out of the
 SDP or suppressing trickled candidates does not have the expected
 behavior: implementations will still perform checks from those
 candidates even if they are not sent to the other side. Thus, for
 instance, it is not possible to prevent the remote peer from learning
 your public IP address by removing server reflexive candidates.
 Applications which wish to conceal their public IP address should
 instead configure the ICE agent to use only relay candidates.

9. IANA Considerations

 This document requires no actions from IANA.

10. Acknowledgements

 Significant text incorporated in the draft as well and review was
 provided by Harald Alvestrand and Suhas Nandakumar. Dan Burnett,
 Neil Stratford, Eric Rescorla, Anant Narayanan, Andrew Hutton,

https://datatracker.ietf.org/doc/html/rfc3552

Uberti, et al. Expires September 10, 2015 [Page 65]

Internet-Draft JSEP March 2015

 Richard Ejzak, Adam Bergkvist and Matthew Kaufman all provided
 valuable feedback on this proposal.

11. References

11.1. Normative References

 [I-D.ietf-mmusic-msid]
 Alvestrand, H., "Cross Session Stream Identification in
 the Session Description Protocol", draft-ietf-mmusic-

msid-01 (work in progress), August 2013.

 [I-D.ietf-mmusic-sctp-sdp]
 Loreto, S. and G. Camarillo, "Stream Control Transmission
 Protocol (SCTP)-Based Media Transport in the Session
 Description Protocol (SDP)", draft-ietf-mmusic-sctp-sdp-04
 (work in progress), June 2013.

 [I-D.ietf-mmusic-sdp-bundle-negotiation]
 Holmberg, C., Alvestrand, H., and C. Jennings,
 "Multiplexing Negotiation Using Session Description
 Protocol (SDP) Port Numbers", draft-ietf-mmusic-sdp-

bundle-negotiation-04 (work in progress), June 2013.

 [I-D.ietf-mmusic-sdp-mux-attributes]
 Nandakumar, S., "A Framework for SDP Attributes when
 Multiplexing", draft-ietf-mmusic-sdp-mux-attributes-01
 (work in progress), February 2014.

 [I-D.ietf-mmusic-trickle-ice]
 Ivov, E., Rescorla, E., and J. Uberti, "Trickle ICE:
 Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol", draft-ietf-

mmusic-trickle-ice-00 (work in progress), March 2013.

 [I-D.ietf-rtcweb-audio]
 Valin, J. and C. Bran, "WebRTC Audio Codec and Processing
 Requirements", draft-ietf-rtcweb-audio-02 (work in
 progress), August 2013.

 [I-D.ietf-rtcweb-data-protocol]
 Jesup, R., Loreto, S., and M. Tuexen, "WebRTC Data Channel
 Protocol", draft-ietf-rtcweb-data-protocol-04 (work in
 progress), February 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-msid-01
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-msid-01
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sctp-sdp-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-mux-attributes-01
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-trickle-ice-00
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-trickle-ice-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-audio-02
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-data-protocol-04

Uberti, et al. Expires September 10, 2015 [Page 66]

Internet-Draft JSEP March 2015

 [I-D.ietf-rtcweb-fec]
 Uberti, J., "WebRTC Forward Error Correction
 Requirements", draft-ietf-rtcweb-fec-00 (work in
 progress), February 2015.

 [I-D.ietf-rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",

draft-ietf-rtcweb-rtp-usage-09 (work in progress),
 September 2013.

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for WebRTC", draft-

ietf-rtcweb-security-06 (work in progress), January 2014.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-

rtcweb-security-arch-09 (work in progress), February 2014.

 [I-D.ietf-rtcweb-video]
 Roach, A., "WebRTC Video Processing and Codec
 Requirements", draft-ietf-rtcweb-video-00 (work in
 progress), July 2014.

 [I-D.nandakumar-mmusic-proto-iana-registration]
 Nandakumar, S., "IANA registration of SDP 'proto'
 attribute for transporting RTP Media over TCP under
 various RTP profiles.", September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605, October
 2003.

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-fec-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-video-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3605

Uberti, et al. Expires September 10, 2015 [Page 67]

Internet-Draft JSEP March 2015

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July
 2006.

 [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
 Real-time Transport Control Protocol (RTCP)-Based Feedback
 (RTP/SAVPF)", RFC 5124, February 2008.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
 Header Extensions", RFC 5285, July 2008.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761, April 2010.

 [RFC5888] Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6904] Lennox, J., "Encryption of Header Extensions in the Secure
 Real-time Transport Protocol (SRTP)", RFC 6904, April
 2013.

 [RFC7022] Begen, A., Perkins, C., Wing, D., and E. Rescorla,
 "Guidelines for Choosing RTP Control Protocol (RTCP)
 Canonical Names (CNAMEs)", RFC 7022, September 2013.

https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6904
https://datatracker.ietf.org/doc/html/rfc7022

Uberti, et al. Expires September 10, 2015 [Page 68]

Internet-Draft JSEP March 2015

11.2. Informative References

 [I-D.nandakumar-rtcweb-sdp]
 Nandakumar, S. and C. Jennings, "SDP for the WebRTC",

draft-nandakumar-rtcweb-sdp-02 (work in progress), July
 2013.

 [RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
 Comfort Noise (CN)", RFC 3389, September 2002.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth", RFC

3556, July 2003.

 [RFC3960] Camarillo, G. and H. Schulzrinne, "Early Media and Ringing
 Tone Generation in the Session Initiation Protocol (SIP)",

RFC 3960, December 2004.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
 Hakenberg, "RTP Retransmission Payload Format", RFC 4588,
 July 2006.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, April 2009.

 [RFC5576] Lennox, J., Ott, J., and T. Schierl, "Source-Specific
 Media Attributes in the Session Description Protocol
 (SDP)", RFC 5576, June 2009.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [RFC5956] Begen, A., "Forward Error Correction Grouping Semantics in
 the Session Description Protocol", RFC 5956, September
 2010.

https://datatracker.ietf.org/doc/html/draft-nandakumar-rtcweb-sdp-02
https://datatracker.ietf.org/doc/html/rfc3389
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5956

Uberti, et al. Expires September 10, 2015 [Page 69]

Internet-Draft JSEP March 2015

 [W3C.WD-webrtc-20140617]
 Bergkvist, A., Burnett, D., Narayanan, A., and C.
 Jennings, "WebRTC 1.0: Real-time Communication Between
 Browsers", World Wide Web Consortium WD WD-webrtc-
 20140617, June 2014,
 <http://www.w3.org/TR/2011/WD-webrtc-20140617>.

Appendix A. Change log

 Note: This section will be removed by RFC Editor before publication.

 Changes in draft-09:">

 o Don't return null for {local,remote}Description after close().

 o Changed TCP/TLS to UDP/DTLS in RTP profile names.

 o Separate out bundle and mux policy.

 o Added specific references to FEC mechanisms.

 o Added canTrickle mechanism.

 o Added section on subsequent answers and, answer options.

 o Added text defining set{Local,Remote}Description behavior.

 Changes in draft-08:

 o Added new example section and removed old examples in appendix.

 o Fixed <proto> field handling.

 o Added text describing a=rtcp attribute.

 o Reworked handling of OfferToReceiveAudio and OfferToReceiveVideo
 per discussion at IETF 90.

 o Reworked trickle ICE handling and its impact on m= and c= lines
 per discussion at interim.

 o Added max-bundle-and-rtcp-mux policy.

 o Added description of maxptime handling.

 o Updated ICE candidate pool default to 0.

 o Resolved open issues around AppID/receiver-ID.

http://www.w3.org/TR/2011/WD-webrtc-20140617
https://datatracker.ietf.org/doc/html/draft-09
https://datatracker.ietf.org/doc/html/draft-08

Uberti, et al. Expires September 10, 2015 [Page 70]

Internet-Draft JSEP March 2015

 o Reworked and expanded how changes to the ICE configuration are
 handled.

 o Some reference updates.

 o Editorial clarification.

 Changes in draft-07:

 o Expanded discussion of VAD and Opus DTX.

 o Added a security considerations section.

 o Rewrote the section on modifying SDP to require implementations to
 clearly indicate whether any given modification is allowed.

 o Clarified impact of IceRestart on CreateOffer in local-offer
 state.

 o Guidance on whether attributes should be defined at the media
 level or the session level.

 o Renamed "default" bundle policy to "balanced".

 o Removed default ICE candidate pool size and clarify how it works.

 o Defined a canonical order for assignment of MSTs to m= lines.

 o Removed discussion of rehydration.

 o Added Eric Rescorla as a draft editor.

 o Cleaned up references.

 o Editorial cleanup

 Changes in draft-06:

 o Reworked handling of m= line recycling.

 o Added handling of BUNDLE and bundle-only.

 o Clarified handling of rollback.

 o Added text describing the ICE Candidate Pool and its behavior.

 o Allowed OfferToReceiveX to create multiple recvonly m= sections.

https://datatracker.ietf.org/doc/html/draft-07
https://datatracker.ietf.org/doc/html/draft-06

Uberti, et al. Expires September 10, 2015 [Page 71]

Internet-Draft JSEP March 2015

 Changes in draft-05:

 o Fixed several issues identified in the createOffer/Answer sections
 during document review.

 o Updated references.

 Changes in draft-04:

 o Filled in sections on createOffer and createAnswer.

 o Added SDP examples.

 o Fixed references.

 Changes in draft-03:

 o Added text describing relationship to W3C specification

 Changes in draft-02:

 o Converted from nroff

 o Removed comparisons to old approaches abandoned by the working
 group

 o Removed stuff that has moved to W3C specification

 o Align SDP handling with W3C draft

 o Clarified section on forking.

 Changes in draft-01:

 o Added diagrams for architecture and state machine.

 o Added sections on forking and rehydration.

 o Clarified meaning of "pranswer" and "answer".

 o Reworked how ICE restarts and media directions are controlled.

 o Added list of parameters that can be changed in a description.

 o Updated suggested API and examples to match latest thinking.

 o Suggested API and examples have been moved to an appendix.

https://datatracker.ietf.org/doc/html/draft-05
https://datatracker.ietf.org/doc/html/draft-04
https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-01

Uberti, et al. Expires September 10, 2015 [Page 72]

Internet-Draft JSEP March 2015

 Changes in draft -00:

 o Migrated from draft-uberti-rtcweb-jsep-02.

Authors' Addresses

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA 98033
 USA

 Email: justin@uberti.name

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: fluffy@iii.ca

 Eric Rescorla (editor)
 Mozilla
 331 Evelyn Ave
 Mountain View, CA 94041
 USA

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-jsep-02

Uberti, et al. Expires September 10, 2015 [Page 73]

