
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track C. Jennings
Expires: April 24, 2017 Cisco
 E. Rescorla, Ed.
 Mozilla
 October 21, 2016

Javascript Session Establishment Protocol
draft-ietf-rtcweb-jsep-17

Abstract

 This document describes the mechanisms for allowing a Javascript
 application to control the signaling plane of a multimedia session
 via the interface specified in the W3C RTCPeerConnection API, and
 discusses how this relates to existing signaling protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Uberti, et al. Expires April 24, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSEP October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. General Design of JSEP 4
1.2. Other Approaches Considered 5

2. Terminology . 6
3. Semantics and Syntax . 6
3.1. Signaling Model . 6
3.2. Session Descriptions and State Machine 7
3.3. Session Description Format 10
3.4. Session Description Control 10
3.4.1. RtpTransceivers 10
3.4.2. RtpSenders . 11
3.4.3. RtpReceivers . 11

3.5. ICE . 11
3.5.1. ICE Gathering Overview 11
3.5.2. ICE Candidate Trickling 12
3.5.2.1. ICE Candidate Format 12

3.5.3. ICE Candidate Policy 13
3.5.4. ICE Candidate Pool 14

3.6. Video Size Negotiation 14
3.6.1. Creating an imageattr Attribute 15
3.6.2. Interpreting an imageattr Attribute 16

3.7. Simulcast . 17
3.8. Interactions With Forking 18
3.8.1. Sequential Forking 18
3.8.2. Parallel Forking 19

4. Interface . 20
4.1. PeerConnection . 20
4.1.1. Constructor . 20
4.1.2. addTrack . 22
4.1.3. addTransceiver 22
4.1.4. createDataChannel 23
4.1.5. createOffer . 23
4.1.6. createAnswer . 24
4.1.7. SessionDescriptionType 25
4.1.7.1. Use of Provisional Answers 25
4.1.7.2. Rollback . 26

4.1.8. setLocalDescription 27
4.1.9. setRemoteDescription 28
4.1.10. currentLocalDescription 28
4.1.11. pendingLocalDescription 28
4.1.12. currentRemoteDescription 28
4.1.13. pendingRemoteDescription 29
4.1.14. canTrickleIceCandidates 29

Uberti, et al. Expires April 24, 2017 [Page 2]

Internet-Draft JSEP October 2016

4.1.15. setConfiguration 30
4.1.16. addIceCandidate 30

4.2. RtpTransceiver . 31
4.2.1. stop . 31
4.2.2. stopped . 31
4.2.3. setDirection . 31
4.2.4. setCodecPreferences 32

5. SDP Interaction Procedures 32
5.1. Requirements Overview 32
5.1.1. Implementation Requirements 33
5.1.2. Usage Requirements 34
5.1.3. Profile Names and Interoperability 34

5.2. Constructing an Offer 35
5.2.1. Initial Offers 35
5.2.2. Subsequent Offers 41
5.2.3. Options Handling 44
5.2.3.1. IceRestart 44
5.2.3.2. VoiceActivityDetection 45

5.3. Generating an Answer 45
5.3.1. Initial Answers 45
5.3.2. Subsequent Answers 50
5.3.3. Options Handling 51
5.3.3.1. VoiceActivityDetection 51

5.4. Modifying an Offer or Answer 51
5.5. Processing a Local Description 52
5.6. Processing a Remote Description 53
5.7. Parsing a Session Description 53
5.7.1. Session-Level Parsing 54
5.7.2. Media Section Parsing 55
5.7.3. Semantics Verification 58

5.8. Applying a Local Description 59
5.9. Applying a Remote Description 60
5.10. Applying an Answer 64

6. Processing RTP/RTCP packets 66
7. Examples . 68
7.1. Simple Example . 68
7.2. Normal Examples . 72

8. Security Considerations 81
9. IANA Considerations . 81
10. Acknowledgements . 81
11. References . 82
11.1. Normative References 82
11.2. Informative References 85

Appendix A. Appendix A . 86
Appendix B. Change log . 87

 Authors' Addresses . 94

Uberti, et al. Expires April 24, 2017 [Page 3]

Internet-Draft JSEP October 2016

1. Introduction

 This document describes how the W3C WEBRTC RTCPeerConnection
 interface [W3C.WD-webrtc-20140617] is used to control the setup,
 management and teardown of a multimedia session.

1.1. General Design of JSEP

 The thinking behind WebRTC call setup has been to fully specify and
 control the media plane, but to leave the signaling plane up to the
 application as much as possible. The rationale is that different
 applications may prefer to use different protocols, such as the
 existing SIP or Jingle call signaling protocols, or something custom
 to the particular application, perhaps for a novel use case. In this
 approach, the key information that needs to be exchanged is the
 multimedia session description, which specifies the necessary
 transport and media configuration information necessary to establish
 the media plane.

 With these considerations in mind, this document describes the
 Javascript Session Establishment Protocol (JSEP) that allows for full
 control of the signaling state machine from Javascript. JSEP removes
 the browser almost entirely from the core signaling flow, which is
 instead handled by the Javascript making use of two interfaces: (1)
 passing in local and remote session descriptions and (2) interacting
 with the ICE state machine.

 In this document, the use of JSEP is described as if it always occurs
 between two browsers. Note though in many cases it will actually be
 between a browser and some kind of server, such as a gateway or MCU.
 This distinction is invisible to the browser; it just follows the
 instructions it is given via the API.

 JSEP's handling of session descriptions is simple and
 straightforward. Whenever an offer/answer exchange is needed, the
 initiating side creates an offer by calling a createOffer() API. The
 application optionally modifies that offer, and then uses it to set
 up its local config via the setLocalDescription() API. The offer is
 then sent off to the remote side over its preferred signaling
 mechanism (e.g., WebSockets); upon receipt of that offer, the remote
 party installs it using the setRemoteDescription() API.

 To complete the offer/answer exchange, the remote party uses the
 createAnswer() API to generate an appropriate answer, applies it
 using the setLocalDescription() API, and sends the answer back to the
 initiator over the signaling channel. When the initiator gets that
 answer, it installs it using the setRemoteDescription() API, and

Uberti, et al. Expires April 24, 2017 [Page 4]

Internet-Draft JSEP October 2016

 initial setup is complete. This process can be repeated for
 additional offer/answer exchanges.

 Regarding ICE [RFC5245], JSEP decouples the ICE state machine from
 the overall signaling state machine, as the ICE state machine must
 remain in the browser, because only the browser has the necessary
 knowledge of candidates and other transport info. Performing this
 separation also provides additional flexibility; in protocols that
 decouple session descriptions from transport, such as Jingle, the
 session description can be sent immediately and the transport
 information can be sent when available. In protocols that don't,
 such as SIP, the information can be used in the aggregated form.
 Sending transport information separately can allow for faster ICE and
 DTLS startup, since ICE checks can start as soon as any transport
 information is available rather than waiting for all of it.

 Through its abstraction of signaling, the JSEP approach does require
 the application to be aware of the signaling process. While the
 application does not need to understand the contents of session
 descriptions to set up a call, the application must call the right
 APIs at the right times, convert the session descriptions and ICE
 information into the defined messages of its chosen signaling
 protocol, and perform the reverse conversion on the messages it
 receives from the other side.

 One way to mitigate this is to provide a Javascript library that
 hides this complexity from the developer; said library would
 implement a given signaling protocol along with its state machine and
 serialization code, presenting a higher level call-oriented interface
 to the application developer. For example, libraries exist to adapt
 the JSEP API into an API suitable for a SIP or XMPP. Thus, JSEP
 provides greater control for the experienced developer without
 forcing any additional complexity on the novice developer.

1.2. Other Approaches Considered

 One approach that was considered instead of JSEP was to include a
 lightweight signaling protocol. Instead of providing session
 descriptions to the API, the API would produce and consume messages
 from this protocol. While providing a more high-level API, this put
 more control of signaling within the browser, forcing the browser to
 have to understand and handle concepts like signaling glare. In
 addition, it prevented the application from driving the state machine
 to a desired state, as is needed in the page reload case.

 A second approach that was considered but not chosen was to decouple
 the management of the media control objects from session
 descriptions, instead offering APIs that would control each component

https://datatracker.ietf.org/doc/html/rfc5245

Uberti, et al. Expires April 24, 2017 [Page 5]

Internet-Draft JSEP October 2016

 directly. This was rejected based on a feeling that requiring
 exposure of this level of complexity to the application programmer
 would not be beneficial; it would result in an API where even a
 simple example would require a significant amount of code to
 orchestrate all the needed interactions, as well as creating a large
 API surface that needed to be agreed upon and documented. In
 addition, these API points could be called in any order, resulting in
 a more complex set of interactions with the media subsystem than the
 JSEP approach, which specifies how session descriptions are to be
 evaluated and applied.

 One variation on JSEP that was considered was to keep the basic
 session description-oriented API, but to move the mechanism for
 generating offers and answers out of the browser. Instead of
 providing createOffer/createAnswer methods within the browser, this
 approach would instead expose a getCapabilities API which would
 provide the application with the information it needed in order to
 generate its own session descriptions. This increases the amount of
 work that the application needs to do; it needs to know how to
 generate session descriptions from capabilities, and especially how
 to generate the correct answer from an arbitrary offer and the
 supported capabilities. While this could certainly be addressed by
 using a library like the one mentioned above, it basically forces the
 use of said library even for a simple example. Providing
 createOffer/createAnswer avoids this problem, but still allows
 applications to generate their own offers/answers (to a large extent)
 if they choose, using the description generated by createOffer as an
 indication of the browser's capabilities.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Semantics and Syntax

3.1. Signaling Model

 JSEP does not specify a particular signaling model or state machine,
 other than the generic need to exchange session descriptions in the
 fashion described by [RFC3264](offer/answer) in order for both sides
 of the session to know how to conduct the session. JSEP provides
 mechanisms to create offers and answers, as well as to apply them to
 a session. However, the browser is totally decoupled from the actual
 mechanism by which these offers and answers are communicated to the
 remote side, including addressing, retransmission, forking, and glare
 handling. These issues are left entirely up to the application; the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 24, 2017 [Page 6]

Internet-Draft JSEP October 2016

 application has complete control over which offers and answers get
 handed to the browser, and when.

 +-----------+ +-----------+
 | Web App |<--- App-Specific Signaling -->| Web App |
 +-----------+ +-----------+
 ^ ^
 | SDP | SDP
 V V
 +-----------+ +-----------+
 | Browser |<----------- Media ------------>| Browser |
 +-----------+ +-----------+

 Figure 1: JSEP Signaling Model

3.2. Session Descriptions and State Machine

 In order to establish the media plane, the user agent needs specific
 parameters to indicate what to transmit to the remote side, as well
 as how to handle the media that is received. These parameters are
 determined by the exchange of session descriptions in offers and
 answers, and there are certain details to this process that must be
 handled in the JSEP APIs.

 Whether a session description applies to the local side or the remote
 side affects the meaning of that description. For example, the list
 of codecs sent to a remote party indicates what the local side is
 willing to receive, which, when intersected with the set of codecs
 the remote side supports, specifies what the remote side should send.
 However, not all parameters follow this rule; for example, the DTLS-
 SRTP parameters [RFC5763] sent to a remote party indicate what
 certificate the local side will use in DTLS setup, and thereby what
 the remote party should expect to receive; the remote party will have
 to accept these parameters, with no option to choose different
 values.

 In addition, various RFCs put different conditions on the format of
 offers versus answers. For example, an offer may propose an
 arbitrary number of media streams (i.e. m= sections), but an answer
 must contain the exact same number as the offer.

 Lastly, while the exact media parameters are only known only after an
 offer and an answer have been exchanged, it is possible for the
 offerer to receive media after they have sent an offer and before
 they have received an answer. To properly process incoming media in

https://datatracker.ietf.org/doc/html/rfc5763

Uberti, et al. Expires April 24, 2017 [Page 7]

Internet-Draft JSEP October 2016

 this case, the offerer's media handler must be aware of the details
 of the offer before the answer arrives.

 Therefore, in order to handle session descriptions properly, the user
 agent needs:

 1. To know if a session description pertains to the local or remote
 side.

 2. To know if a session description is an offer or an answer.

 3. To allow the offer to be specified independently of the answer.

 JSEP addresses this by adding both setLocalDescription and
 setRemoteDescription methods and having session description objects
 contain a type field indicating the type of session description being
 supplied. This satisfies the requirements listed above for both the
 offerer, who first calls setLocalDescription(sdp [offer]) and then
 later setRemoteDescription(sdp [answer]), as well as for the
 answerer, who first calls setRemoteDescription(sdp [offer]) and then
 later setLocalDescription(sdp [answer]).

 JSEP also allows for an answer to be treated as provisional by the
 application. Provisional answers provide a way for an answerer to
 communicate initial session parameters back to the offerer, in order
 to allow the session to begin, while allowing a final answer to be
 specified later. This concept of a final answer is important to the
 offer/answer model; when such an answer is received, any extra
 resources allocated by the caller can be released, now that the exact
 session configuration is known. These "resources" can include things
 like extra ICE components, TURN candidates, or video decoders.
 Provisional answers, on the other hand, do no such deallocation
 results; as a result, multiple dissimilar provisional answers can be
 received and applied during call setup.

 In [RFC3264], the constraint at the signaling level is that only one
 offer can be outstanding for a given session, but at the media stack
 level, a new offer can be generated at any point. For example, when
 using SIP for signaling, if one offer is sent, then cancelled using a
 SIP CANCEL, another offer can be generated even though no answer was
 received for the first offer. To support this, the JSEP media layer
 can provide an offer via the createOffer() method whenever the
 Javascript application needs one for the signaling. The answerer can
 send back zero or more provisional answers, and finally end the
 offer-answer exchange by sending a final answer. The state machine
 for this is as follows:

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 24, 2017 [Page 8]

Internet-Draft JSEP October 2016

 setRemote(OFFER) setLocal(PRANSWER)
 /-----\ /-----\
 | | | |
 v | v |
 +---------------+ | +---------------+ |
 | |----/ | |----/
 | | setLocal(PRANSWER) | |
 | Remote-Offer |------------------- >| Local-Pranswer|
 | | | |
 | | | |
 +---------------+ +---------------+
 ^ | |
 | | setLocal(ANSWER) |
 setRemote(OFFER) | |
 | V setLocal(ANSWER) |
 +---------------+ |
 | | |
 | |<---------------------------+
 | Stable |
 | |<---------------------------+
 | | |
 +---------------+ setRemote(ANSWER) |
 ^ | |
 | | setLocal(OFFER) |
 setRemote(ANSWER) | |
 | V |
 +---------------+ +---------------+
 | | | |
 | | setRemote(PRANSWER) | |
 | Local-Offer |------------------- >|Remote-Pranswer|
 | | | |
 | |----\ | |----\
 +---------------+ | +---------------+ |
 ^ | ^ |
 | | | |
 \-----/ \-----/
 setLocal(OFFER) setRemote(PRANSWER)

 Figure 2: JSEP State Machine

 Aside from these state transitions there is no other difference
 between the handling of provisional ("pranswer") and final ("answer")
 answers.

Uberti, et al. Expires April 24, 2017 [Page 9]

Internet-Draft JSEP October 2016

3.3. Session Description Format

 In the WebRTC specification, session descriptions are formatted as
 SDP messages. While this format is not optimal for manipulation from
 Javascript, it is widely accepted, and frequently updated with new
 features. Any alternate encoding of session descriptions would have
 to keep pace with the changes to SDP, at least until the time that
 this new encoding eclipsed SDP in popularity. As a result, JSEP
 currently uses SDP as the internal representation for its session
 descriptions.

 However, to simplify Javascript processing, and provide for future
 flexibility, the SDP syntax is encapsulated within a
 SessionDescription object, which can be constructed from SDP, and be
 serialized out to SDP. If future specifications agree on a JSON
 format for session descriptions, we could easily enable this object
 to generate and consume that JSON.

 Other methods may be added to SessionDescription in the future to
 simplify handling of SessionDescriptions from Javascript. In the
 meantime, Javascript libraries can be used to perform these
 manipulations.

 Note that most applications should be able to treat the
 SessionDescriptions produced and consumed by these various API calls
 as opaque blobs; that is, the application will not need to read or
 change them.

3.4. Session Description Control

 In order to give the application control over various common session
 parameters, JSEP provides control surfaces which tell the browser how
 to generate session descriptions. This avoids the need for
 Javascript to modify session descriptions in most cases.

 Changes to these objects result in changes to the session
 descriptions generated by subsequent createOffer/Answer calls.

3.4.1. RtpTransceivers

 RtpTransceivers allow the application to control the RTP media
 associated with one m= section. Each RtpTransceiver has an RtpSender
 and an RtpReceiver, which an application can use to control the
 sending and receiving of RTP media. The application may also modify
 the RtpTransceiver directly, for instance, by stopping it.

 RtpTransceivers generally have a 1:1 mapping with m= sections,
 although there may be more RtpTransceivers than m= sections when

Uberti, et al. Expires April 24, 2017 [Page 10]

Internet-Draft JSEP October 2016

 RtpTransceivers are created but not yet associated with a m= section,
 or if RtpTransceivers have been stopped and disassociated from m=
 sections. An RtpTransceiver is never associated with more than one
 m= section, and once a session description is applied, a m= section
 is always associated with exactly one RtpTransceiver.

 RtpTransceivers can be created explicitly by the application or
 implicitly by calling setRemoteDescription with an offer that adds
 new m= sections.

3.4.2. RtpSenders

 RtpSenders allow the application to control how RTP media is sent.

3.4.3. RtpReceivers

 RtpReceivers allows the application to control how RTP media is
 received.

3.5. ICE

3.5.1. ICE Gathering Overview

 JSEP gathers ICE candidates as needed by the application. Collection
 of ICE candidates is referred to as a gathering phase, and this is
 triggered either by the addition of a new or recycled m= line to the
 local session description, or new ICE credentials in the description,
 indicating an ICE restart. Use of new ICE credentials can be
 triggered explicitly by the application, or implicitly by the browser
 in response to changes in the ICE configuration.

 When the ICE configuration changes in a way that requires a new
 gathering phase, a 'needs-ice-restart' bit is set. When this bit is
 set, calls to the createOffer API will generate new ICE credentials.
 This bit is cleared by a call to the setLocalDescription API with new
 ICE credentials from either an offer or an answer, i.e., from either
 a local- or remote-initiated ICE restart.

 When a new gathering phase starts, the ICE Agent will notify the
 application that gathering is occurring through an event. Then, when
 each new ICE candidate becomes available, the ICE Agent will supply
 it to the application via an additional event; these candidates will
 also automatically be added to the current and/or pending local
 session description. Finally, when all candidates have been
 gathered, an event will be dispatched to signal that the gathering
 process is complete.

Uberti, et al. Expires April 24, 2017 [Page 11]

Internet-Draft JSEP October 2016

 Note that gathering phases only gather the candidates needed by
 new/recycled/restarting m= lines; other m= lines continue to use
 their existing candidates. Also, when bundling is active, candidates
 are only gathered (and exchanged) for the m= lines referenced in
 BUNDLE-tags, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation].

3.5.2. ICE Candidate Trickling

 Candidate trickling is a technique through which a caller may
 incrementally provide candidates to the callee after the initial
 offer has been dispatched; the semantics of "Trickle ICE" are defined
 in [I-D.ietf-ice-trickle]. This process allows the callee to begin
 acting upon the call and setting up the ICE (and perhaps DTLS)
 connections immediately, without having to wait for the caller to
 gather all possible candidates. This results in faster media setup
 in cases where gathering is not performed prior to initiating the
 call.

 JSEP supports optional candidate trickling by providing APIs, as
 described above, that provide control and feedback on the ICE
 candidate gathering process. Applications that support candidate
 trickling can send the initial offer immediately and send individual
 candidates when they get the notified of a new candidate;
 applications that do not support this feature can simply wait for the
 indication that gathering is complete, and then create and send their
 offer, with all the candidates, at this time.

 Upon receipt of trickled candidates, the receiving application will
 supply them to its ICE Agent. This triggers the ICE Agent to start
 using the new remote candidates for connectivity checks.

3.5.2.1. ICE Candidate Format

 As with session descriptions, the syntax of the IceCandidate object
 provides some abstraction, but can be easily converted to and from
 the SDP candidate lines.

 The candidate lines are the only SDP information that is contained
 within IceCandidate, as they represent the only information needed
 that is not present in the initial offer (i.e., for trickle
 candidates). This information is carried with the same syntax as the
 "candidate-attribute" field defined for ICE. For example:

 candidate:1 1 UDP 1694498815 192.0.2.33 10000 typ host

Uberti, et al. Expires April 24, 2017 [Page 12]

Internet-Draft JSEP October 2016

 The IceCandidate object also contains fields to indicate which m=
 line it should be associated with. The m= line can be identified in
 one of two ways; either by a m= line index, or a MID. The m= line
 index is a zero-based index, with index N referring to the N+1th m=
 line in the SDP sent by the entity which sent the IceCandidate. The
 MID uses the "media stream identification" attribute, as defined in

[RFC5888], Section 4, to identify the m= line. JSEP implementations
 creating an ICE Candidate object MUST populate both of these fields,
 using the MID of the associated RtpTransceiver object (which may be
 locally generated by the answerer when interacting with a non-JSEP
 remote endpoint that does not support the MID attribute, as discussed
 in Section 5.9 below). Implementations receiving an ICE Candidate
 object MUST use the MID if present, or the m= line index, if not (the
 non-JSEP remote endpoint case).

3.5.3. ICE Candidate Policy

 Typically, when gathering ICE candidates, the browser will gather all
 possible forms of initial candidates - host, server reflexive, and
 relay. However, in certain cases, applications may want to have more
 specific control over the gathering process, due to privacy or
 related concerns. For example, one may want to suppress the use of
 host candidates, to avoid exposing information about the local
 network, or go as far as only using relay candidates, to leak as
 little location information as possible (note that these choices come
 with corresponding operational costs). To accomplish this, the
 browser MUST allow the application to restrict which ICE candidates
 are used in a session. Note that this filtering is applied on top of
 any restrictions the browser chooses to enforce regarding which IP
 addresses are permitted for the application, as discussed in
 [I-D.ietf-rtcweb-ip-handling].

 There may also be cases where the application wants to change which
 types of candidates are used while the session is active. A prime
 example is where a callee may initially want to use only relay
 candidates, to avoid leaking location information to an arbitrary
 caller, but then change to use all candidates (for lower operational
 cost) once the user has indicated they want to take the call. For
 this scenario, the browser MUST allow the candidate policy to be
 changed in mid-session, subject to the aforementioned interactions
 with local policy.

 To administer the ICE candidate policy, the browser will determine
 the current setting at the start of each gathering phase. Then,
 during the gathering phase, the browser MUST NOT expose candidates
 disallowed by the current policy to the application, use them as the
 source of connectivity checks, or indirectly expose them via other
 fields, such as the raddr/rport attributes for other ICE candidates.

https://datatracker.ietf.org/doc/html/rfc5888#section-4

Uberti, et al. Expires April 24, 2017 [Page 13]

Internet-Draft JSEP October 2016

 Later, if a different policy is specified by the application, the
 application can apply it by kicking off a new gathering phase via an
 ICE restart.

3.5.4. ICE Candidate Pool

 JSEP applications typically inform the browser to begin ICE gathering
 via the information supplied to setLocalDescription, as this is where
 the app specifies the number of media streams, and thereby ICE
 components, for which to gather candidates. However, to accelerate
 cases where the application knows the number of ICE components to use
 ahead of time, it may ask the browser to gather a pool of potential
 ICE candidates to help ensure rapid media setup.

 When setLocalDescription is eventually called, and the browser goes
 to gather the needed ICE candidates, it SHOULD start by checking if
 any candidates are available in the pool. If there are candidates in
 the pool, they SHOULD be handed to the application immediately via
 the ICE candidate event. If the pool becomes depleted, either
 because a larger-than-expected number of ICE components is used, or
 because the pool has not had enough time to gather candidates, the
 remaining candidates are gathered as usual.

 One example of where this concept is useful is an application that
 expects an incoming call at some point in the future, and wants to
 minimize the time it takes to establish connectivity, to avoid
 clipping of initial media. By pre-gathering candidates into the
 pool, it can exchange and start sending connectivity checks from
 these candidates almost immediately upon receipt of a call. Note
 though that by holding on to these pre-gathered candidates, which
 will be kept alive as long as they may be needed, the application
 will consume resources on the STUN/TURN servers it is using.

3.6. Video Size Negotiation

 Video size negotiation is the process through which a receiver can
 use the "a=imageattr" SDP attribute [RFC6236] to indicate what video
 frame sizes it is capable of receiving. A receiver may have hard
 limits on what its video decoder can process, or it may wish to
 constrain what it receives due to application preferences, e.g. a
 specific size for the window in which the video will be displayed.

 Note that certain codecs support transmission of samples with aspect
 ratios other than 1.0 (i.e., non-square pixels). JSEP
 implementations will not transmit non-square pixels, but SHOULD
 receive and render such video with the correct aspect ratio.
 However, sample aspect ratio has no impact on the size negotiation
 described below; all dimensions assume square pixels.

https://datatracker.ietf.org/doc/html/rfc6236

Uberti, et al. Expires April 24, 2017 [Page 14]

Internet-Draft JSEP October 2016

3.6.1. Creating an imageattr Attribute

 In order to determine the limits on what video resolution a receiver
 wants to receive, it will intersect its decoder hard limits with any
 mandatory constraints that have been applied to the associated
 MediaStreamTrack. If the decoder limits are unknown, e.g. when using
 a software decoder, the mandatory constraints are used directly. For
 the answerer, these mandatory constraints can be applied to the
 remote MediaStreamTracks that are created by a setRemoteDescription
 call, and will affect the output of the ensuing createAnswer call.
 Any constraints set after setLocalDescription is used to set the
 answer will result in a new offer-answer exchange. For the offerer,
 because it does not know about any remote MediaStreamTracks until it
 receives the answer, the offer can only reflect decoder hard limits.
 If the offerer wishes to set mandatory constraints on video
 resolution, it must do so after receiving the answer, and the result
 will be a new offer-answer to communicate them.

 If there are no known decoder limits or mandatory constraints, the
 "a=imageattr" attribute SHOULD be omitted.

 Otherwise, an "a=imageattr" attribute is created with "recv"
 direction, and the resulting resolution space formed by intersecting
 the decoder limits and constraints is used to specify its minimum and
 maximum x= and y= values. If the intersection is the null set, i.e.,
 there are no resolutions that are permitted by both the decoder and
 the mandatory constraints, this SHOULD be represented by x=0 and y=0
 values.

 The rules here express a single set of preferences, and therefore,
 the "a=imageattr" q= value is not important. It SHOULD be set to
 1.0.

 The "a=imageattr" field is payload type specific. When all video
 codecs supported have the same capabilities, use of a single
 attribute, with the wildcard payload type (*), is RECOMMENDED.
 However, when the supported video codecs have differing capabilities,
 specific "a=imageattr" attributes MUST be inserted for each payload
 type.

 As an example, consider a system with a HD-capable, multiformat video
 decoder, where the application has constrained the received track to
 at most 360p. In this case, the implementation would generate this
 attribute:

 a=imageattr:* recv [x=[16:640],y=[16:360],q=1.0]

Uberti, et al. Expires April 24, 2017 [Page 15]

Internet-Draft JSEP October 2016

 This declaration indicates that the receiver is capable of decoding
 any image resolution from 16x16 up to 640x360 pixels.

3.6.2. Interpreting an imageattr Attribute

 [RFC6236] defines "a=imageattr" to be an advisory field. This means
 that it does not absolutely constrain the video formats that the
 sender can use, but gives an indication of the preferred values.

 This specification prescribes more specific behavior. When a sender
 of a given MediaStreamTrack, which is producing video of a certain
 resolution, receives an "a=imageattr recv" attribute, it MUST check
 to see if the original resolution meets the size criteria specified
 in the attribute, and adapt the resolution accordingly by scaling (if
 appropriate). Note that when considering a MediaStreamTrack that is
 producing rotated video, the unrotated resolution MUST be used. This
 is required regardless of whether the receiver supports performing
 receive-side rotation (e.g., through CVO), as it significantly
 simplifies the matching logic.

 For the purposes of resolution negotiation, only size limits are
 considered. Any other values, e.g. picture or sample aspect ratio,
 MUST be ignored.

 When communicating with a non-JSEP endpoint, multiple relevant
 "a=imageattr recv" attributes may be received. If this occurs,
 attributes other than the one with the highest "q=" value MUST be
 ignored.

 If an "a=imageattr recv" attribute references a different video codec
 than what has been selected for the MediaStreamTrack, it MUST be
 ignored.

 If the original resolution matches the size limits in the attribute,
 the track MUST be transmitted untouched.

 If the original resolution exceeds the size limits in the attribute,
 the sender SHOULD apply downscaling to the output of the
 MediaStreamTrack in order to satisfy the limits. Downscaling MUST
 NOT change the track aspect ratio.

 If the original resolution is less than the size limits in the
 attribute, upscaling is needed, but this may not be appropriate in
 all cases. To address this concern, the application can set an
 upscaling policy for each sent track. For this case, if upscaling is
 permitted by policy, the sender SHOULD apply upscaling in order to
 provide the desired resolution. Otherwise, the sender MUST NOT apply

Uberti, et al. Expires April 24, 2017 [Page 16]

Internet-Draft JSEP October 2016

 upscaling. The sender SHOULD NOT upscale in other cases, even if the
 policy permits it. Upscaling MUST NOT change the track aspect ratio.

 If there is no appropriate and permitted scaling mechanism that
 allows the received size limits to be satisfied, the sender MUST NOT
 transmit the track.

 If the attribute includes a "sar=" (sample aspect ratio) value set to
 something other than "1.0", indicating the receiver wants to receive
 non-square pixels, this cannot be satisfied and the sender MUST NOT
 transmit the track.

 In the special case of receiving a maximum resolution of [0, 0], as
 described above, the sender MUST NOT transmit the track.

3.7. Simulcast

 JSEP supports simulcast of a MediaStreamTrack, where multiple
 encodings of the source media can be transmitted within the context
 of a single m= section. The current JSEP API is designed to allow
 applications to send simulcasted media but only to receive a single
 encoding. This allows for multi-user scenarios where each sending
 client sends multiple encodings to a server, which then, for each
 receiving client, chooses the appropriate encoding to forward.

 Applications request support for simulcast by configuring multiple
 encodings on an RTPSender, which, upon generation of an offer or
 answer, are indicated in SDP markings on the corresponding m=
 section, as described below. Receivers that understand simulcast and
 are willing to receive it will also include SDP markings to indicate
 their support, and JSEP endpoints will use these markings to
 determine whether simulcast is permitted for a given RTPSender. If
 simulcast support is not negotiated, the RTPSender will only use the
 first configured encoding.

 Note that the exact simulcast parameters are up to the sending
 application. While the aforementioned SDP markings are provided to
 ensure the remote side can receive and demux multiple simulcast
 encodings, the specific resolutions and bitrates to be used for each
 encoding are purely a send-side decision in JSEP.

 JSEP currently does not provide an API to configure receipt of
 simulcast. This means that if simulcast is offered by the remote
 endpoint, the answer generated by a JSEP endpoint will not indicate
 support for receipt of simulcast, and as such the remote endpoint
 will only send a single encoding per m= section. In addition, when
 the JSEP endpoint is the answerer, the permitted encodings for the
 RTPSender must be consistent with the offer, but this information is

Uberti, et al. Expires April 24, 2017 [Page 17]

Internet-Draft JSEP October 2016

 currently not surfaced through any API. This means that established
 simulcast streams will continue to work through a received re-offer,
 but setting up initial simulcast by way of a received offer requires
 out-of-band signaling or SDP inspection. Future versions of this
 specification may add additional APIs to provide this control.

 When using JSEP to transmit multiple encodings from a RTPSender, the
 techniques from [I-D.ietf-mmusic-sdp-simulcast] and
 [I-D.ietf-mmusic-rid] are used. Specifically, when multiple
 encodings have been configured for a RTPSender, the m= section for
 the RTPSender will include an "a=simulcast" attribute, as defined in
 [I-D.ietf-mmusic-sdp-simulcast], Section 6.2, with a "send" simulcast
 stream description that lists each desired encoding, and no "recv"
 simulcast stream description. The m= section will also include an
 "a=rid" attribute for each encoding, as specfied in
 [I-D.ietf-mmusic-rid], Section 4; the use of RID identifiers allows
 the individual encodings to be disambiguated even though they are all
 part of the same m= section.

3.8. Interactions With Forking

 Some call signaling systems allow various types of forking where an
 SDP Offer may be provided to more than one device. For example, SIP
 [RFC3261] defines both a "Parallel Search" and "Sequential Search".
 Although these are primarily signaling level issues that are outside
 the scope of JSEP, they do have some impact on the configuration of
 the media plane that is relevant. When forking happens at the
 signaling layer, the Javascript application responsible for the
 signaling needs to make the decisions about what media should be sent
 or received at any point of time, as well as which remote endpoint it
 should communicate with; JSEP is used to make sure the media engine
 can make the RTP and media perform as required by the application.
 The basic operations that the applications can have the media engine
 do are:

 o Start exchanging media with a given remote peer, but keep all the
 resources reserved in the offer.

 o Start exchanging media with a given remote peer, and free any
 resources in the offer that are not being used.

3.8.1. Sequential Forking

 Sequential forking involves a call being dispatched to multiple
 remote callees, where each callee can accept the call, but only one
 active session ever exists at a time; no mixing of received media is
 performed.

https://datatracker.ietf.org/doc/html/rfc3261

Uberti, et al. Expires April 24, 2017 [Page 18]

Internet-Draft JSEP October 2016

 JSEP handles sequential forking well, allowing the application to
 easily control the policy for selecting the desired remote endpoint.
 When an answer arrives from one of the callees, the application can
 choose to apply it either as a provisional answer, leaving open the
 possibility of using a different answer in the future, or apply it as
 a final answer, ending the setup flow.

 In a "first-one-wins" situation, the first answer will be applied as
 a final answer, and the application will reject any subsequent
 answers. In SIP parlance, this would be ACK + BYE.

 In a "last-one-wins" situation, all answers would be applied as
 provisional answers, and any previous call leg will be terminated.
 At some point, the application will end the setup process, perhaps
 with a timer; at this point, the application could reapply the
 pending remote description as a final answer.

3.8.2. Parallel Forking

 Parallel forking involves a call being dispatched to multiple remote
 callees, where each callee can accept the call, and multiple
 simultaneous active signaling sessions can be established as a
 result. If multiple callees send media at the same time, the
 possibilities for handling this are described in Section 3.1 of
 [RFC3960]. Most SIP devices today only support exchanging media with
 a single device at a time, and do not try to mix multiple early media
 audio sources, as that could result in a confusing situation. For
 example, consider having a European ringback tone mixed together with
 the North American ringback tone - the resulting sound would not be
 like either tone, and would confuse the user. If the signaling
 application wishes to only exchange media with one of the remote
 endpoints at a time, then from a media engine point of view, this is
 exactly like the sequential forking case.

 In the parallel forking case where the Javascript application wishes
 to simultaneously exchange media with multiple peers, the flow is
 slightly more complex, but the Javascript application can follow the
 strategy that [RFC3960] describes using UPDATE. The UPDATE approach
 allows the signaling to set up a separate media flow for each peer
 that it wishes to exchange media with. In JSEP, this offer used in
 the UPDATE would be formed by simply creating a new PeerConnection
 and making sure that the same local media streams have been added
 into this new PeerConnection. Then the new PeerConnection object
 would produce a SDP offer that could be used by the signaling to
 perform the UPDATE strategy discussed in [RFC3960].

 As a result of sharing the media streams, the application will end up
 with N parallel PeerConnection sessions, each with a local and remote

https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc3960

Uberti, et al. Expires April 24, 2017 [Page 19]

Internet-Draft JSEP October 2016

 description and their own local and remote addresses. The media flow
 from these sessions can be managed by specifying SDP direction
 attributes in the descriptions, or the application can choose to play
 out the media from all sessions mixed together. Of course, if the
 application wants to only keep a single session, it can simply
 terminate the sessions that it no longer needs.

4. Interface

 This section details the basic operations that must be present to
 implement JSEP functionality. The actual API exposed in the W3C API
 may have somewhat different syntax, but should map easily to these
 concepts.

4.1. PeerConnection

4.1.1. Constructor

 The PeerConnection constructor allows the application to specify
 global parameters for the media session, such as the STUN/TURN
 servers and credentials to use when gathering candidates, as well as
 the initial ICE candidate policy and pool size, and also the bundle
 policy to use.

 If an ICE candidate policy is specified, it functions as described in
Section 3.5.3, causing the browser to only surface the permitted

 candidates (including any internal browser filtering) to the
 application, and only use those candidates for connectivity checks.
 The set of available policies is as follows:

 all: All candidates permitted by browser policy will be gathered and
 used.

 relay: All candidates except relay candidates will be filtered out.
 This obfuscates the location information that might be ascertained
 by the remote peer from the received candidates. Depending on how
 the application deploys its relay servers, this could obfuscate
 location to a metro or possibly even global level.

 The default ICE candidate policy MUST be set to "all" as this is
 generally the desired policy, and also typically reduces use of
 application TURN server resources significantly.

 If a size is specified for the ICE candidate pool, this indicates the
 number of ICE components to pre-gather candidates for. Because pre-
 gathering results in utilizing STUN/TURN server resources for

Uberti, et al. Expires April 24, 2017 [Page 20]

Internet-Draft JSEP October 2016

 potentially long periods of time, this must only occur upon
 application request, and therefore the default candidate pool size
 MUST be zero.

 The application can specify its preferred policy regarding use of
 bundle, the multiplexing mechanism defined in
 [I-D.ietf-mmusic-sdp-bundle-negotiation]. Regardless of policy, the
 application will always try to negotiate bundle onto a single
 transport, and will offer a single bundle group across all media
 section; use of this single transport is contingent upon the answerer
 accepting bundle. However, by specifying a policy from the list
 below, the application can control exactly how aggressively it will
 try to bundle media streams together, which affects how it will
 interoperate with a non-bundle-aware endpoint. When negotiating with
 a non-bundle-aware endpoint, only the streams not marked as bundle-
 only streams will be established.

 The set of available policies is as follows:

 balanced: The first media section of each type (audio, video, or
 application) will contain transport parameters, which will allow
 an answerer to unbundle that section. The second and any
 subsequent media section of each type will be marked bundle-only.
 The result is that if there are N distinct media types, then
 candidates will be gathered for for N media streams. This policy
 balances desire to multiplex with the need to ensure basic audio
 and video can still be negotiated in legacy cases. When acting as
 answerer, if there is no bundle group in the offer, the
 implementation will reject all but the first m= section of each
 type.

 max-compat: All media sections will contain transport parameters;
 none will be marked as bundle-only. This policy will allow all
 streams to be received by non-bundle-aware endpoints, but require
 separate candidates to be gathered for each media stream.

 max-bundle: Only the first media section will contain transport
 parameters; all streams other than the first will be marked as
 bundle-only. This policy aims to minimize candidate gathering and
 maximize multiplexing, at the cost of less compatibility with
 legacy endpoints. When acting as answerer, the implementation
 will reject any m= sections other than the first m= section,
 unless they are in the same bundle group as that m= section.

Uberti, et al. Expires April 24, 2017 [Page 21]

Internet-Draft JSEP October 2016

 As it provides the best tradeoff between performance and
 compatibility with legacy endpoints, the default bundle policy MUST
 be set to "balanced".

 The application can specify its preferred policy regarding use of
 RTP/RTCP multiplexing [RFC5761] using one of the following policies:

 negotiate: The browser will gather both RTP and RTCP candidates but
 also will offer "a=rtcp-mux", thus allowing for compatibility with
 either multiplexing or non-multiplexing endpoints.

 require: The browser will only gather RTP candidates. This halves
 the number of candidates that the offerer needs to gather. When
 acting as answerer, the implementation will reject any m= section
 that does not contain an "a=rtcp-mux" attribute.

 The default multiplexing policy MUST be set to "require".
 Implementations MAY choose to reject attempts by the application to
 set the multiplexing policy to "negotiate".

4.1.2. addTrack

 The addTrack method adds a MediaStreamTrack to the PeerConnection,
 using the MediaStream argument to associate the track with other
 tracks in the same MediaStream, so that they can be added to the same
 "LS" group when creating an offer or answer. addTrack attempts to
 minimize the number of transceivers as follows: If the PeerConnection
 is in the "have-remote-offer" state, the track will be attached to
 the first compatible transceiver that was created by the most recent
 call to setRemoteDescription() and does not have a local track.
 Otherwise, a new transceiver will be created, as described in

Section 4.1.3.

4.1.3. addTransceiver

 The addTransceiver method adds a new RTPTransceiver to the
 PeerConnection. If a MediaStreamTrack argument is provided, then the
 transceiver will be configured with that media type and the track
 will be attached to the transceiver. Otherwise, the application MUST
 explicitly specify the type; this mode is useful for creating
 recvonly transceivers as well as for creating transceivers to which a
 track can be attached at some later point.

 At the time of creation, the application can also specify a
 transceiver direction attribute, a set of MediaStreams which the
 transceiver is associated with (allowing LS group assignments), and a
 set of encodings for the media (used for simulcast as described in

Section 3.7).

https://datatracker.ietf.org/doc/html/rfc5761

Uberti, et al. Expires April 24, 2017 [Page 22]

Internet-Draft JSEP October 2016

4.1.4. createDataChannel

 The createDataChannel method creates a new data channel and attaches
 it to the PeerConnection. If no data channel currently exists for
 this PeerConnection, then a new offer/answer exchange is required.
 All data channels on a given PeerConnection share the same SCTP/DTLS
 association and therefore the same m= section, so subsequent creation
 of data channels does not have any impact on the JSEP state.

 The createDataChannel method also includes a number of arguments
 which are used by the PeerConnection (e.g., maxPacketLifetime) but
 are not reflected in the SDP and do not affect the JSEP state.

4.1.5. createOffer

 The createOffer method generates a blob of SDP that contains a
 [RFC3264] offer with the supported configurations for the session,
 including descriptions of the media added to this PeerConnection, the
 codec/RTP/RTCP options supported by this implementation, and any
 candidates that have been gathered by the ICE Agent. An options
 parameter may be supplied to provide additional control over the
 generated offer. This options parameter allows an application to
 trigger an ICE restart, for the purpose of reestablishing
 connectivity.

 In the initial offer, the generated SDP will contain all desired
 functionality for the session (functionality that is supported but
 not desired by default may be omitted); for each SDP line, the
 generation of the SDP will follow the process defined for generating
 an initial offer from the document that specifies the given SDP line.
 The exact handling of initial offer generation is detailed in

Section 5.2.1 below.

 In the event createOffer is called after the session is established,
 createOffer will generate an offer to modify the current session
 based on any changes that have been made to the session, e.g., adding
 or stopping RtpTransceivers, or requesting an ICE restart. For each
 existing stream, the generation of each SDP line must follow the
 process defined for generating an updated offer from the RFC that
 specifies the given SDP line. For each new stream, the generation of
 the SDP must follow the process of generating an initial offer, as
 mentioned above. If no changes have been made, or for SDP lines that
 are unaffected by the requested changes, the offer will only contain
 the parameters negotiated by the last offer-answer exchange. The
 exact handling of subsequent offer generation is detailed in

Section 5.2.2. below.

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 24, 2017 [Page 23]

Internet-Draft JSEP October 2016

 Session descriptions generated by createOffer must be immediately
 usable by setLocalDescription; if a system has limited resources
 (e.g. a finite number of decoders), createOffer should return an
 offer that reflects the current state of the system, so that
 setLocalDescription will succeed when it attempts to acquire those
 resources. Because this method may need to inspect the system state
 to determine the currently available resources, it may be implemented
 as an async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not result in candidate gathering, or cause
 media to start or stop flowing.

4.1.6. createAnswer

 The createAnswer method generates a blob of SDP that contains a
 [RFC3264] SDP answer with the supported configuration for the session
 that is compatible with the parameters supplied in the most recent
 call to setRemoteDescription, which MUST have been called prior to
 calling createAnswer. Like createOffer, the returned blob contains
 descriptions of the media added to this PeerConnection, the
 codec/RTP/RTCP options negotiated for this session, and any
 candidates that have been gathered by the ICE Agent. An options
 parameter may be supplied to provide additional control over the
 generated answer.

 As an answer, the generated SDP will contain a specific configuration
 that specifies how the media plane should be established; for each
 SDP line, the generation of the SDP must follow the process defined
 for generating an answer from the document that specifies the given
 SDP line. The exact handling of answer generation is detailed in

Section 5.3. below.

 Session descriptions generated by createAnswer must be immediately
 usable by setLocalDescription; like createOffer, the returned
 description should reflect the current state of the system. Because
 this method may need to inspect the system state to determine the
 currently available resources, it may need to be implemented as an
 async operation.

 Calling this method may do things such as generate new ICE
 credentials, but does not trigger candidate gathering or change media
 state.

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 24, 2017 [Page 24]

Internet-Draft JSEP October 2016

4.1.7. SessionDescriptionType

 Session description objects (RTCSessionDescription) may be of type
 "offer", "pranswer", "answer" or "rollback". These types provide
 information as to how the description parameter should be parsed, and
 how the media state should be changed.

 "offer" indicates that a description should be parsed as an offer;
 said description may include many possible media configurations. A
 description used as an "offer" may be applied anytime the
 PeerConnection is in a stable state, or as an update to a previously
 supplied but unanswered "offer".

 "pranswer" indicates that a description should be parsed as an
 answer, but not a final answer, and so should not result in the
 freeing of allocated resources. It may result in the start of media
 transmission, if the answer does not specify an inactive media
 direction. A description used as a "pranswer" may be applied as a
 response to an "offer", or an update to a previously sent "pranswer".

 "answer" indicates that a description should be parsed as an answer,
 the offer-answer exchange should be considered complete, and any
 resources (decoders, candidates) that are no longer needed can be
 released. A description used as an "answer" may be applied as a
 response to an "offer", or an update to a previously sent "pranswer".

 The only difference between a provisional and final answer is that
 the final answer results in the freeing of any unused resources that
 were allocated as a result of the offer. As such, the application
 can use some discretion on whether an answer should be applied as
 provisional or final, and can change the type of the session
 description as needed. For example, in a serial forking scenario, an
 application may receive multiple "final" answers, one from each
 remote endpoint. The application could choose to accept the initial
 answers as provisional answers, and only apply an answer as final
 when it receives one that meets its criteria (e.g. a live user
 instead of voicemail).

 "rollback" is a special session description type implying that the
 state machine should be rolled back to the previous stable state, as
 described in Section 4.1.7.2. The contents MUST be empty.

4.1.7.1. Use of Provisional Answers

 Most web applications will not need to create answers using the
 "pranswer" type. While it is good practice to send an immediate
 response to an "offer", in order to warm up the session transport and
 prevent media clipping, the preferred handling for a web application

Uberti, et al. Expires April 24, 2017 [Page 25]

Internet-Draft JSEP October 2016

 would be to create and send an "inactive" final answer immediately
 after receiving the offer. Later, when the called user actually
 accepts the call, the application can create a new "sendrecv" offer
 to update the previous offer/answer pair and start the media flow.
 While this could also be done with an inactive "pranswer", followed
 by a sendrecv "answer", the initial "pranswer" leaves the offer-
 answer exchange open, which means that neither side can send an
 updated offer during this time.

 As an example, consider a typical web application that will set up a
 data channel, an audio channel, and a video channel. When an
 endpoint receives an offer with these channels, it could send an
 answer accepting the data channel for two-way data, and accepting the
 audio and video tracks as inactive or receive-only. It could then
 ask the user to accept the call, acquire the local media streams, and
 send a new offer to the remote side moving the audio and video to be
 two-way media. By the time the human has accepted the call and
 triggered the new offer, it is likely that the ICE and DTLS
 handshaking for all the channels will already have finished.

 Of course, some applications may not be able to perform this double
 offer-answer exchange, particularly ones that are attempting to
 gateway to legacy signaling protocols. In these cases, "pranswer"
 can still provide the application with a mechanism to warm up the
 transport.

4.1.7.2. Rollback

 In certain situations it may be desirable to "undo" a change made to
 setLocalDescription or setRemoteDescription. Consider a case where a
 call is ongoing, and one side wants to change some of the session
 parameters; that side generates an updated offer and then calls
 setLocalDescription. However, the remote side, either before or
 after setRemoteDescription, decides it does not want to accept the
 new parameters, and sends a reject message back to the offerer. Now,
 the offerer, and possibly the answerer as well, need to return to a
 stable state and the previous local/remote description. To support
 this, we introduce the concept of "rollback".

 A rollback discards any proposed changes to the session, returning
 the state machine to the stable state, and setting the pending local
 and/or remote description back to null. Any resources or candidates
 that were allocated by the abandoned local description are discarded;
 any media that is received will be processed according to the
 previous local and remote descriptions. Rollback can only be used to
 cancel proposed changes; there is no support for rolling back from a
 stable state to a previous stable state. Note that this implies that

Uberti, et al. Expires April 24, 2017 [Page 26]

Internet-Draft JSEP October 2016

 once the answerer has performed setLocalDescription with his answer,
 this cannot be rolled back.

 A rollback will disassociate any RtpTransceivers that were associated
 with m= sections by the application of the rolled-back session
 description (see Section 5.9 and Section 5.8). This means that some
 RtpTransceivers that were previously associated will no longer be
 associated with any m= section; in such cases, the value of the
 RtpTransceiver's mid attribute MUST be set to null. RtpTransceivers
 that were created by applying a remote offer that was subsequently
 rolled back MUST be removed. However, a RtpTransceiver MUST NOT be
 removed if the RtpTransceiver's RtpSender was activated by the
 addTrack method. This is so that an application may call addTrack,
 then call setRemoteDescription with an offer, then roll back that
 offer, then call createOffer and have a m= section for the added
 track appear in the generated offer.

 A rollback is performed by supplying a session description of type
 "rollback" with empty contents to either setLocalDescription or
 setRemoteDescription, depending on which was most recently used (i.e.
 if the new offer was supplied to setLocalDescription, the rollback
 should be done using setLocalDescription as well).

4.1.8. setLocalDescription

 The setLocalDescription method instructs the PeerConnection to apply
 the supplied session description as its local configuration. The
 type field indicates whether the description should be processed as
 an offer, provisional answer, or final answer; offers and answers are
 checked differently, using the various rules that exist for each SDP
 line.

 This API changes the local media state; among other things, it sets
 up local resources for receiving and decoding media. In order to
 successfully handle scenarios where the application wants to offer to
 change from one media format to a different, incompatible format, the
 PeerConnection must be able to simultaneously support use of both the
 current and pending local descriptions (e.g. support codecs that
 exist in both descriptions) until a final answer is received, at
 which point the PeerConnection can fully adopt the pending local
 description, or roll back to the current description if the remote
 side denied the change.

 This API indirectly controls the candidate gathering process. When a
 local description is supplied, and the number of transports currently
 in use does not match the number of transports needed by the local
 description, the PeerConnection will create transports as needed and
 begin gathering candidates for them.

Uberti, et al. Expires April 24, 2017 [Page 27]

Internet-Draft JSEP October 2016

 If setRemoteDescription was previously called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media are available to
 send, this will result in the starting of media transmission.

4.1.9. setRemoteDescription

 The setRemoteDescription method instructs the PeerConnection to apply
 the supplied session description as the desired remote configuration.
 As in setLocalDescription, the type field of the description
 indicates how it should be processed.

 This API changes the local media state; among other things, it sets
 up local resources for sending and encoding media.

 If setLocalDescription was previously called with an offer, and
 setRemoteDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media are available to
 send, this will result in the starting of media transmission.

4.1.10. currentLocalDescription

 The currentLocalDescription method returns a copy of the current
 negotiated local description - i.e., the local description from the
 last successful offer/answer exchange - in addition to any local
 candidates that have been generated by the ICE Agent since the local
 description was set.

 A null object will be returned if an offer/answer exchange has not
 yet been completed.

4.1.11. pendingLocalDescription

 The pendingLocalDescription method returns a copy of the local
 description currently in negotiation - i.e., a local offer set
 without any corresponding remote answer - in addition to any local
 candidates that have been generated by the ICE Agent since the local
 description was set.

 A null object will be returned if the state of the PeerConnection is
 "stable" or "have-remote-offer".

4.1.12. currentRemoteDescription

 The currentRemoteDescription method returns a copy of the current
 negotiated remote description - i.e., the remote description from the
 last successful offer/answer exchange - in addition to any remote

Uberti, et al. Expires April 24, 2017 [Page 28]

Internet-Draft JSEP October 2016

 candidates that have been supplied via processIceMessage since the
 remote description was set.

 A null object will be returned if an offer/answer exchange has not
 yet been completed.

4.1.13. pendingRemoteDescription

 The pendingRemoteDescription method returns a copy of the remote
 description currently in negotiation - i.e., a remote offer set
 without any corresponding local answer - in addition to any remote
 candidates that have been supplied via processIceMessage since the
 remote description was set.

 A null object will be returned if the state of the PeerConnection is
 "stable" or "have-local-offer".

4.1.14. canTrickleIceCandidates

 The canTrickleIceCandidates property indicates whether the remote
 side supports receiving trickled candidates. There are three
 potential values:

 null: No SDP has been received from the other side, so it is not
 known if it can handle trickle. This is the initial value before
 setRemoteDescription() is called.

 true: SDP has been received from the other side indicating that it
 can support trickle.

 false: SDP has been received from the other side indicating that it
 cannot support trickle.

 As described in Section 3.5.2, JSEP implementations always provide
 candidates to the application individually, consistent with what is
 needed for Trickle ICE. However, applications can use the
 canTrickleIceCandidates property to determine whether their peer can
 actually do Trickle ICE, i.e., whether it is safe to send an initial
 offer or answer followed later by candidates as they are gathered.
 As "true" is the only value that definitively indicates remote
 Trickle ICE support, an application which compares
 canTrickleIceCandidates against "true" will by default attempt Half
 Trickle on initial offers and Full Trickle on subsequent interactions
 with a Trickle ICE-compatible agent.

Uberti, et al. Expires April 24, 2017 [Page 29]

Internet-Draft JSEP October 2016

4.1.15. setConfiguration

 The setConfiguration method allows the global configuration of the
 PeerConnection, which was initially set by constructor parameters, to
 be changed during the session. The effects of this method call
 depend on when it is invoked, and differ depending on which specific
 parameters are changed:

 o Any changes to the STUN/TURN servers to use affect the next
 gathering phase. If an ICE gathering phase has already started or
 completed, the 'needs-ice-restart' bit mentioned in Section 3.5.1
 will be set. This will cause the next call to createOffer to
 generate new ICE credentials, for the purpose of forcing an ICE
 restart and kicking off a new gathering phase, in which the new
 servers will be used. If the ICE candidate pool has a nonzero
 size, any existing candidates will be discarded, and new
 candidates will be gathered from the new servers.

 o Any change to the ICE candidate policy affects the next gathering
 phase. If an ICE gathering phase has already started or
 completed, the 'needs-ice-restart' bit will be set. Either way,
 changes to the policy have no effect on the candidate pool,
 because pooled candidates are not surfaced to the application
 until a gathering phase occurs, and so any necessary filtering can
 still be done on any pooled candidates.

 o Any changes to the ICE candidate pool size take effect
 immediately; if increased, additional candidates are pre-gathered;
 if decreased, the now-superfluous candidates are discarded.

 o The bundle and RTCP-multiplexing policies MUST NOT be changed
 after the construction of the PeerConnection.

 This call may result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

4.1.16. addIceCandidate

 The addIceCandidate method provides a remote candidate to the ICE
 Agent, which, if parsed successfully, will be added to the current
 and/or pending remote description according to the rules defined for
 Trickle ICE. The pair of MID and ufrag is used to determine the m=
 section and ICE candidate generation to which the candidate belongs.
 If the MID is not present, the m= line index is used to look up the
 locally generated MID (see Section 5.9), which is used in place of a
 supplied MID. If these values or the candidate string are invalid,
 an error is generated.

Uberti, et al. Expires April 24, 2017 [Page 30]

Internet-Draft JSEP October 2016

 The purpose of the ufrag is to resolve ambiguities when trickle ICE
 is in progress during an ICE restart. If the ufrag is absent, the
 candidate MUST be assumed to belong to the most recently applied
 remote description. Connectivity checks will be sent to the new
 candidate.

 This method can also be used to provide an end-of-candidates
 indication to the ICE Agent, as defined in [I-D.ietf-ice-trickle]).
 The MID and ufrag are used as described above to determine the m=
 section and ICE generation for which candidate gathering is complete.
 If the ufrag is not present, then the end-of-candidates indication
 MUST be assumed to apply to the relevant m= section in the most
 recently applied remote description. If neither the MID nor the m=
 index is present, then the indication MUST be assumed to apply to all
 m= sections in the most recently applied remote description.

 This call will result in a change to the state of the ICE Agent, and
 may result in a change to media state if it results in connectivity
 being established.

4.2. RtpTransceiver

4.2.1. stop

 The stop method stops an RtpTransceiver. This will cause future
 calls to createOffer to generate a zero port for the associated m=
 section. See below for more details.

4.2.2. stopped

 The stopped method returns "true" if the transceiver has been
 stopped, either by a call to stopTransceiver or by applying an answer
 that rejects the associated m= section, and "false" otherwise.

 A stopped RtpTransceiver does not send any outgoing RTP or RTCP or
 process any incoming RTP or RTCP. It cannot be restarted.

4.2.3. setDirection

 The setDirection method sets the direction of a transceiver, which
 affects the direction attribute of the associated m= section on
 future calls to createOffer and createAnswer.

 When creating offers, the transceiver direction is directly reflected
 in the output, even for reoffers. When creating answers, the
 transceiver direction is intersected with the offered direction, as
 explained in the Section 5.3 section below.

Uberti, et al. Expires April 24, 2017 [Page 31]

Internet-Draft JSEP October 2016

4.2.4. setCodecPreferences

 The setCodecPreferences method sets the codec preferences of a
 transceiver, which in turn affect the presence and order of codecs of
 the associated m= section on future calls to createOffer and
 createAnswer. Note that setCodecPreferences does not directly affect
 which codec the implemtation decides to send. It only affects which
 codecs the implementation indicates that it prefers to receive, via
 the offer or answer. Even when a codec is excluded by
 setCodecPreferences, it still may be used to send until the next
 offer/answer exchange discards it.

 The codec preferences of an RtpTransceiver can cause codecs to be
 excluded by subsequent calls to createOffer and createAnswer, in
 which case the corresponding media formats in the associated m=
 section will be excluded. The codec preferences cannot add media
 formats that would otherwise not be present. This includes codecs
 that were not negotiated in a previous offer/answer exchange that
 included the transceiver.

 The codec preferences of an RtpTransceiver can also determine the
 order of codecs in subsequent calls to createOffer and createAnswer,
 in which case the order of the media formats in the associated m=
 section will match. However, the codec preferences cannot change the
 order of the media formats after an answer containing the transceiver
 has been applied. At this point, codecs can only be removed, not
 reordered.

5. SDP Interaction Procedures

 This section describes the specific procedures to be followed when
 creating and parsing SDP objects.

5.1. Requirements Overview

 JSEP implementations must comply with the specifications listed below
 that govern the creation and processing of offers and answers.

 The first set of specifications is the "mandatory-to-implement" set.
 All implementations must support these behaviors, but may not use all
 of them if the remote side, which may not be a JSEP endpoint, does
 not support them.

 The second set of specifications is the "mandatory-to-use" set. The
 local JSEP endpoint and any remote endpoint must indicate support for
 these specifications in their session descriptions.

Uberti, et al. Expires April 24, 2017 [Page 32]

Internet-Draft JSEP October 2016

5.1.1. Implementation Requirements

 This list of mandatory-to-implement specifications is derived from
 the requirements outlined in [I-D.ietf-rtcweb-rtp-usage].

 R-1 [RFC4566] is the base SDP specification and MUST be
 implemented.

 R-2 [RFC5764] MUST be supported for signaling the UDP/TLS/RTP/SAVPF
 [RFC5764], TCP/DTLS/RTP/SAVPF
 [I-D.nandakumar-mmusic-proto-iana-registration], "UDP/DTLS/
 SCTP" [I-D.ietf-mmusic-sctp-sdp], and "TCP/DTLS/SCTP"
 [I-D.ietf-mmusic-sctp-sdp] RTP profiles.

 R-3 [RFC5245] MUST be implemented for signaling the ICE credentials
 and candidate lines corresponding to each media stream. The
 ICE implementation MUST be a Full implementation, not a Lite
 implementation.

 R-4 [RFC5763] MUST be implemented to signal DTLS certificate
 fingerprints.

 R-5 [RFC4568] MUST NOT be implemented to signal SDES SRTP keying
 information.

 R-6 The [RFC5888] grouping framework MUST be implemented for
 signaling grouping information, and MUST be used to identify m=
 lines via the a=mid attribute.

 R-7 [I-D.ietf-mmusic-msid] MUST be supported, in order to signal
 associations between RTP objects and W3C MediaStreams and
 MediaStreamTracks in a standard way.

 R-8 The bundle mechanism in
 [I-D.ietf-mmusic-sdp-bundle-negotiation] MUST be supported to
 signal the ability to multiplex RTP streams on a single UDP
 port, in order to avoid excessive use of port number resources.

 R-9 The SDP attributes of "sendonly", "recvonly", "inactive", and
 "sendrecv" from [RFC4566] MUST be implemented to signal
 information about media direction.

 R-10 [RFC5576] MUST be implemented to signal RTP SSRC values and
 grouping semantics.

 R-11 [RFC4585] MUST be implemented to signal RTCP based feedback.

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc4585

Uberti, et al. Expires April 24, 2017 [Page 33]

Internet-Draft JSEP October 2016

 R-12 [RFC5761] MUST be implemented to signal multiplexing of RTP and
 RTCP.

 R-13 [RFC5506] MUST be implemented to signal reduced-size RTCP
 messages.

 R-14 [RFC4588] MUST be implemented to signal RTX payload type
 associations.

 R-15 [RFC3556] with bandwidth modifiers MAY be supported for
 specifying RTCP bandwidth as a fraction of the media bandwidth,
 RTCP fraction allocated to the senders and setting maximum
 media bit-rate boundaries.

 R-16 TODO: any others?

 As required by [RFC4566], Section 5.13, JSEP implementations MUST
 ignore unknown attribute (a=) lines.

5.1.2. Usage Requirements

 All session descriptions handled by JSEP endpoints, both local and
 remote, MUST indicate support for the following specifications. If
 any of these are absent, this omission MUST be treated as an error.

 R-1 ICE, as specified in [RFC5245], MUST be used. Note that the
 remote endpoint may use a Lite implementation; implementations
 MUST properly handle remote endpoints which do ICE-Lite.

 R-2 DTLS [RFC6347] or DTLS-SRTP [RFC5763], MUST be used, as
 appropriate for the media type, as specified in
 [I-D.ietf-rtcweb-security-arch]

5.1.3. Profile Names and Interoperability

 For media m= sections, JSEP endpoints MUST support both the "UDP/TLS/
 RTP/SAVPF" and "TCP/DTLS/RTP/SAVPF" profiles and MUST indicate one of
 these two profiles for each media m= line they produce in an offer.
 For data m= sections, JSEP endpoints must support both the "UDP/DTLS/
 SCTP" and "TCP/DTLS/SCTP" profiles and MUST indicate one of these two
 profiles for each data m= line they produce in an offer. Because ICE
 can select either TCP or UDP transport depending on network
 conditions, both advertisements are consistent with ICE eventually
 selecting either either UDP or TCP.

 Unfortunately, in an attempt at compatibility, some endpoints
 generate other profile strings even when they mean to support one of
 these profiles. For instance, an endpoint might generate "RTP/AVP"

https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc4566#section-5.13
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5763

Uberti, et al. Expires April 24, 2017 [Page 34]

Internet-Draft JSEP October 2016

 but supply "a=fingerprint" and "a=rtcp-fb" attributes, indicating its
 willingness to support "(UDP,TCP)/TLS/RTP/SAVPF". In order to
 simplify compatibility with such endpoints, JSEP endpoints MUST
 follow the following rules when processing the media m= sections in
 an offer:

 o The profile in any "m=" line in any answer MUST exactly match the
 profile provided in the offer.

 o Any profile matching the following patterns MUST be accepted:
 "RTP/[S]AVP[F]" and "(UDP/TCP)/TLS/RTP/SAVP[F]"

 o Because DTLS-SRTP is REQUIRED, the choice of SAVP or AVP has no
 effect; support for DTLS-SRTP is determined by the presence of one
 or more "a=fingerprint" attribute. Note that lack of an
 "a=fingerprint" attribute will lead to negotiation failure.

 o The use of AVPF or AVP simply controls the timing rules used for
 RTCP feedback. If AVPF is provided, or an "a=rtcp-fb" attribute
 is present, assume AVPF timing, i.e., a default value of "trr-
 int=0". Otherwise, assume that AVPF is being used in an AVP
 compatible mode and use AVP timing, i.e., "trr-int=4".

 o For data m= sections, JSEP endpoints MUST support receiving the
 "UDP/ DTLS/SCTP", "TCP/DTLS/SCTP", or "DTLS/SCTP" (for backwards
 compatibility) profiles.

 Note that re-offers by JSEP endpoints MUST use the correct profile
 strings even if the initial offer/answer exchange used an (incorrect)
 older profile string.

5.2. Constructing an Offer

 When createOffer is called, a new SDP description must be created
 that includes the functionality specified in
 [I-D.ietf-rtcweb-rtp-usage]. The exact details of this process are
 explained below.

5.2.1. Initial Offers

 When createOffer is called for the first time, the result is known as
 the initial offer.

 The first step in generating an initial offer is to generate session-
 level attributes, as specified in [RFC4566], Section 5.
 Specifically:

https://datatracker.ietf.org/doc/html/rfc4566#section-5

Uberti, et al. Expires April 24, 2017 [Page 35]

Internet-Draft JSEP October 2016

 o The first SDP line MUST be "v=0", as specified in [RFC4566],
 Section 5.1

 o The second SDP line MUST be an "o=" line, as specified in
[RFC4566], Section 5.2. The value of the <username> field SHOULD

 be "-". [RFC3264] requires that the <sess-id> be representable as
 a 64-bit signed integer. It is RECOMMENDED that the <sess-id> be
 generated as a 64-bit quantity with the high bit being sent to
 zero and the remaining 63 bits being cryptographically random.
 The value of the <nettype> <addrtype> <unicast-address> tuple
 SHOULD be set to a non-meaningful address, such as IN IP4 0.0.0.0,
 to prevent leaking the local address in this field. As mentioned
 in [RFC4566], the entire o= line needs to be unique, but selecting
 a random number for <sess-id> is sufficient to accomplish this.

 o The third SDP line MUST be a "s=" line, as specified in [RFC4566],
 Section 5.3; to match the "o=" line, a single dash SHOULD be used
 as the session name, e.g. "s=-". Note that this differs from the
 advice in [RFC4566] which proposes a single space, but as both
 "o=" and "s=" are meaningless, having the same meaningless value
 seems clearer.

 o Session Information ("i="), URI ("u="), Email Address ("e="),
 Phone Number ("p="), Bandwidth ("b="), Repeat Times ("r="), and
 Time Zones ("z=") lines are not useful in this context and SHOULD
 NOT be included.

 o Encryption Keys ("k=") lines do not provide sufficient security
 and MUST NOT be included.

 o A "t=" line MUST be added, as specified in [RFC4566], Section 5.9;
 both <start-time> and <stop-time> SHOULD be set to zero, e.g. "t=0
 0".

 o An "a=ice-options" line with the "trickle" option MUST be added,
 as specified in [I-D.ietf-ice-trickle], Section 4.

 The next step is to generate m= sections, as specified in [RFC4566]
 Section 5.14. An m= section is generated for each RtpTransceiver
 that has been added to the PeerConnection. This is done in the order
 that their associated RtpTransceivers were added to the
 PeerConnection and excludes RtpTransceivers that are stopped and not
 associated with an m= section (either due to an m= section being
 recycled or an RtpTransceiver having been stopped before being
 associated with an m= section) .

 Each m= section, provided it is not marked as bundle-only, MUST
 generate a unique set of ICE credentials and gather its own unique

https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566#section-5.3
https://datatracker.ietf.org/doc/html/rfc4566#section-5.3
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566#section-5.9
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14

Uberti, et al. Expires April 24, 2017 [Page 36]

Internet-Draft JSEP October 2016

 set of ICE candidates. Bundle-only m= sections MUST NOT contain any
 ICE credentials and MUST NOT gather any candidates.

 For DTLS, all m= sections MUST use all the certificate(s) that have
 been specified for the PeerConnection; as a result, they MUST all
 have the same [I-D.ietf-mmusic-4572-update] fingerprint value(s), or
 these value(s) MUST be session-level attributes.

 Each m= section should be generated as specified in [RFC4566],
 Section 5.14. For the m= line itself, the following rules MUST be
 followed:

 o The port value is set to the port of the default ICE candidate for
 this m= section, but given that no candidates have yet been
 gathered, the "dummy" port value of 9 (Discard) MUST be used, as
 indicated in [I-D.ietf-ice-trickle], Section 5.1.

 o To properly indicate use of DTLS, the <proto> field MUST be set to
 "UDP/TLS/RTP/SAVPF", as specified in [RFC5764], Section 8, if the
 default candidate uses UDP transport, or "TCP/DTLS/RTP/SAVPF", as
 specified in [I-D.nandakumar-mmusic-proto-iana-registration] if
 the default candidate uses TCP transport.

 o If codec preferences have been set for the associated transceiver,
 media formats MUST be generated in the corresponding order, and
 MUST exclude any codecs not present in the codec preferences.

 o Unless excluded by the above restrictions, the media formats MUST
 include the mandatory audio/video codecs as specified in
 [I-D.ietf-rtcweb-audio](see Section 3) and
 [I-D.ietf-rtcweb-video](see Section 5).

 The m= line MUST be followed immediately by a "c=" line, as specified
 in [RFC4566], Section 5.7. Again, as no candidates have yet been
 gathered, the "c=" line must contain the "dummy" value "IN IP4
 0.0.0.0", as defined in [I-D.ietf-ice-trickle], Section 5.1.

 [I-D.ietf-mmusic-sdp-mux-attributes] groups SDP attributes into
 different categories. To avoid unnecessary duplication when
 bundling, Section 8.1 of [I-D.ietf-mmusic-sdp-bundle-negotiation]
 specifies that attributes of category IDENTICAL or TRANSPORT should
 not be repeated in bundled m= sections.

 The following attributes, which are of a category other than
 IDENTICAL or TRANSPORT, MUST be included in each m= section:

 o An "a=mid" line, as specified in [RFC5888], Section 4. When
 generating mid values, it is RECOMMENDED that the values be 3

https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc5764#section-8
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7
https://datatracker.ietf.org/doc/html/rfc5888#section-4

Uberti, et al. Expires April 24, 2017 [Page 37]

Internet-Draft JSEP October 2016

 bytes or less, to allow them to efficiently fit into the RTP
 header extension defined in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 11.

 o A direction attribute which is the same as that of the associated
 transceiver.

 o For each media format on the m= line, "a=rtpmap" and "a=fmtp"
 lines, as specified in [RFC4566], Section 6, and [RFC3264],
 Section 5.1.

 o If this m= section is for media with configurable frame sizes,
 e.g. audio, an "a=maxptime" line, indicating the smallest of the
 maximum supported frame sizes out of all codecs included above, as
 specified in [RFC4566], Section 6.

 o If this m= section is for video media, and there are known
 limitations on the size of images which can be decoded, an
 "a=imageattr" line, as specified in Section 3.6.

 o For each primary codec where RTP retransmission should be used, a
 corresponding "a=rtpmap" line indicating "rtx" with the clock rate
 of the primary codec and an "a=fmtp" line that references the
 payload type of the primary codec, as specified in [RFC4588],
 Section 8.1.

 o For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,
 as specified in [RFC4566], Section 6. The FEC mechanisms that
 MUST be supported are specified in [I-D.ietf-rtcweb-fec],
 Section 6, and specific usage for each media type is outlined in
 Sections 4 and 5.

 o For each supported RTP header extension, an "a=extmap" line, as
 specified in [RFC5285], Section 5. The list of header extensions
 that SHOULD/MUST be supported is specified in
 [I-D.ietf-rtcweb-rtp-usage], Section 5.2. Any header extensions
 that require encryption MUST be specified as indicated in

[RFC6904], Section 4.

 o For each supported RTCP feedback mechanism, an "a=rtcp-fb"
 mechanism, as specified in [RFC4585], Section 4.2. The list of
 RTCP feedback mechanisms that SHOULD/MUST be supported is
 specified in [I-D.ietf-rtcweb-rtp-usage], Section 5.1.

 o If the bundle policy for this PeerConnection is set to "max-
 bundle", and this is not the first m= section, or the bundle
 policy is set to "balanced", and this is not the first m= section
 for this media type, an "a=bundle-only" line.

https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2

Uberti, et al. Expires April 24, 2017 [Page 38]

Internet-Draft JSEP October 2016

 o If the RtpTransceiver has a sendrecv or sendonly direction:

 * An "a=msid" line, as specified in [I-D.ietf-mmusic-msid],
 Section 2.

 o If the RtpTransceiver has a sendrecv or sendonly direction, and
 the application has specified RID values or has specified more
 than one encoding in the RtpSenders's parameters, an "a=rid" line
 for each encoding specified. The "a=rid" line is specified in
 [I-D.ietf-mmusic-rid], and its direction MUST be "send". If the
 application has chosen a RID value, it MUST be used as the rid-
 identifier; otherwise a RID value MUST be generated by the
 implementation. When generating RID values, it is RECOMMENDED
 that the values be 3 bytes or less, to allow them to efficiently
 fit into the RTP header extension defined in
 [I-D.ietf-avtext-rid], Section 11. If no encodings have been
 specified, or only one encoding is specified but without a RID
 value, then no "a=rid" lines are generated.

 o If the RtpTransceiver has a sendrecv or sendonly direction and
 more than one "a=rid" line has been generated, an "a=simulcast"
 line, with direction "send", as defined in
 [I-D.ietf-mmusic-sdp-simulcast], Section 6.2. The list of RIDs
 MUST include all of the RID identifiers used in the "a=rid" lines
 for this m= section.

 The following attributes, which are of category IDENTICAL or
 TRANSPORT, MUST appear only in "m=" sections which either have a
 unique address or which are associated with the bundle-tag. (In
 initial offers, this means those "m=" sections which do not contain
 an "a=bundle-only" attribute.

 o "a=ice-ufrag" and "a=ice-pwd" lines, as specified in [RFC5245],
 Section 15.4.

 o An "a=fingerprint" line for each of the endpoint's certificates,
 as specified in [RFC4572], Section 5; the digest algorithm used
 for the fingerprint MUST match that used in the certificate
 signature.

 o An "a=setup" line, as specified in [RFC4145], Section 4, and
 clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.
 The role value in the offer MUST be "actpass".

 o An "a=dtls-id" line, as specified in [I-D.ietf-mmusic-dtls-sdp]
Section 5.2.

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5763#section-5

Uberti, et al. Expires April 24, 2017 [Page 39]

Internet-Draft JSEP October 2016

 o An "a=rtcp" line, as specified in [RFC3605], Section 2.1,
 containing the dummy value "9 IN IP4 0.0.0.0", because no
 candidates have yet been gathered.

 o An "a=rtcp-mux" line, as specified in [RFC5761], Section 5.1.1.

 o An "a=rtcp-rsize" line, as specified in [RFC5506], Section 5.

 Lastly, if a data channel has been created, a m= section MUST be
 generated for data. The <media> field MUST be set to "application"
 and the <proto> field MUST be set to "UDP/DTLS/SCTP" if the default
 candidate uses UDP transport, or "TCP/DTLS/SCTP" if the default
 candidate uses TCP transport [I-D.ietf-mmusic-sctp-sdp]. The "fmt"
 value MUST be set to "webrtc-datachannel" as specified in
 [I-D.ietf-mmusic-sctp-sdp], Section 4.1.

 Within the data m= section, the "a=mid", "a=ice-ufrag", "a=ice-pwd",
 "a=fingerprint", "a=dtls-id", and "a=setup" lines MUST be included as
 mentioned above, along with an "a=fmtp:webrtc-datachannel" line and
 an "a=sctp-port" line referencing the SCTP port number as defined in
 [I-D.ietf-mmusic-sctp-sdp], Section 4.1.

 Once all m= sections have been generated, a session-level "a=group"
 attribute MUST be added as specified in [RFC5888]. This attribute
 MUST have semantics "bundle", and MUST include the mid identifiers of
 each m= section. The effect of this is that the browser offers all
 m= sections as one bundle group. However, whether the m= sections
 are bundle-only or not depends on the bundle policy.

 The next step is to generate session-level lip sync groups as defined
 in [RFC5888], Section 7. For each MediaStream referenced by more
 than one RtpTransceiver (by passing those MediaStreams as arguments
 to the addTrack and addTransceiver methods), a group of type "LS"
 MUST be added that contains the mid values for each RtpTransceiver.

 Attributes which SDP permits to either be at the session level or the
 media level SHOULD generally be at the media level even if they are
 identical. This promotes readability, especially if one of a set of
 initially identical attributes is subsequently changed.

 Attributes other than the ones specified above MAY be included,
 except for the following attributes which are specifically
 incompatible with the requirements of [I-D.ietf-rtcweb-rtp-usage],
 and MUST NOT be included:

 o "a=crypto"

 o "a=key-mgmt"

https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc5506#section-5
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc5888#section-7

Uberti, et al. Expires April 24, 2017 [Page 40]

Internet-Draft JSEP October 2016

 o "a=ice-lite"

 Note that when bundle is used, any additional attributes that are
 added MUST follow the advice in [I-D.ietf-mmusic-sdp-mux-attributes]
 on how those attributes interact with bundle.

 Note that these requirements are in some cases stricter than those of
 SDP. Implementations MUST be prepared to accept compliant SDP even
 if it would not conform to the requirements for generating SDP in
 this specification.

5.2.2. Subsequent Offers

 When createOffer is called a second (or later) time, or is called
 after a local description has already been installed, the processing
 is somewhat different than for an initial offer.

 If the initial offer was not applied using setLocalDescription,
 meaning the PeerConnection is still in the "stable" state, the steps
 for generating an initial offer should be followed, subject to the
 following restriction:

 o The fields of the "o=" line MUST stay the same except for the
 <session-version> field, which MUST increment by one on each call
 to createOffer if the offer might differ from the output of the
 previous call to createOffer; implementations MAY opt to increment
 <session-version> on every call. The value of the generated
 <session-version> is independent of the <session-version> of the
 current local description; in particular, in the case where the
 current version is N, an offer is created with version N+1, and
 then that offer is rolled back so that the current version is
 again N, the next generated offer will still have version N+2.

 Note that if the application creates an offer by reading
 currentLocalDescription instead of calling createOffer, the returned
 SDP may be different than when setLocalDescription was originally
 called, due to the addition of gathered ICE candidates, but the
 <session-version> will not have changed. There are no known
 scenarios in which this causes problems, but if this is a concern,
 the solution is simply to use createOffer to ensure a unique
 <session-version>.

 If the initial offer was applied using setLocalDescription, but an
 answer from the remote side has not yet been applied, meaning the
 PeerConnection is still in the "local-offer" state, an offer is
 generated by following the steps in the "stable" state above, along
 with these exceptions:

Uberti, et al. Expires April 24, 2017 [Page 41]

Internet-Draft JSEP October 2016

 o The "s=" and "t=" lines MUST stay the same.

 o If any RtpTransceiver has been added, and there exists an m=
 section with a zero port in the current local description or the
 current remote description, that m= section MUST be recycled by
 generating an m= section for the added RtpTransceiver as if the m=
 section were being added to the session description, placed at the
 same index as the m= section with a zero port.

 o If an RtpTransceiver is stopped and is not associated with an m=
 section, an m= section MUST NOT be generated for it. This
 prevents adding back RtpTransceivers whose m= sections were
 recycled and used for a new RtpTransceiver in a previous offer/
 answer exchange, as described above.

 o If an RtpTransceiver has been stopped and is associated with an m=
 section, and the m= section is not being recycled as described
 above, an m= section MUST be generated for it with the port set to
 zero and the "a=msid" line removed.

 o For RtpTransceivers that are not stopped, the "a=msid" line MUST
 stay the same if they are present in the current description.

 o Each "m=" and c=" line MUST be filled in with the port, protocol,
 and address of the default candidate for the m= section, as
 described in [RFC5245], Section 4.3. If ICE checking has already
 completed for one or more candidate pairs and a candidate pair is
 in active use, then that pair MUST be used, even if ICE has not
 yet completed. Note that this differs from the guidance in

[RFC5245], Section 9.1.2.2, which only refers to offers created
 when ICE has completed. In each case, if no RTP candidates have
 yet been gathered, dummy values MUST be used, as described above.

 o Each "a=mid" line MUST stay the same.

 o Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same, unless
 the ICE configuration has changed (either changes to the supported
 STUN/TURN servers, or the ICE candidate policy), or the
 "IceRestart" option (Section 5.2.3.1 was specified. If the m=
 section is bundled into another m= section, it still MUST NOT
 contain any ICE credentials.

 o If the m= section is not bundled into another m= section, an
 "a=rtcp" attribute line MUST be added with of the default RTCP
 candidate, as indicated in [RFC5761], section 5.1.3.

 o If the m= section is not bundled into another m= section, for each
 candidate that has been gathered during the most recent gathering

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.2.2
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3

Uberti, et al. Expires April 24, 2017 [Page 42]

Internet-Draft JSEP October 2016

 phase (see Section 3.5.1), an "a=candidate" line MUST be added, as
 defined in [RFC5245], Section 4.3., paragraph 3. If candidate
 gathering for the section has completed, an "a=end-of-candidates"
 attribute MUST be added, as described in [I-D.ietf-ice-trickle],
 Section 9.3. If the m= section is bundled into another m=
 section, both "a=candidate" and "a=end-of-candidates" MUST be
 omitted.

 o For RtpTransceivers that are still present, the "a=msid" line MUST
 stay the same.

 o For RtpTransceivers that are still present, the "a=rid" lines MUST
 stay the same.

 o For RtpTransceivers that are still present, any "a=simulcast" line
 MUST stay the same.

 o If any RtpTransceiver has been stopped, the port MUST be set to
 zero and the "a=msid" line MUST be removed.

 o If any RtpTransceiver has been added, and there exists a m=
 section with a zero port in the current local description or the
 current remote description, that m= section MUST be recycled by
 generating a m= section for the added RtpTransceiver as if the m=
 section were being added to session description, except that
 instead of adding it, the generated m= section replaces the m=
 section with a zero port.

 If the initial offer was applied using setLocalDescription, and an
 answer from the remote side has been applied using
 setRemoteDescription, meaning the PeerConnection is in the "remote-
 pranswer" or "stable" states, an offer is generated based on the
 negotiated session descriptions by following the steps mentioned for
 the "local-offer" state above.

 In addition, for each non-recycled, non-rejected m= section in the
 new offer, the following adjustments are made based on the contents
 of the corresponding m= section in the current remote description:

 o The m= line and corresponding "a=rtpmap" and "a=fmtp" lines MUST
 only include codecs present in the most recent answer which have
 not been excluded by the codec preferences of the associated
 transceiver.

 o The media formats on the m= line MUST be generated in the same
 order as in the current local description.

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3

Uberti, et al. Expires April 24, 2017 [Page 43]

Internet-Draft JSEP October 2016

 o The RTP header extensions MUST only include those that are present
 in the most recent answer.

 o The RTCP feedback extensions MUST only include those that are
 present in the most recent answer.

 o The "a=rtcp" line MUST only be added if the most recent answer did
 not include an "a=rtcp-mux" line.

 o The "a=rtcp-mux" line MUST only be added if present in the most
 recent answer.

 o The "a=rtcp-mux-only" line MUST only be added if present in the
 most recent answer.

 o The "a=rtcp-rsize" line MUST only be added if present in the most
 recent answer.

 The "a=group:BUNDLE" attribute MUST include the mid identifiers
 specified in the bundle group in the most recent answer, minus any m=
 sections that have been marked as rejected, plus any newly added or
 re-enabled m= sections. In other words, the bundle attribute must
 contain all m= sections that were previously bundled, as long as they
 are still alive, as well as any new m= sections.

 The "LS" groups are generated in the same way as with initial offers.

5.2.3. Options Handling

 The createOffer method takes as a parameter an RTCOfferOptions
 object. Special processing is performed when generating a SDP
 description if the following options are present.

5.2.3.1. IceRestart

 If the "IceRestart" option is specified, with a value of "true", the
 offer MUST indicate an ICE restart by generating new ICE ufrag and
 pwd attributes, as specified in [RFC5245], Section 9.1.1.1. If this
 option is specified on an initial offer, it has no effect (since a
 new ICE ufrag and pwd are already generated). Similarly, if the ICE
 configuration has changed, this option has no effect, since new ufrag
 and pwd attributes will be generated automatically. This option is
 primarily useful for reestablishing connectivity in cases where
 failures are detected by the application.

https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1

Uberti, et al. Expires April 24, 2017 [Page 44]

Internet-Draft JSEP October 2016

5.2.3.2. VoiceActivityDetection

 If the "VoiceActivityDetection" option is specified, with a value of
 "true", the offer MUST indicate support for silence suppression in
 the audio it receives by including comfort noise ("CN") codecs for
 each offered audio codec, as specified in [RFC3389], Section 5.1,
 except for codecs that have their own internal silence suppression
 support. For codecs that have their own internal silence suppression
 support, the appropriate fmtp parameters for that codec MUST be
 specified to indicate that silence suppression for received audio is
 desired. For example, when using the Opus codec, the "usedtx=1"
 parameter would be specified in the offer. This option allows the
 endpoint to significantly reduce the amount of audio bandwidth it
 receives, at the cost of some fidelity, depending on the quality of
 the remote VAD algorithm.

 If the "VoiceActivityDetection" option is specified, with a value of
 "false", the browser MUST NOT emit "CN" codecs. For codecs that have
 their own internal silence suppression support, the appropriate fmtp
 parameters for that codec MUST be specified to indicate that silence
 suppression for received audio is not desired. For example, when
 using the Opus codec, the "usedtx=0" parameter would be specified in
 the offer.

 Note that setting the "VoiceActivityDetection" parameter when
 generating an offer is a request to receive audio with silence
 suppression. It has no impact on whether the local endpoint does
 silence suppression for the audio it sends.

 The "VoiceActivityDetection" option does not have any impact on the
 setting of the "vad" value in the signaling of the client to mixer
 audio level header extension described in [RFC6464], Section 4.

5.3. Generating an Answer

 When createAnswer is called, a new SDP description must be created
 that is compatible with the supplied remote description as well as
 the requirements specified in [I-D.ietf-rtcweb-rtp-usage]. The exact
 details of this process are explained below.

5.3.1. Initial Answers

 When createAnswer is called for the first time after a remote
 description has been provided, the result is known as the initial
 answer. If no remote description has been installed, an answer
 cannot be generated, and an error MUST be returned.

https://datatracker.ietf.org/doc/html/rfc3389#section-5.1
https://datatracker.ietf.org/doc/html/rfc6464#section-4

Uberti, et al. Expires April 24, 2017 [Page 45]

Internet-Draft JSEP October 2016

 Note that the remote description SDP may not have been created by a
 JSEP endpoint and may not conform to all the requirements listed in

Section 5.2. For many cases, this is not a problem. However, if any
 mandatory SDP attributes are missing, or functionality listed as
 mandatory-to-use above is not present, this MUST be treated as an
 error, and MUST cause the affected m= sections to be marked as
 rejected.

 The first step in generating an initial answer is to generate
 session-level attributes. The process here is identical to that
 indicated in the Initial Offers section above, except that the
 "a=ice-options" line, with the "trickle" option as specified in
 [I-D.ietf-ice-trickle], Section 4, is only included if such an option
 was present in the offer.

 The next step is to generate session-level lip sync groups as defined
 in [RFC5888], Section 7. For each group of type "LS" present in the
 offer, determine which of the local RtpTransceivers identified by
 that group's mid values reference a common local MediaStream (as
 specified in the addTrack and addTransceiver methods). If at least
 two such RtpTransceivers exist, a group of type "LS" with the mid
 values of these RtpTransceivers MUST be added. Otherwise, this
 indicates a difference of opinion between the offerer and answerer
 regarding lip sync status, and as such, the offered group MUST be
 ignored and no corresponding "LS" group generated.

 The next step is to generate m= sections for each m= section that is
 present in the remote offer, as specified in [RFC3264], Section 6.
 For the purposes of this discussion, any session-level attributes in
 the offer that are also valid as media-level attributes SHALL be
 considered to be present in each m= section.

 The next step is to go through each offered m= section. Each offered
 m= section will have an associated RtpTransceiver, as described in

Section 5.9. If there are more RtpTransceivers than there are m=
 sections, the unmatched RtpTransceivers will need to be associated in
 a subsequent offer.

 For each offered m= section, if any of the following conditions are
 true, the corresponding m= section in the answer MUST be marked as
 rejected by setting the port in the m= line to zero, as indicated in

[RFC3264], Section 6., and further processing for this m= section can
 be skipped:

 o The associated RtpTransceiver has been stopped.

 o No supported codec is present in the offer.

https://datatracker.ietf.org/doc/html/rfc5888#section-7
https://datatracker.ietf.org/doc/html/rfc3264#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6

Uberti, et al. Expires April 24, 2017 [Page 46]

Internet-Draft JSEP October 2016

 o The bundle policy is "max-bundle", and this is not the first m=
 section or in the same bundle group as the first m= section.

 o The bundle policy is "balanced", and this is not the first m=
 section for this media type or in the same bundle group as the
 first m= section for this media type.

 o The RTP/RTCP multiplexing policy is "require" and the m= section
 doesn't contain an "a=rtcp-mux" attribute.

 Otherwise, each m= section in the answer should then be generated as
 specified in [RFC3264], Section 6.1. For the m= line itself, the
 following rules must be followed:

 o The port value would normally be set to the port of the default
 ICE candidate for this m= section, but given that no candidates
 have yet been gathered, the "dummy" port value of 9 (Discard) MUST
 be used, as indicated in [I-D.ietf-ice-trickle], Section 5.1.

 o The <proto> field MUST be set to exactly match the <proto> field
 for the corresponding m= line in the offer.

 o If codec preferences have been set for the associated transceiver,
 media formats MUST be generated in the corresponding order, and
 MUST exclude any codecs not present in the codec preferences or
 not present in the offer.

 o Unless excluded by the above restrictions, the media formats MUST
 include the mandatory audio/video codecs as specified in
 [I-D.ietf-rtcweb-audio](see Section 3) and
 [I-D.ietf-rtcweb-video](see Section 5).

 The m= line MUST be followed immediately by a "c=" line, as specified
 in [RFC4566], Section 5.7. Again, as no candidates have yet been
 gathered, the "c=" line must contain the "dummy" value "IN IP4
 0.0.0.0", as defined in [I-D.ietf-ice-trickle], Section 5.1.

 If the offer supports bundle, all m= sections to be bundled must use
 the same ICE credentials and candidates; all m= sections not being
 bundled must use unique ICE credentials and candidates. Each m=
 section MUST contain the following attributes (which are of attribute
 types other than IDENTICAL and TRANSPORT):

 o If and only if present in the offer, an "a=mid" line, as specified
 in [RFC5888], Section 9.1. The "mid" value MUST match that
 specified in the offer.

https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7
https://datatracker.ietf.org/doc/html/rfc5888#section-9.1

Uberti, et al. Expires April 24, 2017 [Page 47]

Internet-Draft JSEP October 2016

 o A direction attribute, determined by applying the rules regarding
 the offered direction specified in [RFC3264], Section 6.1, and
 then intersecting with the direction of the associated
 RtpTransceiver. For example, in the case where an m= section is
 offered as "sendonly", and the local transceiver is set to
 "sendrecv", the result in the answer is a "recvonly" direction.

 o For each media format on the m= line, "a=rtpmap" and "a=fmtp"
 lines, as specified in [RFC4566], Section 6, and [RFC3264],
 Section 6.1.

 o If this m= section is for media with configurable frame sizes,
 e.g. audio, an "a=maxptime" line, indicating the smallest of the
 maximum supported frame sizes out of all codecs included above, as
 specified in [RFC4566], Section 6.

 o If this m= section is for video media, and there are known
 limitations on the size of images which can be decoded, an
 "a=imageattr" line, as specified in Section 3.6.

 o If "rtx" is present in the offer, for each primary codec where RTP
 retransmission should be used, a corresponding "a=rtpmap" line
 indicating "rtx" with the clock rate of the primary codec and an
 "a=fmtp" line that references the payload type of the primary
 codec, as specified in [RFC4588], Section 8.1.

 o For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,
 as specified in [RFC4566], Section 6. The FEC mechanisms that
 MUST be supported are specified in [I-D.ietf-rtcweb-fec],
 Section 6, and specific usage for each media type is outlined in
 Sections 4 and 5.

 o For each supported RTP header extension that is present in the
 offer, an "a=extmap" line, as specified in [RFC5285], Section 5.
 The list of header extensions that SHOULD/MUST be supported is
 specified in [I-D.ietf-rtcweb-rtp-usage], Section 5.2. Any header
 extensions that require encryption MUST be specified as indicated
 in [RFC6904], Section 4.

 o For each supported RTCP feedback mechanism that is present in the
 offer, an "a=rtcp-fb" mechanism, as specified in [RFC4585],
 Section 4.2. The list of RTCP feedback mechanisms that SHOULD/
 MUST be supported is specified in [I-D.ietf-rtcweb-rtp-usage],
 Section 5.1.

 o If the RtpTransceiver has a sendrecv or sendonly direction:

https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2

Uberti, et al. Expires April 24, 2017 [Page 48]

Internet-Draft JSEP October 2016

 * An "a=msid" line, as specified in [I-D.ietf-mmusic-msid],
 Section 2.

 Each m= section which is not bundled into another m= section, MUST
 contain the following attributes (which are of category IDENTICAL or
 TRANSPORT):

 o "a=ice-ufrag" and "a=ice-pwd" lines, as specified in [RFC5245],
 Section 15.4.

 o An "a=fingerprint" line for each of the endpoint's certificates,
 as specified in [RFC4572], Section 5; the digest algorithm used
 for the fingerprint MUST match that used in the certificate
 signature.

 o An "a=setup" line, as specified in [RFC4145], Section 4, and
 clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.
 The role value in the answer MUST be "active" or "passive"; the
 "active" role is RECOMMENDED. The role value MUST be consistent
 with the existing DTLS connection, if one exists and is being
 continued.

 o An "a=dtls-id" line, as specified in [I-D.ietf-mmusic-dtls-sdp]
Section 5.3.

 o If present in the offer, an "a=rtcp-mux" line, as specified in
[RFC5761], Section 5.1.1. Otherwise, an "a=rtcp" line, as

 specified in [RFC3605], Section 2.1, containing the dummy value "9
 IN IP4 0.0.0.0" (because no candidates have yet been gathered).

 o If present in the offer, an "a=rtcp-rsize" line, as specified in
[RFC5506], Section 5.

 If a data channel m= section has been offered, a m= section MUST also
 be generated for data. The <media> field MUST be set to
 "application" and the <proto> and "fmt" fields MUST be set to exactly
 match the fields in the offer.

 Within the data m= section, the "a=mid", "a=ice-ufrag", "a=ice-pwd",
 "a=candidate", "a=fingerprint", "a=dtls-id", and "a=setup" lines MUST
 be included under the conditions described above, along with an
 "a=fmtp:webrtc-datachannel" line and an "a=sctp-port" line
 referencing the SCTP port number as defined in
 [I-D.ietf-mmusic-sctp-sdp], Section 4.1.

 If "a=group" attributes with semantics of "BUNDLE" are offered,
 corresponding session-level "a=group" attributes MUST be added as
 specified in [RFC5888]. These attributes MUST have semantics

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5763#section-5
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc5506#section-5
https://datatracker.ietf.org/doc/html/rfc5888

Uberti, et al. Expires April 24, 2017 [Page 49]

Internet-Draft JSEP October 2016

 "BUNDLE", and MUST include the all mid identifiers from the offered
 bundle groups that have not been rejected. Note that regardless of
 the presence of "a=bundle-only" in the offer, no m= sections in the
 answer should have an "a=bundle-only" line.

 Attributes that are common between all m= sections MAY be moved to
 session-level, if explicitly defined to be valid at session-level.

 The attributes prohibited in the creation of offers are also
 prohibited in the creation of answers.

5.3.2. Subsequent Answers

 When createAnswer is called a second (or later) time, or is called
 after a local description has already been installed, the processing
 is somewhat different than for an initial answer.

 If the initial answer was not applied using setLocalDescription,
 meaning the PeerConnection is still in the "have-remote-offer" state,
 the steps for generating an initial answer should be followed,
 subject to the following restriction:

 o The fields of the "o=" line MUST stay the same except for the
 <session-version> field, which MUST increment if the session
 description changes in any way from the previously generated
 answer.

 If any session description was previously supplied to
 setLocalDescription, an answer is generated by following the steps in
 the "have-remote-offer" state above, along with these exceptions:

 o The "s=" and "t=" lines MUST stay the same.

 o Each "m=" and c=" line MUST be filled in with the port and address
 of the default candidate for the m= section, as described in

[RFC5245], Section 4.3. Note, however, that the m= line protocol
 need not match the default candidate, because this protocol value
 must instead match what was supplied in the offer, as described
 above.

 o The media formats on the m= line MUST be generated in the same
 order as in the current local description.

 o Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same, unless
 the m= section is restarting, in which case new ICE credentials
 must be created as specified in [RFC5245], Section 9.2.1.1. If
 the m= section is bundled into another m= section, it still MUST
 NOT contain any ICE credentials.

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-9.2.1.1

Uberti, et al. Expires April 24, 2017 [Page 50]

Internet-Draft JSEP October 2016

 o If the m= section is not bundled into another m= section and RTCP
 multiplexing is not active, an "a=rtcp" attribute line MUST be
 filled in with the port and address of the default RTCP candidate.
 If no RTCP candidates have yet been gathered, dummy values MUST be
 used, as described in the initial answer section above.

 o If the m= section is not bundled into another m= section, for each
 candidate that has been gathered during the most recent gathering
 phase (see Section 3.5.1), an "a=candidate" line MUST be added, as
 defined in [RFC5245], Section 4.3., paragraph 3. If candidate
 gathering for the section has completed, an "a=end-of-candidates"
 attribute MUST be added, as described in [I-D.ietf-ice-trickle],
 Section 9.3. If the m= section is bundled into another m=
 section, both "a=candidate" and "a=end-of-candidates" MUST be
 omitted.

 o For RtpTransceivers that are not stopped, the "a=msid" line MUST
 stay the same.

5.3.3. Options Handling

 The createAnswer method takes as a parameter an RTCAnswerOptions
 object. The set of parameters for RTCAnswerOptions is different than
 those supported in RTCOfferOptions; the IceRestart option is
 unnecessary, as ICE credentials will automatically be changed for all
 m= lines where the offerer chose to perform ICE restart.

 The following options are supported in RTCAnswerOptions.

5.3.3.1. VoiceActivityDetection

 Silence suppression in the answer is handled as described in
Section 5.2.3.2, with one exception: if support for silence

 suppression was not indicated in the offer, the
 VoiceActivityDetection parameter has no effect, and the answer should
 be generated as if VoiceActivityDetection was set to false. This is
 done on a per-codec basis (e.g., if the offerer somehow offered
 support for CN but set "usedtx=0" for Opus, setting
 VoiceActivityDetection to true would result in an answer with CN
 codecs and "usedtx=0").

5.4. Modifying an Offer or Answer

 The SDP returned from createOffer or createAnswer MUST NOT be changed
 before passing it to setLocalDescription. If precise control over
 the SDP is needed, the aformentioned createOffer/createAnswer options
 or RTPSender APIs MUST be used.

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3

Uberti, et al. Expires April 24, 2017 [Page 51]

Internet-Draft JSEP October 2016

 Note that the application MAY modify the SDP to reduce the
 capabilities in the offer it sends to the far side (post-
 setLocalDescription) or the offer that it installs from the far side
 (pre-setRemoteDescription), as long as it remains a valid SDP offer
 and specifies a subset of what was in the original offer. This is
 safe because the answer is not permitted to expand capabilities, and
 therefore will just respond to what is present in the offer.

 The application SHOULD NOT modify the SDP in the answer it transmits,
 as the answer contains the negotiated capabilities, and this can
 cause the two sides to have different ideas about what exactly was
 negotiated.

 As always, the application is solely responsible for what it sends to
 the other party, and all incoming SDP will be processed by the
 browser to the extent of its capabilities. It is an error to assume
 that all SDP is well-formed; however, one should be able to assume
 that any implementation of this specification will be able to
 process, as a remote offer or answer, unmodified SDP coming from any
 other implementation of this specification.

5.5. Processing a Local Description

 When a SessionDescription is supplied to setLocalDescription, the
 following steps MUST be performed:

 o First, the type of the SessionDescription is checked against the
 current state of the PeerConnection:

 * If the type is "offer", the PeerConnection state MUST be either
 "stable" or "have-local-offer".

 * If the type is "pranswer" or "answer", the PeerConnection state
 MUST be either "have-remote-offer" or "have-local-pranswer".

 o If the type is not correct for the current state, processing MUST
 stop and an error MUST be returned.

 o Next, the SessionDescription is parsed into a data structure, as
 described in the Section 5.7 section below. If parsing fails for
 any reason, processing MUST stop and an error MUST be returned.

 o Finally, the parsed SessionDescription is applied as described in
 the Section 5.8 section below.

Uberti, et al. Expires April 24, 2017 [Page 52]

Internet-Draft JSEP October 2016

5.6. Processing a Remote Description

 When a SessionDescription is supplied to setRemoteDescription, the
 following steps MUST be performed:

 o First, the type of the SessionDescription is checked against the
 current state of the PeerConnection:

 * If the type is "offer", the PeerConnection state MUST be either
 "stable" or "have-remote-offer".

 * If the type is "pranswer" or "answer", the PeerConnection state
 MUST be either "have-local-offer" or "have-remote-pranswer".

 o If the type is not correct for the current state, processing MUST
 stop and an error MUST be returned.

 o Next, the SessionDescription is parsed into a data structure, as
 described in the Section 5.7 section below. If parsing fails for
 any reason, processing MUST stop and an error MUST be returned.

 o Finally, the parsed SessionDescription is applied as described in
 the Section 5.9 section below.

5.7. Parsing a Session Description

 When a SessionDescription of any type is supplied to setLocal/
 RemoteDescription, the implementation must parse it and reject it if
 it is invalid. The exact details of this process are explained
 below.

 The SDP contained in the session description object consists of a
 sequence of text lines, each containing a key-value expression, as
 described in [RFC4566], Section 5. The SDP is read, line-by-line,
 and converted to a data structure that contains the deserialized
 information. However, SDP allows many types of lines, not all of
 which are relevant to JSEP applications. For each line, the
 implementation will first ensure it is syntactically correct
 according to its defining ABNF, check that it conforms to [RFC4566]
 and [RFC3264] semantics, and then either parse and store or discard
 the provided value, as described below.

 If any line is not well-formed, or cannot be parsed as described, the
 parser MUST stop with an error and reject the session description,
 even if the value is to be discarded. This ensures that
 implementations do not accidentally misinterpret ambiguous SDP.

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 24, 2017 [Page 53]

Internet-Draft JSEP October 2016

5.7.1. Session-Level Parsing

 First, the session-level lines are checked and parsed. These lines
 MUST occur in a specific order, and with a specific syntax, as
 defined in [RFC4566], Section 5. Note that while the specific line
 types (e.g. "v=", "c=") MUST occur in the defined order, lines of the
 same type (typically "a=") can occur in any order, and their ordering
 is not meaningful.

 The following non-attribute lines are not meaningful in the JSEP
 context and MAY be discarded once they have been checked.

 The "c=" line MUST be checked for syntax but its value is not
 used. This supersedes the guidance in [RFC5245], Section 6.1, to
 use "ice-mismatch" to indicate mismatches between "c=" and the
 candidate lines; because JSEP always uses ICE, "ice-mismatch" is
 not useful in this context.

 The "i=", "u=", "e=", "p=", "t=", "r=", "z=", and "k=" lines are
 not used by this specification; they MUST be checked for syntax
 but their values are not used.

 The remaining non-attribute lines are processed as follows:

 The "v=" line MUST have a version of 0, as specified in [RFC4566],
 Section 5.1.

 The "o=" line MUST be parsed as specified in [RFC4566],
 Section 5.2.

 The "b=" line, if present, MUST be parsed as specified in
[RFC4566], Section 5.8, and the bwtype and bandwidth values

 stored.

 Finally, the attribute lines are processed. Specific processing MUST
 be applied for the following session-level attribute ("a=") lines:

 o Any "a=group" lines are parsed as specified in [RFC5888],
 Section 5, and the group's semantics and mids are stored.

 o If present, a single "a=ice-lite" line is parsed as specified in
[RFC5245], Section 15.3, and a value indicating the presence of

 ice-lite is stored.

 o If present, a single "a=ice-ufrag" line is parsed as specified in
[RFC5245], Section 15.4, and the ufrag value is stored.

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc5245#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc4566#section-5.8
https://datatracker.ietf.org/doc/html/rfc5888#section-5
https://datatracker.ietf.org/doc/html/rfc5888#section-5
https://datatracker.ietf.org/doc/html/rfc5245#section-15.3
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4

Uberti, et al. Expires April 24, 2017 [Page 54]

Internet-Draft JSEP October 2016

 o If present, a single "a=ice-pwd" line is parsed as specified in
[RFC5245], Section 15.4, and the password value is stored.

 o If present, a single "a=ice-options" line is parsed as specified
 in [RFC5245], Section 15.5, and the set of specified options is
 stored.

 o Any "a=fingerprint" lines are parsed as specified in [RFC4572],
 Section 5, and the set of fingerprint and algorithm values is
 stored.

 o If present, a single "a=setup" line is parsed as specified in
[RFC4145], Section 4, and the setup value is stored.

 o If present, a single "a=dtls-id" line is parsed as specified in
 [I-D.ietf-mmusic-dtls-sdp] Section 5, and the dtls-id value is
 stored.

 o Any "a=extmap" lines are parsed as specified in [RFC5285],
 Section 5, and their values are stored.

 Once all the session-level lines have been parsed, processing
 continues with the lines in media sections.

5.7.2. Media Section Parsing

 Like the session-level lines, the media session lines MUST occur in
 the specific order and with the specific syntax defined in [RFC4566],
 Section 5.

 The "m=" line itself MUST be parsed as described in [RFC4566],
 Section 5.14, and the media, port, proto, and fmt values stored.

 Following the "m=" line, specific processing MUST be applied for the
 following non-attribute lines:

 o As with the "c=" line at the session level, the "c=" line MUST be
 parsed according to [RFC4566], Section 5.7, but its value is not
 used.

 o The "b=" line, if present, MUST be parsed as specified in
[RFC4566], Section 5.8, and the bwtype and bandwidth values

 stored.

 Specific processing MUST also be applied for the following attribute
 lines:

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7
https://datatracker.ietf.org/doc/html/rfc4566#section-5.8

Uberti, et al. Expires April 24, 2017 [Page 55]

Internet-Draft JSEP October 2016

 o If present, a single "a=ice-ufrag" line is parsed as specified in
[RFC5245], Section 15.4, and the ufrag value is stored.

 o If present, a single "a=ice-pwd" line is parsed as specified in
[RFC5245], Section 15.4, and the password value is stored.

 o If present, a single "a=ice-options" line is parsed as specified
 in [RFC5245], Section 15.5, and the set of specified options is
 stored.

 o Any "a=candidate" attributes MUST be parsed as specified in
[RFC5245], Section 15.1, and their values stored.

 o Any "a=remote-candidates" attributes MUST be parsed as specified
 in [RFC5245], Section 15.2, but their values are ignored.

 o If present, a single "a=end-of-candidates" attribute MUST be
 parsed as specified in [I-D.ietf-ice-trickle], Section 8.2, and
 its presence or absence flagged and stored.

 o Any "a=fingerprint" lines are parsed as specified in [RFC4572],
 Section 5, and the set of fingerprint and algorithm values is
 stored.

 If the "m=" proto value indicates use of RTP, as described in the
Section 5.1.3 section above, the following attribute lines MUST be

 processed:

 o The "m=" fmt value MUST be parsed as specified in [RFC4566],
 Section 5.14, and the individual values stored.

 o Any "a=rtpmap" or "a=fmtp" lines MUST be parsed as specified in
[RFC4566], Section 6, and their values stored.

 o If present, a single "a=ptime" line MUST be parsed as described in
[RFC4566], Section 6, and its value stored.

 o If present, a single "a=maxptime" line MUST be parsed as described
 in [RFC4566], Section 6, and its value stored.

 o If present, a single direction attribute line (e.g. "a=sendrecv")
 MUST be parsed as described in [RFC4566], Section 6, and its value
 stored.

 o Any "a=ssrc" or "a=ssrc-group" attributes MUST be parsed as
 specified in [RFC5576], Sections 4.1-4.2, and their values stored.

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc5245#section-15.1
https://datatracker.ietf.org/doc/html/rfc5245#section-15.2
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5576

Uberti, et al. Expires April 24, 2017 [Page 56]

Internet-Draft JSEP October 2016

 o Any "a=extmap" attributes MUST be parsed as specified in
[RFC5285], Section 5, and their values stored.

 o Any "a=rtcp-fb" attributes MUST be parsed as specified in
[RFC4585], Section 4.2., and their values stored.

 o If present, a single "a=rtcp-mux" attribute MUST be parsed as
 specified in [RFC5761], Section 5.1.1, and its presence or absence
 flagged and stored.

 o If present, a single "a=rtcp-mux-only" attribute MUST be parsed as
 specified in [I-D.ietf-mmusic-mux-exclusive], Section 3, and its
 presence or absence flagged and stored.

 o If present, a single "a=rtcp-rsize" attribute MUST be parsed as
 specified in [RFC5506], Section 5, and its presence or absence
 flagged and stored.

 o If present, a single "a=rtcp" attribute MUST be parsed as
 specified in [RFC3605], Section 2.1, but its value is ignored, as
 this information is superfluous when using ICE.

 o If present, a single "a=msid" attribute MUST be parsed as
 specified in [I-D.ietf-mmusic-msid], Section 3.2, and its value
 stored.

 o Any "a=imageattr" attributes MUST be parsed as specified in
[RFC6236], Section 3, and their values stored.

 o Any "a=rid" lines MUST be parsed as specified in
 [I-D.ietf-mmusic-rid], Section 10, and their values stored.

 o If present, a single "a=simulcast" line MUST be parsed as
 specified in [I-D.ietf-mmusic-sdp-simulcast], and its values
 stored.

 Otherwise, if the "m=" proto value indicates use of SCTP, the
 following attribute lines MUST be processed:

 o The "m=" fmt value MUST be parsed as specified in
 [I-D.ietf-mmusic-sctp-sdp], Section 4.3, and the application
 protocol value stored.

 o An "a=sctp-port" attribute MUST be present, and it MUST be parsed
 as specified in [I-D.ietf-mmusic-sctp-sdp], Section 5.2, and the
 value stored.

https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc5506#section-5
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc6236#section-3

Uberti, et al. Expires April 24, 2017 [Page 57]

Internet-Draft JSEP October 2016

 o If present, a single "a=max-message-size" attribute MUST be parsed
 as specified in [I-D.ietf-mmusic-sctp-sdp], Section 6, and the
 value stored. Otherwise, use the specified default.

5.7.3. Semantics Verification

 Assuming parsing completes successfully, the parsed description is
 then evaluated to ensure internal consistency as well as proper
 support for mandatory features. Specifically, the following checks
 are performed:

 o For each m= section, valid values for each of the mandatory-to-use
 features enumerated in Section 5.1.2 MUST be present. These
 values MAY either be present at the media level, or inherited from
 the session level.

 * ICE ufrag and password values, which MUST comply with the size
 limits specified in [RFC5245], Section 15.4.

 * dtls-id value, which MUST be set according to
 [I-D.ietf-mmusic-dtls-sdp] Section 5. If this is a re-offer
 and the dtls-id value is different from that presently in use,
 the DTLS connection is not being continued and the remote
 description MUST be part of an ICE restart, together with new
 ufrag and password values. If this is an answer, the dtls-id
 value, if present, MUST be the same as in the offer.

 * DTLS setup value, which MUST be set according to the rules
 specified in [RFC5763], Section 5 and MUST be consistent with
 the selected role of the current DTLS connection, if one exists
 and is being continued.

 * DTLS fingerprint values, where at least one fingerprint MUST be
 present.

 o All RID values referenced in an "a=simulcast" line MUST exist as
 "a=rid" lines.

 o Each m= section is also checked to ensure prohibited features are
 not used. If this is a local description, the "ice-lite"
 attribute MUST NOT be specified.

 If this session description is of type "pranswer" or "answer", the
 following additional checks are applied:

 o The session description must follow the rules defined in
[RFC3264], Section 6, including the requirement that the number of

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5763#section-5
https://datatracker.ietf.org/doc/html/rfc3264#section-6

Uberti, et al. Expires April 24, 2017 [Page 58]

Internet-Draft JSEP October 2016

 m= sections MUST exactly match the number of m= sections in the
 associated offer.

 o For each m= section, the media type and protocol values MUST
 exactly match the media type and protocol values in the
 corresponding m= section in the associated offer.

5.8. Applying a Local Description

 The following steps are performed at the media engine level to apply
 a local description.

 First, the parsed parameters are checked to ensure that they have not
 been altered after their generation in createOffer/createAnswer, as
 discussed in Section 5.4; otherwise, processing MUST stop and an
 error MUST be returned.

 Next, media sections are processed. For each media section, the
 following steps MUST be performed; if any parameters are out of
 bounds, or cannot be applied, processing MUST stop and an error MUST
 be returned.

 o If this media section is new, begin gathering candidates for it,
 as defined in [RFC5245], Section 4.1.1, unless it has been marked
 as bundle-only.

 o Or, if the ICE ufrag and password values have changed, and it has
 not been marked as bundle-only, trigger the ICE Agent to start an
 ICE restart, and begin gathering new candidates for the media
 section as described in [RFC5245], Section 9.1.1.1. If this
 description is an answer, also start checks on that media section
 as defined in [RFC5245], Section 9.3.1.1.

 o If the media section proto value indicates use of RTP:

 * If there is no RtpTransceiver associated with this m= section
 (which should only happen when applying an offer), find one and
 associate it with this m= section according to the following
 steps:

 + Find the RtpTransceiver that corresponds to the m= section
 with the same MID in the created offer.

 + Set the value of the RtpTransceiver's mid attribute to the
 MID of the m= section.

 * If RTCP mux is indicated, prepare to demux RTP and RTCP from
 the RTP ICE component, as specified in [RFC5761],

https://datatracker.ietf.org/doc/html/rfc5245#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.3.1.1
https://datatracker.ietf.org/doc/html/rfc5761

Uberti, et al. Expires April 24, 2017 [Page 59]

Internet-Draft JSEP October 2016

Section 5.1.1. If RTCP mux is not indicated, but was indicated
 in a previous description, this MUST result in an error.

 * For each specified RTP header extension, establish a mapping
 between the extension ID and URI, as described in section 6 of
 [RFC5285]. If any indicated RTP header extension is not
 supported, this MUST result in an error.

 * If the MID header extension is supported, prepare to demux RTP
 data intended for this media section based on the MID header
 extension, as described in [I-D.ietf-mmusic-msid], Section 3.2.

 * For each specified media format, establish a mapping between
 the payload type and the actual media format, as described in

[RFC3264], Section 6.1. If any indicated media format is not
 supported, this MUST result in an error.

 * For each specified "rtx" media format, establish a mapping
 between the RTX payload type and its associated primary payload
 type, as described in [RFC4588], Sections 8.6 and 8.7. If any
 referenced primary payload types are not present, this MUST
 result in an error.

 * If the directional attribute is of type "sendrecv" or
 "recvonly", enable receipt and decoding of media.

 Finally, if this description is of type "pranswer" or "answer",
 follow the processing defined in the Section 5.10 section below.

5.9. Applying a Remote Description

 If the answer contains any "a=ice-options" attributes where "trickle"
 is listed as an attribute, update the PeerConnection canTrickle
 property to be true. Otherwise, set this property to false.

 The following steps are performed at the media engine level to apply
 a remote description.

 The following steps MUST be performed for attributes at the session
 level; if any parameters are out of bounds, or cannot be applied,
 processing MUST stop and an error MUST be returned.

 o For any specified "CT" bandwidth value, set this as the limit for
 the maximum total bitrate for all m= sections, as specified in

Section 5.8 of [RFC4566]. The implementation can decide how to
 allocate the available bandwidth between m= sections to
 simultaneously meet any limits on individual m= sections, as well
 as this overall session limit.

https://datatracker.ietf.org/doc/html/rfc5285#section-6
https://datatracker.ietf.org/doc/html/rfc5285#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/rfc4566#section-5.8

Uberti, et al. Expires April 24, 2017 [Page 60]

Internet-Draft JSEP October 2016

 o For any specified "RR" or "RS" bandwidth values, handle as
 specified in [RFC3556], Section 2.

 o Any "AS" bandwidth value MUST be ignored, as the meaning of this
 construct at the session level is not well defined.

 For each media section, the following steps MUST be performed; if any
 parameters are out of bounds, or cannot be applied, processing MUST
 stop and an error MUST be returned.

 o If the ICE ufrag or password changed from the previous remote
 description, then an ICE restart is needed, as described in

Section 9.1.1.1 of [RFC5245] If the description is of type
 "offer", mark that an ICE restart is needed. If the description
 is of type "answer" and the current local description is also an
 ICE restart, then signal the ICE agent to begin checks as
 described in Section 9.3.1.1 of [RFC5245]. An answer MUST change
 the ufrag and password in an answer if and only if ICE is
 restarting, as described in Section 9.2.1.1 of [RFC5245].

 o Configure the ICE components associated with this media section to
 use the supplied ICE remote ufrag and password for their
 connectivity checks.

 o Pair any supplied ICE candidates with any gathered local
 candidates, as described in Section 5.7 of [RFC5245] and start
 connectivity checks with the appropriate credentials.

 o If an "a=end-of-candidates" attribute is present, process the end-
 of-candidates indication as described in [I-D.ietf-ice-trickle]

Section 11.

 o If the media section proto value indicates use of RTP:

 * If the m= section is being recycled (see Section 5.2.2),
 dissociate the currently associated RtpTransceiver by setting
 its mid attribute to null.

 * If the m= section is not associated with any RtpTransceiver
 (possibly because it was dissociated in the previous step),
 either find an RtpTransceiver or create one according to the
 following steps:

 + If the m= section is sendrecv or recvonly, and there are
 RtpTransceivers of the same type that were added to the
 PeerConnection by addTrack and are not associated with any
 m= section and are not stopped, find the first (according to

https://datatracker.ietf.org/doc/html/rfc3556#section-2
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.3.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.2.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-5.7

Uberti, et al. Expires April 24, 2017 [Page 61]

Internet-Draft JSEP October 2016

 the canonical order described in Section 5.2.1) such
 RtpTransceiver.

 + If no RtpTransceiver was found in the previous step, create
 one with a recvonly direction.

 + Associate the found or created RtpTransceiver with the m=
 section by setting the value of the RtpTransceiver's mid
 attribute to the MID of the m= section. If the m= section
 does not include a MID (i.e., the remote side does not
 support the MID extension), generate a value for the
 RtpTransceiver mid attribute, following the guidance for
 "a=mid" mentioned in Section 5.2.1.

 * For each specified media format that is also supported by the
 local implementation, establish a mapping between the specified
 payload type and the media format, as described in [RFC3264],
 Section 6.1. Specifically, this means that the implementation
 records the payload type to be used in outgoing RTP packets
 when sending each specified media format, as well as the
 relative preference for each format that is indicated in their
 ordering. If any indicated media format is not supported by
 the local implementation, it MUST be ignored.

 * For each specified "rtx" media format, establish a mapping
 between the RTX payload type and its associated primary payload
 type, as described in [RFC4588], Section 4. If any referenced
 primary payload types are not present, this MUST result in an
 error.

 * For each specified fmtp parameter that is supported by the
 local implementation, enable them on the associated media
 formats.

 * For each specified RTP header extension that is also supported
 by the local implementation, establish a mapping between the
 extension ID and URI, as described in [RFC5285], Section 5.
 Specifically, this means that the implementation records the
 extension ID to be used in outgoing RTP packets when sending
 each specified header extension. If any indicated RTP header
 extension is not supported by the local implementation, it MUST
 be ignored.

 * For each specified RTCP feedback mechanism that is supported by
 the local implementation, enable them on the associated media
 formats.

https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4588#section-4
https://datatracker.ietf.org/doc/html/rfc5285#section-5

Uberti, et al. Expires April 24, 2017 [Page 62]

Internet-Draft JSEP October 2016

 * For any specified "TIAS" bandwidth value, set this value as a
 constraint on the maximum RTP bitrate to be used when sending
 media, as specified in [RFC3890]. If a "TIAS" value is not
 present, but an "AS" value is specified, generate a "TIAS"
 value using this formula:

 TIAS = AS * 1000 * 0.95 - 50 * 40 * 8

 The 50 is based on 50 packets per second, the 40 is based on an
 estimate of total header size, the 1000 changes the unit from
 kbps to bps (as required by TIAS), and the 0.95 is to allocate
 5% to RTCP. If more accurate control of bandwidth is needed,
 "TIAS" should be used instead of "AS".

 * For any "RR" or "RS" bandwidth values, handle as specified in
[RFC3556], Section 2.

 * Any specified "CT" bandwidth value MUST be ignored, as the
 meaning of this construct at the media level is not well
 defined.

 * If the media section is of type audio:

 + For each specified "CN" media format, enable DTX for all
 supported media formats with the same clockrate, as
 described in [RFC3389], Section 5, except for formats that
 have their own internal DTX mechanisms. DTX for such
 formats (e.g., Opus) is controlled via fmtp parameters, as
 discussed in Section 5.2.3.2.

 + For each specified "telephone-event" media format, enable
 DTMF transmission for all supported media formats with the
 same clockrate, as described in [RFC4733], Section 2.5.1.2.
 If the application attempts to transmit DTMF when using a
 media format that does not have a corresponding telephone-
 event format, this MUST result in an error.

 + For any specified "ptime" value, configure the available
 media formats to use the specified packet size. If the
 specified size is not supported for a media format, use the
 next closest value instead.

 Finally, if this description is of type "pranswer" or "answer",
 follow the processing defined in the Section 5.10 section below.

https://datatracker.ietf.org/doc/html/rfc3890
https://datatracker.ietf.org/doc/html/rfc3556#section-2
https://datatracker.ietf.org/doc/html/rfc3389#section-5
https://datatracker.ietf.org/doc/html/rfc4733#section-2.5.1.2

Uberti, et al. Expires April 24, 2017 [Page 63]

Internet-Draft JSEP October 2016

5.10. Applying an Answer

 In addition to the steps mentioned above for processing a local or
 remote description, the following steps are performed when processing
 a description of type "pranswer" or "answer".

 For each media section, the following steps MUST be performed:

 o If the media section has been rejected (i.e. port is set to zero
 in the answer), stop any reception or transmission of media for
 this section, and discard any associated ICE components, as
 described in Section 9.2.1.3 of [RFC5245].

 o If the remote DTLS fingerprint has been changed or the dtls-id has
 changed, tear down the DTLS connection. If a DTLS connection
 needs to be torn down but the answer does not indicate an ICE
 restart, an error MUST be generated. If an ICE restart is
 performed without a change in dtls-id or fingerprint, then the
 same DTLS connection is continued over the new ICE channel.

 o If no valid DTLS connection exists, prepare to start a DTLS
 connection, using the specified roles and fingerprints, on any
 underlying ICE components, once they are active.

 o If the media section proto value indicates use of RTP:

 * If the media section references any media formats, RTP header
 extensions, or RTCP feedback mechanisms that were not present
 in the corresponding media section in the offer, this indicates
 a negotiation problem and MUST result in an error.

 * If the media section has RTCP mux enabled, discard any RTCP
 component, and begin or continue muxing RTCP over the RTP
 component, as specified in [RFC5761], Section 5.1.3.
 Otherwise, prepare to transmit RTCP over the RTCP component; if
 no RTCP component exists, because RTCP mux was previously
 enabled, this MUST result in an error.

 * If the media section has reduced-size RTCP enabled, configure
 the RTCP transmission for this media section to use reduced-
 size RTCP, as specified in [RFC5506].

 * If the directional attribute in the answer is of type
 "sendrecv" or "sendonly", choose the media format to send as
 the most preferred media format from the remote description
 that is also present in the answer, as described in [RFC3264],
 Sections 6.1 and 7, and start transmitting RTP media once the
 underlying transport layers have been established. If a SSRC

https://datatracker.ietf.org/doc/html/rfc5245#section-9.2.1.3
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 24, 2017 [Page 64]

Internet-Draft JSEP October 2016

 has not already been chosen for this outgoing RTP stream,
 choose a random one.

 * The payload type mapping from the remote description is used to
 determine payload types for the outgoing RTP streams, including
 the payload type for the send media format chosen above. Any
 RTP header extensions that were negotiated should be included
 in the outgoing RTP streams, using the extension mapping from
 the remote description; if the RID header extension has been
 negotiated, and RID values are specified, include the RID
 header extension in the outgoing RTP streams, as indicated in
 [I-D.ietf-mmusic-rid], Section 4.

 * If simulcast has been negotiated, send the number of Source RTP
 Streams as specified in [I-D.ietf-mmusic-sdp-simulcast],
 Section 6.2.2.

 * If the send media format chosen above has a corresponding "rtx"
 media format, or a FEC mechanism has been negotiated, establish
 a Redundancy RTP Stream with a random SSRC for each Source RTP
 Stream, and start or continue transmitting RTX/FEC packets as
 needed.

 * If the send media format chosen above has a corresponding "red"
 media format of the same clockrate, allow redundant encoding
 using the specified format for resiliency purposes, as
 discussed in [I-D.ietf-rtcweb-fec], Section 3.2. Note that
 unlike RTX or FEC media formats, the "red" format is
 transmitted on the Source RTP Stream, not the Redundancy RTP
 Stream.

 * Enable the RTCP feedback mechanisms referenced in the media
 section for all Source RTP Streams using the specified media
 formats. Specifically, begin or continue sending the requested
 feedback types and reacting to received feedback, as specified
 in [RFC4585], Section 4.2. When sending RTCP feedback, use the
 SSRC of an outgoing Source RTP Stream as the RTCP sender SSRC;
 if no outgoing Source RTP Stream exists, choose a random one.

 * If the directional attribute is of type "recvonly" or
 "inactive", stop transmitting all RTP media, but continue
 sending RTCP, as described in [RFC3264], Section 5.1.

 o If the media section proto value indicates use of SCTP:

 * If no SCTP association yet exists, prepare to initiate a SCTP
 association over the associated ICE component and DTLS
 connection, using the local SCTP port value from the local

https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1

Uberti, et al. Expires April 24, 2017 [Page 65]

Internet-Draft JSEP October 2016

 description, and the remote SCTP port value from the remote
 description, as described in [I-D.ietf-mmusic-sctp-sdp],
 Section 10.2.

 If the answer contains valid bundle groups, discard any ICE
 components for the m= sections that will be bundled onto the primary
 ICE components in each bundle, and begin muxing these m= sections
 accordingly, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 8.2.

6. Processing RTP/RTCP packets

 Note: The following algorithm does not yet have WG consensus but is
 included here as something concrete for the working group to discuss.

 When an RTP packet is received by a transport and passes SRTP
 authentication, that packet needs to be routed to the correct
 RtpReceiver. For each transport, the following steps MUST be
 followed to prepare to route packets:

 Construct a table mapping MID to RtpReceiver for each RtpReceiver
 configured to receive from this transport.

 Construct a table mapping incoming SSRC to RtpReceiver for each
 RtpReceiver configured to receive from this transport and for each
 SSRC that RtpReceiver is configured to receive. Some of the SSRCs
 may be present in the m= section corresponding to that RtpReceiver
 in the remote description.

 Construct a table mapping outgoing SSRC to RtpSender for each
 RtpSender configured to transmit from this transport and for each
 SSRC that RtpSender is configured to use when sending.

 Construct a table mapping payload type to RtpReceiver for each
 RtpReceiver configured to receive from this transport and for each
 payload type that RtpReceiver is configured to receive. The
 payload types of a given RtpReceiver are found in the m= section
 corresponding to that RtpReceiver in the local description. If
 any payload type could map to more than one RtpReceiver, map to
 the RtpReceiver whose m= section appears earliest in the local
 description.

 As RtpTransceivers (and, thus, RtpReceivers) are added, removed,
 stopped, or reconfigured, the tables above must also be updated.

 For each RTP packet received, the following steps MUST be followed to
 route the packet:

Uberti, et al. Expires April 24, 2017 [Page 66]

Internet-Draft JSEP October 2016

 If the packet has a MID and that MID is not in the table mapping
 MID to RtpReceiver, drop the packet and stop.

 If the packet has a MID and that MID is in the table mapping MID
 to RtpReceiver, update the incoming SSRC mapping table to include
 an entry that maps the packet's SSRC to the RtpReceiver for that
 MID.

 If the packet's SSRC is in the incoming SSRC mapping table,
 deliver the packet to the associated RtpReceiver and stop.

 If the packet's payload type is in the payload type table, update
 the the incoming SSRC mapping table to include an entry that maps
 the packet's SSRC to the RtpReceiver for that payload type. In
 addition, deliver the packet to the associated RtpReceiver and
 stop.

 Otherwise, drop the packet.

 For each RTCP packet received (including each RTCP packet that is
 part of a compound RTCP packet), the following type-specific handling
 MUST be performed to route the packet:

 If the packet is of type SR, and the sender SSRC for the packet is
 found in the incoming SSRC table, deliver a copy of the packet to
 the RtpReceiver associated with that SSRC. In addition, for each
 report block in the report whose SSRC is found in the outgoing
 SSRC table, deliver a copy of the RTCP packet to the RtpSender
 associated with that SSRC.

 If the packet is of type RR, for each report block in the packet
 whose SSRC is found in the outgoing SSRC table, deliver a copy of
 the RTCP packet to the RtpSender associated with that SSRC.

 If the packet is of type SDES, and the sender SSRC for the packet
 is found in the incoming SSRC table, deliver the packet to the
 RtpReceiver associated with that SSRC. In addition, for each
 chunk in the packet that contains a MID that is in the table
 mapping MID to RtpReceiver, update the incoming SSRC mapping table
 to include an entry that maps the SSRC for that chunk to the
 RtpReceiver associated with that MID. (This case can occur when
 RTCP for a source is received before any RTP packets.)

 If the packet is of type BYE, for each SSRC indicated in the
 packet that is found in the incoming SSRC table, deliver a copy of
 the packet to the RtpReceiver associated with that SSRC.

Uberti, et al. Expires April 24, 2017 [Page 67]

Internet-Draft JSEP October 2016

 If the packet is of type RTPFB or PSFB, as defined in [RFC4585],
 and the media source SSRC for the packet is found in the outgoing
 SSRC table, deliver the packet to the RtpSender associated with
 that SSRC.

 After packets are routed to the RtpReceiver, further processing of
 the RTP packets is done at the RtpReceiver level. This includes
 using [I-D.ietf-mmusic-rid] to distinguish between multiple Encoded
 Streams, as well as determine which Source RTP stream should be
 repaired by a given Redundancy RTP stream. If the RTP packet's PT
 does not match any codec in use by the RtpReceiver, the packet will
 be dropped.

7. Examples

 Note that this example section shows several SDP fragments. To
 format in 72 columns, some of the lines in SDP have been split into
 multiple lines, where leading whitespace indicates that a line is a
 continuation of the previous line. In addition, some blank lines
 have been added to improve readability but are not valid in SDP.

 More examples of SDP for WebRTC call flows can be found in
 [I-D.nandakumar-rtcweb-sdp].

7.1. Simple Example

 This section shows a very simple example that sets up a minimal audio
 / video call between two browsers and does not use trickle ICE. The
 example in the following section provides a more realistic example of
 what would happen in a normal browser to browser connection.

 The flow shows Alice's browser initiating the session to Bob's
 browser. The messages from Alice's JS to Bob's JS are assumed to
 flow over some signaling protocol via a web server. The JS on both
 Alice's side and Bob's side waits for all candidates before sending
 the offer or answer, so the offers and answers are complete. Trickle
 ICE is not used. Both Alice and Bob are using the default policy of
 balanced.

https://datatracker.ietf.org/doc/html/rfc4585

Uberti, et al. Expires April 24, 2017 [Page 68]

Internet-Draft JSEP October 2016

// set up local media state
AliceJS->AliceUA: create new PeerConnection
AliceJS->AliceUA: addTrack with two tracks: audio and video
AliceJS->AliceUA: createOffer to get offer
AliceJS->AliceUA: setLocalDescription with offer
AliceUA->AliceJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete
AliceUA->AliceJS: onicecandidate event with null candidate
AliceJS->AliceUA: get |offer-A1| from pendingLocalDescription

// |offer-A1| is sent over signaling protocol to Bob
AliceJS->WebServer: signaling with |offer-A1|
WebServer->BobJS: signaling with |offer-A1|

// |offer-A1| arrives at Bob
BobJS->BobUA: create a PeerConnection
BobJS->BobUA: setRemoteDescription with |offer-A1|
BobUA->BobJS: onaddstream event with remoteStream

// Bob accepts call
BobJS->BobUA: addTrack with local tracks
BobJS->BobUA: createAnswer
BobJS->BobUA: setLocalDescription with answer
BobUA->BobJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete
BobUA->BobJS: onicecandidate event with null candidate
BobJS->BobUA: get |answer-A1| from currentLocalDescription

// |answer-A1| is sent over signaling protocol to Alice
BobJS->WebServer: signaling with |answer-A1|
WebServer->AliceJS: signaling with |answer-A1|

// |answer-A1| arrives at Alice
AliceJS->AliceUA: setRemoteDescription with |answer-A1|
AliceUA->AliceJS: onaddstream event with remoteStream

// media flows
BobUA->AliceUA: media sent from Bob to Alice
AliceUA->BobUA: media sent from Alice to Bob

 The SDP for |offer-A1| looks like:

 v=0
 o=- 4962303333179871722 1 IN IP4 0.0.0.0

Uberti, et al. Expires April 24, 2017 [Page 69]

Internet-Draft JSEP October 2016

 s=-
 t=0 0
 a=group:BUNDLE a1 v1
 a=ice-options:trickle
 m=audio 56500 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.1
 a=mid:a1
 a=rtcp:56501 IN IP4 192.0.2.1
 a=msid:47017fee-b6c1-4162-929c-a25110252400
 f83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:ETEn1v9DoTMB9J4r
 a=ice-pwd:OtSK0WpNtpUjkY4+86js7ZQl
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate:3348148302 1 udp 2113937151 192.0.2.1 56500
 typ host
 a=candidate:3348148302 2 udp 2113937151 192.0.2.1 56501
 typ host
 a=end-of-candidates

 m=video 56502 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 192.0.2.1
 a=rtcp:56503 IN IP4 192.0.2.1
 a=mid:v1
 a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=ice-ufrag:BGKkWnG5GmiUpdIV
 a=ice-pwd:mqyWsAjvtKwTGnvhPztQ9mIf
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

Uberti, et al. Expires April 24, 2017 [Page 70]

Internet-Draft JSEP October 2016

 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=candidate:3348148302 1 udp 2113937151 192.0.2.1 56502
 typ host
 a=candidate:3348148302 2 udp 2113937151 192.0.2.1 56503
 typ host
 a=end-of-candidates

 The SDP for |answer-A1| looks like:

 v=0
 o=- 6729291447651054566 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=group:BUNDLE a1 v1
 m=audio 20000 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.2
 a=mid:a1
 a=rtcp:20000 IN IP4 192.0.2.2
 a=msid:PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1a0
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:6sFvz2gdLkEwjZEr
 a=ice-pwd:cOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=candidate:2299743422 1 udp 2113937151 192.0.2.2 20000
 typ host
 a=end-of-candidates

 m=video 20000 UDP/TLS/RTP/SAVPF 100 101

Uberti, et al. Expires April 24, 2017 [Page 71]

Internet-Draft JSEP October 2016

 c=IN IP4 192.0.2.2
 a=rtcp 20001 IN IP4 192.0.2.2
 a=mid:v1
 a=msid:PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 PI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1v0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=rtcp-mux
 a=rtcp-rsize
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

7.2. Normal Examples

 This section shows a typical example of a session between two
 browsers setting up an audio channel and a data channel. Trickle ICE
 is used in full trickle mode with a bundle policy of max-bundle, an
 RTCP mux policy of require, and a single TURN server. Later, two
 video flows, one for the presenter and one for screen sharing, are
 added to the session. This example shows Alice's browser initiating
 the session to Bob's browser. The messages from Alice's JS to Bob's
 JS are assumed to flow over some signaling protocol via a web server.

 // set up local media state
 AliceJS->AliceUA: create new PeerConnection
 AliceJS->AliceUA: addTrack with an audio track
 AliceJS->AliceUA: createDataChannel to get data channel
 AliceJS->AliceUA: createOffer to get |offer-B1|
 AliceJS->AliceUA: setLocalDescription with |offer-B1|

 // |offer-B1| is sent over signaling protocol to Bob
 AliceJS->WebServer: signaling with |offer-B1|
 WebServer->BobJS: signaling with |offer-B1|

 // |offer-B1| arrives at Bob
 BobJS->BobUA: create a PeerConnection
 BobJS->BobUA: setRemoteDescription with |offer-B1|
 BobUA->BobJS: onaddstream with audio track from Alice

 // candidates are sent to Bob

Uberti, et al. Expires April 24, 2017 [Page 72]

Internet-Draft JSEP October 2016

 AliceUA->AliceJS: onicecandidate event with |candidate-B1| (host)
 AliceJS->WebServer: signaling with |candidate-B1|
 AliceUA->AliceJS: onicecandidate event with |candidate-B2| (srflx)
 AliceJS->WebServer: signaling with |candidate-B2|

 WebServer->BobJS: signaling with |candidate-B1|
 BobJS->BobUA: addIceCandidate with |candidate-B1|
 WebServer->BobJS: signaling with |candidate-B2|
 BobJS->BobUA: addIceCandidate with |candidate-B2|

 // Bob accepts call
 BobJS->BobUA: addTrack with local audio
 BobJS->BobUA: createDataChannel to get data channel
 BobJS->BobUA: createAnswer to get |answer-B1|
 BobJS->BobUA: setLocalDescription with |answer-B1|

 // |answer-B1| is sent to Alice
 BobJS->WebServer: signaling with |answer-B1|
 WebServer->AliceJS: signaling with |answer-B1|
 AliceJS->AliceUA: setRemoteDescription with |answer-B1|
 AliceUA->AliceJS: onaddstream event with audio track from Bob

 // candidates are sent to Alice
 BobUA->BobJS: onicecandidate event with |candidate-B3| (host)
 BobJS->WebServer: signaling with |candidate-B3|
 BobUA->BobJS: onicecandidate event with |candidate-B4| (srflx)
 BobJS->WebServer: signaling with |candidate-B4|

 WebServer->AliceJS: signaling with |candidate-B3|
 AliceJS->AliceUA: addIceCandidate with |candidate-B3|
 WebServer->AliceJS: signaling with |candidate-B4|
 AliceJS->AliceUA: addIceCandidate with |candidate-B4|

 // data channel opens
 BobUA->BobJS: ondatachannel event
 AliceUA->AliceJS: ondatachannel event
 BobUA->BobJS: onopen
 AliceUA->AliceJS: onopen

 // media is flowing between browsers
 BobUA->AliceUA: audio+data sent from Bob to Alice
 AliceUA->BobUA: audio+data sent from Alice to Bob

 // some time later Bob adds two video streams
 // note, no candidates exchanged, because of bundle
 BobJS->BobUA: addTrack with first video stream
 BobJS->BobUA: addTrack with second video stream
 BobJS->BobUA: createOffer to get |offer-B2|

Uberti, et al. Expires April 24, 2017 [Page 73]

Internet-Draft JSEP October 2016

 BobJS->BobUA: setLocalDescription with |offer-B2|

 // |offer-B2| is sent to Alice
 BobJS->WebServer: signaling with |offer-B2|
 WebServer->AliceJS: signaling with |offer-B2|
 AliceJS->AliceUA: setRemoteDescription with |offer-B2|
 AliceUA->AliceJS: onaddstream event with first video stream
 AliceUA->AliceJS: onaddstream event with second video stream
 AliceJS->AliceUA: createAnswer to get |answer-B2|
 AliceJS->AliceUA: setLocalDescription with |answer-B2|

 // |answer-B2| is sent over signaling protocol to Bob
 AliceJS->WebServer: signaling with |answer-B2|
 WebServer->BobJS: signaling with |answer-B2|
 BobJS->BobUA: setRemoteDescription with |answer-B2|

 // media is flowing between browsers
 BobUA->AliceUA: audio+video+data sent from Bob to Alice
 AliceUA->BobUA: audio+video+data sent from Alice to Bob

 The SDP for |offer-B1| looks like:

Uberti, et al. Expires April 24, 2017 [Page 74]

Internet-Draft JSEP October 2016

 v=0
 o=- 4962303333179871723 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=group:BUNDLE a1 d1
 a=ice-options:trickle
 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 0.0.0.0
 a=rtcp:9 IN IP4 0.0.0.0
 a=mid:a1
 a=msid:57017fee-b6c1-4162-929c-a25110252400
 e83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid

 m=application 0 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=bundle-only
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=fingerprint:sha-256 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass

 The SDP for |candidate-B1| looks like:

 candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host

 The SDP for |candidate-B2| looks like:

Uberti, et al. Expires April 24, 2017 [Page 75]

Internet-Draft JSEP October 2016

 candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556

 The SDP for |answer-B1| looks like:

 v=0
 o=- 7729291447651054566 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=group:BUNDLE a1 d1
 a=ice-options:trickle
 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 0.0.0.0
 a=rtcp:9 IN IP4 0.0.0.0
 a=mid:a1
 a=msid:QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1a0
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid

 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active

 The SDP for |candidate-B3| looks like:

Uberti, et al. Expires April 24, 2017 [Page 76]

Internet-Draft JSEP October 2016

 candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host

 The SDP for |candidate-B4| looks like:

 candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665

 The SDP for |offer-B2| looks like: (note the increment of the version
 number in the o= line, and the c= and a=rtcp lines, which indicate
 the local candidate that was selected)

 v=0
 o=- 7729291447651054566 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=group:BUNDLE a1 d1 v1 v2
 a=ice-options:trickle
 m=audio 64532 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 55.66.77.88
 a=rtcp:64532 IN IP4 55.66.77.88
 a=mid:a1
 a=msid:QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1
 QI39StLS8W7ZbQl1sJsWUXkr3Zf12fJUvzQ1a0
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host
 a=candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665
 a=candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay
 raddr 55.66.77.88 rport 64532

Uberti, et al. Expires April 24, 2017 [Page 77]

Internet-Draft JSEP October 2016

 a=end-of-candidates

 m=application 64532 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 55.66.77.88
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=ice-ufrag:7sFvz2gdLkEwjZEr
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35
 :DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:actpass
 a=candidate:109270924 1 udp 2122194687 192.168.2.3 61665 typ host
 a=candidate:4036177504 1 udp 1685987071 55.66.77.88 64532 typ srflx
 raddr 192.168.2.3 rport 61665
 a=candidate:3671762467 1 udp 41819903 66.77.88.99 50416 typ relay
 raddr 55.66.77.88 rport 64532
 a=end-of-candidates

 m=video 0 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 55.66.77.88
 a=bundle-only
 a=rtcp:64532 IN IP4 55.66.77.88
 a=mid:v1
 a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

 m=video 0 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 55.66.77.88
 a=bundle-only
 a=rtcp:64532 IN IP4 55.66.77.88
 a=mid:v1
 a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0

Uberti, et al. Expires April 24, 2017 [Page 78]

Internet-Draft JSEP October 2016

 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

 The SDP for |answer-B2| looks like: (note the use of setup:passive to
 maintain the existing DTLS roles, and the use of a=recvonly to
 indicate that the video streams are one-way)

 v=0
 o=- 4962303333179871723 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=group:BUNDLE a1 d1 v1 v2
 a=ice-options:trickle
 m=audio 52546 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 11.22.33.44
 a=rtcp:52546 IN IP4 11.22.33.44
 a=mid:a1
 a=msid:57017fee-b6c1-4162-929c-a25110252400
 e83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=maxptime:120
 a=ice-ufrag:ATEn1v9DoTMB9J4r
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=rtcp-mux
 a=rtcp-rsize

Uberti, et al. Expires April 24, 2017 [Page 79]

Internet-Draft JSEP October 2016

 a=extmap:1 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=candidate:109270923 1 udp 2122194687 192.168.1.2 51556 typ host
 a=candidate:4036177503 1 udp 1685987071 11.22.33.44 52546 typ srflx
 raddr 192.168.1.2 rport 51556
 a=candidate:3671762466 1 udp 41819903 22.33.44.55 61405 typ relay
 raddr 11.22.33.44 rport 52546
 a=end-of-candidates

 m=application 52546 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 11.22.33.44
 a=mid:d1
 a=fmtp:webrtc-datachannel max-message-size=65536
 a=sctp-port 5000
 a=fingerprint:sha-256 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive

 m=video 52546 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 11.22.33.44
 a=rtcp:52546 IN IP4 11.22.33.44
 a=mid:v1
 a=recvonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

 m=video 52546 UDP/TLS/RTP/SAVPF 100 101
 c=IN IP4 11.22.33.44
 a=rtcp:52546 IN IP4 11.22.33.44
 a=mid:v2
 a=recvonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 rtx/90000
 a=fmtp:101 apt=100
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04
 :BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

Uberti, et al. Expires April 24, 2017 [Page 80]

Internet-Draft JSEP October 2016

 a=setup:passive
 a=rtcp-mux
 a=rtcp-rsize
 a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:mid
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

8. Security Considerations

 The IETF has published separate documents
 [I-D.ietf-rtcweb-security-arch] [I-D.ietf-rtcweb-security] describing
 the security architecture for WebRTC as a whole. The remainder of
 this section describes security considerations for this document.

 While formally the JSEP interface is an API, it is better to think of
 it is an Internet protocol, with the JS being untrustworthy from the
 perspective of the browser. Thus, the threat model of [RFC3552]
 applies. In particular, JS can call the API in any order and with
 any inputs, including malicious ones. This is particularly relevant
 when we consider the SDP which is passed to setLocalDescription().
 While correct API usage requires that the application pass in SDP
 which was derived from createOffer() or createAnswer(), there is no
 guarantee that applications do so. The browser MUST be prepared for
 the JS to pass in bogus data instead.

 Conversely, the application programmer MUST recognize that the JS
 does not have complete control of browser behavior. One case that
 bears particular mention is that editing ICE candidates out of the
 SDP or suppressing trickled candidates does not have the expected
 behavior: implementations will still perform checks from those
 candidates even if they are not sent to the other side. Thus, for
 instance, it is not possible to prevent the remote peer from learning
 your public IP address by removing server reflexive candidates.
 Applications which wish to conceal their public IP address should
 instead configure the ICE agent to use only relay candidates.

9. IANA Considerations

 This document requires no actions from IANA.

10. Acknowledgements

 Significant text incorporated in the draft as well and review was
 provided by Peter Thatcher, Taylor Brandstetter, Harald Alvestrand
 and Suhas Nandakumar. Dan Burnett, Neil Stratford, Anant Narayanan,

https://datatracker.ietf.org/doc/html/rfc3552

Uberti, et al. Expires April 24, 2017 [Page 81]

Internet-Draft JSEP October 2016

 Andrew Hutton, Richard Ejzak, Adam Bergkvist and Matthew Kaufman all
 provided valuable feedback on this proposal.

11. References

11.1. Normative References

 [I-D.ietf-avtext-rid]
 Roach, A., Nandakumar, S., and P. Thatcher, "RTP Stream
 Identifier (RID) Source Description (SDES)", draft-ietf-

avtext-rid-00 (work in progress), February 2016.

 [I-D.ietf-ice-trickle]
 Ivov, E., Rescorla, E., Uberti, J., and P. Saint-Andre,
 "Trickle ICE: Incremental Provisioning of Candidates for
 the Interactive Connectivity Establishment (ICE)
 Protocol".

 [I-D.ietf-mmusic-4572-update]
 Holmberg, C., "Updates to RFC 4572", draft-ietf-mmusic-

4572-update-05 (work in progress), June 2016.

 [I-D.ietf-mmusic-dtls-sdp]
 Holmberg, C. and R. Shpount, "Using the SDP Offer/Answer
 Mechanism for DTLS", draft-ietf-mmusic-dtls-sdp-14 (work
 in progress), July 2016.

 [I-D.ietf-mmusic-msid]
 Alvestrand, H., "Cross Session Stream Identification in
 the Session Description Protocol", draft-ietf-mmusic-

msid-01 (work in progress), August 2013.

 [I-D.ietf-mmusic-mux-exclusive]
 Holmberg, C., "Indicating Exclusive Support of RTP/RTCP
 Multiplexing using SDP", draft-ietf-mmusic-mux-

exclusive-08 (work in progress), June 2016.

 [I-D.ietf-mmusic-rid]
 Thatcher, P., Zanaty, M., Nandakumar, S., Burman, B.,
 Roach, A., and B. Campen, "RTP Payload Format
 Constraints", draft-ietf-mmusic-rid-04 (work in progress),
 February 2016.

 [I-D.ietf-mmusic-sctp-sdp]
 Loreto, S. and G. Camarillo, "Stream Control Transmission
 Protocol (SCTP)-Based Media Transport in the Session
 Description Protocol (SDP)", draft-ietf-mmusic-sctp-sdp-04
 (work in progress), June 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-avtext-rid-00
https://datatracker.ietf.org/doc/html/draft-ietf-avtext-rid-00
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-4572-update-05
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-4572-update-05
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-dtls-sdp-14
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-msid-01
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-msid-01
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-mux-exclusive-08
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-mux-exclusive-08
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-rid-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sctp-sdp-04

Uberti, et al. Expires April 24, 2017 [Page 82]

Internet-Draft JSEP October 2016

 [I-D.ietf-mmusic-sdp-bundle-negotiation]
 Holmberg, C., Alvestrand, H., and C. Jennings,
 "Multiplexing Negotiation Using Session Description
 Protocol (SDP) Port Numbers", draft-ietf-mmusic-sdp-

bundle-negotiation-04 (work in progress), June 2013.

 [I-D.ietf-mmusic-sdp-mux-attributes]
 Nandakumar, S., "A Framework for SDP Attributes when
 Multiplexing", draft-ietf-mmusic-sdp-mux-attributes-01
 (work in progress), February 2014.

 [I-D.ietf-mmusic-sdp-simulcast]
 Burman, B., Westerlund, M., Nandakumar, S., and M. Zanaty,
 "Using Simulcast in SDP and RTP Sessions", draft-ietf-

mmusic-sdp-simulcast-04 (work in progress), February 2016.

 [I-D.ietf-rtcweb-audio]
 Valin, J. and C. Bran, "WebRTC Audio Codec and Processing
 Requirements", draft-ietf-rtcweb-audio-02 (work in
 progress), August 2013.

 [I-D.ietf-rtcweb-fec]
 Uberti, J., "WebRTC Forward Error Correction
 Requirements", draft-ietf-rtcweb-fec-00 (work in
 progress), February 2015.

 [I-D.ietf-rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",

draft-ietf-rtcweb-rtp-usage-09 (work in progress),
 September 2013.

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for WebRTC", draft-

ietf-rtcweb-security-06 (work in progress), January 2014.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-

rtcweb-security-arch-09 (work in progress), February 2014.

 [I-D.ietf-rtcweb-video]
 Roach, A., "WebRTC Video Processing and Codec
 Requirements", draft-ietf-rtcweb-video-00 (work in
 progress), July 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-mux-attributes-01
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-simulcast-04
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-simulcast-04
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-audio-02
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-fec-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-video-00

Uberti, et al. Expires April 24, 2017 [Page 83]

Internet-Draft JSEP October 2016

 [I-D.nandakumar-mmusic-proto-iana-registration]
 Nandakumar, S., "IANA registration of SDP 'proto'
 attribute for transporting RTP Media over TCP under
 various RTP profiles.", September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605, October
 2003.

 [RFC3890] Westerlund, M., "A Transport Independent Bandwidth
 Modifier for the Session Description Protocol (SDP)",

RFC 3890, DOI 10.17487/RFC3890, September 2004,
 <http://www.rfc-editor.org/info/rfc3890>.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July
 2006.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3605
https://datatracker.ietf.org/doc/html/rfc3890
http://www.rfc-editor.org/info/rfc3890
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4585

Uberti, et al. Expires April 24, 2017 [Page 84]

Internet-Draft JSEP October 2016

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
 Header Extensions", RFC 5285, July 2008.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761, April 2010.

 [RFC5888] Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

 [RFC6236] Johansson, I. and K. Jung, "Negotiation of Generic Image
 Attributes in the Session Description Protocol (SDP)",

RFC 6236, May 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6904] Lennox, J., "Encryption of Header Extensions in the Secure
 Real-time Transport Protocol (SRTP)", RFC 6904, April
 2013.

11.2. Informative References

 [I-D.ietf-rtcweb-ip-handling]
 Uberti, J. and G. Shieh, "WebRTC IP Address Handling
 Recommendations", draft-ietf-rtcweb-ip-handling-01 (work
 in progress), March 2016.

 [I-D.nandakumar-rtcweb-sdp]
 Nandakumar, S. and C. Jennings, "SDP for the WebRTC",

draft-nandakumar-rtcweb-sdp-02 (work in progress), July
 2013.

 [RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
 Comfort Noise (CN)", RFC 3389, September 2002.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth",

RFC 3556, July 2003.

 [RFC3960] Camarillo, G. and H. Schulzrinne, "Early Media and Ringing
 Tone Generation in the Session Initiation Protocol (SIP)",

RFC 3960, December 2004.

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc6236
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6904
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-ip-handling-01
https://datatracker.ietf.org/doc/html/draft-nandakumar-rtcweb-sdp-02
https://datatracker.ietf.org/doc/html/rfc3389
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3960

Uberti, et al. Expires April 24, 2017 [Page 85]

Internet-Draft JSEP October 2016

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
 Hakenberg, "RTP Retransmission Payload Format", RFC 4588,
 July 2006.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 DOI 10.17487/RFC4733, December 2006,
 <http://www.rfc-editor.org/info/rfc4733>.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, April 2009.

 [RFC5576] Lennox, J., Ott, J., and T. Schierl, "Source-Specific
 Media Attributes in the Session Description Protocol
 (SDP)", RFC 5576, June 2009.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [RFC6464] Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time
 Transport Protocol (RTP) Header Extension for Client-to-
 Mixer Audio Level Indication", RFC 6464,
 DOI 10.17487/RFC6464, December 2011,
 <http://www.rfc-editor.org/info/rfc6464>.

 [W3C.WD-webrtc-20140617]
 Bergkvist, A., Burnett, D., Narayanan, A., and C.
 Jennings, "WebRTC 1.0: Real-time Communication Between
 Browsers", World Wide Web Consortium WD WD-webrtc-
 20140617, June 2014,
 <http://www.w3.org/TR/2011/WD-webrtc-20140617>.

Appendix A. Appendix A

 For the syntax validation performed in Section 5.7, the following
 list of ABNF definitions is used:

https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/rfc4733
http://www.rfc-editor.org/info/rfc4733
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc6464
http://www.rfc-editor.org/info/rfc6464
http://www.w3.org/TR/2011/WD-webrtc-20140617

Uberti, et al. Expires April 24, 2017 [Page 86]

Internet-Draft JSEP October 2016

 +-----------------------+---+
 | Attribute | Reference |
 +-----------------------+---+
ptime	[RFC4566] Section 9
maxptime	[RFC4566] Section 9
rtpmap	[RFC4566] Section 9
recvonly	[RFC4566] Section 9
sendrecv	[RFC4566] Section 9
sendonly	[RFC4566] Section 9
inactive	[RFC4566] Section 9
framerate	[RFC4566] Section 9
fmtp	[RFC4566] Section 9
quality	[RFC4566] Section 9
rtcp	[RFC3605] Section 2.1
setup	[RFC4145] Sections 3, 4, and 5
connection	[RFC4145] Sections 3, 4, and 5
fingerprint	[RFC4572] Section 5
rtcp-fb	[RFC4585] Section 4.2
candidate	[RFC5245] Section 15.1
remote-candidates	[RFC5245] Section 15.2
ice-lite	[RFC5245] Section 15.3
ice-ufrag	[RFC5245] Section 15.4
ice-pwd	[RFC5245] Section 15.4
ice-options	[RFC5245] Section 15.5
extmap	[RFC5285] Section 7
mid	[RFC5888] Section 4 and 5
group	[RFC5888] Section 4 and 5
imageattr	[RFC6236] Section 3.1
extmap (encrypt	[RFC6904] Section 4
option)	
msid	[I-D.ietf-mmusic-msid] Section 2
rid	[I-D.ietf-mmusic-rid] Section 10
simulcast	[I-D.ietf-mmusic-sdp-simulcast]Section
	6.1
dtls-id	[I-D.ietf-mmusic-dtls-sdp]Section 4
 +-----------------------+---+

 Table 1: SDP ABNF References

Appendix B. Change log

 Note: This section will be removed by RFC Editor before publication.

 Changes in draft-17:

 o Split createOffer and createAnswer sections to clearly indicate
 attributes which always appear and which only appear when not
 bundled into another m= section.

https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4572#section-5
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5245#section-15.1
https://datatracker.ietf.org/doc/html/rfc5245#section-15.2
https://datatracker.ietf.org/doc/html/rfc5245#section-15.3
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc5285#section-7
https://datatracker.ietf.org/doc/html/rfc5888#section-4
https://datatracker.ietf.org/doc/html/rfc5888#section-4
https://datatracker.ietf.org/doc/html/rfc6236#section-3.1
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/draft-17

Uberti, et al. Expires April 24, 2017 [Page 87]

Internet-Draft JSEP October 2016

 o Add descriptions of RtpTransceiver methods.

 o Describe how to process RTCP feedback attributes.

 o Clarify transceiver directions and their interaction with 3264.

 o Describe setCodecPreferences.

 o Update RTP demux algorithm. Include RTCP.

 o Update requirements for when a=rtcp is included, limiting to cases
 where it is needed for backward compatibility.

 o Clarify SAR handling.

 o Updated addTrack matching algorithm.

 o Remove a=ssrc requirements.

 o Handle a=setup in reoffers.

 o Discuss how RTX/FEC should be handled.

 o Discuss how telephone-event should be handled.

 o Discuss how CN/DTX should be handled.

 o Add missing references to ABNF table.

 Changes in draft-16:

 o Update addIceCandidate to indicate ICE generation and allow per-m=
 section end-of-candidates.

 o Update fingerprint handling to use draft-ietf-mmusic-4572-update.

 o Update text around SDP processing of RTP header extensions and
 payload formats.

 o Add sections on simulcast, addTransceiver, and createDataChannel.

 o Clarify text to ensure that the session ID is a positive 63 bit
 integer.

 o Clarify SDP processing for direction indication.

 o Describe SDP processing for rtcp-mux-only.

https://datatracker.ietf.org/doc/html/draft-16
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-4572-update

Uberti, et al. Expires April 24, 2017 [Page 88]

Internet-Draft JSEP October 2016

 o Specify how SDP session version in o= line.

 o Require that when doing an re-offer, the capabilities of the new
 session are mostly required to be a subset of the previously
 negotiated session.

 o Clarified ICE restart interaction with bundle-only.

 o Remove support for changing SDP before calling
 setLocalDescription.

 o Specify algorithm for demuxing RTP based on MID, PT, and SSRC.

 o Clarify rules for rejecting m= lines when bundle policy is
 balanced or max-bundle.

 Changes in draft-15:

 o Clarify text around codecs offered in subsequent transactions to
 refer to what's been negotiated.

 o Rewrite LS handling text to indicate edge cases and that we're
 living with them.

 o Require that answerer reject m= lines when there are no codecs in
 common.

 o Enforce max-bundle on offer processing.

 o Fix TIAS formula to handle bits vs. kilobits.

 o Describe addTrack algorithm.

 o Clean up references.

 Changes in draft-14:

 o Added discussion of RtpTransceivers + RtpSenders + RtpReceivers,
 and how they interact with createOffer/createAnswer.

 o Removed obsolete OfferToReceiveX options.

 o Explained how addIceCandidate can be used for end-of-candidates.

 Changes in draft-13:

 o Clarified which SDP lines can be ignored.

https://datatracker.ietf.org/doc/html/draft-15
https://datatracker.ietf.org/doc/html/draft-14
https://datatracker.ietf.org/doc/html/draft-13

Uberti, et al. Expires April 24, 2017 [Page 89]

Internet-Draft JSEP October 2016

 o Clarified how to handle various received attributes.

 o Revised how attributes should be generated for bundled m= lines.

 o Remove unused references.

 o Remove text advocating use of unilateral PTs.

 o Trigger an ICE restart even if the ICE candidate policy is being
 made more strict.

 o Remove the 'public' ICE candidate policy.

 o Move open issues/TODOs into GitHub issues.

 o Split local/remote description accessors into current/pending.

 o Clarify a=imageattr handling.

 o Add more detail on VoiceActivityDetection handling.

 o Reference draft-shieh-rtcweb-ip-handling.

 o Make it clear when an ICE restart should occur.

 o Resolve reference TODOs.

 o Remove MSID semantics.

 o ice-options are now at session level.

 o Default RTCP mux policy is now 'require'.

 Changes in draft-12:

 o Filled in sections on applying local and remote descriptions.

 o Discussed downscaling and upscaling to fulfill imageattr
 requirements.

 o Updated what SDP can be modified by the application.

 o Updated to latest datachannel SDP.

 o Allowed multiple fingerprint lines.

 o Switched back to IPv4 for dummy candidates.

https://datatracker.ietf.org/doc/html/draft-shieh-rtcweb-ip-handling
https://datatracker.ietf.org/doc/html/draft-12

Uberti, et al. Expires April 24, 2017 [Page 90]

Internet-Draft JSEP October 2016

 o Added additional clarity on ICE default candidates.

 Changes in draft-11:

 o Clarified handling of RTP CNAMEs.

 o Updated what SDP lines should be processed or ignored.

 o Specified how a=imageattr should be used.

 Changes in draft-10:

 o TODO

 Changes in draft-09:

 o Don't return null for {local,remote}Description after close().

 o Changed TCP/TLS to UDP/DTLS in RTP profile names.

 o Separate out bundle and mux policy.

 o Added specific references to FEC mechanisms.

 o Added canTrickle mechanism.

 o Added section on subsequent answers and, answer options.

 o Added text defining set{Local,Remote}Description behavior.

 Changes in draft-08:

 o Added new example section and removed old examples in appendix.

 o Fixed <proto> field handling.

 o Added text describing a=rtcp attribute.

 o Reworked handling of OfferToReceiveAudio and OfferToReceiveVideo
 per discussion at IETF 90.

 o Reworked trickle ICE handling and its impact on m= and c= lines
 per discussion at interim.

 o Added max-bundle-and-rtcp-mux policy.

 o Added description of maxptime handling.

https://datatracker.ietf.org/doc/html/draft-11
https://datatracker.ietf.org/doc/html/draft-10
https://datatracker.ietf.org/doc/html/draft-09
https://datatracker.ietf.org/doc/html/draft-08

Uberti, et al. Expires April 24, 2017 [Page 91]

Internet-Draft JSEP October 2016

 o Updated ICE candidate pool default to 0.

 o Resolved open issues around AppID/receiver-ID.

 o Reworked and expanded how changes to the ICE configuration are
 handled.

 o Some reference updates.

 o Editorial clarification.

 Changes in draft-07:

 o Expanded discussion of VAD and Opus DTX.

 o Added a security considerations section.

 o Rewrote the section on modifying SDP to require implementations to
 clearly indicate whether any given modification is allowed.

 o Clarified impact of IceRestart on CreateOffer in local-offer
 state.

 o Guidance on whether attributes should be defined at the media
 level or the session level.

 o Renamed "default" bundle policy to "balanced".

 o Removed default ICE candidate pool size and clarify how it works.

 o Defined a canonical order for assignment of MSTs to m= lines.

 o Removed discussion of rehydration.

 o Added Eric Rescorla as a draft editor.

 o Cleaned up references.

 o Editorial cleanup

 Changes in draft-06:

 o Reworked handling of m= line recycling.

 o Added handling of BUNDLE and bundle-only.

 o Clarified handling of rollback.

https://datatracker.ietf.org/doc/html/draft-07
https://datatracker.ietf.org/doc/html/draft-06

Uberti, et al. Expires April 24, 2017 [Page 92]

Internet-Draft JSEP October 2016

 o Added text describing the ICE Candidate Pool and its behavior.

 o Allowed OfferToReceiveX to create multiple recvonly m= sections.

 Changes in draft-05:

 o Fixed several issues identified in the createOffer/Answer sections
 during document review.

 o Updated references.

 Changes in draft-04:

 o Filled in sections on createOffer and createAnswer.

 o Added SDP examples.

 o Fixed references.

 Changes in draft-03:

 o Added text describing relationship to W3C specification

 Changes in draft-02:

 o Converted from nroff

 o Removed comparisons to old approaches abandoned by the working
 group

 o Removed stuff that has moved to W3C specification

 o Align SDP handling with W3C draft

 o Clarified section on forking.

 Changes in draft-01:

 o Added diagrams for architecture and state machine.

 o Added sections on forking and rehydration.

 o Clarified meaning of "pranswer" and "answer".

 o Reworked how ICE restarts and media directions are controlled.

 o Added list of parameters that can be changed in a description.

https://datatracker.ietf.org/doc/html/draft-05
https://datatracker.ietf.org/doc/html/draft-04
https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-01

Uberti, et al. Expires April 24, 2017 [Page 93]

Internet-Draft JSEP October 2016

 o Updated suggested API and examples to match latest thinking.

 o Suggested API and examples have been moved to an appendix.

 Changes in draft -00:

 o Migrated from draft-uberti-rtcweb-jsep-02.

Authors' Addresses

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: justin@uberti.name

 Cullen Jennings
 Cisco
 400 3rd Avenue SW
 Calgary, AB T2P 4H2
 Canada

 Email: fluffy@iii.ca

 Eric Rescorla (editor)
 Mozilla
 331 Evelyn Ave
 Mountain View, CA 94041
 USA

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-jsep-02

Uberti, et al. Expires April 24, 2017 [Page 94]

