
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track C. Jennings
Expires: April 13, 2018 Cisco
 E. Rescorla, Ed.
 Mozilla
 October 10, 2017

JavaScript Session Establishment Protocol
draft-ietf-rtcweb-jsep-24

Abstract

 This document describes the mechanisms for allowing a JavaScript
 application to control the signaling plane of a multimedia session
 via the interface specified in the W3C RTCPeerConnection API, and
 discusses how this relates to existing signaling protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 13, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Uberti, et al. Expires April 13, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JSEP October 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. General Design of JSEP 4
1.2. Other Approaches Considered 6

2. Terminology . 6
3. Semantics and Syntax . 7
3.1. Signaling Model . 7
3.2. Session Descriptions and State Machine 7
3.3. Session Description Format 11
3.4. Session Description Control 11
3.4.1. RtpTransceivers 11
3.4.2. RtpSenders . 12
3.4.3. RtpReceivers . 12

3.5. ICE . 12
3.5.1. ICE Gathering Overview 12
3.5.2. ICE Candidate Trickling 13
3.5.2.1. ICE Candidate Format 13

3.5.3. ICE Candidate Policy 14
3.5.4. ICE Candidate Pool 15

3.6. Video Size Negotiation 16
3.6.1. Creating an imageattr Attribute 16
3.6.2. Interpreting imageattr Attributes 17

3.7. Simulcast . 19
3.8. Interactions With Forking 20
3.8.1. Sequential Forking 20
3.8.2. Parallel Forking 21

4. Interface . 22
4.1. PeerConnection . 22
4.1.1. Constructor . 22
4.1.2. addTrack . 24
4.1.3. removeTrack . 24
4.1.4. addTransceiver 24
4.1.5. createDataChannel 25
4.1.6. createOffer . 25
4.1.7. createAnswer . 26
4.1.8. SessionDescriptionType 27
4.1.8.1. Use of Provisional Answers 28
4.1.8.2. Rollback . 28

4.1.9. setLocalDescription 29
4.1.10. setRemoteDescription 29
4.1.11. currentLocalDescription 30
4.1.12. pendingLocalDescription 30
4.1.13. currentRemoteDescription 30
4.1.14. pendingRemoteDescription 30

Uberti, et al. Expires April 13, 2018 [Page 2]

Internet-Draft JSEP October 2017

4.1.15. canTrickleIceCandidates 31
4.1.16. setConfiguration 31
4.1.17. addIceCandidate 32

4.2. RtpTransceiver . 33
4.2.1. stop . 33
4.2.2. stopped . 33
4.2.3. setDirection . 33
4.2.4. direction . 33
4.2.5. currentDirection 34
4.2.6. setCodecPreferences 34

5. SDP Interaction Procedures 34
5.1. Requirements Overview 34
5.1.1. Usage Requirements 35
5.1.2. Profile Names and Interoperability 35

5.2. Constructing an Offer 36
5.2.1. Initial Offers 36
5.2.2. Subsequent Offers 43
5.2.3. Options Handling 47
5.2.3.1. IceRestart 47
5.2.3.2. VoiceActivityDetection 47

5.3. Generating an Answer 48
5.3.1. Initial Answers 48
5.3.2. Subsequent Answers 55
5.3.3. Options Handling 56
5.3.3.1. VoiceActivityDetection 56

5.4. Modifying an Offer or Answer 57
5.5. Processing a Local Description 57
5.6. Processing a Remote Description 58
5.7. Processing a Rollback 58
5.8. Parsing a Session Description 59
5.8.1. Session-Level Parsing 60
5.8.2. Media Section Parsing 61
5.8.3. Semantics Verification 64

5.9. Applying a Local Description 65
5.10. Applying a Remote Description 66
5.11. Applying an Answer 70

6. Processing RTP/RTCP . 73
7. Examples . 74
7.1. Simple Example . 74
7.2. Detailed Example . 78
7.3. Early Transport Warmup Example 88

8. Security Considerations 95
9. IANA Considerations . 96
10. Acknowledgements . 96
11. References . 96
11.1. Normative References 96
11.2. Informative References 101

Appendix A. Appendix A . 103

Uberti, et al. Expires April 13, 2018 [Page 3]

Internet-Draft JSEP October 2017

Appendix B. Change log . 104
 Authors' Addresses . 114

1. Introduction

 This document describes how the W3C WEBRTC RTCPeerConnection
 interface [W3C.webrtc] is used to control the setup, management and
 teardown of a multimedia session.

1.1. General Design of JSEP

 WebRTC call setup has been designed to focus on controlling the media
 plane, leaving signaling plane behavior up to the application as much
 as possible. The rationale is that different applications may prefer
 to use different protocols, such as the existing SIP call signaling
 protocol, or something custom to the particular application, perhaps
 for a novel use case. In this approach, the key information that
 needs to be exchanged is the multimedia session description, which
 specifies the necessary transport and media configuration information
 necessary to establish the media plane.

 With these considerations in mind, this document describes the
 JavaScript Session Establishment Protocol (JSEP) that allows for full
 control of the signaling state machine from JavaScript. As described
 above, JSEP assumes a model in which a JavaScript application
 executes inside a runtime containing WebRTC APIs (the "JSEP
 implementation"). The JSEP implementation is almost entirely
 divorced from the core signaling flow, which is instead handled by
 the JavaScript making use of two interfaces: (1) passing in local and
 remote session descriptions and (2) interacting with the ICE state
 machine. The combination of the JSEP implementation and the
 JavaScript application is referred to throughout this document as a
 "JSEP endpoint".

 In this document, the use of JSEP is described as if it always occurs
 between two JSEP endpoints. Note though in many cases it will
 actually be between a JSEP endpoint and some kind of server, such as
 a gateway or MCU. This distinction is invisible to the JSEP
 endpoint; it just follows the instructions it is given via the API.

 JSEP's handling of session descriptions is simple and
 straightforward. Whenever an offer/answer exchange is needed, the
 initiating side creates an offer by calling a createOffer() API. The
 application then uses that offer to set up its local config via the
 setLocalDescription() API. The offer is finally sent off to the
 remote side over its preferred signaling mechanism (e.g.,
 WebSockets); upon receipt of that offer, the remote party installs it
 using the setRemoteDescription() API.

Uberti, et al. Expires April 13, 2018 [Page 4]

Internet-Draft JSEP October 2017

 To complete the offer/answer exchange, the remote party uses the
 createAnswer() API to generate an appropriate answer, applies it
 using the setLocalDescription() API, and sends the answer back to the
 initiator over the signaling channel. When the initiator gets that
 answer, it installs it using the setRemoteDescription() API, and
 initial setup is complete. This process can be repeated for
 additional offer/answer exchanges.

 Regarding ICE [RFC5245], JSEP decouples the ICE state machine from
 the overall signaling state machine, as the ICE state machine must
 remain in the JSEP implementation, because only the implementation
 has the necessary knowledge of candidates and other transport
 information. Performing this separation provides additional
 flexibility in protocols that decouple session descriptions from
 transport. For instance, in traditional SIP, each offer or answer is
 self-contained, including both the session descriptions and the
 transport information. However, [I-D.ietf-mmusic-trickle-ice-sip]
 allows SIP to be used with trickle ICE [I-D.ietf-ice-trickle], in
 which the session description can be sent immediately and the
 transport information can be sent when available. Sending transport
 information separately can allow for faster ICE and DTLS startup,
 since ICE checks can start as soon as any transport information is
 available rather than waiting for all of it. JSEP's decoupling of
 the ICE and signaling state machines allows it to accommodate either
 model.

 Through its abstraction of signaling, the JSEP approach does require
 the application to be aware of the signaling process. While the
 application does not need to understand the contents of session
 descriptions to set up a call, the application must call the right
 APIs at the right times, convert the session descriptions and ICE
 information into the defined messages of its chosen signaling
 protocol, and perform the reverse conversion on the messages it
 receives from the other side.

 One way to make life easier for the application is to provide a
 JavaScript library that hides this complexity from the developer;
 said library would implement a given signaling protocol along with
 its state machine and serialization code, presenting a higher level
 call-oriented interface to the application developer. For example,
 libraries exist to adapt the JSEP API into an API suitable for a SIP
 or XMPP. Thus, JSEP provides greater control for the experienced
 developer without forcing any additional complexity on the novice
 developer.

https://datatracker.ietf.org/doc/html/rfc5245

Uberti, et al. Expires April 13, 2018 [Page 5]

Internet-Draft JSEP October 2017

1.2. Other Approaches Considered

 One approach that was considered instead of JSEP was to include a
 lightweight signaling protocol. Instead of providing session
 descriptions to the API, the API would produce and consume messages
 from this protocol. While providing a more high-level API, this put
 more control of signaling within the JSEP implementation, forcing it
 to have to understand and handle concepts like signaling glare (see

[RFC3264], Section 4).

 A second approach that was considered but not chosen was to decouple
 the management of the media control objects from session
 descriptions, instead offering APIs that would control each component
 directly. This was rejected based on the argument that requiring
 exposure of this level of complexity to the application programmer
 would not be beneficial; it would result in an API where even a
 simple example would require a significant amount of code to
 orchestrate all the needed interactions, as well as creating a large
 API surface that needed to be agreed upon and documented. In
 addition, these API points could be called in any order, resulting in
 a more complex set of interactions with the media subsystem than the
 JSEP approach, which specifies how session descriptions are to be
 evaluated and applied.

 One variation on JSEP that was considered was to keep the basic
 session description-oriented API, but to move the mechanism for
 generating offers and answers out of the JSEP implementation.
 Instead of providing createOffer/createAnswer methods within the
 implementation, this approach would instead expose a getCapabilities
 API which would provide the application with the information it
 needed in order to generate its own session descriptions. This
 increases the amount of work that the application needs to do; it
 needs to know how to generate session descriptions from capabilities,
 and especially how to generate the correct answer from an arbitrary
 offer and the supported capabilities. While this could certainly be
 addressed by using a library like the one mentioned above, it
 basically forces the use of said library even for a simple example.
 Providing createOffer/createAnswer avoids this problem.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc3264#section-4
https://datatracker.ietf.org/doc/html/rfc2119

Uberti, et al. Expires April 13, 2018 [Page 6]

Internet-Draft JSEP October 2017

3. Semantics and Syntax

3.1. Signaling Model

 JSEP does not specify a particular signaling model or state machine,
 other than the generic need to exchange session descriptions in the
 fashion described by [RFC3264] (offer/answer) in order for both sides
 of the session to know how to conduct the session. JSEP provides
 mechanisms to create offers and answers, as well as to apply them to
 a session. However, the JSEP implementation is totally decoupled
 from the actual mechanism by which these offers and answers are
 communicated to the remote side, including addressing,
 retransmission, forking, and glare handling. These issues are left
 entirely up to the application; the application has complete control
 over which offers and answers get handed to the implementation, and
 when.

 +-----------+ +-----------+
 | Web App |<--- App-Specific Signaling -->| Web App |
 +-----------+ +-----------+
 ^ ^
 | SDP | SDP
 V V
 +-----------+ +-----------+
 | JSEP |<----------- Media ------------>| JSEP |
 | Impl. | | Impl. |
 +-----------+ +-----------+

 Figure 1: JSEP Signaling Model

3.2. Session Descriptions and State Machine

 In order to establish the media plane, the JSEP implementation needs
 specific parameters to indicate what to transmit to the remote side,
 as well as how to handle the media that is received. These
 parameters are determined by the exchange of session descriptions in
 offers and answers, and there are certain details to this process
 that must be handled in the JSEP APIs.

 Whether a session description applies to the local side or the remote
 side affects the meaning of that description. For example, the list
 of codecs sent to a remote party indicates what the local side is
 willing to receive, which, when intersected with the set of codecs
 the remote side supports, specifies what the remote side should send.
 However, not all parameters follow this rule; some parameters are
 declarative and the remote side MUST either accept them or reject

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 7]

Internet-Draft JSEP October 2017

 them altogether. An example of such a parameter is the DTLS
 fingerprints [RFC8122], which are calculated based on the local
 certificate(s) offered, and are not subject to negotiation.

 In addition, various RFCs put different conditions on the format of
 offers versus answers. For example, an offer may propose an
 arbitrary number of m= sections (i.e., media descriptions as
 described in [RFC4566], Section 5.14), but an answer must contain the
 exact same number as the offer.

 Lastly, while the exact media parameters are only known only after an
 offer and an answer have been exchanged, the offerer may receive ICE
 checks, and possibly media (e.g., in the case of a re-offer after a
 connection has been established) before it receives an answer. To
 properly process incoming media in this case, the offerer's media
 handler must be aware of the details of the offer before the answer
 arrives.

 Therefore, in order to handle session descriptions properly, the JSEP
 implementation needs:

 1. To know if a session description pertains to the local or remote
 side.

 2. To know if a session description is an offer or an answer.

 3. To allow the offer to be specified independently of the answer.

 JSEP addresses this by adding both setLocalDescription and
 setRemoteDescription methods and having session description objects
 contain a type field indicating the type of session description being
 supplied. This satisfies the requirements listed above for both the
 offerer, who first calls setLocalDescription(sdp [offer]) and then
 later setRemoteDescription(sdp [answer]), as well as for the
 answerer, who first calls setRemoteDescription(sdp [offer]) and then
 later setLocalDescription(sdp [answer]).

 During the offer/answer exchange, the outstanding offer is considered
 to be "pending" at the offerer and the answerer, as it may either be
 accepted or rejected. If this is a re-offer, each side will also
 have "current" local and remote descriptions, which reflect the
 result of the last offer/answer exchange. Sections Section 4.1.12,

Section 4.1.14, Section 4.1.11, and Section 4.1.13, provide more
 detail on pending and current descriptions.

 JSEP also allows for an answer to be treated as provisional by the
 application. Provisional answers provide a way for an answerer to
 communicate initial session parameters back to the offerer, in order

https://datatracker.ietf.org/doc/html/rfc8122
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14

Uberti, et al. Expires April 13, 2018 [Page 8]

Internet-Draft JSEP October 2017

 to allow the session to begin, while allowing a final answer to be
 specified later. This concept of a final answer is important to the
 offer/answer model; when such an answer is received, any extra
 resources allocated by the caller can be released, now that the exact
 session configuration is known. These "resources" can include things
 like extra ICE components, TURN candidates, or video decoders.
 Provisional answers, on the other hand, do no such deallocation; as a
 result, multiple dissimilar provisional answers, with their own codec
 choices, transport parameters, etc., can be received and applied
 during call setup. Note that the final answer itself may be
 different than any received provisional answers.

 In [RFC3264], the constraint at the signaling level is that only one
 offer can be outstanding for a given session, but at the media stack
 level, a new offer can be generated at any point. For example, when
 using SIP for signaling, if one offer is sent, then cancelled using a
 SIP CANCEL, another offer can be generated even though no answer was
 received for the first offer. To support this, the JSEP media layer
 can provide an offer via the createOffer() method whenever the
 JavaScript application needs one for the signaling. The answerer can
 send back zero or more provisional answers, and finally end the
 offer-answer exchange by sending a final answer. The state machine
 for this is as follows:

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 9]

Internet-Draft JSEP October 2017

 setRemote(OFFER) setLocal(PRANSWER)
 /-----\ /-----\
 | | | |
 v | v |
 +---------------+ | +---------------+ |
 | |----/ | |----/
 | have- | setLocal(PRANSWER) | have- |
 | remote-offer |------------------- >| local-pranswer|
 | | | |
 | | | |
 +---------------+ +---------------+
 ^ | |
 | | setLocal(ANSWER) |
 setRemote(OFFER) | |
 | V setLocal(ANSWER) |
 +---------------+ |
 | | |
 | |<---------------------------+
 | stable |
 | |<---------------------------+
 | | |
 +---------------+ setRemote(ANSWER) |
 ^ | |
 | | setLocal(OFFER) |
 setRemote(ANSWER) | |
 | V |
 +---------------+ +---------------+
 | | | |
 | have- | setRemote(PRANSWER) |have- |
 | local-offer |------------------- >|remote-pranswer|
 | | | |
 | |----\ | |----\
 +---------------+ | +---------------+ |
 ^ | ^ |
 | | | |
 \-----/ \-----/
 setLocal(OFFER) setRemote(PRANSWER)

 Figure 2: JSEP State Machine

 Aside from these state transitions there is no other difference
 between the handling of provisional ("pranswer") and final ("answer")
 answers.

Uberti, et al. Expires April 13, 2018 [Page 10]

Internet-Draft JSEP October 2017

3.3. Session Description Format

 JSEP's session descriptions use SDP syntax for their internal
 representation. While this format is not optimal for manipulation
 from JavaScript, it is widely accepted, and frequently updated with
 new features; any alternate encoding of session descriptions would
 have to keep pace with the changes to SDP, at least until the time
 that this new encoding eclipsed SDP in popularity.

 However, to provide for future flexibility, the SDP syntax is
 encapsulated within a SessionDescription object, which can be
 constructed from SDP, and be serialized out to SDP. If future
 specifications agree on a JSON format for session descriptions, we
 could easily enable this object to generate and consume that JSON.

 As detailed below, most applications should be able to treat the
 SessionDescriptions produced and consumed by these various API calls
 as opaque blobs; that is, the application will not need to read or
 change them.

3.4. Session Description Control

 In order to give the application control over various common session
 parameters, JSEP provides control surfaces which tell the JSEP
 implementation how to generate session descriptions. This avoids the
 need for JavaScript to modify session descriptions in most cases.

 Changes to these objects result in changes to the session
 descriptions generated by subsequent createOffer/Answer calls.

3.4.1. RtpTransceivers

 RtpTransceivers allow the application to control the RTP media
 associated with one m= section. Each RtpTransceiver has an RtpSender
 and an RtpReceiver, which an application can use to control the
 sending and receiving of RTP media. The application may also modify
 the RtpTransceiver directly, for instance, by stopping it.

 RtpTransceivers generally have a 1:1 mapping with m= sections,
 although there may be more RtpTransceivers than m= sections when
 RtpTransceivers are created but not yet associated with a m= section,
 or if RtpTransceivers have been stopped and disassociated from m=
 sections. An RtpTransceiver is said to be associated with an m=
 section if its mid property is non-null; otherwise it is said to be
 disassociated. The associated m= section is determined using a
 mapping between transceivers and m= section indices, formed when
 creating an offer or applying a remote offer.

Uberti, et al. Expires April 13, 2018 [Page 11]

Internet-Draft JSEP October 2017

 An RtpTransceiver is never associated with more than one m= section,
 and once a session description is applied, a m= section is always
 associated with exactly one RtpTransceiver. However, in certain
 cases where a m= section has been rejected, as discussed in

Section 5.2.2 below, that m= section will be "recycled" and
 associated with a new RtpTransceiver with a new mid value.

 RtpTransceivers can be created explicitly by the application or
 implicitly by calling setRemoteDescription with an offer that adds
 new m= sections.

3.4.2. RtpSenders

 RtpSenders allow the application to control how RTP media is sent.
 An RtpSender is conceptually responsible for the outgoing RTP
 stream(s) described by an m= section. This includes encoding the
 attached MediaStreamTrack, sending RTP media packets, and generating/
 processing RTCP for the outgoing RTP streams(s).

3.4.3. RtpReceivers

 RtpReceivers allow the application to inspect how RTP media is
 received. An RtpReceiver is conceptually responsible for the
 incoming RTP stream(s) described by an m= section. This includes
 processing received RTP media packets, decoding the incoming
 stream(s) to produce a remote MediaStreamTrack, and generating/
 processing RTCP for the incoming RTP stream(s).

3.5. ICE

3.5.1. ICE Gathering Overview

 JSEP gathers ICE candidates as needed by the application. Collection
 of ICE candidates is referred to as a gathering phase, and this is
 triggered either by the addition of a new or recycled m= section to
 the local session description, or new ICE credentials in the
 description, indicating an ICE restart. Use of new ICE credentials
 can be triggered explicitly by the application, or implicitly by the
 JSEP implementation in response to changes in the ICE configuration.

 When the ICE configuration changes in a way that requires a new
 gathering phase, a 'needs-ice-restart' bit is set. When this bit is
 set, calls to the createOffer API will generate new ICE credentials.
 This bit is cleared by a call to the setLocalDescription API with new
 ICE credentials from either an offer or an answer, i.e., from either
 a local- or remote-initiated ICE restart.

Uberti, et al. Expires April 13, 2018 [Page 12]

Internet-Draft JSEP October 2017

 When a new gathering phase starts, the ICE agent will notify the
 application that gathering is occurring through an event. Then, when
 each new ICE candidate becomes available, the ICE agent will supply
 it to the application via an additional event; these candidates will
 also automatically be added to the current and/or pending local
 session description. Finally, when all candidates have been
 gathered, an event will be dispatched to signal that the gathering
 process is complete.

 Note that gathering phases only gather the candidates needed by
 new/recycled/restarting m= sections; other m= sections continue to
 use their existing candidates. Also, if an m= section is bundled
 (either by a successful bundle negotiation or by being marked as
 bundle-only), then candidates will be gathered and exchanged for that
 m= section if and only if its MID is a BUNDLE-tag, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation].

3.5.2. ICE Candidate Trickling

 Candidate trickling is a technique through which a caller may
 incrementally provide candidates to the callee after the initial
 offer has been dispatched; the semantics of "Trickle ICE" are defined
 in [I-D.ietf-ice-trickle]. This process allows the callee to begin
 acting upon the call and setting up the ICE (and perhaps DTLS)
 connections immediately, without having to wait for the caller to
 gather all possible candidates. This results in faster media setup
 in cases where gathering is not performed prior to initiating the
 call.

 JSEP supports optional candidate trickling by providing APIs, as
 described above, that provide control and feedback on the ICE
 candidate gathering process. Applications that support candidate
 trickling can send the initial offer immediately and send individual
 candidates when they get the notified of a new candidate;
 applications that do not support this feature can simply wait for the
 indication that gathering is complete, and then create and send their
 offer, with all the candidates, at this time.

 Upon receipt of trickled candidates, the receiving application will
 supply them to its ICE agent. This triggers the ICE agent to start
 using the new remote candidates for connectivity checks.

3.5.2.1. ICE Candidate Format

 In JSEP, ICE candidates are abstracted by an IceCandidate object, and
 as with session descriptions, SDP syntax is used for the internal
 representation.

Uberti, et al. Expires April 13, 2018 [Page 13]

Internet-Draft JSEP October 2017

 The candidate details are specified in an IceCandidate field, using
 the same SDP syntax as the "candidate-attribute" field defined in

[RFC5245], Section 15.1. Note that this field does not contain an
 "a=" prefix, as indicated in the following example:

 candidate:1 1 UDP 1694498815 192.0.2.33 10000 typ host

 The IceCandidate object contains a field to indicate which ICE ufrag
 it is associated with, as defined in [RFC5245], Section 15.4. This
 value is used to determine which session description (and thereby
 which gathering phase) this IceCandidate belongs to, which helps
 resolve ambiguities during ICE restarts. If this field is absent in
 a received IceCandidate (perhaps when communicating with a non-JSEP
 endpoint), the most recently received session description is assumed.

 The IceCandidate object also contains fields to indicate which m=
 section it is associated with, which can be identified in one of two
 ways, either by a m= section index, or a MID. The m= section index
 is a zero-based index, with index N referring to the N+1th m= section
 in the session description referenced by this IceCandidate. The MID
 is a "media stream identification" value, as defined in [RFC5888],
 Section 4, which provides a more robust way to identify the m=
 section in the session description, using the MID of the associated
 RtpTransceiver object (which may have been locally generated by the
 answerer when interacting with a non-JSEP endpoint that does not
 support the MID attribute, as discussed in Section 5.10 below). If
 the MID field is present in a received IceCandidate, it MUST be used
 for identification; otherwise, the m= section index is used instead.

 When creating an IceCandidate object, JSEP implementations MUST
 populate each of the candidate, ufrag, m= section index, and MID
 fields. Implementations MUST also be prepared to receive objects
 with some fields missing, as mentioned above.

3.5.3. ICE Candidate Policy

 Typically, when gathering ICE candidates, the JSEP implementation
 will gather all possible forms of initial candidates - host, server
 reflexive, and relay. However, in certain cases, applications may
 want to have more specific control over the gathering process, due to
 privacy or related concerns. For example, one may want to only use
 relay candidates, to leak as little location information as possible
 (keeping in mind that this choice comes with corresponding
 operational costs). To accomplish this, JSEP allows the application
 to restrict which ICE candidates are used in a session. Note that
 this filtering is applied on top of any restrictions the

https://datatracker.ietf.org/doc/html/rfc5245#section-15.1
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5888#section-4
https://datatracker.ietf.org/doc/html/rfc5888#section-4

Uberti, et al. Expires April 13, 2018 [Page 14]

Internet-Draft JSEP October 2017

 implementation chooses to enforce regarding which IP addresses are
 permitted for the application, as discussed in
 [I-D.ietf-rtcweb-ip-handling].

 There may also be cases where the application wants to change which
 types of candidates are used while the session is active. A prime
 example is where a callee may initially want to use only relay
 candidates, to avoid leaking location information to an arbitrary
 caller, but then change to use all candidates (for lower operational
 cost) once the user has indicated they want to take the call. For
 this scenario, the JSEP implementation MUST allow the candidate
 policy to be changed in mid-session, subject to the aforementioned
 interactions with local policy.

 To administer the ICE candidate policy, the JSEP implementation will
 determine the current setting at the start of each gathering phase.
 Then, during the gathering phase, the implementation MUST NOT expose
 candidates disallowed by the current policy to the application, use
 them as the source of connectivity checks, or indirectly expose them
 via other fields, such as the raddr/rport attributes for other ICE
 candidates. Later, if a different policy is specified by the
 application, the application can apply it by kicking off a new
 gathering phase via an ICE restart.

3.5.4. ICE Candidate Pool

 JSEP applications typically inform the JSEP implementation to begin
 ICE gathering via the information supplied to setLocalDescription, as
 the local description indicates the number of ICE components which
 will be needed and for which candidates must be gathered. However,
 to accelerate cases where the application knows the number of ICE
 components to use ahead of time, it may ask the implementation to
 gather a pool of potential ICE candidates to help ensure rapid media
 setup.

 When setLocalDescription is eventually called, and the JSEP
 implementation goes to gather the needed ICE candidates, it SHOULD
 start by checking if any candidates are available in the pool. If
 there are candidates in the pool, they SHOULD be handed to the
 application immediately via the ICE candidate event. If the pool
 becomes depleted, either because a larger-than-expected number of ICE
 components is used, or because the pool has not had enough time to
 gather candidates, the remaining candidates are gathered as usual.
 This only occurs for the first offer/answer exchange, after which the
 candidate pool is emptied and no longer used.

 One example of where this concept is useful is an application that
 expects an incoming call at some point in the future, and wants to

Uberti, et al. Expires April 13, 2018 [Page 15]

Internet-Draft JSEP October 2017

 minimize the time it takes to establish connectivity, to avoid
 clipping of initial media. By pre-gathering candidates into the
 pool, it can exchange and start sending connectivity checks from
 these candidates almost immediately upon receipt of a call. Note
 though that by holding on to these pre-gathered candidates, which
 will be kept alive as long as they may be needed, the application
 will consume resources on the STUN/TURN servers it is using.

3.6. Video Size Negotiation

 Video size negotiation is the process through which a receiver can
 use the "a=imageattr" SDP attribute [RFC6236] to indicate what video
 frame sizes it is capable of receiving. A receiver may have hard
 limits on what its video decoder can process, or it may have some
 maximum set by policy. By specifying these limits in an
 "a=imageattr" attribute, JSEP endpoints can attempt to ensure that
 the remote sender transmits video at an acceptable resolution.
 However, when communicating with a non-JSEP endpoint that does not
 understand this attribute, any signaled limits may be exceeded, and
 the JSEP implementation MUST handle this gracefully, e.g., by
 discarding the video.

 Note that certain codecs support transmission of samples with aspect
 ratios other than 1.0 (i.e., non-square pixels). JSEP
 implementations will not transmit non-square pixels, but SHOULD
 receive and render such video with the correct aspect ratio.
 However, sample aspect ratio has no impact on the size negotiation
 described below; all dimensions are measured in pixels, whether
 square or not.

3.6.1. Creating an imageattr Attribute

 The receiver will first intersect any known local limits (e.g.,
 hardware decoder capababilities, local policy) to determine the
 absolute minimum and maximum sizes it can receive. If there are no
 known local limits, the "a=imageattr" attribute SHOULD be omitted.
 If these local limits preclude receiving any video, i.e., the
 degenerate case of no permitted resolutions, the "a=imageattr"
 attribute MUST be omitted, and the m= section MUST be marked as
 sendonly/inactive, as appropriate.

 Otherwise, an "a=imageattr" attribute is created with "recv"
 direction, and the resulting resolution space formed from the
 aforementioned intersection is used to specify its minimum and
 maximum x= and y= values.

https://datatracker.ietf.org/doc/html/rfc6236

Uberti, et al. Expires April 13, 2018 [Page 16]

Internet-Draft JSEP October 2017

 The rules here express a single set of preferences, and therefore,
 the "a=imageattr" q= value is not important. It SHOULD be set to
 1.0.

 The "a=imageattr" field is payload type specific. When all video
 codecs supported have the same capabilities, use of a single
 attribute, with the wildcard payload type (*), is RECOMMENDED.
 However, when the supported video codecs have different limitations,
 specific "a=imageattr" attributes MUST be inserted for each payload
 type.

 As an example, consider a system with a multiformat video decoder,
 which is capable of decoding any resolution from 48x48 to 720p, In
 this case, the implementation would generate this attribute:

 a=imageattr:* recv [x=[48:1280],y=[48:720],q=1.0]

 This declaration indicates that the receiver is capable of decoding
 any image resolution from 48x48 up to 1280x720 pixels.

3.6.2. Interpreting imageattr Attributes

 [RFC6236] defines "a=imageattr" to be an advisory field. This means
 that it does not absolutely constrain the video formats that the
 sender can use, but gives an indication of the preferred values.

 This specification prescribes more specific behavior. When a
 MediaStreamTrack, which is producing video of a certain resolution
 (the "track resolution"), is attached to a RtpSender, which is
 encoding the track video at the same or lower resolution(s) (the
 "encoder resolutions"), and a remote description is applied that
 references the sender and contains valid "a=imageattr recv"
 attributes, it MUST follow the rules below to ensure the sender does
 not transmit a resolution that would exceed the size criteria
 specified in the attributes. These rules MUST be followed as long as
 the attributes remain present in the remote description, including
 cases in which the track changes its resolution, or is replaced with
 a different track.

 Depending on how the RtpSender is configured, it may be producing a
 single encoding at a certain resolution, or, if simulcast Section 3.7
 has been negotiated, multiple encodings, each at their own specific
 resolution. In addition, depending on the configuration, each
 encoding may have the flexibility to reduce resolution when needed,
 or may be locked to a specific output resolution.

 For each encoding being produced by the RtpSender, the set of
 "a=imageattr recv" attributes in the corresponding m= section of the

Uberti, et al. Expires April 13, 2018 [Page 17]

Internet-Draft JSEP October 2017

 remote description is processed to determine what should be
 transmitted. Only attributes that reference the media format
 selected for the encoding are considered; each such attribute is
 evaluated individually, starting with the attribute with the highest
 "q=" value. If multiple attributes have the same "q=" value, they
 are evaluated in the order they appear in their containing m=
 section. Note that while JSEP endpoints will include at most one
 "a=imageattr recv" attribute per media format, JSEP endpoints may
 receive session descriptions from non-JSEP endpoints with m= sections
 that contain multiple such attributes.

 For each "a=imageattr recv" attribute, the following rules are
 applied. If this processing is successful, the encoding is
 transmitted accordingly, and no further attributes are considered for
 that encoding. Otherwise, the next attribute is evaluated, in the
 aforementioned order. If none of the supplied attributes can be
 processed successfully, the encoding MUST NOT be transmitted, and an
 error SHOULD be raised to the application.

 o The limits from the attribute are compared to the encoder
 resolution. Only the specific limits mentioned below are
 considered; any other values, such as picture aspect ratio, MUST
 be ignored. When considering a MediaStreamTrack that is producing
 rotated video, the unrotated resolution MUST be used for the
 checks. This is required regardless of whether the receiver
 supports performing receive-side rotation (e.g., through CVO
 [TS26.114]), as it significantly simplifies the matching logic.

 o If the attribute includes a "sar=" (sample aspect ratio) value set
 to something other than "1.0", indicating the receiver wants to
 receive non-square pixels, this cannot be satisfied and the
 attribute MUST NOT be used.

 o If the encoder resolution exceeds the maximum size permitted by
 the attribute, and the encoder is allowed to adjust its
 resolution, the encoder SHOULD apply downscaling in order to
 satisfy the limits. Downscaling MUST NOT change the picture
 aspect ratio of the encoding, ignoring any trivial differences due
 to rounding. For example, if the encoder resolution is 1280x720,
 and the attribute specified a maximum of 640x480, the expected
 output resolution would be 640x360. If downscaling cannot be
 applied, the attribute MUST NOT be used.

 o If the encoder resolution is less than the minimum size permitted
 by the attribute, the attribute MUST NOT be used; the encoder MUST
 NOT apply upscaling. JSEP implementations SHOULD avoid this
 situation by allowing receipt of arbitrarily small resolutions,
 perhaps via fallback to a software decoder.

Uberti, et al. Expires April 13, 2018 [Page 18]

Internet-Draft JSEP October 2017

 o If the encoder resolution is within the maximum and minimum sizes,
 no action is needed.

3.7. Simulcast

 JSEP supports simulcast transmission of a MediaStreamTrack, where
 multiple encodings of the source media can be transmitted within the
 context of a single m= section. The current JSEP API is designed to
 allow applications to send simulcasted media but only to receive a
 single encoding. This allows for multi-user scenarios where each
 sending client sends multiple encodings to a server, which then, for
 each receiving client, chooses the appropriate encoding to forward.

 Applications request support for simulcast by configuring multiple
 encodings on an RtpSender. Upon generation of an offer or answer,
 these encodings are indicated via SDP markings on the corresponding
 m= section, as described below. Receivers that understand simulcast
 and are willing to receive it will also include SDP markings to
 indicate their support, and JSEP endpoints will use these markings to
 determine whether simulcast is permitted for a given RtpSender. If
 simulcast support is not negotiated, the RtpSender will only use the
 first configured encoding.

 Note that the exact simulcast parameters are up to the sending
 application. While the aforementioned SDP markings are provided to
 ensure the remote side can receive and demux multiple simulcast
 encodings, the specific resolutions and bitrates to be used for each
 encoding are purely a send-side decision in JSEP.

 JSEP currently does not provide a mechanism to configure receipt of
 simulcast. This means that if simulcast is offered by the remote
 endpoint, the answer generated by a JSEP endpoint will not indicate
 support for receipt of simulcast, and as such the remote endpoint
 will only send a single encoding per m= section.

 In addition, JSEP does not provide a mechanism to handle an incoming
 offer requesting simulcast from the JSEP endpoint. This means that
 setting up simulcast in the case where the JSEP endpoint receives the
 initial offer requires out-of-band signaling or SDP inspection.
 However, in the case where the JSEP endpoint sets up simulcast in its
 in initial offer, any established simulcast streams will continue to
 work upon receipt of an incoming re-offer. Future versions of this
 specification may add additional APIs to handle the incoming initial
 offer scenario.

 When using JSEP to transmit multiple encodings from a RtpSender, the
 techniques from [I-D.ietf-mmusic-sdp-simulcast] and
 [I-D.ietf-mmusic-rid] are used. Specifically, when multiple

Uberti, et al. Expires April 13, 2018 [Page 19]

Internet-Draft JSEP October 2017

 encodings have been configured for a RtpSender, the m= section for
 the RtpSender will include an "a=simulcast" attribute, as defined in
 [I-D.ietf-mmusic-sdp-simulcast], Section 6.2, with a "send" simulcast
 stream description that lists each desired encoding, and no "recv"
 simulcast stream description. The m= section will also include an
 "a=rid" attribute for each encoding, as specified in
 [I-D.ietf-mmusic-rid], Section 4; the use of RID identifiers allows
 the individual encodings to be disambiguated even though they are all
 part of the same m= section.

3.8. Interactions With Forking

 Some call signaling systems allow various types of forking where an
 SDP Offer may be provided to more than one device. For example, SIP
 [RFC3261] defines both a "Parallel Search" and "Sequential Search".
 Although these are primarily signaling level issues that are outside
 the scope of JSEP, they do have some impact on the configuration of
 the media plane that is relevant. When forking happens at the
 signaling layer, the JavaScript application responsible for the
 signaling needs to make the decisions about what media should be sent
 or received at any point of time, as well as which remote endpoint it
 should communicate with; JSEP is used to make sure the media engine
 can make the RTP and media perform as required by the application.
 The basic operations that the applications can have the media engine
 do are:

 o Start exchanging media with a given remote peer, but keep all the
 resources reserved in the offer.

 o Start exchanging media with a given remote peer, and free any
 resources in the offer that are not being used.

3.8.1. Sequential Forking

 Sequential forking involves a call being dispatched to multiple
 remote callees, where each callee can accept the call, but only one
 active session ever exists at a time; no mixing of received media is
 performed.

 JSEP handles sequential forking well, allowing the application to
 easily control the policy for selecting the desired remote endpoint.
 When an answer arrives from one of the callees, the application can
 choose to apply it either as a provisional answer, leaving open the
 possibility of using a different answer in the future, or apply it as
 a final answer, ending the setup flow.

https://datatracker.ietf.org/doc/html/rfc3261

Uberti, et al. Expires April 13, 2018 [Page 20]

Internet-Draft JSEP October 2017

 In a "first-one-wins" situation, the first answer will be applied as
 a final answer, and the application will reject any subsequent
 answers. In SIP parlance, this would be ACK + BYE.

 In a "last-one-wins" situation, all answers would be applied as
 provisional answers, and any previous call leg will be terminated.
 At some point, the application will end the setup process, perhaps
 with a timer; at this point, the application could reapply the
 pending remote description as a final answer.

3.8.2. Parallel Forking

 Parallel forking involves a call being dispatched to multiple remote
 callees, where each callee can accept the call, and multiple
 simultaneous active signaling sessions can be established as a
 result. If multiple callees send media at the same time, the
 possibilities for handling this are described in [RFC3960],
 Section 3.1. Most SIP devices today only support exchanging media
 with a single device at a time, and do not try to mix multiple early
 media audio sources, as that could result in a confusing situation.
 For example, consider having a European ringback tone mixed together
 with the North American ringback tone - the resulting sound would not
 be like either tone, and would confuse the user. If the signaling
 application wishes to only exchange media with one of the remote
 endpoints at a time, then from a media engine point of view, this is
 exactly like the sequential forking case.

 In the parallel forking case where the JavaScript application wishes
 to simultaneously exchange media with multiple peers, the flow is
 slightly more complex, but the JavaScript application can follow the
 strategy that [RFC3960] describes using UPDATE. The UPDATE approach
 allows the signaling to set up a separate media flow for each peer
 that it wishes to exchange media with. In JSEP, this offer used in
 the UPDATE would be formed by simply creating a new PeerConnection
 (see Section 4.1) and making sure that the same local media streams
 have been added into this new PeerConnection. Then the new
 PeerConnection object would produce a SDP offer that could be used by
 the signaling to perform the UPDATE strategy discussed in [RFC3960].

 As a result of sharing the media streams, the application will end up
 with N parallel PeerConnection sessions, each with a local and remote
 description and their own local and remote addresses. The media flow
 from these sessions can be managed using setDirection (see

Section 4.2.3), or the application can choose to play out the media
 from all sessions mixed together. Of course, if the application
 wants to only keep a single session, it can simply terminate the
 sessions that it no longer needs.

https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960#section-3.1
https://datatracker.ietf.org/doc/html/rfc3960
https://datatracker.ietf.org/doc/html/rfc3960

Uberti, et al. Expires April 13, 2018 [Page 21]

Internet-Draft JSEP October 2017

4. Interface

 This section details the basic operations that must be present to
 implement JSEP functionality. The actual API exposed in the W3C API
 may have somewhat different syntax, but should map easily to these
 concepts.

4.1. PeerConnection

4.1.1. Constructor

 The PeerConnection constructor allows the application to specify
 global parameters for the media session, such as the STUN/TURN
 servers and credentials to use when gathering candidates, as well as
 the initial ICE candidate policy and pool size, and also the bundle
 policy to use.

 If an ICE candidate policy is specified, it functions as described in
Section 3.5.3, causing the JSEP implementation to only surface the

 permitted candidates (including any implementation-internal
 filtering) to the application, and only use those candidates for
 connectivity checks. The set of available policies is as follows:

 all: All candidates permitted by implementation policy will be
 gathered and used.

 relay: All candidates except relay candidates will be filtered out.
 This obfuscates the location information that might be ascertained
 by the remote peer from the received candidates. Depending on how
 the application deploys and chooses relay servers, this could
 obfuscate location to a metro or possibly even global level.

 The default ICE candidate policy MUST be set to "all" as this is
 generally the desired policy, and also typically reduces use of
 application TURN server resources significantly.

 If a size is specified for the ICE candidate pool, this indicates the
 number of ICE components to pre-gather candidates for. Because pre-
 gathering results in utilizing STUN/TURN server resources for
 potentially long periods of time, this must only occur upon
 application request, and therefore the default candidate pool size
 MUST be zero.

 The application can specify its preferred policy regarding use of
 bundle, the multiplexing mechanism defined in
 [I-D.ietf-mmusic-sdp-bundle-negotiation]. Regardless of policy, the

Uberti, et al. Expires April 13, 2018 [Page 22]

Internet-Draft JSEP October 2017

 application will always try to negotiate bundle onto a single
 transport, and will offer a single bundle group across all m=
 sections; use of this single transport is contingent upon the
 answerer accepting bundle. However, by specifying a policy from the
 list below, the application can control exactly how aggressively it
 will try to bundle media streams together, which affects how it will
 interoperate with a non-bundle-aware endpoint. When negotiating with
 a non-bundle-aware endpoint, only the streams not marked as bundle-
 only streams will be established.

 The set of available policies is as follows:

 balanced: The first m= section of each type (audio, video, or
 application) will contain transport parameters, which will allow
 an answerer to unbundle that section. The second and any
 subsequent m= section of each type will be marked bundle-only.
 The result is that if there are N distinct media types, then
 candidates will be gathered for for N media streams. This policy
 balances desire to multiplex with the need to ensure basic audio
 and video can still be negotiated in legacy cases. When acting as
 answerer, if there is no bundle group in the offer, the
 implementation will reject all but the first m= section of each
 type.

 max-compat: All m= sections will contain transport parameters; none
 will be marked as bundle-only. This policy will allow all streams
 to be received by non-bundle-aware endpoints, but require separate
 candidates to be gathered for each media stream.

 max-bundle: Only the first m= section will contain transport
 parameters; all streams other than the first will be marked as
 bundle-only. This policy aims to minimize candidate gathering and
 maximize multiplexing, at the cost of less compatibility with
 legacy endpoints. When acting as answerer, the implementation
 will reject any m= sections other than the first m= section,
 unless they are in the same bundle group as that m= section.

 As it provides the best tradeoff between performance and
 compatibility with legacy endpoints, the default bundle policy MUST
 be set to "balanced".

 The application can specify its preferred policy regarding use of
 RTP/RTCP multiplexing [RFC5761] using one of the following policies:

https://datatracker.ietf.org/doc/html/rfc5761

Uberti, et al. Expires April 13, 2018 [Page 23]

Internet-Draft JSEP October 2017

 negotiate: The JSEP implementation will gather both RTP and RTCP
 candidates but also will offer "a=rtcp-mux", thus allowing for
 compatibility with either multiplexing or non-multiplexing
 endpoints.

 require: The JSEP implementation will only gather RTP candidates and
 will insert an "a=rtcp-mux-only" indication into any new m=
 sections in offers it generates. This halves the number of
 candidates that the offerer needs to gather. Applying a
 description with an m= section that does not contain an "a=rtcp-
 mux" attribute will cause an error to be returned.

 The default multiplexing policy MUST be set to "require".
 Implementations MAY choose to reject attempts by the application to
 set the multiplexing policy to "negotiate".

4.1.2. addTrack

 The addTrack method adds a MediaStreamTrack to the PeerConnection,
 using the MediaStream argument to associate the track with other
 tracks in the same MediaStream, so that they can be added to the same
 "LS" group when creating an offer or answer. Adding tracks to the
 same "LS" group indicates that the playback of these tracks should be
 synchronized for proper lip sync, as described in [RFC5888],
 Section 7. addTrack attempts to minimize the number of transceivers
 as follows: If the PeerConnection is in the "have-remote-offer"
 state, the track will be attached to the first compatible transceiver
 that was created by the most recent call to setRemoteDescription()
 and does not have a local track. Otherwise, a new transceiver will
 be created, as described in Section 4.1.4.

4.1.3. removeTrack

 The removeTrack method removes a MediaStreamTrack from the
 PeerConnection, using the RtpSender argument to indicate which sender
 should have its track removed. The sender's track is cleared, and
 the sender stops sending. Future calls to createOffer will mark the
 m= section associated with the sender as recvonly (if
 transceiver.direction is sendrecv) or as inactive (if
 transceiver.direction is sendonly).

4.1.4. addTransceiver

 The addTransceiver method adds a new RtpTransceiver to the
 PeerConnection. If a MediaStreamTrack argument is provided, then the
 transceiver will be configured with that media type and the track
 will be attached to the transceiver. Otherwise, the application MUST
 explicitly specify the type; this mode is useful for creating

https://datatracker.ietf.org/doc/html/rfc5888#section-7
https://datatracker.ietf.org/doc/html/rfc5888#section-7

Uberti, et al. Expires April 13, 2018 [Page 24]

Internet-Draft JSEP October 2017

 recvonly transceivers as well as for creating transceivers to which a
 track can be attached at some later point.

 At the time of creation, the application can also specify a
 transceiver direction attribute, a set of MediaStreams which the
 transceiver is associated with (allowing LS group assignments), and a
 set of encodings for the media (used for simulcast as described in

Section 3.7).

4.1.5. createDataChannel

 The createDataChannel method creates a new data channel and attaches
 it to the PeerConnection. If no data channel currently exists for
 this PeerConnection, then a new offer/answer exchange is required.
 All data channels on a given PeerConnection share the same SCTP/DTLS
 association and therefore the same m= section, so subsequent creation
 of data channels does not have any impact on the JSEP state.

 The createDataChannel method also includes a number of arguments
 which are used by the PeerConnection (e.g., maxPacketLifetime) but
 are not reflected in the SDP and do not affect the JSEP state.

4.1.6. createOffer

 The createOffer method generates a blob of SDP that contains a
 [RFC3264] offer with the supported configurations for the session,
 including descriptions of the media added to this PeerConnection, the
 codec/RTP/RTCP options supported by this implementation, and any
 candidates that have been gathered by the ICE agent. An options
 parameter may be supplied to provide additional control over the
 generated offer. This options parameter allows an application to
 trigger an ICE restart, for the purpose of reestablishing
 connectivity.

 In the initial offer, the generated SDP will contain all desired
 functionality for the session (functionality that is supported but
 not desired by default may be omitted); for each SDP line, the
 generation of the SDP will follow the process defined for generating
 an initial offer from the document that specifies the given SDP line.
 The exact handling of initial offer generation is detailed in

Section 5.2.1 below.

 In the event createOffer is called after the session is established,
 createOffer will generate an offer to modify the current session
 based on any changes that have been made to the session, e.g., adding
 or stopping RtpTransceivers, or requesting an ICE restart. For each
 existing stream, the generation of each SDP line must follow the
 process defined for generating an updated offer from the RFC that

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 25]

Internet-Draft JSEP October 2017

 specifies the given SDP line. For each new stream, the generation of
 the SDP must follow the process of generating an initial offer, as
 mentioned above. If no changes have been made, or for SDP lines that
 are unaffected by the requested changes, the offer will only contain
 the parameters negotiated by the last offer-answer exchange. The
 exact handling of subsequent offer generation is detailed in

Section 5.2.2. below.

 Session descriptions generated by createOffer must be immediately
 usable by setLocalDescription; if a system has limited resources
 (e.g. a finite number of decoders), createOffer should return an
 offer that reflects the current state of the system, so that
 setLocalDescription will succeed when it attempts to acquire those
 resources.

 Calling this method may do things such as generating new ICE
 credentials, but does not change the PeerConnection state, trigger
 candidate gathering, or cause media to start or stop flowing.
 Specifically, the offer is not applied, and does not become the
 pending local description, until setLocalDescription is called.

4.1.7. createAnswer

 The createAnswer method generates a blob of SDP that contains a
 [RFC3264] SDP answer with the supported configuration for the session
 that is compatible with the parameters supplied in the most recent
 call to setRemoteDescription, which MUST have been called prior to
 calling createAnswer. Like createOffer, the returned blob contains
 descriptions of the media added to this PeerConnection, the
 codec/RTP/RTCP options negotiated for this session, and any
 candidates that have been gathered by the ICE agent. An options
 parameter may be supplied to provide additional control over the
 generated answer.

 As an answer, the generated SDP will contain a specific configuration
 that specifies how the media plane should be established; for each
 SDP line, the generation of the SDP must follow the process defined
 for generating an answer from the document that specifies the given
 SDP line. The exact handling of answer generation is detailed in

Section 5.3. below.

 Session descriptions generated by createAnswer must be immediately
 usable by setLocalDescription; like createOffer, the returned
 description should reflect the current state of the system.

 Calling this method may do things such as generating new ICE
 credentials, but does not change the PeerConnection state, trigger
 candidate gathering, or or cause a media state change. Specifically,

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 26]

Internet-Draft JSEP October 2017

 the answer is not applied, and does not become the current local
 description, until setLocalDescription is called.

4.1.8. SessionDescriptionType

 Session description objects (RTCSessionDescription) may be of type
 "offer", "pranswer", "answer" or "rollback". These types provide
 information as to how the description parameter should be parsed, and
 how the media state should be changed.

 "offer" indicates that a description should be parsed as an offer;
 said description may include many possible media configurations. A
 description used as an "offer" may be applied anytime the
 PeerConnection is in a stable state, or as an update to a previously
 supplied but unanswered "offer".

 "pranswer" indicates that a description should be parsed as an
 answer, but not a final answer, and so should not result in the
 freeing of allocated resources. It may result in the start of media
 transmission, if the answer does not specify an inactive media
 direction. A description used as a "pranswer" may be applied as a
 response to an "offer", or an update to a previously sent "pranswer".

 "answer" indicates that a description should be parsed as an answer,
 the offer-answer exchange should be considered complete, and any
 resources (decoders, candidates) that are no longer needed can be
 released. A description used as an "answer" may be applied as a
 response to an "offer", or an update to a previously sent "pranswer".

 The only difference between a provisional and final answer is that
 the final answer results in the freeing of any unused resources that
 were allocated as a result of the offer. As such, the application
 can use some discretion on whether an answer should be applied as
 provisional or final, and can change the type of the session
 description as needed. For example, in a serial forking scenario, an
 application may receive multiple "final" answers, one from each
 remote endpoint. The application could choose to accept the initial
 answers as provisional answers, and only apply an answer as final
 when it receives one that meets its criteria (e.g. a live user
 instead of voicemail).

 "rollback" is a special session description type implying that the
 state machine should be rolled back to the previous stable state, as
 described in Section 4.1.8.2. The contents MUST be empty.

Uberti, et al. Expires April 13, 2018 [Page 27]

Internet-Draft JSEP October 2017

4.1.8.1. Use of Provisional Answers

 Most applications will not need to create answers using the
 "pranswer" type. While it is good practice to send an immediate
 response to an offer, in order to warm up the session transport and
 prevent media clipping, the preferred handling for a JSEP application
 is to create and send a "sendonly" final answer with a null
 MediaStreamTrack immediately after receiving the offer, which will
 prevent media from being sent by the caller, and allow media to be
 sent immediately upon answer by the callee. Later, when the callee
 actually accepts the call, the application can plug in the real
 MediaStreamTrack and create a new "sendrecv" offer to update the
 previous offer/answer pair and start bidirectional media flow. While
 this could also be done with a "sendonly" pranswer, followed by a
 "sendrecv" answer, the initial pranswer leaves the offer-answer
 exchange open, which means that the caller cannot send an updated
 offer during this time.

 As an example, consider a typical JSEP application that wants to set
 up audio and video as quickly as possible. When the callee receives
 an offer with audio and video MediaStreamTracks, it will send an
 immediate answer accepting these tracks as sendonly (meaning that the
 caller will not send the callee any media yet, and because the callee
 has not yet added its own MediaStreamTracks, the callee will not send
 any media either). It will then ask the user to accept the call and
 acquire the needed local tracks. Upon acceptance by the user, the
 application will plug in the tracks it has acquired, which, because
 ICE and DTLS handshaking have likely completed by this point, can
 start transmitting immediately. The application will also send a new
 offer to the remote side indicating call acceptance and moving the
 audio and video to be two-way media. A detailed example flow along
 these lines is shown in Section 7.3.

 Of course, some applications may not be able to perform this double
 offer-answer exchange, particularly ones that are attempting to
 gateway to legacy signaling protocols. In these cases, pranswer can
 still provide the application with a mechanism to warm up the
 transport.

4.1.8.2. Rollback

 In certain situations it may be desirable to "undo" a change made to
 setLocalDescription or setRemoteDescription. Consider a case where a
 call is ongoing, and one side wants to change some of the session
 parameters; that side generates an updated offer and then calls
 setLocalDescription. However, the remote side, either before or
 after setRemoteDescription, decides it does not want to accept the
 new parameters, and sends a reject message back to the offerer. Now,

Uberti, et al. Expires April 13, 2018 [Page 28]

Internet-Draft JSEP October 2017

 the offerer, and possibly the answerer as well, need to return to a
 stable state and the previous local/remote description. To support
 this, we introduce the concept of "rollback", which discards any
 proposed changes to the session, returning the state machine to the
 stable state. A rollback is performed by supplying a session
 description of type "rollback" with empty contents to either
 setLocalDescription or setRemoteDescription.

4.1.9. setLocalDescription

 The setLocalDescription method instructs the PeerConnection to apply
 the supplied session description as its local configuration. The
 type field indicates whether the description should be processed as
 an offer, provisional answer, final answer, or rollback; offers and
 answers are checked differently, using the various rules that exist
 for each SDP line.

 This API changes the local media state; among other things, it sets
 up local resources for receiving and decoding media. In order to
 successfully handle scenarios where the application wants to offer to
 change from one media format to a different, incompatible format, the
 PeerConnection must be able to simultaneously support use of both the
 current and pending local descriptions (e.g., support the codecs that
 exist in either description). This dual processing begins when the
 PeerConnection enters the "have-local-offer" state, and continues
 until setRemoteDescription is called with either a final answer, at
 which point the PeerConnection can fully adopt the pending local
 description, or a rollback, which results in a revert to the current
 local description.

 This API indirectly controls the candidate gathering process. When a
 local description is supplied, and the number of transports currently
 in use does not match the number of transports needed by the local
 description, the PeerConnection will create transports as needed and
 begin gathering candidates for each transport, using ones from the
 candidate pool if available.

 If setRemoteDescription was previously called with an offer, and
 setLocalDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media is available to
 send, this will result in the starting of media transmission.

4.1.10. setRemoteDescription

 The setRemoteDescription method instructs the PeerConnection to apply
 the supplied session description as the desired remote configuration.
 As in setLocalDescription, the type field of the description
 indicates how it should be processed.

Uberti, et al. Expires April 13, 2018 [Page 29]

Internet-Draft JSEP October 2017

 This API changes the local media state; among other things, it sets
 up local resources for sending and encoding media.

 If setLocalDescription was previously called with an offer, and
 setRemoteDescription is called with an answer (provisional or final),
 and the media directions are compatible, and media is available to
 send, this will result in the starting of media transmission.

4.1.11. currentLocalDescription

 The currentLocalDescription method returns the current negotiated
 local description - i.e., the local description from the last
 successful offer/answer exchange - in addition to any local
 candidates that have been generated by the ICE agent since the local
 description was set.

 A null object will be returned if an offer/answer exchange has not
 yet been completed.

4.1.12. pendingLocalDescription

 The pendingLocalDescription method returns a copy of the local
 description currently in negotiation - i.e., a local offer set
 without any corresponding remote answer - in addition to any local
 candidates that have been generated by the ICE agent since the local
 description was set.

 A null object will be returned if the state of the PeerConnection is
 "stable" or "have-remote-offer".

4.1.13. currentRemoteDescription

 The currentRemoteDescription method returns a copy of the current
 negotiated remote description - i.e., the remote description from the
 last successful offer/answer exchange - in addition to any remote
 candidates that have been supplied via processIceMessage since the
 remote description was set.

 A null object will be returned if an offer/answer exchange has not
 yet been completed.

4.1.14. pendingRemoteDescription

 The pendingRemoteDescription method returns a copy of the remote
 description currently in negotiation - i.e., a remote offer set
 without any corresponding local answer - in addition to any remote
 candidates that have been supplied via processIceMessage since the
 remote description was set.

Uberti, et al. Expires April 13, 2018 [Page 30]

Internet-Draft JSEP October 2017

 A null object will be returned if the state of the PeerConnection is
 "stable" or "have-local-offer".

4.1.15. canTrickleIceCandidates

 The canTrickleIceCandidates property indicates whether the remote
 side supports receiving trickled candidates. There are three
 potential values:

 null: No SDP has been received from the other side, so it is not
 known if it can handle trickle. This is the initial value before
 setRemoteDescription() is called.

 true: SDP has been received from the other side indicating that it
 can support trickle.

 false: SDP has been received from the other side indicating that it
 cannot support trickle.

 As described in Section 3.5.2, JSEP implementations always provide
 candidates to the application individually, consistent with what is
 needed for Trickle ICE. However, applications can use the
 canTrickleIceCandidates property to determine whether their peer can
 actually do Trickle ICE, i.e., whether it is safe to send an initial
 offer or answer followed later by candidates as they are gathered.
 As "true" is the only value that definitively indicates remote
 Trickle ICE support, an application which compares
 canTrickleIceCandidates against "true" will by default attempt Half
 Trickle on initial offers and Full Trickle on subsequent interactions
 with a Trickle ICE-compatible agent.

4.1.16. setConfiguration

 The setConfiguration method allows the global configuration of the
 PeerConnection, which was initially set by constructor parameters, to
 be changed during the session. The effects of this method call
 depend on when it is invoked, and differ depending on which specific
 parameters are changed:

 o Any changes to the STUN/TURN servers to use affect the next
 gathering phase. If an ICE gathering phase has already started or
 completed, the 'needs-ice-restart' bit mentioned in Section 3.5.1
 will be set. This will cause the next call to createOffer to
 generate new ICE credentials, for the purpose of forcing an ICE
 restart and kicking off a new gathering phase, in which the new
 servers will be used. If the ICE candidate pool has a nonzero
 size, and a local description has not yet been applied, any

Uberti, et al. Expires April 13, 2018 [Page 31]

Internet-Draft JSEP October 2017

 existing candidates will be discarded, and new candidates will be
 gathered from the new servers.

 o Any change to the ICE candidate policy affects the next gathering
 phase. If an ICE gathering phase has already started or
 completed, the 'needs-ice-restart' bit will be set. Either way,
 changes to the policy have no effect on the candidate pool,
 because pooled candidates are not made available to the
 application until a gathering phase occurs, and so any necessary
 filtering can still be done on any pooled candidates.

 o The ICE candidate pool size MUST NOT be changed after applying a
 local description. If a local description has not yet been
 applied, any changes to the ICE candidate pool size take effect
 immediately; if increased, additional candidates are pre-gathered;
 if decreased, the now-superfluous candidates are discarded.

 o The bundle and RTCP-multiplexing policies MUST NOT be changed
 after the construction of the PeerConnection.

 This call may result in a change to the state of the ICE Agent.

4.1.17. addIceCandidate

 The addIceCandidate method provides an update to the ICE agent via an
 IceCandidate object Section 3.5.2.1. If the IceCandidate's candidate
 field is filled in, the IceCandidate is treated as a new remote ICE
 candidate, which will be added to the current and/or pending remote
 description according to the rules defined for Trickle ICE.
 Otherwise, the IceCandidate is treated as an end-of-candidates
 indication, as defined in [I-D.ietf-ice-trickle].

 In either case, the m= section index, MID, and ufrag fields from the
 supplied IceCandidate are used to determine which m= section and ICE
 candidate generation the IceCandidate belongs to, as described in

Section 3.5.2.1 above. In the case of an end-of-candidates
 indication, the absence of both the m= section index and MID fields
 is interpreted to mean that the indication applies to all m= sections
 in the specified ICE candidate generation. However, if both fields
 are absent for a new remote candidate, this MUST be treated as an
 invalid condition, as specified below.

 If any IceCandidate fields contain invalid values, or an error occurs
 during the processing of the IceCandidate object, the supplied
 IceCandidate MUST be ignored and an error MUST be returned.

Uberti, et al. Expires April 13, 2018 [Page 32]

Internet-Draft JSEP October 2017

 Otherwise, the new remote candidate or end-of-candidates indication
 is supplied to the ICE agent. In the case of a new remote candidate,
 connectivity checks will be sent to the new candidate.

4.2. RtpTransceiver

4.2.1. stop

 The stop method stops an RtpTransceiver. This will cause future
 calls to createOffer to generate a zero port for the associated m=
 section. See below for more details.

4.2.2. stopped

 The stopped property indicates whether the transceiver has been
 stopped, either by a call to stopTransceiver or by applying an answer
 that rejects the associated m= section. In either of these cases, it
 is set to "true", and otherwise will be set to "false".

 A stopped RtpTransceiver does not send any outgoing RTP or RTCP or
 process any incoming RTP or RTCP. It cannot be restarted.

4.2.3. setDirection

 The setDirection method sets the direction of a transceiver, which
 affects the direction property of the associated m= section on future
 calls to createOffer and createAnswer. The permitted values for
 direction are "recvonly", "sendrecv", "sendonly", and "inactive",
 mirroring the identically-named directional attributes defined in

[RFC4566], Section 6.

 When creating offers, the transceiver direction is directly reflected
 in the output, even for re-offers. When creating answers, the
 transceiver direction is intersected with the offered direction, as
 explained in Section 5.3 below.

 Note that while setDirection sets the direction property of the
 transceiver immediately (Section 4.2.4), this property does not
 immediately affect whether the transceiver's RtpSender will send or
 its RtpReceiver will receive. The direction in effect is represented
 by the currentDirection property, which is only updated when an
 answer is applied.

4.2.4. direction

 The direction property indicates the last value passed into
 setDirection. If setDirection has never been called, it is set to
 the direction the transceiver was initialized with.

https://datatracker.ietf.org/doc/html/rfc4566#section-6

Uberti, et al. Expires April 13, 2018 [Page 33]

Internet-Draft JSEP October 2017

4.2.5. currentDirection

 The currentDirection property indicates the last negotiated direction
 for the transceiver's associated m= section. More specifically, it
 indicates the [RFC3264] directional attribute of the associated m=
 section in the last applied answer (including provisional answers),
 with "send" and "recv" directions reversed if it was a remote answer.
 For example, if the directional attribute for the associated m=
 section in a remote answer is "recvonly", currentDirection is set to
 "sendonly".

 If an answer that references this transceiver has not yet been
 applied, or if the transceiver is stopped, currentDirection is set to
 null.

4.2.6. setCodecPreferences

 The setCodecPreferences method sets the codec preferences of a
 transceiver, which in turn affect the presence and order of codecs of
 the associated m= section on future calls to createOffer and
 createAnswer. Note that setCodecPreferences does not directly affect
 which codec the implementation decides to send. It only affects
 which codecs the implementation indicates that it prefers to receive,
 via the offer or answer. Even when a codec is excluded by
 setCodecPreferences, it still may be used to send until the next
 offer/answer exchange discards it.

 The codec preferences of an RtpTransceiver can cause codecs to be
 excluded by subsequent calls to createOffer and createAnswer, in
 which case the corresponding media formats in the associated m=
 section will be excluded. The codec preferences cannot add media
 formats that would otherwise not be present.

 The codec preferences of an RtpTransceiver can also determine the
 order of codecs in subsequent calls to createOffer and createAnswer,
 in which case the order of the media formats in the associated m=
 section will follow the specified preferences.

5. SDP Interaction Procedures

 This section describes the specific procedures to be followed when
 creating and parsing SDP objects.

5.1. Requirements Overview

 JSEP implementations must comply with the specifications listed below
 that govern the creation and processing of offers and answers.

https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 34]

Internet-Draft JSEP October 2017

5.1.1. Usage Requirements

 All session descriptions handled by JSEP implementations, both local
 and remote, MUST indicate support for the following specifications.
 If any of these are absent, this omission MUST be treated as an
 error.

 o ICE, as specified in [RFC5245], MUST be used. Note that the
 remote endpoint may use a Lite implementation; implementations
 MUST properly handle remote endpoints which do ICE-Lite.

 o DTLS [RFC6347] or DTLS-SRTP [RFC5763], MUST be used, as
 appropriate for the media type, as specified in
 [I-D.ietf-rtcweb-security-arch]

 The SDES SRTP keying mechanism from [RFC4568] MUST NOT be used, as
 discussed in [I-D.ietf-rtcweb-security-arch].

5.1.2. Profile Names and Interoperability

 For media m= sections, JSEP implementations MUST support the
 "UDP/TLS/RTP/SAVPF" profile specified in [RFC5764], and MUST indicate
 this profile for each media m= line they produce in an offer. For
 data m= sections, implementations MUST support the "UDP/DTLS/SCTP"
 profile and MUST indicate this profile for each data m= line they
 produce in an offer. Although these profiles are formally associated
 with UDP, ICE can select either UDP [RFC5245] or TCP [RFC6544]
 transport depending on network conditions, even when advertising a
 UDP profile.

 Unfortunately, in an attempt at compatibility, some endpoints
 generate other profile strings even when they mean to support one of
 these profiles. For instance, an endpoint might generate "RTP/AVP"
 but supply "a=fingerprint" and "a=rtcp-fb" attributes, indicating its
 willingness to support "UDP/TLS/RTP/SAVPF" or "TCP/TLS/RTP/SAVPF".
 In order to simplify compatibility with such endpoints, JSEP
 implementations MUST follow the following rules when processing the
 media m= sections in a received offer:

 o Any profile in the offer matching one of the following MUST be
 accepted:

 * "RTP/AVP" (Defined in [RFC4566], Section 8.2.2)

 * "RTP/AVPF" (Defined in [RFC4585], Section 9)

 * "RTP/SAVP" (Defined in [RFC3711], Section 12)

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6544
https://datatracker.ietf.org/doc/html/rfc4566#section-8.2.2
https://datatracker.ietf.org/doc/html/rfc4585#section-9
https://datatracker.ietf.org/doc/html/rfc3711#section-12

Uberti, et al. Expires April 13, 2018 [Page 35]

Internet-Draft JSEP October 2017

 * "RTP/SAVPF" (Defined in [RFC5124], Section 6)

 * "TCP/DTLS/RTP/SAVP" (Defined in [RFC7850], Section 3.4)

 * "TCP/DTLS/RTP/SAVPF" (Defined in [RFC7850], Section 3.5)

 * "UDP/TLS/RTP/SAVP" (Defined in [RFC5764], Section 9)

 * "UDP/TLS/RTP/SAVPF" (Defined in [RFC5764], Section 9)

 o The profile in any "m=" line in any generated answer MUST exactly
 match the profile provided in the offer.

 o Because DTLS-SRTP is REQUIRED, the choice of SAVP or AVP has no
 effect; support for DTLS-SRTP is determined by the presence of one
 or more "a=fingerprint" attribute. Note that lack of an
 "a=fingerprint" attribute will lead to negotiation failure.

 o The use of AVPF or AVP simply controls the timing rules used for
 RTCP feedback. If AVPF is provided, or an "a=rtcp-fb" attribute
 is present, assume AVPF timing, i.e., a default value of "trr-
 int=0". Otherwise, assume that AVPF is being used in an AVP
 compatible mode and use a value of "trr-int=4000".

 o For data m= sections, implementations MUST support receiving the
 "UDP/DTLS/SCTP", "TCP/DTLS/SCTP", or "DTLS/SCTP" (for backwards
 compatibility) profiles.

 Note that re-offers by JSEP implementations MUST use the correct
 profile strings even if the initial offer/answer exchange used an
 (incorrect) older profile string. This simplifies JSEP behavior,
 with minimal downside, as any remote endpoint that fails to handle
 such a re-offer will also fail to handle a JSEP endpoint's initial
 offer.

5.2. Constructing an Offer

 When createOffer is called, a new SDP description must be created
 that includes the functionality specified in
 [I-D.ietf-rtcweb-rtp-usage]. The exact details of this process are
 explained below.

5.2.1. Initial Offers

 When createOffer is called for the first time, the result is known as
 the initial offer.

https://datatracker.ietf.org/doc/html/rfc5124#section-6
https://datatracker.ietf.org/doc/html/rfc7850#section-3.4
https://datatracker.ietf.org/doc/html/rfc7850#section-3.5
https://datatracker.ietf.org/doc/html/rfc5764#section-9
https://datatracker.ietf.org/doc/html/rfc5764#section-9

Uberti, et al. Expires April 13, 2018 [Page 36]

Internet-Draft JSEP October 2017

 The first step in generating an initial offer is to generate session-
 level attributes, as specified in [RFC4566], Section 5.
 Specifically:

 o The first SDP line MUST be "v=0", as specified in [RFC4566],
 Section 5.1

 o The second SDP line MUST be an "o=" line, as specified in
[RFC4566], Section 5.2. The value of the <username> field SHOULD

 be "-". The sess-id MUST be representable by a 64-bit signed
 integer, and the initial value MUST be less than (2**62)-1, as
 required by [RFC3264]. It is RECOMMENDED that the sess-id be
 constructed by generating a 64-bit quantity with the two highest
 bits being set to zero and the remaining 62 bits being
 cryptographically random. The value of the <nettype> <addrtype>
 <unicast-address> tuple SHOULD be set to a non-meaningful address,
 such as IN IP4 0.0.0.0, to prevent leaking the local address in
 this field. As mentioned in [RFC4566], the entire o= line needs
 to be unique, but selecting a random number for <sess-id> is
 sufficient to accomplish this.

 o The third SDP line MUST be a "s=" line, as specified in [RFC4566],
 Section 5.3; to match the "o=" line, a single dash SHOULD be used
 as the session name, e.g. "s=-". Note that this differs from the
 advice in [RFC4566] which proposes a single space, but as both
 "o=" and "s=" are meaningless in JSEP, having the same meaningless
 value seems clearer.

 o Session Information ("i="), URI ("u="), Email Address ("e="),
 Phone Number ("p="), Repeat Times ("r="), and Time Zones ("z=")
 lines are not useful in this context and SHOULD NOT be included.

 o Encryption Keys ("k=") lines do not provide sufficient security
 and MUST NOT be included.

 o A "t=" line MUST be added, as specified in [RFC4566], Section 5.9;
 both <start-time> and <stop-time> SHOULD be set to zero, e.g. "t=0
 0".

 o An "a=ice-options" line with the "trickle" option MUST be added,
 as specified in [I-D.ietf-ice-trickle], Section 4.

 o If WebRTC identity is being used, an "a=identity" line as
 described in [I-D.ietf-rtcweb-security-arch], Section 5.

 The next step is to generate m= sections, as specified in [RFC4566],
 Section 5.14. An m= section is generated for each RtpTransceiver
 that has been added to the PeerConnection, excluding any stopped

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566#section-5.3
https://datatracker.ietf.org/doc/html/rfc4566#section-5.3
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566#section-5.9
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14

Uberti, et al. Expires April 13, 2018 [Page 37]

Internet-Draft JSEP October 2017

 RtpTransceivers; this is done in the order the RtpTransceivers were
 added to the PeerConnection. If there are no such RtpTransceivers,
 no m= sections are generated; more can be added later, as discussed
 in [RFC3264], Section 5.

 For each m= section generated for an RtpTransceiver, establish a
 mapping between the transceiver and the index of the generated m=
 section.

 Each m= section, provided it is not marked as bundle-only, MUST
 generate a unique set of ICE credentials and gather its own unique
 set of ICE candidates. Bundle-only m= sections MUST NOT contain any
 ICE credentials and MUST NOT gather any candidates.

 For DTLS, all m= sections MUST use all the certificate(s) that have
 been specified for the PeerConnection; as a result, they MUST all
 have the same [RFC8122] fingerprint value(s), or these value(s) MUST
 be session-level attributes.

 Each m= section should be generated as specified in [RFC4566],
 Section 5.14. For the m= line itself, the following rules MUST be
 followed:

 o If the m= section is marked as bundle-only, then the port value
 MUST be set to 0. Otherwise, the port value is set to the port of
 the default ICE candidate for this m= section, but given that no
 candidates are available yet, the "dummy" port value of 9
 (Discard) MUST be used, as indicated in [I-D.ietf-ice-trickle],
 Section 5.1.

 o To properly indicate use of DTLS, the <proto> field MUST be set to
 "UDP/TLS/RTP/SAVPF", as specified in [RFC5764], Section 8.

 o If codec preferences have been set for the associated transceiver,
 media formats MUST be generated in the corresponding order, and
 MUST exclude any codecs not present in the codec preferences.

 o Unless excluded by the above restrictions, the media formats MUST
 include the mandatory audio/video codecs as specified in

[RFC7874], Section 3, and [RFC7742], Section 5.

 The m= line MUST be followed immediately by a "c=" line, as specified
 in [RFC4566], Section 5.7. Again, as no candidates are available
 yet, the "c=" line must contain the "dummy" value "IN IP4 0.0.0.0",
 as defined in [I-D.ietf-ice-trickle], Section 5.1.

 [I-D.ietf-mmusic-sdp-mux-attributes] groups SDP attributes into
 different categories. To avoid unnecessary duplication when

https://datatracker.ietf.org/doc/html/rfc3264#section-5
https://datatracker.ietf.org/doc/html/rfc8122
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc5764#section-8
https://datatracker.ietf.org/doc/html/rfc7874#section-3
https://datatracker.ietf.org/doc/html/rfc7742#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7

Uberti, et al. Expires April 13, 2018 [Page 38]

Internet-Draft JSEP October 2017

 bundling, attributes of category IDENTICAL or TRANSPORT MUST NOT be
 repeated in bundled m= sections, repeating the guidance from
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 8.1. This includes
 m= sections for which bundling has been negotiated and is still
 desired, as well as m= sections marked as bundle-only.

 The following attributes, which are of a category other than
 IDENTICAL or TRANSPORT, MUST be included in each m= section:

 o An "a=mid" line, as specified in [RFC5888], Section 4. All MID
 values MUST be generated in a fashion that does not leak user
 information, e.g., randomly or using a per-PeerConnection counter,
 and SHOULD be 3 bytes or less, to allow them to efficiently fit
 into the RTP header extension defined in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 14. Note that
 this does not set the RtpTransceiver mid property, as that only
 occurs when the description is applied. The generated MID value
 can be considered a "proposed" MID at this point.

 o A direction attribute which is the same as that of the associated
 transceiver.

 o For each media format on the m= line, "a=rtpmap" and "a=fmtp"
 lines, as specified in [RFC4566], Section 6, and [RFC3264],
 Section 5.1.

 o For each primary codec where RTP retransmission should be used, a
 corresponding "a=rtpmap" line indicating "rtx" with the clock rate
 of the primary codec and an "a=fmtp" line that references the
 payload type of the primary codec, as specified in [RFC4588],
 Section 8.1.

 o For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,
 as specified in [RFC4566], Section 6. The FEC mechanisms that
 MUST be supported are specified in [I-D.ietf-rtcweb-fec],
 Section 6, and specific usage for each media type is outlined in
 Sections 4 and 5.

 o If this m= section is for media with configurable durations of
 media per packet, e.g., audio, an "a=maxptime" line, indicating
 the maximum amount of media, specified in milliseconds, that can
 be encapsulated in each packet, as specified in [RFC4566],
 Section 6. This value is set to the smallest of the maximum
 duration values across all the codecs included in the m= section.

 o If this m= section is for video media, and there are known
 limitations on the size of images which can be decoded, an
 "a=imageattr" line, as specified in Section 3.6.

https://datatracker.ietf.org/doc/html/rfc5888#section-4
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6

Uberti, et al. Expires April 13, 2018 [Page 39]

Internet-Draft JSEP October 2017

 o For each supported RTP header extension, an "a=extmap" line, as
 specified in [RFC5285], Section 5. The list of header extensions
 that SHOULD/MUST be supported is specified in
 [I-D.ietf-rtcweb-rtp-usage], Section 5.2. Any header extensions
 that require encryption MUST be specified as indicated in

[RFC6904], Section 4.

 o For each supported RTCP feedback mechanism, an "a=rtcp-fb" line,
 as specified in [RFC4585], Section 4.2. The list of RTCP feedback
 mechanisms that SHOULD/MUST be supported is specified in
 [I-D.ietf-rtcweb-rtp-usage], Section 5.1.

 o If the RtpTransceiver has a sendrecv or sendonly direction:

 * For each MediaStream that was associated with the transceiver
 when it was created via addTrack or addTransceiver, an "a=msid"
 line, as specified in [I-D.ietf-mmusic-msid], Section 2. If a
 MediaStreamTrack is attached to the transceiver's RtpSender,
 the "a=msid" lines MUST use that track's ID. If no
 MediaStreamTrack is attached, a valid ID MUST be generated, in
 the same way that the implementation generates IDs for local
 tracks.

 * If no MediaStream is associated with the transceiver, a single
 "a=msid" line with the special value "-" in place of the
 MediaStream ID, as specified in [I-D.ietf-mmusic-msid],
 Section 3. The track ID MUST be selected as described above.

 o If the RtpTransceiver has a sendrecv or sendonly direction, and
 the application has specified RID values or has specified more
 than one encoding in the RtpSenders's parameters, an "a=rid" line
 for each encoding specified. The "a=rid" line is specified in
 [I-D.ietf-mmusic-rid], and its direction MUST be "send". If the
 application has chosen a RID value, it MUST be used as the rid-
 identifier; otherwise a RID value MUST be generated by the
 implementation. RID values MUST be generated in a fashion that
 does not leak user information, e.g., randomly or using a per-
 PeerConnection counter, and SHOULD be 3 bytes or less, to allow
 them to efficiently fit into the RTP header extension defined in
 [I-D.ietf-avtext-rid], Section 3. If no encodings have been
 specified, or only one encoding is specified but without a RID
 value, then no "a=rid" lines are generated.

 o If the RtpTransceiver has a sendrecv or sendonly direction and
 more than one "a=rid" line has been generated, an "a=simulcast"
 line, with direction "send", as defined in
 [I-D.ietf-mmusic-sdp-simulcast], Section 6.2. The list of RIDs

https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2

Uberti, et al. Expires April 13, 2018 [Page 40]

Internet-Draft JSEP October 2017

 MUST include all of the RID identifiers used in the "a=rid" lines
 for this m= section.

 o If the bundle policy for this PeerConnection is set to "max-
 bundle", and this is not the first m= section, or the bundle
 policy is set to "balanced", and this is not the first m= section
 for this media type, an "a=bundle-only" line.

 The following attributes, which are of category IDENTICAL or
 TRANSPORT, MUST appear only in "m=" sections which either have a
 unique address or which are associated with the bundle-tag. (In
 initial offers, this means those "m=" sections which do not contain
 an "a=bundle-only" attribute.)

 o "a=ice-ufrag" and "a=ice-pwd" lines, as specified in [RFC5245],
 Section 15.4.

 o For each desired digest algorithm, one or more "a=fingerprint"
 lines for each of the endpoint's certificates, as specified in

[RFC8122], Section 5.

 o An "a=setup" line, as specified in [RFC4145], Section 4, and
 clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.
 The role value in the offer MUST be "actpass".

 o An "a=tls-id" line, as specified in [I-D.ietf-mmusic-dtls-sdp],
 Section 5.2.

 o An "a=rtcp" line, as specified in [RFC3605], Section 2.1,
 containing the dummy value "9 IN IP4 0.0.0.0", because no
 candidates have yet been gathered.

 o An "a=rtcp-mux" line, as specified in [RFC5761], Section 5.1.3.

 o If the RTP/RTCP multiplexing policy is "require", an "a=rtcp-mux-
 only" line, as specified in [I-D.ietf-mmusic-mux-exclusive],
 Section 4.

 o An "a=rtcp-rsize" line, as specified in [RFC5506], Section 5.

 Lastly, if a data channel has been created, a m= section MUST be
 generated for data. The <media> field MUST be set to "application"
 and the <proto> field MUST be set to "UDP/DTLS/SCTP"
 [I-D.ietf-mmusic-sctp-sdp]. The "fmt" value MUST be set to "webrtc-
 datachannel" as specified in [I-D.ietf-mmusic-sctp-sdp], Section 4.1.

 Within the data m= section, an "a=mid" line MUST be generated and
 included as described above, along with an "a=sctp-port" line

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5763#section-5
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5506#section-5

Uberti, et al. Expires April 13, 2018 [Page 41]

Internet-Draft JSEP October 2017

 referencing the SCTP port number, as defined in
 [I-D.ietf-mmusic-sctp-sdp], Section 5.1, and, if appropriate, an
 "a=max-message-size" line, as defined in [I-D.ietf-mmusic-sctp-sdp],
 Section 6.1.

 As discussed above, the following attributes of category IDENTICAL or
 TRANSPORT are included only if the data m= section either has a
 unique address or is associated with the bundle-tag (e.g., if it is
 the only m= section):

 o "a=ice-ufrag"

 o "a=ice-pwd"

 o "a=fingerprint"

 o "a=setup"

 o "a=tls-id"

 Once all m= sections have been generated, a session-level "a=group"
 attribute MUST be added as specified in [RFC5888]. This attribute
 MUST have semantics "BUNDLE", and MUST include the mid identifiers of
 each m= section. The effect of this is that the JSEP implementation
 offers all m= sections as one bundle group. However, whether the m=
 sections are bundle-only or not depends on the bundle policy.

 The next step is to generate session-level lip sync groups as defined
 in [RFC5888], Section 7. For each MediaStream referenced by more
 than one RtpTransceiver (by passing those MediaStreams as arguments
 to the addTrack and addTransceiver methods), a group of type "LS"
 MUST be added that contains the mid values for each RtpTransceiver.

 Attributes which SDP permits to either be at the session level or the
 media level SHOULD generally be at the media level even if they are
 identical. This assists development and debugging by making it
 easier to understand individual media sections, especially if one of
 a set of initially identical attributes is subsequently changed.
 However, implementations MAY choose to aggregate attributes at the
 session level and JSEP implementations MUST be prepared to receive
 attributes in either location.

 Attributes other than the ones specified above MAY be included,
 except for the following attributes which are specifically
 incompatible with the requirements of [I-D.ietf-rtcweb-rtp-usage],
 and MUST NOT be included:

 o "a=crypto"

https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc5888#section-7

Uberti, et al. Expires April 13, 2018 [Page 42]

Internet-Draft JSEP October 2017

 o "a=key-mgmt"

 o "a=ice-lite"

 Note that when bundle is used, any additional attributes that are
 added MUST follow the advice in [I-D.ietf-mmusic-sdp-mux-attributes]
 on how those attributes interact with bundle.

 Note that these requirements are in some cases stricter than those of
 SDP. Implementations MUST be prepared to accept compliant SDP even
 if it would not conform to the requirements for generating SDP in
 this specification.

5.2.2. Subsequent Offers

 When createOffer is called a second (or later) time, or is called
 after a local description has already been installed, the processing
 is somewhat different than for an initial offer.

 If the previous offer was not applied using setLocalDescription,
 meaning the PeerConnection is still in the "stable" state, the steps
 for generating an initial offer should be followed, subject to the
 following restriction:

 o The fields of the "o=" line MUST stay the same except for the
 <session-version> field, which MUST increment by one on each call
 to createOffer if the offer might differ from the output of the
 previous call to createOffer; implementations MAY opt to increment
 <session-version> on every call. The value of the generated
 <session-version> is independent of the <session-version> of the
 current local description; in particular, in the case where the
 current version is N, an offer is created and applied with version
 N+1, and then that offer is rolled back so that the current
 version is again N, the next generated offer will still have
 version N+2.

 Note that if the application creates an offer by reading
 currentLocalDescription instead of calling createOffer, the returned
 SDP may be different than when setLocalDescription was originally
 called, due to the addition of gathered ICE candidates, but the
 <session-version> will not have changed. There are no known
 scenarios in which this causes problems, but if this is a concern,
 the solution is simply to use createOffer to ensure a unique
 <session-version>.

 If the previous offer was applied using setLocalDescription, but a
 corresponding answer from the remote side has not yet been applied,
 meaning the PeerConnection is still in the "have-local-offer" state,

Uberti, et al. Expires April 13, 2018 [Page 43]

Internet-Draft JSEP October 2017

 an offer is generated by following the steps in the "stable" state
 above, along with these exceptions:

 o The "s=" and "t=" lines MUST stay the same.

 o If any RtpTransceiver has been added, and there exists an m=
 section with a zero port in the current local description or the
 current remote description, that m= section MUST be recycled by
 generating an m= section for the added RtpTransceiver as if the m=
 section were being added to the session description (including a
 new MID value), and placing it at the same index as the m= section
 with a zero port.

 o If an RtpTransceiver is stopped and is not associated with an m=
 section, an m= section MUST NOT be generated for it. This
 prevents adding back RtpTransceivers whose m= sections were
 recycled and used for a new RtpTransceiver in a previous offer/
 answer exchange, as described above.

 o If an RtpTransceiver has been stopped and is associated with an m=
 section, and the m= section is not being recycled as described
 above, an m= section MUST be generated for it with the port set to
 zero and all "a=msid" lines removed.

 o For RtpTransceivers that are not stopped, the "a=msid" line(s)
 MUST stay the same if they are present in the current description,
 regardless of changes to the transceiver's direction or track. If
 no "a=msid" line is present in the current description, "a=msid"
 line(s) MUST be generated according to the same rules as for an
 initial offer.

 o Each "m=" and c=" line MUST be filled in with the port, protocol,
 and address of the default candidate for the m= section, as
 described in [RFC5245], Section 4.3. If ICE checking has already
 completed for one or more candidate pairs and a candidate pair is
 in active use, then that pair MUST be used, even if ICE has not
 yet completed. Note that this differs from the guidance in

[RFC5245], Section 9.1.2.2, which only refers to offers created
 when ICE has completed. In each case, if no RTP candidates have
 yet been gathered, dummy values MUST be used, as described above.

 o Each "a=mid" line MUST stay the same.

 o Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same, unless
 the ICE configuration has changed (either changes to the supported
 STUN/TURN servers, or the ICE candidate policy), or the
 "IceRestart" option (Section 5.2.3.1 was specified. If the m=

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.2.2

Uberti, et al. Expires April 13, 2018 [Page 44]

Internet-Draft JSEP October 2017

 section is bundled into another m= section, it still MUST NOT
 contain any ICE credentials.

 o If the m= section is not bundled into another m= section, its
 "a=rtcp" attribute line MUST be filled in with the port and
 address of the default RTCP candidate, as indicated in [RFC5761],
 Section 5.1.3. If no RTCP candidates have yet been gathered,
 dummy values MUST be used, as described in the initial offer
 section above.

 o If the m= section is not bundled into another m= section, for each
 candidate that has been gathered during the most recent gathering
 phase (see Section 3.5.1), an "a=candidate" line MUST be added, as
 defined in [RFC5245], Section 4.3., paragraph 3. If candidate
 gathering for the section has completed, an "a=end-of-candidates"
 attribute MUST be added, as described in [I-D.ietf-ice-trickle],
 Section 9.3. If the m= section is bundled into another m=
 section, both "a=candidate" and "a=end-of-candidates" MUST be
 omitted.

 o For RtpTransceivers that are still present, the "a=rid" lines MUST
 stay the same.

 o For RtpTransceivers that are still present, any "a=simulcast" line
 MUST stay the same.

 If the previous offer was applied using setLocalDescription, and a
 corresponding answer from the remote side has been applied using
 setRemoteDescription, meaning the PeerConnection is in the "have-
 remote-pranswer" or "stable" states, an offer is generated based on
 the negotiated session descriptions by following the steps mentioned
 for the "have-local-offer" state above.

 In addition, for each existing, non-recycled, non-rejected m= section
 in the new offer, the following adjustments are made based on the
 contents of the corresponding m= section in the current local or
 remote description, as appropriate:

 o The m= line and corresponding "a=rtpmap" and "a=fmtp" lines MUST
 only include media formats which have not been excluded by the
 codec preferences of the associated transceiver, and MUST include
 all currently available formats. Media formats that were
 previously offered but are no longer available (e.g., a shared
 hardware codec) MAY be excluded.

 o Unless codec preferences have been set for the associated
 transceiver, the media formats on the m= line MUST be generated in
 the same order as in the most recent answer. Any media formats

https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5245#section-4.3

Uberti, et al. Expires April 13, 2018 [Page 45]

Internet-Draft JSEP October 2017

 that were not present in the most recent answer MUST be added
 after all existing formats.

 o The RTP header extensions MUST only include those that are present
 in the most recent answer.

 o The RTCP feedback mechanisms MUST only include those that are
 present in the most recent answer, except for the case of format-
 specific mechanisms that are referencing a newly-added media
 format.

 o The "a=rtcp" line MUST NOT be added if the most recent answer
 included an "a=rtcp-mux" line.

 o The "a=rtcp-mux" line MUST be the same as that in the most recent
 answer.

 o The "a=rtcp-mux-only" line MUST NOT be added.

 o The "a=rtcp-rsize" line MUST NOT be added unless present in the
 most recent answer.

 o An "a=bundle-only" line MUST NOT be added, as indicated in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 6. Instead,
 JSEP implementations MUST simply omit parameters in the IDENTICAL
 and TRANSPORT categories for bundled m= sections, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 8.1.

 o Note that if media m= sections are bundled into a data m= section,
 then certain TRANSPORT and IDENTICAL attributes may appear in the
 data m= section even if they would otherwise only be appropriate
 for a media m= section (e.g., "a=rtcp-mux"). This cannot happen
 in initial offers because in the initial offer JSEP
 implementations always list media m= sections (if any) before the
 data m= section (if any), and at least one of those media m=
 sections will not have the "a=bundle-only" attribute. Therefore,
 in initial offers, any "a=bundle-only" m= sections will be bundled
 into a preceding non-bundle-only media m= section.

 The "a=group:BUNDLE" attribute MUST include the MID identifiers
 specified in the bundle group in the most recent answer, minus any m=
 sections that have been marked as rejected, plus any newly added or
 re-enabled m= sections. In other words, the bundle attribute must
 contain all m= sections that were previously bundled, as long as they
 are still alive, as well as any new m= sections.

 "a=group:LS" attributes are generated in the same way as for initial
 offers, with the additional stipulation that any lip sync groups that

Uberti, et al. Expires April 13, 2018 [Page 46]

Internet-Draft JSEP October 2017

 were present in the most recent answer MUST continue to exist and
 MUST contain any previously existing MID identifiers, as long as the
 identified m= sections still exist and are not rejected, and the
 group still contains at least two MID identifiers. This ensures that
 any synchronized "recvonly" m= sections continue to be synchronized
 in the new offer.

5.2.3. Options Handling

 The createOffer method takes as a parameter an RTCOfferOptions
 object. Special processing is performed when generating a SDP
 description if the following options are present.

5.2.3.1. IceRestart

 If the "IceRestart" option is specified, with a value of "true", the
 offer MUST indicate an ICE restart by generating new ICE ufrag and
 pwd attributes, as specified in [RFC5245], Section 9.1.1.1. If this
 option is specified on an initial offer, it has no effect (since a
 new ICE ufrag and pwd are already generated). Similarly, if the ICE
 configuration has changed, this option has no effect, since new ufrag
 and pwd attributes will be generated automatically. This option is
 primarily useful for reestablishing connectivity in cases where
 failures are detected by the application.

5.2.3.2. VoiceActivityDetection

 Silence suppression, also known as discontinuous transmission
 ("DTX"), can reduce the bandwidth used for audio by switching to a
 special encoding when voice activity is not detected, at the cost of
 some fidelity.

 If the "VoiceActivityDetection" option is specified, with a value of
 "true", the offer MUST indicate support for silence suppression in
 the audio it receives by including comfort noise ("CN") codecs for
 each offered audio codec, as specified in [RFC3389], Section 5.1,
 except for codecs that have their own internal silence suppression
 support. For codecs that have their own internal silence suppression
 support, the appropriate fmtp parameters for that codec MUST be
 specified to indicate that silence suppression for received audio is
 desired. For example, when using the Opus codec [RFC6716], the
 "usedtx=1" parameter, specified in [RFC7587], would be used in the
 offer.

 If the "VoiceActivityDetection" option is specified, with a value of
 "false", the JSEP implementation MUST NOT emit "CN" codecs. For
 codecs that have their own internal silence suppression support, the
 appropriate fmtp parameters for that codec MUST be specified to

https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc3389#section-5.1
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc7587

Uberti, et al. Expires April 13, 2018 [Page 47]

Internet-Draft JSEP October 2017

 indicate that silence suppression for received audio is not desired.
 For example, when using the Opus codec, the "usedtx=0" parameter
 would be specified in the offer. In addition, the implementation
 MUST NOT use silence suppression for media it generates, regardless
 of whether the "CN" codecs or related fmtp parameters appear in the
 peer's description. The impact of these rules is that silence
 suppression in JSEP depends on mutual agreement of both sides, which
 ensures consistent handling regardless of which codec is used.

 The "VoiceActivityDetection" option does not have any impact on the
 setting of the "vad" value in the signaling of the client to mixer
 audio level header extension described in [RFC6464], Section 4.

5.3. Generating an Answer

 When createAnswer is called, a new SDP description must be created
 that is compatible with the supplied remote description as well as
 the requirements specified in [I-D.ietf-rtcweb-rtp-usage]. The exact
 details of this process are explained below.

5.3.1. Initial Answers

 When createAnswer is called for the first time after a remote
 description has been provided, the result is known as the initial
 answer. If no remote description has been installed, an answer
 cannot be generated, and an error MUST be returned.

 Note that the remote description SDP may not have been created by a
 JSEP endpoint and may not conform to all the requirements listed in

Section 5.2. For many cases, this is not a problem. However, if any
 mandatory SDP attributes are missing, or functionality listed as
 mandatory-to-use above is not present, this MUST be treated as an
 error, and MUST cause the affected m= sections to be marked as
 rejected.

 The first step in generating an initial answer is to generate
 session-level attributes. The process here is identical to that
 indicated in the initial offers section above, except that the
 "a=ice-options" line, with the "trickle" option as specified in
 [I-D.ietf-ice-trickle], Section 4, is only included if such an option
 was present in the offer.

 The next step is to generate session-level lip sync groups, as
 defined in [RFC5888], Section 7. For each group of type "LS" present
 in the offer, select the local RtpTransceivers that are referenced by
 the MID values in the specified group, and determine which of them
 either reference a common local MediaStream (specified in the calls
 to addTrack/addTransceiver used to create them), or have no

https://datatracker.ietf.org/doc/html/rfc6464#section-4
https://datatracker.ietf.org/doc/html/rfc5888#section-7

Uberti, et al. Expires April 13, 2018 [Page 48]

Internet-Draft JSEP October 2017

 MediaStream to reference because they were not created by addTrack/
 addTransceiver. If at least two such RtpTransceivers exist, a group
 of type "LS" with the mid values of these RtpTransceivers MUST be
 added. Otherwise the offered "LS" group MUST be ignored and no
 corresponding group generated in the answer.

 As a simple example, consider the following offer of a single audio
 and single video track contained in the same MediaStream. SDP lines
 not relevant to this example have been removed for clarity. As
 explained in Section 5.2, a group of type "LS" has been added that
 references each track's RtpTransceiver.

 a=group:LS a1 v1
 m=audio 10000 UDP/TLS/RTP/SAVPF 0
 a=mid:a1
 a=msid:ms1 mst1a
 m=video 10001 UDP/TLS/RTP/SAVPF 96
 a=mid:v1
 a=msid:ms1 mst1v

 If the answerer uses a single MediaStream when it adds its tracks,
 both of its transceivers will reference this stream, and so the
 subsequent answer will contain a "LS" group identical to that in the
 offer, as shown below:

 a=group:LS a1 v1
 m=audio 20000 UDP/TLS/RTP/SAVPF 0
 a=mid:a1
 a=msid:ms2 mst2a
 m=video 20001 UDP/TLS/RTP/SAVPF 96
 a=mid:v1
 a=msid:ms2 mst2v

 However, if the answerer groups its tracks into separate
 MediaStreams, its transceivers will reference different streams, and
 so the subsequent answer will not contain a "LS" group.

Uberti, et al. Expires April 13, 2018 [Page 49]

Internet-Draft JSEP October 2017

 m=audio 20000 UDP/TLS/RTP/SAVPF 0
 a=mid:a1
 a=msid:ms2a mst2a
 m=video 20001 UDP/TLS/RTP/SAVPF 96
 a=mid:v1
 a=msid:ms2b mst2v

 Finally, if the answerer does not add any tracks, its transceivers
 will not reference any MediaStreams, causing the preferences of the
 offerer to be maintained, and so the subsequent answer will contain
 an identical "LS" group.

 a=group:LS a1 v1
 m=audio 20000 UDP/TLS/RTP/SAVPF 0
 a=mid:a1
 a=recvonly
 m=video 20001 UDP/TLS/RTP/SAVPF 96
 a=mid:v1
 a=recvonly

 The Section 7.2 example later in this document shows a more involved
 case of "LS" group generation.

 The next step is to generate m= sections for each m= section that is
 present in the remote offer, as specified in [RFC3264], Section 6.
 For the purposes of this discussion, any session-level attributes in
 the offer that are also valid as media-level attributes are
 considered to be present in each m= section. Each offered m= section
 will have an associated RtpTransceiver, as described in Section 5.10.
 If there are more RtpTransceivers than there are m= sections, the
 unmatched RtpTransceivers will need to be associated in a subsequent
 offer.

 For each offered m= section, if any of the following conditions are
 true, the corresponding m= section in the answer MUST be marked as
 rejected by setting the port in the m= line to zero, as indicated in

[RFC3264], Section 6, and further processing for this m= section can
 be skipped:

 o The associated RtpTransceiver has been stopped.

 o None of the offered media formats are supported and, if
 applicable, allowed by codec preferences.

https://datatracker.ietf.org/doc/html/rfc3264#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6

Uberti, et al. Expires April 13, 2018 [Page 50]

Internet-Draft JSEP October 2017

 o The bundle policy is "max-bundle", and this is not the first m=
 section or in the same bundle group as the first m= section.

 o The bundle policy is "balanced", and this is not the first m=
 section for this media type or in the same bundle group as the
 first m= section for this media type.

 Otherwise, each m= section in the answer should then be generated as
 specified in [RFC3264], Section 6.1. For the m= line itself, the
 following rules must be followed:

 o The port value would normally be set to the port of the default
 ICE candidate for this m= section, but given that no candidates
 are available yet, the "dummy" port value of 9 (Discard) MUST be
 used, as indicated in [I-D.ietf-ice-trickle], Section 5.1.

 o The <proto> field MUST be set to exactly match the <proto> field
 for the corresponding m= line in the offer.

 o If codec preferences have been set for the associated transceiver,
 media formats MUST be generated in the corresponding order,
 regardless of what was offered, and MUST exclude any codecs not
 present in the codec preferences.

 o Otherwise, the media formats on the m= line MUST be generated in
 the same order as those offered in the current remote description,
 excluding any currently unsupported formats. Any currently
 available media formats that are not present in the current remote
 description MUST be added after all existing formats.

 o In either case, the media formats in the answer MUST include at
 least one format that is present in the offer, but MAY include
 formats that are locally supported but not present in the offer,
 as mentioned in [RFC3264], Section 6.1. If no common format
 exists, the m= section is rejected as described above.

 The m= line MUST be followed immediately by a "c=" line, as specified
 in [RFC4566], Section 5.7. Again, as no candidates are available
 yet, the "c=" line must contain the "dummy" value "IN IP4 0.0.0.0",
 as defined in [I-D.ietf-ice-trickle], Section 5.1.

 If the offer supports bundle, all m= sections to be bundled must use
 the same ICE credentials and candidates; all m= sections not being
 bundled must use unique ICE credentials and candidates. Each m=
 section MUST contain the following attributes (which are of attribute
 types other than IDENTICAL and TRANSPORT):

https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7

Uberti, et al. Expires April 13, 2018 [Page 51]

Internet-Draft JSEP October 2017

 o If and only if present in the offer, an "a=mid" line, as specified
 in [RFC5888], Section 9.1. The "mid" value MUST match that
 specified in the offer.

 o A direction attribute, determined by applying the rules regarding
 the offered direction specified in [RFC3264], Section 6.1, and
 then intersecting with the direction of the associated
 RtpTransceiver. For example, in the case where an m= section is
 offered as "sendonly", and the local transceiver is set to
 "sendrecv", the result in the answer is a "recvonly" direction.

 o For each media format on the m= line, "a=rtpmap" and "a=fmtp"
 lines, as specified in [RFC4566], Section 6, and [RFC3264],
 Section 6.1.

 o If "rtx" is present in the offer, for each primary codec where RTP
 retransmission should be used, a corresponding "a=rtpmap" line
 indicating "rtx" with the clock rate of the primary codec and an
 "a=fmtp" line that references the payload type of the primary
 codec, as specified in [RFC4588], Section 8.1.

 o For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,
 as specified in [RFC4566], Section 6. The FEC mechanisms that
 MUST be supported are specified in [I-D.ietf-rtcweb-fec],
 Section 6, and specific usage for each media type is outlined in
 Sections 4 and 5.

 o If this m= section is for media with configurable durations of
 media per packet, e.g., audio, an "a=maxptime" line, as described
 in Section 5.2.

 o If this m= section is for video media, and there are known
 limitations on the size of images which can be decoded, an
 "a=imageattr" line, as specified in Section 3.6.

 o For each supported RTP header extension that is present in the
 offer, an "a=extmap" line, as specified in [RFC5285], Section 5.
 The list of header extensions that SHOULD/MUST be supported is
 specified in [I-D.ietf-rtcweb-rtp-usage], Section 5.2. Any header
 extensions that require encryption MUST be specified as indicated
 in [RFC6904], Section 4.

 o For each supported RTCP feedback mechanism that is present in the
 offer, an "a=rtcp-fb" line, as specified in [RFC4585],
 Section 4.2. The list of RTCP feedback mechanisms that SHOULD/
 MUST be supported is specified in [I-D.ietf-rtcweb-rtp-usage],
 Section 5.1.

https://datatracker.ietf.org/doc/html/rfc5888#section-9.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4588#section-8.1
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2

Uberti, et al. Expires April 13, 2018 [Page 52]

Internet-Draft JSEP October 2017

 o If the RtpTransceiver has a sendrecv or sendonly direction:

 * For each MediaStream that was associated with the transceiver
 when it was created via addTrack or addTransceiver, an "a=msid"
 line, as specified in [I-D.ietf-mmusic-msid], Section 2. If a
 MediaStreamTrack is attached to the transceiver's RtpSender,
 the "a=msid" lines MUST use that track's ID. If no
 MediaStreamTrack is attached, a valid ID MUST be generated, in
 the same way that the implementation generates IDs for local
 tracks.

 * If no MediaStream is associated with the transceiver, a single
 "a=msid" line with the special value "-" in place of the
 MediaStream ID, as specified in [I-D.ietf-mmusic-msid],
 Section 3. The track ID MUST be selected as described above.

 Each m= section which is not bundled into another m= section, MUST
 contain the following attributes (which are of category IDENTICAL or
 TRANSPORT):

 o "a=ice-ufrag" and "a=ice-pwd" lines, as specified in [RFC5245],
 Section 15.4.

 o For each desired digest algorithm, one or more "a=fingerprint"
 lines for each of the endpoint's certificates, as specified in

[RFC8122], Section 5.

 o An "a=setup" line, as specified in [RFC4145], Section 4, and
 clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.
 The role value in the answer MUST be "active" or "passive". When
 the offer contains the "actpass" value, as will always be the case
 with JSEP endpoints, the answerer SHOULD use the "active" role.
 Offers from non-JSEP endpoints MAY send other values for
 "a=setup", in which case the answer MUST use a value consistent
 with the value in the offer.

 o An "a=tls-id" line, as specified in [I-D.ietf-mmusic-dtls-sdp],
 Section 5.3.

 o If present in the offer, an "a=rtcp-mux" line, as specified in
[RFC5761], Section 5.1.3. Otherwise, an "a=rtcp" line, as

 specified in [RFC3605], Section 2.1, containing the dummy value "9
 IN IP4 0.0.0.0" (because no candidates have yet been gathered).

 o If present in the offer, an "a=rtcp-rsize" line, as specified in
[RFC5506], Section 5.

https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5763#section-5
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc5506#section-5

Uberti, et al. Expires April 13, 2018 [Page 53]

Internet-Draft JSEP October 2017

 If a data channel m= section has been offered, a m= section MUST also
 be generated for data. The <media> field MUST be set to
 "application" and the <proto> and <fmt> fields MUST be set to exactly
 match the fields in the offer.

 Within the data m= section, an "a=mid" line MUST be generated and
 included as described above, along with an "a=sctp-port" line
 referencing the SCTP port number, as defined in
 [I-D.ietf-mmusic-sctp-sdp], Section 5.1, and, if appropriate, an
 "a=max-message-size" line, as defined in [I-D.ietf-mmusic-sctp-sdp],
 Section 6.1.

 As discussed above, the following attributes of category IDENTICAL or
 TRANSPORT are included only if the data m= section is not bundled
 into another m= section:

 o "a=ice-ufrag"

 o "a=ice-pwd"

 o "a=fingerprint"

 o "a=setup"

 o "a=tls-id"

 Note that if media m= sections are bundled into a data m= section,
 then certain TRANSPORT and IDENTICAL attributes may also appear in
 the data m= section even if they would otherwise only be appropriate
 for a media m= section (e.g., "a=rtcp-mux").

 If "a=group" attributes with semantics of "BUNDLE" are offered,
 corresponding session-level "a=group" attributes MUST be added as
 specified in [RFC5888]. These attributes MUST have semantics
 "BUNDLE", and MUST include the all mid identifiers from the offered
 bundle groups that have not been rejected. Note that regardless of
 the presence of "a=bundle-only" in the offer, no m= sections in the
 answer should have an "a=bundle-only" line.

 Attributes that are common between all m= sections MAY be moved to
 session-level, if explicitly defined to be valid at session-level.

 The attributes prohibited in the creation of offers are also
 prohibited in the creation of answers.

https://datatracker.ietf.org/doc/html/rfc5888

Uberti, et al. Expires April 13, 2018 [Page 54]

Internet-Draft JSEP October 2017

5.3.2. Subsequent Answers

 When createAnswer is called a second (or later) time, or is called
 after a local description has already been installed, the processing
 is somewhat different than for an initial answer.

 If the previous answer was not applied using setLocalDescription,
 meaning the PeerConnection is still in the "have-remote-offer" state,
 the steps for generating an initial answer should be followed,
 subject to the following restriction:

 o The fields of the "o=" line MUST stay the same except for the
 <session-version> field, which MUST increment if the session
 description changes in any way from the previously generated
 answer.

 If any session description was previously supplied to
 setLocalDescription, an answer is generated by following the steps in
 the "have-remote-offer" state above, along with these exceptions:

 o The "s=" and "t=" lines MUST stay the same.

 o Each "m=" and c=" line MUST be filled in with the port and address
 of the default candidate for the m= section, as described in

[RFC5245], Section 4.3. Note, however, that the m= line protocol
 need not match the default candidate, because this protocol value
 must instead match what was supplied in the offer, as described
 above.

 o Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same, unless
 the m= section is restarting, in which case new ICE credentials
 must be created as specified in [RFC5245], Section 9.2.1.1. If
 the m= section is bundled into another m= section, it still MUST
 NOT contain any ICE credentials.

 o Each "a=tls-id" line MUST stay the same unless the offerer's
 "a=tls-id" line changed, in which case a new "a=tls-id" value MUST
 be created, as described in [I-D.ietf-mmusic-dtls-sdp],
 Section 5.2.

 o Each "a=setup" line MUST use an "active" or "passive" role value
 consistent with the existing DTLS association, if the association
 is being continued by the offerer.

 o RTCP multiplexing must be used, and an "a=rtcp-mux" line inserted
 if and only if the m= section previously used RTCP multiplexing.

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3
https://datatracker.ietf.org/doc/html/rfc5245#section-9.2.1.1

Uberti, et al. Expires April 13, 2018 [Page 55]

Internet-Draft JSEP October 2017

 o If the m= section is not bundled into another m= section and RTCP
 multiplexing is not active, an "a=rtcp" attribute line MUST be
 filled in with the port and address of the default RTCP candidate.
 If no RTCP candidates have yet been gathered, dummy values MUST be
 used, as described in the initial answer section above.

 o If the m= section is not bundled into another m= section, for each
 candidate that has been gathered during the most recent gathering
 phase (see Section 3.5.1), an "a=candidate" line MUST be added, as
 defined in [RFC5245], Section 4.3., paragraph 3. If candidate
 gathering for the section has completed, an "a=end-of-candidates"
 attribute MUST be added, as described in [I-D.ietf-ice-trickle],
 Section 9.3. If the m= section is bundled into another m=
 section, both "a=candidate" and "a=end-of-candidates" MUST be
 omitted.

 o For RtpTransceivers that are not stopped, the "a=msid" line(s)
 MUST stay the same, regardless of changes to the transceiver's
 direction or track. If no "a=msid" line is present in the current
 description, "a=msid" line(s) MUST be generated according to the
 same rules as for an initial answer.

5.3.3. Options Handling

 The createAnswer method takes as a parameter an RTCAnswerOptions
 object. The set of parameters for RTCAnswerOptions is different than
 those supported in RTCOfferOptions; the IceRestart option is
 unnecessary, as ICE credentials will automatically be changed for all
 m= sections where the offerer chose to perform ICE restart.

 The following options are supported in RTCAnswerOptions.

5.3.3.1. VoiceActivityDetection

 Silence suppression in the answer is handled as described in
Section 5.2.3.2, with one exception: if support for silence

 suppression was not indicated in the offer, the
 VoiceActivityDetection parameter has no effect, and the answer should
 be generated as if VoiceActivityDetection was set to false. This is
 done on a per-codec basis (e.g., if the offerer somehow offered
 support for CN but set "usedtx=0" for Opus, setting
 VoiceActivityDetection to true would result in an answer with CN
 codecs and "usedtx=0"). The impact of this rule is that an answerer
 will not try to use silence suppression with any endpoint that does
 not offer it, making silence suppression support bilateral even with
 non-JSEP endpoints.

https://datatracker.ietf.org/doc/html/rfc5245#section-4.3

Uberti, et al. Expires April 13, 2018 [Page 56]

Internet-Draft JSEP October 2017

5.4. Modifying an Offer or Answer

 The SDP returned from createOffer or createAnswer MUST NOT be changed
 before passing it to setLocalDescription. If precise control over
 the SDP is needed, the aforementioned createOffer/createAnswer
 options or RtpTransceiver APIs MUST be used.

 After calling setLocalDescription with an offer or answer, the
 application MAY modify the SDP to reduce its capabilities before
 sending it to the far side, as long as it follows the rules above
 that define a valid JSEP offer or answer. Likewise, an application
 that has received an offer or answer from a peer MAY modify the
 received SDP, subject to the same constraints, before calling
 setRemoteDescription.

 As always, the application is solely responsible for what it sends to
 the other party, and all incoming SDP will be processed by the JSEP
 implementation to the extent of its capabilities. It is an error to
 assume that all SDP is well-formed; however, one should be able to
 assume that any implementation of this specification will be able to
 process, as a remote offer or answer, unmodified SDP coming from any
 other implementation of this specification.

5.5. Processing a Local Description

 When a SessionDescription is supplied to setLocalDescription, the
 following steps MUST be performed:

 o If the description is of type "rollback", follow the processing
 defined in Section 5.7 and skip the processing described in the
 rest of this section.

 o Otherwise, the type of the SessionDescription is checked against
 the current state of the PeerConnection:

 * If the type is "offer", the PeerConnection state MUST be either
 "stable" or "have-local-offer".

 * If the type is "pranswer" or "answer", the PeerConnection state
 MUST be either "have-remote-offer" or "have-local-pranswer".

 o If the type is not correct for the current state, processing MUST
 stop and an error MUST be returned.

 o The SessionDescription is then checked to ensure that its contents
 are identical to those generated in the last call to createOffer/
 createAnswer, and thus have not been altered, as discussed in

Uberti, et al. Expires April 13, 2018 [Page 57]

Internet-Draft JSEP October 2017

Section 5.4; otherwise, processing MUST stop and an error MUST be
 returned.

 o Next, the SessionDescription is parsed into a data structure, as
 described in Section 5.8 below.

 o Finally, the parsed SessionDescription is applied as described in
Section 5.9 below.

5.6. Processing a Remote Description

 When a SessionDescription is supplied to setRemoteDescription, the
 following steps MUST be performed:

 o If the description is of type "rollback", follow the processing
 defined in Section 5.7 and skip the processing described in the
 rest of this section.

 o Otherwise, the type of the SessionDescription is checked against
 the current state of the PeerConnection:

 * If the type is "offer", the PeerConnection state MUST be either
 "stable" or "have-remote-offer".

 * If the type is "pranswer" or "answer", the PeerConnection state
 MUST be either "have-local-offer" or "have-remote-pranswer".

 o If the type is not correct for the current state, processing MUST
 stop and an error MUST be returned.

 o Next, the SessionDescription is parsed into a data structure, as
 described in Section 5.8 below. If parsing fails for any reason,
 processing MUST stop and an error MUST be returned.

 o Finally, the parsed SessionDescription is applied as described in
Section 5.10 below.

5.7. Processing a Rollback

 A rollback may be performed if the PeerConnection is in any state
 except for "stable". This means that both offers and provisional
 answers can be rolled back. Rollback can only be used to cancel
 proposed changes; there is no support for rolling back from a stable
 state to a previous stable state. If a rollback is attempted in the
 "stable" state, processing MUST stop and an error MUST be returned.
 Note that this implies that once the answerer has performed
 setLocalDescription with his answer, this cannot be rolled back.

Uberti, et al. Expires April 13, 2018 [Page 58]

Internet-Draft JSEP October 2017

 The effect of rollback MUST be the same regardless of whether
 setLocalDescription or setRemoteDescription is called.

 In order to process rollback, a JSEP implementation abandons the
 current offer/answer transaction, sets the signaling state to
 "stable", and sets the pending local and/or remote description (see

Section 4.1.12 and Section 4.1.14) to null. Any resources or
 candidates that were allocated by the abandoned local description are
 discarded; any media that is received is processed according to the
 previous local and remote descriptions.

 A rollback disassociates any RtpTransceivers that were associated
 with m= sections by the application of the rolled-back session
 description (see Section 5.10 and Section 5.9). This means that some
 RtpTransceivers that were previously associated will no longer be
 associated with any m= section; in such cases, the value of the
 RtpTransceiver's mid property MUST be set to null, and the mapping
 between the transceiver and its m= section index MUST be discarded.
 RtpTransceivers that were created by applying a remote offer that was
 subsequently rolled back MUST be stopped and removed from the
 PeerConnection. However, a RtpTransceiver MUST NOT be removed if a
 track was attached to the RtpTransceiver via the addTrack method.
 This is so that an application may call addTrack, then call
 setRemoteDescription with an offer, then roll back that offer, then
 call createOffer and have a m= section for the added track appear in
 the generated offer.

5.8. Parsing a Session Description

 The SDP contained in the session description object consists of a
 sequence of text lines, each containing a key-value expression, as
 described in [RFC4566], Section 5. The SDP is read, line-by-line,
 and converted to a data structure that contains the deserialized
 information. However, SDP allows many types of lines, not all of
 which are relevant to JSEP applications. For each line, the
 implementation will first ensure it is syntactically correct
 according to its defining ABNF, check that it conforms to [RFC4566]
 and [RFC3264] semantics, and then either parse and store or discard
 the provided value, as described below.

 If any line is not well-formed, or cannot be parsed as described, the
 parser MUST stop with an error and reject the session description,
 even if the value is to be discarded. This ensures that
 implementations do not accidentally misinterpret ambiguous SDP.

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 59]

Internet-Draft JSEP October 2017

5.8.1. Session-Level Parsing

 First, the session-level lines are checked and parsed. These lines
 MUST occur in a specific order, and with a specific syntax, as
 defined in [RFC4566], Section 5. Note that while the specific line
 types (e.g. "v=", "c=") MUST occur in the defined order, lines of the
 same type (typically "a=") can occur in any order.

 The following non-attribute lines are not meaningful in the JSEP
 context and MAY be discarded once they have been checked.

 The "c=" line MUST be checked for syntax but its value is only
 used for ICE mismatch detection, as defined in [RFC5245],
 Section 6.1. Note that JSEP implementations should never
 encounter this condition because ICE is required for WebRTC.

 The "i=", "u=", "e=", "p=", "t=", "r=", "z=", and "k=" lines are
 not used by this specification; they MUST be checked for syntax
 but their values are not used.

 The remaining non-attribute lines are processed as follows:

 The "v=" line MUST have a version of 0, as specified in [RFC4566],
 Section 5.1.

 The "o=" line MUST be parsed as specified in [RFC4566],
 Section 5.2.

 The "b=" line, if present, MUST be parsed as specified in
[RFC4566], Section 5.8, and the bwtype and bandwidth values

 stored.

 Finally, the attribute lines are processed. Specific processing MUST
 be applied for the following session-level attribute ("a=") lines:

 o Any "a=group" lines are parsed as specified in [RFC5888],
 Section 5, and the group's semantics and mids are stored.

 o If present, a single "a=ice-lite" line is parsed as specified in
[RFC5245], Section 15.3, and a value indicating the presence of

 ice-lite is stored.

 o If present, a single "a=ice-ufrag" line is parsed as specified in
[RFC5245], Section 15.4, and the ufrag value is stored.

 o If present, a single "a=ice-pwd" line is parsed as specified in
[RFC5245], Section 15.4, and the password value is stored.

https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc5245#section-6.1
https://datatracker.ietf.org/doc/html/rfc5245#section-6.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.1
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc4566#section-5.2
https://datatracker.ietf.org/doc/html/rfc4566#section-5.8
https://datatracker.ietf.org/doc/html/rfc5888#section-5
https://datatracker.ietf.org/doc/html/rfc5888#section-5
https://datatracker.ietf.org/doc/html/rfc5245#section-15.3
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4

Uberti, et al. Expires April 13, 2018 [Page 60]

Internet-Draft JSEP October 2017

 o If present, a single "a=ice-options" line is parsed as specified
 in [RFC5245], Section 15.5, and the set of specified options is
 stored.

 o Any "a=fingerprint" lines are parsed as specified in [RFC8122],
 Section 5, and the set of fingerprint and algorithm values is
 stored.

 o If present, a single "a=setup" line is parsed as specified in
[RFC4145], Section 4, and the setup value is stored.

 o If present, a single "a=tls-id" line is parsed as specified in
 [I-D.ietf-mmusic-dtls-sdp] Section 5, and the tls-id value is
 stored.

 o Any "a=identity" lines are parsed and the identity values stored
 for subsequent verification, as specified
 [I-D.ietf-rtcweb-security-arch], Section 5.

 o Any "a=extmap" lines are parsed as specified in [RFC5285],
 Section 5, and their values are stored.

 Other attributes that are not relevant to JSEP may also be present,
 and implementations SHOULD process any that they recognize. As
 required by [RFC4566], Section 5.13, unknown attribute lines MUST be
 ignored.

 Once all the session-level lines have been parsed, processing
 continues with the lines in m= sections.

5.8.2. Media Section Parsing

 Like the session-level lines, the media section lines MUST occur in
 the specific order and with the specific syntax defined in [RFC4566],
 Section 5.

 The "m=" line itself MUST be parsed as described in [RFC4566],
 Section 5.14, and the media, port, proto, and fmt values stored.

 Following the "m=" line, specific processing MUST be applied for the
 following non-attribute lines:

 o As with the "c=" line at the session level, the "c=" line MUST be
 parsed according to [RFC4566], Section 5.7, but its value is not
 used.

https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc4145#section-4
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.13
https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.7

Uberti, et al. Expires April 13, 2018 [Page 61]

Internet-Draft JSEP October 2017

 o The "b=" line, if present, MUST be parsed as specified in
[RFC4566], Section 5.8, and the bwtype and bandwidth values

 stored.

 Specific processing MUST also be applied for the following attribute
 lines:

 o If present, a single "a=ice-ufrag" line is parsed as specified in
[RFC5245], Section 15.4, and the ufrag value is stored.

 o If present, a single "a=ice-pwd" line is parsed as specified in
[RFC5245], Section 15.4, and the password value is stored.

 o If present, a single "a=ice-options" line is parsed as specified
 in [RFC5245], Section 15.5, and the set of specified options is
 stored.

 o Any "a=candidate" attributes MUST be parsed as specified in
[RFC5245], Section 15.1, and their values stored.

 o Any "a=remote-candidates" attributes MUST be parsed as specified
 in [RFC5245], Section 15.2, but their values are ignored.

 o If present, a single "a=end-of-candidates" attribute MUST be
 parsed as specified in [I-D.ietf-ice-trickle], Section 8.2, and
 its presence or absence flagged and stored.

 o Any "a=fingerprint" lines are parsed as specified in [RFC8122],
 Section 5, and the set of fingerprint and algorithm values is
 stored.

 If the "m=" proto value indicates use of RTP, as described in
Section 5.1.2 above, the following attribute lines MUST be processed:

 o The "m=" fmt value MUST be parsed as specified in [RFC4566],
 Section 5.14, and the individual values stored.

 o Any "a=rtpmap" or "a=fmtp" lines MUST be parsed as specified in
[RFC4566], Section 6, and their values stored.

 o If present, a single "a=ptime" line MUST be parsed as described in
[RFC4566], Section 6, and its value stored.

 o If present, a single "a=maxptime" line MUST be parsed as described
 in [RFC4566], Section 6, and its value stored.

https://datatracker.ietf.org/doc/html/rfc4566#section-5.8
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc5245#section-15.1
https://datatracker.ietf.org/doc/html/rfc5245#section-15.2
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-5.14
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc4566#section-6

Uberti, et al. Expires April 13, 2018 [Page 62]

Internet-Draft JSEP October 2017

 o If present, a single direction attribute line (e.g. "a=sendrecv")
 MUST be parsed as described in [RFC4566], Section 6, and its value
 stored.

 o Any "a=ssrc" attributes MUST be parsed as specified in [RFC5576],
 Section 4.1, and their values stored.

 o Any "a=extmap" attributes MUST be parsed as specified in
[RFC5285], Section 5, and their values stored.

 o Any "a=rtcp-fb" attributes MUST be parsed as specified in
[RFC4585], Section 4.2., and their values stored.

 o If present, a single "a=rtcp-mux" attribute MUST be parsed as
 specified in [RFC5761], Section 5.1.3, and its presence or absence
 flagged and stored.

 o If present, a single "a=rtcp-mux-only" attribute MUST be parsed as
 specified in [I-D.ietf-mmusic-mux-exclusive], Section 3, and its
 presence or absence flagged and stored.

 o If present, a single "a=rtcp-rsize" attribute MUST be parsed as
 specified in [RFC5506], Section 5, and its presence or absence
 flagged and stored.

 o If present, a single "a=rtcp" attribute MUST be parsed as
 specified in [RFC3605], Section 2.1, but its value is ignored, as
 this information is superfluous when using ICE.

 o If present, "a=msid" attributes MUST be parsed as specified in
 [I-D.ietf-mmusic-msid], Section 3.2, and their values stored.

 o Any "a=imageattr" attributes MUST be parsed as specified in
[RFC6236], Section 3, and their values stored.

 o Any "a=rid" lines MUST be parsed as specified in
 [I-D.ietf-mmusic-rid], Section 10, and their values stored.

 o If present, a single "a=simulcast" line MUST be parsed as
 specified in [I-D.ietf-mmusic-sdp-simulcast], and its values
 stored.

 Otherwise, if the "m=" proto value indicates use of SCTP, the
 following attribute lines MUST be processed:

 o The "m=" fmt value MUST be parsed as specified in
 [I-D.ietf-mmusic-sctp-sdp], Section 4.3, and the application
 protocol value stored.

https://datatracker.ietf.org/doc/html/rfc4566#section-6
https://datatracker.ietf.org/doc/html/rfc5576#section-4.1
https://datatracker.ietf.org/doc/html/rfc5576#section-4.1
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5506#section-5
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc6236#section-3

Uberti, et al. Expires April 13, 2018 [Page 63]

Internet-Draft JSEP October 2017

 o An "a=sctp-port" attribute MUST be present, and it MUST be parsed
 as specified in [I-D.ietf-mmusic-sctp-sdp], Section 5.2, and the
 value stored.

 o If present, a single "a=max-message-size" attribute MUST be parsed
 as specified in [I-D.ietf-mmusic-sctp-sdp], Section 6, and the
 value stored. Otherwise, use the specified default.

 Other attributes that are not relevant to JSEP may also be present,
 and implementations SHOULD process any that they recognize. As
 required by [RFC4566], Section 5.13, unknown attribute lines MUST be
 ignored.

5.8.3. Semantics Verification

 Assuming parsing completes successfully, the parsed description is
 then evaluated to ensure internal consistency as well as proper
 support for mandatory features. Specifically, the following checks
 are performed:

 o For each m= section, valid values for each of the mandatory-to-use
 features enumerated in Section 5.1.1 MUST be present. These
 values MAY either be present at the media level, or inherited from
 the session level.

 * ICE ufrag and password values, which MUST comply with the size
 limits specified in [RFC5245], Section 15.4.

 * tls-id value, which MUST be set according to
 [I-D.ietf-mmusic-dtls-sdp], Section 5. If this is a re-offer
 or a response to a re-offer and the tls-id value is different
 from that presently in use, the DTLS connection is not being
 continued and the remote description MUST be part of an ICE
 restart, together with new ufrag and password values.

 * DTLS setup value, which MUST be set according to the rules
 specified in [RFC5763], Section 5 and MUST be consistent with
 the selected role of the current DTLS connection, if one exists
 and is being continued.

 * DTLS fingerprint values, where at least one fingerprint MUST be
 present.

 o All RID values referenced in an "a=simulcast" line MUST exist as
 "a=rid" lines.

 o Each m= section is also checked to ensure prohibited features are
 not used.

https://datatracker.ietf.org/doc/html/rfc4566#section-5.13
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5763#section-5

Uberti, et al. Expires April 13, 2018 [Page 64]

Internet-Draft JSEP October 2017

 o If the RTP/RTCP multiplexing policy is "require", each m= section
 MUST contain an "a=rtcp-mux" attribute. If an m= section contains
 an "a=rtcp-mux-only" attribute, that section MUST also contain an
 "a=rtcp-mux" attribute.

 o If an m= section was present in the previous answer, the state of
 RTP/RTCP multiplexing MUST match what was previously negotiated.

 If this session description is of type "pranswer" or "answer", the
 following additional checks are applied:

 o The session description must follow the rules defined in
[RFC3264], Section 6, including the requirement that the number of

 m= sections MUST exactly match the number of m= sections in the
 associated offer.

 o For each m= section, the media type and protocol values MUST
 exactly match the media type and protocol values in the
 corresponding m= section in the associated offer.

 If any of the preceding checks failed, processing MUST stop and an
 error MUST be returned.

5.9. Applying a Local Description

 The following steps are performed at the media engine level to apply
 a local description. If an error is returned, the session MUST be
 restored to the state it was in before performing these steps.

 First, m= sections are processed. For each m= section, the following
 steps MUST be performed; if any parameters are out of bounds, or
 cannot be applied, processing MUST stop and an error MUST be
 returned.

 o If this m= section is new, begin gathering candidates for it, as
 defined in [RFC5245], Section 4.1.1, unless it is definitively
 being bundled (either this is an offer and the m= section is
 marked bundle-only, or it is an answer and the m= section is
 bundled into into another m= section.)

 o Or, if the ICE ufrag and password values have changed, trigger the
 ICE agent to start an ICE restart, and begin gathering new
 candidates for the m= section as described in [RFC5245],
 Section 9.1.1.1. If this description is an answer, also start
 checks on that media section as defined in [RFC5245],
 Section 9.3.1.1.

 o If the m= section proto value indicates use of RTP:

https://datatracker.ietf.org/doc/html/rfc3264#section-6
https://datatracker.ietf.org/doc/html/rfc5245#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.3.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.3.1.1

Uberti, et al. Expires April 13, 2018 [Page 65]

Internet-Draft JSEP October 2017

 * If there is no RtpTransceiver associated with this m= section,
 find one and associate it with this m= section according to the
 following steps. Note that this situation will only occur when
 applying an offer.

 + Find the RtpTransceiver that corresponds to this m= section,
 using the mapping between transceivers and m= section
 indices established when creating the offer.

 + Set the value of this RtpTransceiver's mid property to the
 MID of the m= section.

 * If RTCP mux is indicated, prepare to demux RTP and RTCP from
 the RTP ICE component, as specified in [RFC5761],
 Section 5.1.3.

 * For each specified RTP header extension, establish a mapping
 between the extension ID and URI, as described in [RFC5285],
 Section 6.

 * If the MID header extension is supported, prepare to demux RTP
 streams intended for this m= section based on the MID header
 extension, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 15.

 * For each specified media format, establish a mapping between
 the payload type and the actual media format, as described in

[RFC3264], Section 6.1. In addition, prepare to demux RTP
 streams intended for this m= section based on the media formats
 supported by this m= section, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 10.2.

 * For each specified "rtx" media format, establish a mapping
 between the RTX payload type and its associated primary payload
 type, as described in [RFC4588], Sections 8.6 and 8.7.

 * If the directional attribute is of type "sendrecv" or
 "recvonly", enable receipt and decoding of media.

 Finally, if this description is of type "pranswer" or "answer",
 follow the processing defined in Section 5.11 below.

5.10. Applying a Remote Description

 The following steps are performed to apply a remote description. If
 an error is returned, the session MUST be restored to the state it
 was in before performing these steps.

https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5285#section-6
https://datatracker.ietf.org/doc/html/rfc5285#section-6
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc4588

Uberti, et al. Expires April 13, 2018 [Page 66]

Internet-Draft JSEP October 2017

 If the answer contains any "a=ice-options" attributes where "trickle"
 is listed as an attribute, update the PeerConnection canTrickle
 property to be true. Otherwise, set this property to false.

 The following steps MUST be performed for attributes at the session
 level; if any parameters are out of bounds, or cannot be applied,
 processing MUST stop and an error MUST be returned.

 o For any specified "CT" bandwidth value, set this as the limit for
 the maximum total bitrate for all m= sections, as specified in

[RFC4566], Section 5.8. Within this overall limit, the
 implementation can dynamically decide how to best allocate the
 available bandwidth between m= sections, respecting any specific
 limits that have been specified for individual m= sections.

 o For any specified "RR" or "RS" bandwidth values, handle as
 specified in [RFC3556], Section 2.

 o Any "AS" bandwidth value MUST be ignored, as the meaning of this
 construct at the session level is not well defined.

 For each m= section, the following steps MUST be performed; if any
 parameters are out of bounds, or cannot be applied, processing MUST
 stop and an error MUST be returned.

 o If the ICE ufrag or password changed from the previous remote
 description: [RFC5245].

 * If the description is of type "offer", the implementation MUST
 note that an ICE restart is needed, as described in [RFC5245],
 Section 9.1.1.1.

 * If the description is of type "answer" or "pranswer", then
 check to see if the current local description is an ICE
 restart, and if not, generate an error. If the PeerConnection
 state is "have-remote-pranswer", and the ICE ufrag or password
 changed from the previous provisional answer, then signal the
 ICE agent to discard any previous ICE check list state for the
 m= section. Finally, signal the ICE agent to begin checks as
 described in [RFC5245], Section 9.3.1.1.

 o If the current local description indicates an ICE restart, and
 either the ICE ufrag or password has not changed from the previous
 remote description, as prescribed by [RFC5245], Section 9.2.1.1,
 generate an error.

https://datatracker.ietf.org/doc/html/rfc4566#section-5.8
https://datatracker.ietf.org/doc/html/rfc3556#section-2
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.1.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.3.1.1
https://datatracker.ietf.org/doc/html/rfc5245#section-9.2.1.1

Uberti, et al. Expires April 13, 2018 [Page 67]

Internet-Draft JSEP October 2017

 o Configure the ICE components associated with this media section to
 use the supplied ICE remote ufrag and password for their
 connectivity checks.

 o Pair any supplied ICE candidates with any gathered local
 candidates, as described in [RFC5245], Section 5.7, and start
 connectivity checks with the appropriate credentials.

 o If an "a=end-of-candidates" attribute is present, process the end-
 of-candidates indication as described in [I-D.ietf-ice-trickle],
 Section 11.

 o If the m= section proto value indicates use of RTP:

 * If the m= section is being recycled (see Section 5.2.2),
 dissociate the currently associated RtpTransceiver by setting
 its mid property to null, and discard the mapping between the
 transceiver and its m= section index.

 * If the m= section is not associated with any RtpTransceiver
 (possibly because it was dissociated in the previous step),
 either find an RtpTransceiver or create one according to the
 following steps:

 + If the m= section is sendrecv or recvonly, and there are
 RtpTransceivers of the same type that were added to the
 PeerConnection by addTrack and are not associated with any
 m= section and are not stopped, find the first (according to
 the canonical order described in Section 5.2.1) such
 RtpTransceiver.

 + If no RtpTransceiver was found in the previous step, create
 one with a recvonly direction.

 + Associate the found or created RtpTransceiver with the m=
 section by setting the value of the RtpTransceiver's mid
 property to the MID of the m= section, and establish a
 mapping between the transceiver and the index of the m=
 section. If the m= section does not include a MID (i.e.,
 the remote endpoint does not support the MID extension),
 generate a value for the RtpTransceiver mid property,
 following the guidance for "a=mid" mentioned in

Section 5.2.1.

 * For each specified media format that is also supported by the
 local implementation, establish a mapping between the specified
 payload type and the media format, as described in [RFC3264],
 Section 6.1. Specifically, this means that the implementation

https://datatracker.ietf.org/doc/html/rfc5245#section-5.7
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1
https://datatracker.ietf.org/doc/html/rfc3264#section-6.1

Uberti, et al. Expires April 13, 2018 [Page 68]

Internet-Draft JSEP October 2017

 records the payload type to be used in outgoing RTP packets
 when sending each specified media format, as well as the
 relative preference for each format that is indicated in their
 ordering. If any indicated media format is not supported by
 the local implementation, it MUST be ignored.

 * For each specified "rtx" media format, establish a mapping
 between the RTX payload type and its associated primary payload
 type, as described in [RFC4588], Section 4. If any referenced
 primary payload types are not present, this MUST result in an
 error. Note that RTX payload types may refer to primary
 payload types which are not supported by the local media
 implementation, in which case, the RTX payload type MUST also
 be ignored.

 * For each specified fmtp parameter that is supported by the
 local implementation, enable them on the associated media
 formats.

 * For each specified SSRC that is signaled in the m= section,
 prepare to demux RTP streams intended for this m= section using
 that SSRC, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 10.2.

 * For each specified RTP header extension that is also supported
 by the local implementation, establish a mapping between the
 extension ID and URI, as described in [RFC5285], Section 5.
 Specifically, this means that the implementation records the
 extension ID to be used in outgoing RTP packets when sending
 each specified header extension. If any indicated RTP header
 extension is not supported by the local implementation, it MUST
 be ignored.

 * For each specified RTCP feedback mechanism that is supported by
 the local implementation, enable them on the associated media
 formats.

 * For any specified "TIAS" bandwidth value, set this value as a
 constraint on the maximum RTP bitrate to be used when sending
 media, as specified in [RFC3890]. If a "TIAS" value is not
 present, but an "AS" value is specified, generate a "TIAS"
 value using this formula:

 TIAS = AS * 1000 * 0.95 - (50 * 40 * 8)

 The 50 is based on 50 packets per second, the 40 is based on an
 estimate of total header size, the 1000 changes the unit from
 kbps to bps (as required by TIAS), and the 0.95 is to allocate

https://datatracker.ietf.org/doc/html/rfc4588#section-4
https://datatracker.ietf.org/doc/html/rfc5285#section-5
https://datatracker.ietf.org/doc/html/rfc3890

Uberti, et al. Expires April 13, 2018 [Page 69]

Internet-Draft JSEP October 2017

 5% to RTCP. "TIAS" is used in preference to "AS" because it
 provides more accurate control of bandwidth.

 * For any "RR" or "RS" bandwidth values, handle as specified in
[RFC3556], Section 2.

 * Any specified "CT" bandwidth value MUST be ignored, as the
 meaning of this construct at the media level is not well
 defined.

 * If the m= section is of type audio:

 + For each specified "CN" media format, configure silence
 suppression for all supported media formats with the same
 clockrate, as described in [RFC3389], Section 5, except for
 formats that have their own internal silence suppression
 mechanisms. Silence suppression for such formats (e.g.,
 Opus) is controlled via fmtp parameters, as discussed in

Section 5.2.3.2.

 + For each specified "telephone-event" media format, enable
 DTMF transmission for all supported media formats with the
 same clockrate, as described in [RFC4733], Section 2.5.1.2.
 If there are any supported media formats that do not have a
 corresponding telephone-event format, disable DTMF
 transmission for those formats.

 + For any specified "ptime" value, configure the available
 media formats to use the specified packet size when sending.
 If the specified size is not supported for a media format,
 use the next closest value instead.

 Finally, if this description is of type "pranswer" or "answer",
 follow the processing defined in Section 5.11 below.

5.11. Applying an Answer

 In addition to the steps mentioned above for processing a local or
 remote description, the following steps are performed when processing
 a description of type "pranswer" or "answer".

 For each m= section, the following steps MUST be performed:

 o If the m= section has been rejected (i.e. port is set to zero in
 the answer), stop any reception or transmission of media for this
 section, and, unless a non-rejected m= section is bundled with
 this m= section, discard any associated ICE components, as
 described in [RFC5245], Section 9.2.1.3.

https://datatracker.ietf.org/doc/html/rfc3556#section-2
https://datatracker.ietf.org/doc/html/rfc3389#section-5
https://datatracker.ietf.org/doc/html/rfc4733#section-2.5.1.2
https://datatracker.ietf.org/doc/html/rfc5245#section-9.2.1.3

Uberti, et al. Expires April 13, 2018 [Page 70]

Internet-Draft JSEP October 2017

 o If the remote DTLS fingerprint has been changed or the tls-id has
 changed, tear down the DTLS connection. This includes the case
 when the PeerConnection state is "have-remote-pranswer". If a
 DTLS connection needs to be torn down but the answer does not
 indicate an ICE restart or, in the case of "have-remote-pranswer",
 new ICE credentials, an error MUST be generated. If an ICE
 restart is performed without a change in tls-id or fingerprint,
 then the same DTLS connection is continued over the new ICE
 channel. Note that although JSEP requires that answerers change
 the tls-id value if and only if the offerer does, non-JSEP
 answerers are permitted to change the tls-id as long as the offer
 contained an ICE restart. Thus, JSEP implementations which
 process DTLS data prior to receiving an answer MUST be prepared to
 receive either a ClientHello or data from the previous DTLS
 connection.

 o If no valid DTLS connection exists, prepare to start a DTLS
 connection, using the specified roles and fingerprints, on any
 underlying ICE components, once they are active.

 o If the m= section proto value indicates use of RTP:

 * If the m= section references RTCP feedback mechanisms that were
 not present in the corresponding m= section in the offer, this
 indicates a negotiation problem and MUST result in an error.
 However, new media formats and new RTP header extension values
 are permitted in the answer, as described in [RFC3264],
 Section 7, and [RFC5285], Section 6.

 * If the m= section has RTCP mux enabled, discard the RTCP ICE
 component, if one exists, and begin or continue muxing RTCP
 over the RTP ICE component, as specified in [RFC5761],
 Section 5.1.3. Otherwise, prepare to transmit RTCP over the
 RTCP ICE component; if no RTCP ICE component exists, because
 RTCP mux was previously enabled, this MUST result in an error.

 * If the m= section has reduced-size RTCP enabled, configure the
 RTCP transmission for this m= section to use reduced-size RTCP,
 as specified in [RFC5506].

 * If the directional attribute in the answer indicates that the
 JSEP implementation should be sending media ("sendonly" for
 local answers, "recvonly" for remote answers, or "sendrecv" for
 either type of answer), choose the media format to send as the
 most preferred media format from the remote description that is
 also locally supported, as discussed in [RFC3264], Sections 6.1
 and 7, and start transmitting RTP media using that format once
 the underlying transport layers have been established. If an

https://datatracker.ietf.org/doc/html/rfc3264#section-7
https://datatracker.ietf.org/doc/html/rfc3264#section-7
https://datatracker.ietf.org/doc/html/rfc5285#section-6
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5761#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc3264

Uberti, et al. Expires April 13, 2018 [Page 71]

Internet-Draft JSEP October 2017

 SSRC has not already been chosen for this outgoing RTP stream,
 choose a random one. If media is already being transmitted,
 the same SSRC SHOULD be used unless the clockrate of the new
 codec is different, in which case a new SSRC MUST be chosen, as
 specified in [RFC7160], Section 3.1.

 * The payload type mapping from the remote description is used to
 determine payload types for the outgoing RTP streams, including
 the payload type for the send media format chosen above. Any
 RTP header extensions that were negotiated should be included
 in the outgoing RTP streams, using the extension mapping from
 the remote description; if the RID header extension has been
 negotiated, and RID values are specified, include the RID
 header extension in the outgoing RTP streams, as indicated in
 [I-D.ietf-mmusic-rid], Section 4.

 * If the m= section is of type audio, and silence suppression was
 configured for the send media format as a result of processing
 the remote description, and is also enabled for that format in
 the local description, use silence suppression for outgoing
 media, in accordance with the guidance in Section 5.2.3.2. If
 these conditions are not met, silence suppression MUST NOT be
 used for outgoing media.

 * If simulcast has been negotiated, send the number of Source RTP
 Streams as specified in [I-D.ietf-mmusic-sdp-simulcast],
 Section 6.2.2.

 * If the send media format chosen above has a corresponding "rtx"
 media format, or a FEC mechanism has been negotiated, establish
 a Redundancy RTP Stream with a random SSRC for each Source RTP
 Stream, and start or continue transmitting RTX/FEC packets as
 needed.

 * If the send media format chosen above has a corresponding "red"
 media format of the same clockrate, allow redundant encoding
 using the specified format for resiliency purposes, as
 discussed in [I-D.ietf-rtcweb-fec], Section 3.2. Note that
 unlike RTX or FEC media formats, the "red" format is
 transmitted on the Source RTP Stream, not the Redundancy RTP
 Stream.

 * Enable the RTCP feedback mechanisms referenced in the media
 section for all Source RTP Streams using the specified media
 formats. Specifically, begin or continue sending the requested
 feedback types and reacting to received feedback, as specified
 in [RFC4585], Section 4.2. When sending RTCP feedback, follow

https://datatracker.ietf.org/doc/html/rfc7160#section-3.1
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2

Uberti, et al. Expires April 13, 2018 [Page 72]

Internet-Draft JSEP October 2017

 the rules and recommendations from [RFC8108] Section 5.4.1, to
 select which SSRC to use.

 * If the directional attribute in the answer indicates that the
 JSEP implementation should not be sending media ("recvonly" for
 local answers, "sendonly" for remote answers, or "inactive" for
 either type of answer) stop transmitting all RTP media, but
 continue sending RTCP, as described in [RFC3264], Section 5.1.

 o If the m= section proto value indicates use of SCTP:

 * If an SCTP association exists, and the remote SCTP port has
 changed, discard the existing SCTP association. This includes
 the case when the PeerConnection state is "have-remote-
 pranswer".

 * If no valid SCTP association exists, prepare to initiate a SCTP
 association over the associated ICE component and DTLS
 connection, using the local SCTP port value from the local
 description, and the remote SCTP port value from the remote
 description, as described in [I-D.ietf-mmusic-sctp-sdp],
 Section 10.2.

 If the answer contains valid bundle groups, discard any ICE
 components for the m= sections that will be bundled onto the primary
 ICE components in each bundle, and begin muxing these m= sections
 accordingly, as described in
 [I-D.ietf-mmusic-sdp-bundle-negotiation], Section 8.2.

 If the description is of type "answer", and there are still remaining
 candidates in the ICE candidate pool, discard them.

6. Processing RTP/RTCP

 When bundling, associating incoming RTP/RTCP with the proper m=
 section is defined in [I-D.ietf-mmusic-sdp-bundle-negotiation],
 Section 10.2. When not bundling, the proper m= section is clear from
 the ICE component over which the RTP/RTCP is received.

 Once the proper m= section(s) are known, RTP/RTCP is delivered to the
 RtpTransceiver(s) associated with the m= section(s) and further
 processing of the RTP/RTCP is done at the RtpTransceiver level. This
 includes using RID [I-D.ietf-mmusic-rid] to distinguish between
 multiple Encoded Streams, as well as determine which Source RTP
 stream should be repaired by a given Redundancy RTP stream.

https://datatracker.ietf.org/doc/html/rfc8108#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc3264#section-5.1

Uberti, et al. Expires April 13, 2018 [Page 73]

Internet-Draft JSEP October 2017

7. Examples

 Note that this example section shows several SDP fragments. To
 format in 72 columns, some of the lines in SDP have been split into
 multiple lines, where leading whitespace indicates that a line is a
 continuation of the previous line. In addition, some blank lines
 have been added to improve readability but are not valid in SDP.

 More examples of SDP for WebRTC call flows, including examples with
 IPv6 addresses, can be found in [I-D.ietf-rtcweb-sdp].

7.1. Simple Example

 This section shows a very simple example that sets up a minimal audio
 / video call between two JSEP endpoints without using trickle ICE.
 The example in the following section provides a more detailed example
 of what could happen in a JSEP session.

 The code flow below shows Alice's endpoint initiating the session to
 Bob's endpoint. The messages from the JavaScript application in
 Alice's browser to the JavaScript in Bob's browser, abbreviated as
 AliceJS and BobJS respectively, are assumed to flow over some
 signaling protocol via a web server. The JavaScript on both Alice's
 side and Bob's side waits for all candidates before sending the offer
 or answer, so the offers and answers are complete; trickle ICE is not
 used. The user agents (JSEP implementations) in Alice and Bob's
 browsers, abbreviated as AliceUA and BobUA respectively, are using
 the default bundle policy of "balanced", and the default RTCP mux
 policy of "require".

Uberti, et al. Expires April 13, 2018 [Page 74]

Internet-Draft JSEP October 2017

// set up local media state
AliceJS->AliceUA: create new PeerConnection
AliceJS->AliceUA: addTrack with two tracks: audio and video
AliceJS->AliceUA: createOffer to get offer
AliceJS->AliceUA: setLocalDescription with offer
AliceUA->AliceJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete
AliceUA->AliceJS: onicecandidate event with null candidate
AliceJS->AliceUA: get |offer-A1| from pendingLocalDescription

// |offer-A1| is sent over signaling protocol to Bob
AliceJS->WebServer: signaling with |offer-A1|
WebServer->BobJS: signaling with |offer-A1|

// |offer-A1| arrives at Bob
BobJS->BobUA: create a PeerConnection
BobJS->BobUA: setRemoteDescription with |offer-A1|
BobUA->BobJS: ontrack events for audio and video tracks

// Bob accepts call
BobJS->BobUA: addTrack with local tracks
BobJS->BobUA: createAnswer
BobJS->BobUA: setLocalDescription with answer
BobUA->BobJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete
BobUA->BobJS: onicecandidate event with null candidate
BobJS->BobUA: get |answer-A1| from currentLocalDescription

// |answer-A1| is sent over signaling protocol to Alice
BobJS->WebServer: signaling with |answer-A1|
WebServer->AliceJS: signaling with |answer-A1|

// |answer-A1| arrives at Alice
AliceJS->AliceUA: setRemoteDescription with |answer-A1|
AliceUA->AliceJS: ontrack events for audio and video tracks

// media flows
BobUA->AliceUA: media sent from Bob to Alice
AliceUA->BobUA: media sent from Alice to Bob

 The SDP for |offer-A1| looks like:

 v=0
 o=- 4962303333179871722 1 IN IP4 0.0.0.0

Uberti, et al. Expires April 13, 2018 [Page 75]

Internet-Draft JSEP October 2017

 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 v1
 a=group:LS a1 v1

 m=audio 10100 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 203.0.113.100
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:47017fee-b6c1-4162-929c-a25110252400
 f83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=ice-ufrag:ETEn
 a=ice-pwd:OtSK0WpNtpUjkY4+86js7ZQl
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:
 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=tls-id:91bbf309c0990a6bec11e38ba2933cee
 a=rtcp:10101 IN IP4 203.0.113.100
 a=rtcp-mux
 a=rtcp-rsize
 a=candidate:1 1 udp 2113929471 203.0.113.100 10100 typ host
 a=candidate:1 2 udp 2113929470 203.0.113.100 10101 typ host
 a=end-of-candidates

 m=video 10102 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 203.0.113.100
 a=mid:v1
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

Uberti, et al. Expires April 13, 2018 [Page 76]

Internet-Draft JSEP October 2017

 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:47017fee-b6c1-4162-929c-a25110252400
 f30bdb4a-5db8-49b5-bcdc-e0c9a23172e0
 a=ice-ufrag:BGKk
 a=ice-pwd:mqyWsAjvtKwTGnvhPztQ9mIf
 a=fingerprint:sha-256
 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:
 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=tls-id:91bbf309c0990a6bec11e38ba2933cee
 a=rtcp:10103 IN IP4 203.0.113.100
 a=rtcp-mux
 a=rtcp-rsize
 a=candidate:1 1 udp 2113929471 203.0.113.100 10102 typ host
 a=candidate:1 2 udp 2113929470 203.0.113.100 10103 typ host
 a=end-of-candidates

 The SDP for |answer-A1| looks like:

 v=0
 o=- 6729291447651054566 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 v1
 a=group:LS a1 v1

 m=audio 10200 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 203.0.113.200
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae
 5a7b57b8-f043-4bd1-a45d-09d4dfa31226

Uberti, et al. Expires April 13, 2018 [Page 77]

Internet-Draft JSEP October 2017

 a=ice-ufrag:6sFv
 a=ice-pwd:cOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256
 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35:
 DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=tls-id:eec3392ab83e11ceb6a0990c903fbb19
 a=rtcp-mux
 a=rtcp-rsize
 a=candidate:1 1 udp 2113929471 203.0.113.200 10200 typ host
 a=end-of-candidates

 m=video 10200 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 203.0.113.200
 a=mid:v1
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae
 4ea4d4a1-2fda-4511-a9cc-1b32c2e59552

7.2. Detailed Example

 This section shows a more involved example of a session between two
 JSEP endpoints. Trickle ICE is used in full trickle mode, with a
 bundle policy of "max-bundle", an RTCP mux policy of "require", and a
 single TURN server. Initially, both Alice and Bob establish an audio
 channel and a data channel. Later, Bob adds two video flows, one for
 his video feed, and one for screensharing, both supporting FEC, and
 with the video feed configured for simulcast. Alice accepts these
 video flows, but does not add video flows of her own, so they are
 handled as recvonly. Alice also specifies a maximum video decoder
 resolution.

 // set up local media state
 AliceJS->AliceUA: create new PeerConnection

Uberti, et al. Expires April 13, 2018 [Page 78]

Internet-Draft JSEP October 2017

 AliceJS->AliceUA: addTrack with an audio track
 AliceJS->AliceUA: createDataChannel to get data channel
 AliceJS->AliceUA: createOffer to get |offer-B1|
 AliceJS->AliceUA: setLocalDescription with |offer-B1|

 // |offer-B1| is sent over signaling protocol to Bob
 AliceJS->WebServer: signaling with |offer-B1|
 WebServer->BobJS: signaling with |offer-B1|

 // |offer-B1| arrives at Bob
 BobJS->BobUA: create a PeerConnection
 BobJS->BobUA: setRemoteDescription with |offer-B1|
 BobUA->BobJS: ontrack with audio track from Alice

 // candidates are sent to Bob
 AliceUA->AliceJS: onicecandidate (host) |offer-B1-candidate-1|
 AliceJS->WebServer: signaling with |offer-B1-candidate-1|
 AliceUA->AliceJS: onicecandidate (srflx) |offer-B1-candidate-2|
 AliceJS->WebServer: signaling with |offer-B1-candidate-2|
 AliceUA->AliceJS: onicecandidate (relay) |offer-B1-candidate-3|
 AliceJS->WebServer: signaling with |offer-B1-candidate-3|

 WebServer->BobJS: signaling with |offer-B1-candidate-1|
 BobJS->BobUA: addIceCandidate with |offer-B1-candidate-1|
 WebServer->BobJS: signaling with |offer-B1-candidate-2|
 BobJS->BobUA: addIceCandidate with |offer-B1-candidate-2|
 WebServer->BobJS: signaling with |offer-B1-candidate-3|
 BobJS->BobUA: addIceCandidate with |offer-B1-candidate-3|

 // Bob accepts call
 BobJS->BobUA: addTrack with local audio
 BobJS->BobUA: createDataChannel to get data channel
 BobJS->BobUA: createAnswer to get |answer-B1|
 BobJS->BobUA: setLocalDescription with |answer-B1|

 // |answer-B1| is sent to Alice
 BobJS->WebServer: signaling with |answer-B1|
 WebServer->AliceJS: signaling with |answer-B1|
 AliceJS->AliceUA: setRemoteDescription with |answer-B1|
 AliceUA->AliceJS: ontrack event with audio track from Bob

 // candidates are sent to Alice
 BobUA->BobJS: onicecandidate (host) |answer-B1-candidate-1|
 BobJS->WebServer: signaling with |answer-B1-candidate-1|
 BobUA->BobJS: onicecandidate (srflx) |answer-B1-candidate-2|
 BobJS->WebServer: signaling with |answer-B1-candidate-2|
 BobUA->BobJS: onicecandidate (relay) |answer-B1-candidate-3|
 BobJS->WebServer: signaling with |answer-B1-candidate-3|

Uberti, et al. Expires April 13, 2018 [Page 79]

Internet-Draft JSEP October 2017

 WebServer->AliceJS: signaling with |answer-B1-candidate-1|
 AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-1|
 WebServer->AliceJS: signaling with |answer-B1-candidate-2|
 AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-2|
 WebServer->AliceJS: signaling with |answer-B1-candidate-3|
 AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-3|

 // data channel opens
 BobUA->BobJS: ondatachannel event
 AliceUA->AliceJS: ondatachannel event
 BobUA->BobJS: onopen
 AliceUA->AliceJS: onopen

 // media is flowing between endpoints
 BobUA->AliceUA: audio+data sent from Bob to Alice
 AliceUA->BobUA: audio+data sent from Alice to Bob

 // some time later Bob adds two video streams
 // note, no candidates exchanged, because of bundle
 BobJS->BobUA: addTrack with first video stream
 BobJS->BobUA: addTrack with second video stream
 BobJS->BobUA: createOffer to get |offer-B2|
 BobJS->BobUA: setLocalDescription with |offer-B2|

 // |offer-B2| is sent to Alice
 BobJS->WebServer: signaling with |offer-B2|
 WebServer->AliceJS: signaling with |offer-B2|
 AliceJS->AliceUA: setRemoteDescription with |offer-B2|
 AliceUA->AliceJS: ontrack event with first video track
 AliceUA->AliceJS: ontrack event with second video track
 AliceJS->AliceUA: createAnswer to get |answer-B2|
 AliceJS->AliceUA: setLocalDescription with |answer-B2|

 // |answer-B2| is sent over signaling protocol to Bob
 AliceJS->WebServer: signaling with |answer-B2|
 WebServer->BobJS: signaling with |answer-B2|
 BobJS->BobUA: setRemoteDescription with |answer-B2|

 // media is flowing between endpoints
 BobUA->AliceUA: audio+video+data sent from Bob to Alice
 AliceUA->BobUA: audio+video+data sent from Alice to Bob

 The SDP for |offer-B1| looks like:

Uberti, et al. Expires April 13, 2018 [Page 80]

Internet-Draft JSEP October 2017

 v=0
 o=- 4962303333179871723 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 d1

 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 0.0.0.0
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:57017fee-b6c1-4162-929c-a25110252400
 e83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=ice-ufrag:ATEn
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=fingerprint:sha-256
 29:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:
 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:actpass
 a=tls-id:17f0f4ba8a5f1213faca591b58ba52a7
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize

 m=application 0 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:d1
 a=sctp-port:5000
 a=max-message-size:65536
 a=bundle-only

 |offer-B1-candidate-1| looks like:

Uberti, et al. Expires April 13, 2018 [Page 81]

Internet-Draft JSEP October 2017

 ufrag ATEn
 index 0
 mid a1
 attr candidate:1 1 udp 2113929471 203.0.113.100 10100 typ host

 |offer-B1-candidate-2| looks like:

 ufrag ATEn
 index 0
 mid a1
 attr candidate:1 1 udp 1845494015 198.51.100.100 11100 typ srflx
 raddr 203.0.113.100 rport 10100

 |offer-B1-candidate-3| looks like:

 ufrag ATEn
 index 0
 mid a1
 attr candidate:1 1 udp 255 192.0.2.100 12100 typ relay
 raddr 198.51.100.100 rport 11100

 The SDP for |answer-B1| looks like:

Uberti, et al. Expires April 13, 2018 [Page 82]

Internet-Draft JSEP October 2017

 v=0
 o=- 7729291447651054566 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 d1

 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 0.0.0.0
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae
 6a7b57b8-f043-4bd1-a45d-09d4dfa31226
 a=ice-ufrag:7sFv
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256
 7B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35:
 DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:active
 a=tls-id:7a25ab85b195acaf3121f5a8ab4f0f71
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize

 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 0.0.0.0
 a=mid:d1
 a=sctp-port:5000
 a=max-message-size:65536

 |answer-B1-candidate-1| looks like:

Uberti, et al. Expires April 13, 2018 [Page 83]

Internet-Draft JSEP October 2017

 ufrag 7sFv
 index 0
 mid a1
 attr candidate:1 1 udp 2113929471 203.0.113.200 10200 typ host

 |answer-B1-candidate-2| looks like:

 ufrag 7sFv
 index 0
 mid a1
 attr candidate:1 1 udp 1845494015 198.51.100.200 11200 typ srflx
 raddr 203.0.113.200 rport 10200

 |answer-B1-candidate-3| looks like:

 ufrag 7sFv
 index 0
 mid a1
 attr candidate:1 1 udp 255 192.0.2.200 12200 typ relay
 raddr 198.51.100.200 rport 11200

 The SDP for |offer-B2| is shown below. In addition to the new m=
 sections for video, both of which are offering FEC, and one of which
 is offering simulcast, note the increment of the version number in
 the o= line, changes to the c= line, indicating the local candidate
 that was selected, and the inclusion of gathered candidates as
 a=candidate lines.

 v=0
 o=- 7729291447651054566 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 d1 v1 v2
 a=group:LS a1 v1

 m=audio 12200 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.200
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000

Uberti, et al. Expires April 13, 2018 [Page 84]

Internet-Draft JSEP October 2017

 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae
 6a7b57b8-f043-4bd1-a45d-09d4dfa31226
 a=ice-ufrag:7sFv
 a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2
 a=fingerprint:sha-256
 7B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35:
 DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
 a=setup:actpass
 a=tls-id:7a25ab85b195acaf3121f5a8ab4f0f71
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize
 a=candidate:1 1 udp 2113929471 203.0.113.200 10200 typ host
 a=candidate:1 1 udp 1845494015 198.51.100.200 11200 typ srflx
 raddr 203.0.113.200 rport 10200
 a=candidate:1 1 udp 255 192.0.2.200 12200 typ relay
 raddr 198.51.100.200 rport 11200
 a=end-of-candidates

 m=application 12200 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 192.0.2.200
 a=mid:d1
 a=sctp-port:5000
 a=max-message-size:65536

 m=video 12200 UDP/TLS/RTP/SAVPF 100 101 102 103 104
 c=IN IP4 192.0.2.200
 a=mid:v1
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=rtpmap:104 flexfec/90000
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir

Uberti, et al. Expires April 13, 2018 [Page 85]

Internet-Draft JSEP October 2017

 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae
 5ea4d4a1-2fda-4511-a9cc-1b32c2e59552
 a=rid:1 send
 a=rid:2 send
 a=rid:3 send
 a=simulcast:send 1;2;3

 m=video 12200 UDP/TLS/RTP/SAVPF 100 101 102 103 104
 c=IN IP4 192.0.2.200
 a=mid:v2
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=rtpmap:104 flexfec/90000
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:81317484-2ed4-49d7-9eb7-1414322a7aae
 6ea4d4a1-2fda-4511-a9cc-1b32c2e59552

 The SDP for |answer-B2| is shown below. In addition to the
 acceptance of the video m= sections, the use of a=recvonly to
 indicate one-way video, and the use of a=imageattr to limit the
 received resolution, note the use of setup:passive to maintain the
 existing DTLS roles.

 v=0
 o=- 4962303333179871723 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 d1 v1 v2
 a=group:LS a1 v1

 m=audio 12100 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.100
 a=mid:a1

Uberti, et al. Expires April 13, 2018 [Page 86]

Internet-Draft JSEP October 2017

 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:57017fee-b6c1-4162-929c-a25110252400
 e83006c5-a0ff-4e0a-9ed9-d3e6747be7d9
 a=ice-ufrag:ATEn
 a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl
 a=fingerprint:sha-256
 29:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:
 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
 a=setup:passive
 a=tls-id:17f0f4ba8a5f1213faca591b58ba52a7
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize
 a=candidate:1 1 udp 2113929471 203.0.113.100 10100 typ host
 a=candidate:1 1 udp 1845494015 198.51.100.100 11100 typ srflx
 raddr 203.0.113.100 rport 10100
 a=candidate:1 1 udp 255 192.0.2.100 12100 typ relay
 raddr 198.51.100.100 rport 11100
 a=end-of-candidates

 m=application 12100 UDP/DTLS/SCTP webrtc-datachannel
 c=IN IP4 192.0.2.100
 a=mid:d1
 a=sctp-port:5000
 a=max-message-size:65536

 m=video 12100 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 192.0.2.100
 a=mid:v1
 a=recvonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=imageattr:100 recv [x=[48:1920],y=[48:1080],q=1.0]

Uberti, et al. Expires April 13, 2018 [Page 87]

Internet-Draft JSEP October 2017

 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

 m=video 12100 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 192.0.2.100
 a=mid:v2
 a=recvonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=imageattr:100 recv [x=[48:1920],y=[48:1080],q=1.0]
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

7.3. Early Transport Warmup Example

 This example demonstrates the early warmup technique described in
Section 4.1.8.1. Here, Alice's endpoint sends an offer to Bob's

 endpoint to start an audio/video call. Bob immediately responds with
 an answer that accepts the audio/video m= sections, but marks them as
 sendonly (from his perspective), meaning that Alice will not yet send
 media. This allows the JSEP implementation to start negotiating ICE
 and DTLS immediately. Bob's endpoint then prompts him to answer the
 call, and when he does, his endpoint sends a second offer which
 enables the audio and video m= sections, and thereby bidirectional
 media transmission. The advantage of such a flow is that as soon as
 the first answer is received, the implementation can proceed with ICE
 and DTLS negotiation and establish the session transport. If the
 transport setup completes before the second offer is sent, then media
 can be transmitted immediately by the callee immediately upon
 answering the call, minimizing perceived post-dial-delay. The second
 offer/answer exchange can also change the preferred codecs or other
 session parameters.

 This example also makes use of the "relay" ICE candidate policy
 described in Section 3.5.3 to minimize the ICE gathering and checking
 needed.

Uberti, et al. Expires April 13, 2018 [Page 88]

Internet-Draft JSEP October 2017

// set up local media state
AliceJS->AliceUA: create new PeerConnection with "relay" ICE policy
AliceJS->AliceUA: addTrack with two tracks: audio and video
AliceJS->AliceUA: createOffer to get |offer-C1|
AliceJS->AliceUA: setLocalDescription with |offer-C1|

// |offer-C1| is sent over signaling protocol to Bob
AliceJS->WebServer: signaling with |offer-C1|
WebServer->BobJS: signaling with |offer-C1|

// |offer-C1| arrives at Bob
BobJS->BobUA: create new PeerConnection with "relay" ICE policy
BobJS->BobUA: setRemoteDescription with |offer-C1|
BobUA->BobJS: ontrack events for audio and video

// a relay candidate is sent to Bob
AliceUA->AliceJS: onicecandidate (relay) |offer-C1-candidate-1|
AliceJS->WebServer: signaling with |offer-C1-candidate-1|

WebServer->BobJS: signaling with |offer-C1-candidate-1|
BobJS->BobUA: addIceCandidate with |offer-C1-candidate-1|

// Bob prepares an early answer to warmup the transport
BobJS->BobUA: addTransceiver with null audio and video tracks
BobJS->BobUA: transceiver.setDirection(sendonly) for both
BobJS->BobUA: createAnswer
BobJS->BobUA: setLocalDescription with answer

// |answer-C1| is sent over signaling protocol to Alice
BobJS->WebServer: signaling with |answer-C1|
WebServer->AliceJS: signaling with |answer-C1|

// |answer-C1| (sendonly) arrives at Alice
AliceJS->AliceUA: setRemoteDescription with |answer-C1|
AliceUA->AliceJS: ontrack events for audio and video

// a relay candidate is sent to Alice
BobUA->BobJS: onicecandidate (relay) |answer-B1-candidate-1|
BobJS->WebServer: signaling with |answer-B1-candidate-1|

WebServer->AliceJS: signaling with |answer-B1-candidate-1|
AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-1|

// ICE and DTLS establish while call is ringing

// Bob accepts call, starts media, and sends new offer
BobJS->BobUA: transceiver.setTrack with audio and video tracks
BobUA->AliceUA: media sent from Bob to Alice

Uberti, et al. Expires April 13, 2018 [Page 89]

Internet-Draft JSEP October 2017

BobJS->BobUA: transceiver.setDirection(sendrecv) for both
 transceivers
BobJS->BobUA: createOffer
BobJS->BobUA: setLocalDescription with offer

// |offer-C2| is sent over signaling protocol to Alice
BobJS->WebServer: signaling with |offer-C2|
WebServer->AliceJS: signaling with |offer-C2|

// |offer-C2| (sendrecv) arrives at Alice
AliceJS->AliceUA: setRemoteDescription with |offer-C2|
AliceJS->AliceUA: createAnswer
AliceJS->AliceUA: setLocalDescription with |answer-C2|
AliceUA->BobUA: media sent from Alice to Bob

// |answer-C2| is sent over signaling protocol to Bob
AliceJS->WebServer: signaling with |answer-C2|
WebServer->BobJS: signaling with |answer-C2|
BobJS->BobUA: setRemoteDescription with |answer-C2|

 The SDP for |offer-C1| looks like:

 v=0
 o=- 1070771854436052752 1 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 v1
 a=group:LS a1 v1

 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 0.0.0.0
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce
 e80098db-7159-3c06-229a-00df2a9b3dbc

Uberti, et al. Expires April 13, 2018 [Page 90]

Internet-Draft JSEP October 2017

 a=ice-ufrag:4ZcD
 a=ice-pwd:ZaaG6OG7tCn4J/lehAGz+HHD
 a=fingerprint:sha-256
 C4:68:F8:77:6A:44:F1:98:6D:7C:9F:47:EB:E3:34:A4:
 0A:AA:2D:49:08:28:70:2E:1F:AE:18:7D:4E:3E:66:BF
 a=setup:actpass
 a=tls-id:9e5b948ade9c3d41de6617b68f769e55
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize

 m=video 0 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 0.0.0.0
 a=mid:v1
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce
 ac701365-eb06-42df-cc93-7f22bc308789
 a=bundle-only

 |offer-C1-candidate-1| looks like:

 ufrag 4ZcD
 index 0
 mid a1
 attr candidate:1 1 udp 255 192.0.2.100 12100 typ relay
 raddr 0.0.0.0 rport 0

 The SDP for |answer-C1| looks like:

 v=0
 o=- 6386516489780559513 1 IN IP4 0.0.0.0
 s=-

Uberti, et al. Expires April 13, 2018 [Page 91]

Internet-Draft JSEP October 2017

 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 v1
 a=group:LS a1 v1

 m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 0.0.0.0
 a=mid:a1
 a=sendonly
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:751f239e-4ae0-c549-aa3d-890de772998b
 04b5a445-82cc-c9e8-9ffe-c24d0ef4b0ff
 a=ice-ufrag:TpaA
 a=ice-pwd:t2Ouhc67y8JcCaYZxUUTgKw/
 a=fingerprint:sha-256
 A2:F3:A5:6D:4C:8C:1E:B2:62:10:4A:F6:70:61:C4:FC:
 3C:E0:01:D6:F3:24:80:74:DA:7C:3E:50:18:7B:CE:4D
 a=setup:active
 a=tls-id:55e967f86b7166ed14d3c9eda849b5e9
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize

 m=video 9 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 0.0.0.0
 a=mid:v1
 a=sendonly
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli

Uberti, et al. Expires April 13, 2018 [Page 92]

Internet-Draft JSEP October 2017

 a=msid:751f239e-4ae0-c549-aa3d-890de772998b
 39292672-c102-d075-f580-5826f31ca958

 |answer-C1-candidate-1| looks like:

 ufrag TpaA
 index 0
 mid a1
 attr candidate:1 1 udp 255 192.0.2.200 12200 typ relay
 raddr 0.0.0.0 rport 0

 The SDP for |offer-C2| looks like:

 v=0
 o=- 6386516489780559513 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 v1
 a=group:LS a1 v1

 m=audio 12200 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.200
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15
 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:751f239e-4ae0-c549-aa3d-890de772998b
 04b5a445-82cc-c9e8-9ffe-c24d0ef4b0ff
 a=ice-ufrag:TpaA
 a=ice-pwd:t2Ouhc67y8JcCaYZxUUTgKw/
 a=fingerprint:sha-256
 A2:F3:A5:6D:4C:8C:1E:B2:62:10:4A:F6:70:61:C4:FC:
 3C:E0:01:D6:F3:24:80:74:DA:7C:3E:50:18:7B:CE:4D
 a=setup:actpass
 a=tls-id:55e967f86b7166ed14d3c9eda849b5e9

Uberti, et al. Expires April 13, 2018 [Page 93]

Internet-Draft JSEP October 2017

 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize
 a=candidate:1 1 udp 255 192.0.2.200 12200 typ relay
 raddr 0.0.0.0 rport 0
 a=end-of-candidates

 m=video 12200 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 192.0.2.200
 a=mid:v1
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:751f239e-4ae0-c549-aa3d-890de772998b
 39292672-c102-d075-f580-5826f31ca958

 The SDP for |answer-C2| looks like:

 v=0
 o=- 1070771854436052752 2 IN IP4 0.0.0.0
 s=-
 t=0 0
 a=ice-options:trickle
 a=group:BUNDLE a1 v1
 a=group:LS a1 v1

 m=audio 12100 UDP/TLS/RTP/SAVPF 96 0 8 97 98
 c=IN IP4 192.0.2.100
 a=mid:a1
 a=sendrecv
 a=rtpmap:96 opus/48000/2
 a=rtpmap:0 PCMU/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:97 telephone-event/8000
 a=rtpmap:98 telephone-event/48000
 a=fmtp:97 0-15

Uberti, et al. Expires April 13, 2018 [Page 94]

Internet-Draft JSEP October 2017

 a=fmtp:98 0-15
 a=maxptime:120
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level
 a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce
 e80098db-7159-3c06-229a-00df2a9b3dbc
 a=ice-ufrag:4ZcD
 a=ice-pwd:ZaaG6OG7tCn4J/lehAGz+HHD
 a=fingerprint:sha-256
 C4:68:F8:77:6A:44:F1:98:6D:7C:9F:47:EB:E3:34:A4:
 0A:AA:2D:49:08:28:70:2E:1F:AE:18:7D:4E:3E:66:BF
 a=setup:passive
 a=tls-id:9e5b948ade9c3d41de6617b68f769e55
 a=rtcp-mux
 a=rtcp-mux-only
 a=rtcp-rsize
 a=candidate:1 1 udp 255 192.0.2.100 12100 typ relay
 raddr 0.0.0.0 rport 0
 a=end-of-candidates

 m=video 12100 UDP/TLS/RTP/SAVPF 100 101 102 103
 c=IN IP4 192.0.2.100
 a=mid:v1
 a=sendrecv
 a=rtpmap:100 VP8/90000
 a=rtpmap:101 H264/90000
 a=fmtp:101 packetization-mode=1;profile-level-id=42e01f
 a=rtpmap:102 rtx/90000
 a=fmtp:102 apt=100
 =rtpmap:103 rtx/90000
 a=fmtp:103 apt=101
 a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid
 a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
 a=rtcp-fb:100 ccm fir
 a=rtcp-fb:100 nack
 a=rtcp-fb:100 nack pli
 a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce
 ac701365-eb06-42df-cc93-7f22bc308789

8. Security Considerations

 The IETF has published separate documents
 [I-D.ietf-rtcweb-security-arch] [I-D.ietf-rtcweb-security] describing
 the security architecture for WebRTC as a whole. The remainder of
 this section describes security considerations for this document.

Uberti, et al. Expires April 13, 2018 [Page 95]

Internet-Draft JSEP October 2017

 While formally the JSEP interface is an API, it is better to think of
 it is an Internet protocol, with the application JavaScript being
 untrustworthy from the perspective of the JSEP implementation. Thus,
 the threat model of [RFC3552] applies. In particular, JavaScript can
 call the API in any order and with any inputs, including malicious
 ones. This is particularly relevant when we consider the SDP which
 is passed to setLocalDescription(). While correct API usage requires
 that the application pass in SDP which was derived from createOffer()
 or createAnswer(), there is no guarantee that applications do so.
 The JSEP implementation MUST be prepared for the JavaScript to pass
 in bogus data instead.

 Conversely, the application programmer needs to be aware that the
 JavaScript does not have complete control of endpoint behavior. One
 case that bears particular mention is that editing ICE candidates out
 of the SDP or suppressing trickled candidates does not have the
 expected behavior: implementations will still perform checks from
 those candidates even if they are not sent to the other side. Thus,
 for instance, it is not possible to prevent the remote peer from
 learning your public IP address by removing server reflexive
 candidates. Applications which wish to conceal their public IP
 address should instead configure the ICE agent to use only relay
 candidates.

9. IANA Considerations

 This document requires no actions from IANA.

10. Acknowledgements

 Harald Alvestrand, Taylor Brandstetter, Suhas Nandakumar, and Peter
 Thatcher provided significant text for this draft. Bernard Aboba,
 Adam Bergkvist, Dan Burnett, Ben Campbell, Alissa Cooper, Richard
 Ejzak, Stefan Hakansson, Ted Hardie, Christer Holmberg Andrew Hutton,
 Randell Jesup, Matthew Kaufman, Anant Narayanan, Adam Roach, Robert
 Sparks, Neil Stratford, Martin Thomson, Sean Turner, and Magnus
 Westerlund all provided valuable feedback on this proposal.

11. References

11.1. Normative References

 [I-D.ietf-avtext-rid]
 Roach, A., Nandakumar, S., and P. Thatcher, "RTP Stream
 Identifier Source Description (SDES)", draft-ietf-avtext-

rid-09 (work in progress), October 2016.

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/draft-ietf-avtext-rid-09
https://datatracker.ietf.org/doc/html/draft-ietf-avtext-rid-09

Uberti, et al. Expires April 13, 2018 [Page 96]

Internet-Draft JSEP October 2017

 [I-D.ietf-ice-trickle]
 Ivov, E., Rescorla, E., Uberti, J., and P. Saint-Andre,
 "Trickle ICE: Incremental Provisioning of Candidates for
 the Interactive Connectivity Establishment (ICE)
 Protocol", draft-ietf-ice-trickle-14 (work in progress),
 September 2017.

 [I-D.ietf-mmusic-dtls-sdp]
 Holmberg, C. and R. Shpount, "Session Description Protocol
 (SDP) Offer/Answer Considerations for Datagram Transport
 Layer Security (DTLS) and Transport Layer Security (TLS)",

draft-ietf-mmusic-dtls-sdp-31 (work in progress), October
 2017.

 [I-D.ietf-mmusic-msid]
 Alvestrand, H., "WebRTC MediaStream Identification in the
 Session Description Protocol", draft-ietf-mmusic-msid-16
 (work in progress), February 2017.

 [I-D.ietf-mmusic-mux-exclusive]
 Holmberg, C., "Indicating Exclusive Support of RTP/RTCP
 Multiplexing using SDP", draft-ietf-mmusic-mux-

exclusive-12 (work in progress), May 2017.

 [I-D.ietf-mmusic-rid]
 Thatcher, P., Zanaty, M., Nandakumar, S., Burman, B.,
 Roach, A., and B. Campen, "RTP Payload Format
 Restrictions", draft-ietf-mmusic-rid-11 (work in
 progress), July 2017.

 [I-D.ietf-mmusic-sctp-sdp]
 Holmberg, C., Shpount, R., Loreto, S., and G. Camarillo,
 "Session Description Protocol (SDP) Offer/Answer
 Procedures For Stream Control Transmission Protocol (SCTP)
 over Datagram Transport Layer Security (DTLS) Transport.",

draft-ietf-mmusic-sctp-sdp-26 (work in progress), April
 2017.

 [I-D.ietf-mmusic-sdp-bundle-negotiation]
 Holmberg, C., Alvestrand, H., and C. Jennings,
 "Negotiating Media Multiplexing Using the Session
 Description Protocol (SDP)", draft-ietf-mmusic-sdp-bundle-

negotiation-39 (work in progress), August 2017.

 [I-D.ietf-mmusic-sdp-mux-attributes]
 Nandakumar, S., "A Framework for SDP Attributes when
 Multiplexing", draft-ietf-mmusic-sdp-mux-attributes-16
 (work in progress), December 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-14
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-dtls-sdp-31
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-msid-16
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-mux-exclusive-12
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-mux-exclusive-12
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-rid-11
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sctp-sdp-26
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-39
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-39
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-mux-attributes-16

Uberti, et al. Expires April 13, 2018 [Page 97]

Internet-Draft JSEP October 2017

 [I-D.ietf-mmusic-sdp-simulcast]
 Burman, B., Westerlund, M., Nandakumar, S., and M. Zanaty,
 "Using Simulcast in SDP and RTP Sessions", draft-ietf-

mmusic-sdp-simulcast-10 (work in progress), July 2017.

 [I-D.ietf-rtcweb-fec]
 Uberti, J., "WebRTC Forward Error Correction
 Requirements", draft-ietf-rtcweb-fec-06 (work in
 progress), July 2017.

 [I-D.ietf-rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",

draft-ietf-rtcweb-rtp-usage-26 (work in progress), March
 2016.

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for WebRTC", draft-

ietf-rtcweb-security-08 (work in progress), February 2015.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-

rtcweb-security-arch-12 (work in progress), June 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002,
 <https://www.rfc-editor.org/info/rfc3264>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-simulcast-10
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-simulcast-10
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-fec-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-26
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-08
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-08
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-12
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://www.rfc-editor.org/info/rfc3264
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552

Uberti, et al. Expires April 13, 2018 [Page 98]

Internet-Draft JSEP October 2017

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605,
 DOI 10.17487/RFC3605, October 2003,
 <https://www.rfc-editor.org/info/rfc3605>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC3890] Westerlund, M., "A Transport Independent Bandwidth
 Modifier for the Session Description Protocol (SDP)",

RFC 3890, DOI 10.17487/RFC3890, September 2004,
 <https://www.rfc-editor.org/info/rfc3890>.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 DOI 10.17487/RFC4145, September 2005,
 <https://www.rfc-editor.org/info/rfc4145>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <https://www.rfc-editor.org/info/rfc4566>.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
 DOI 10.17487/RFC4585, July 2006,
 <https://www.rfc-editor.org/info/rfc4585>.

 [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
 Real-time Transport Control Protocol (RTCP)-Based Feedback
 (RTP/SAVPF)", RFC 5124, DOI 10.17487/RFC5124, February
 2008, <https://www.rfc-editor.org/info/rfc5124>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <https://www.rfc-editor.org/info/rfc5245>.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
 Header Extensions", RFC 5285, DOI 10.17487/RFC5285, July
 2008, <https://www.rfc-editor.org/info/rfc5285>.

https://datatracker.ietf.org/doc/html/rfc3605
https://www.rfc-editor.org/info/rfc3605
https://datatracker.ietf.org/doc/html/rfc3711
https://www.rfc-editor.org/info/rfc3711
https://datatracker.ietf.org/doc/html/rfc3890
https://www.rfc-editor.org/info/rfc3890
https://datatracker.ietf.org/doc/html/rfc4145
https://www.rfc-editor.org/info/rfc4145
https://datatracker.ietf.org/doc/html/rfc4566
https://www.rfc-editor.org/info/rfc4566
https://datatracker.ietf.org/doc/html/rfc4585
https://www.rfc-editor.org/info/rfc4585
https://datatracker.ietf.org/doc/html/rfc5124
https://www.rfc-editor.org/info/rfc5124
https://datatracker.ietf.org/doc/html/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://datatracker.ietf.org/doc/html/rfc5285
https://www.rfc-editor.org/info/rfc5285

Uberti, et al. Expires April 13, 2018 [Page 99]

Internet-Draft JSEP October 2017

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761,
 DOI 10.17487/RFC5761, April 2010,
 <https://www.rfc-editor.org/info/rfc5761>.

 [RFC5888] Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888,
 DOI 10.17487/RFC5888, June 2010,
 <https://www.rfc-editor.org/info/rfc5888>.

 [RFC6236] Johansson, I. and K. Jung, "Negotiation of Generic Image
 Attributes in the Session Description Protocol (SDP)",

RFC 6236, DOI 10.17487/RFC6236, May 2011,
 <https://www.rfc-editor.org/info/rfc6236>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
 September 2012, <https://www.rfc-editor.org/info/rfc6716>.

 [RFC6904] Lennox, J., "Encryption of Header Extensions in the Secure
 Real-time Transport Protocol (SRTP)", RFC 6904,
 DOI 10.17487/RFC6904, April 2013,
 <https://www.rfc-editor.org/info/rfc6904>.

 [RFC7160] Petit-Huguenin, M. and G. Zorn, Ed., "Support for Multiple
 Clock Rates in an RTP Session", RFC 7160,
 DOI 10.17487/RFC7160, April 2014,
 <https://www.rfc-editor.org/info/rfc7160>.

 [RFC7587] Spittka, J., Vos, K., and JM. Valin, "RTP Payload Format
 for the Opus Speech and Audio Codec", RFC 7587,
 DOI 10.17487/RFC7587, June 2015,
 <https://www.rfc-editor.org/info/rfc7587>.

 [RFC7742] Roach, A., "WebRTC Video Processing and Codec
 Requirements", RFC 7742, DOI 10.17487/RFC7742, March 2016,
 <https://www.rfc-editor.org/info/rfc7742>.

 [RFC7850] Nandakumar, S., "Registering Values of the SDP 'proto'
 Field for Transporting RTP Media over TCP under Various
 RTP Profiles", RFC 7850, DOI 10.17487/RFC7850, April 2016,
 <https://www.rfc-editor.org/info/rfc7850>.

https://datatracker.ietf.org/doc/html/rfc5761
https://www.rfc-editor.org/info/rfc5761
https://datatracker.ietf.org/doc/html/rfc5888
https://www.rfc-editor.org/info/rfc5888
https://datatracker.ietf.org/doc/html/rfc6236
https://www.rfc-editor.org/info/rfc6236
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6716
https://www.rfc-editor.org/info/rfc6716
https://datatracker.ietf.org/doc/html/rfc6904
https://www.rfc-editor.org/info/rfc6904
https://datatracker.ietf.org/doc/html/rfc7160
https://www.rfc-editor.org/info/rfc7160
https://datatracker.ietf.org/doc/html/rfc7587
https://www.rfc-editor.org/info/rfc7587
https://datatracker.ietf.org/doc/html/rfc7742
https://www.rfc-editor.org/info/rfc7742
https://datatracker.ietf.org/doc/html/rfc7850
https://www.rfc-editor.org/info/rfc7850

Uberti, et al. Expires April 13, 2018 [Page 100]

Internet-Draft JSEP October 2017

 [RFC7874] Valin, JM. and C. Bran, "WebRTC Audio Codec and Processing
 Requirements", RFC 7874, DOI 10.17487/RFC7874, May 2016,
 <https://www.rfc-editor.org/info/rfc7874>.

 [RFC8108] Lennox, J., Westerlund, M., Wu, Q., and C. Perkins,
 "Sending Multiple RTP Streams in a Single RTP Session",

RFC 8108, DOI 10.17487/RFC8108, March 2017,
 <https://www.rfc-editor.org/info/rfc8108>.

 [RFC8122] Lennox, J. and C. Holmberg, "Connection-Oriented Media
 Transport over the Transport Layer Security (TLS) Protocol
 in the Session Description Protocol (SDP)", RFC 8122,
 DOI 10.17487/RFC8122, March 2017,
 <https://www.rfc-editor.org/info/rfc8122>.

11.2. Informative References

 [I-D.ietf-mmusic-trickle-ice-sip]
 Ivov, E., Stach, T., Marocco, E., and C. Holmberg, "A
 Session Initiation Protocol (SIP) usage for Trickle ICE",

draft-ietf-mmusic-trickle-ice-sip-08 (work in progress),
 July 2017.

 [I-D.ietf-rtcweb-ip-handling]
 Uberti, J. and G. Shieh, "WebRTC IP Address Handling
 Requirements", draft-ietf-rtcweb-ip-handling-04 (work in
 progress), July 2017.

 [I-D.ietf-rtcweb-sdp]
 Nandakumar, S. and C. Jennings, "Annotated Example SDP for
 WebRTC", draft-ietf-rtcweb-sdp-07 (work in progress),
 October 2017.

 [RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
 Comfort Noise (CN)", RFC 3389, DOI 10.17487/RFC3389,
 September 2002, <https://www.rfc-editor.org/info/rfc3389>.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth",

RFC 3556, DOI 10.17487/RFC3556, July 2003,
 <https://www.rfc-editor.org/info/rfc3556>.

 [RFC3960] Camarillo, G. and H. Schulzrinne, "Early Media and Ringing
 Tone Generation in the Session Initiation Protocol (SIP)",

RFC 3960, DOI 10.17487/RFC3960, December 2004,
 <https://www.rfc-editor.org/info/rfc3960>.

https://datatracker.ietf.org/doc/html/rfc7874
https://www.rfc-editor.org/info/rfc7874
https://datatracker.ietf.org/doc/html/rfc8108
https://www.rfc-editor.org/info/rfc8108
https://datatracker.ietf.org/doc/html/rfc8122
https://www.rfc-editor.org/info/rfc8122
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-trickle-ice-sip-08
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-ip-handling-04
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-sdp-07
https://datatracker.ietf.org/doc/html/rfc3389
https://www.rfc-editor.org/info/rfc3389
https://datatracker.ietf.org/doc/html/rfc3556
https://www.rfc-editor.org/info/rfc3556
https://datatracker.ietf.org/doc/html/rfc3960
https://www.rfc-editor.org/info/rfc3960

Uberti, et al. Expires April 13, 2018 [Page 101]

Internet-Draft JSEP October 2017

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, DOI 10.17487/RFC4568, July 2006,
 <https://www.rfc-editor.org/info/rfc4568>.

 [RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
 Hakenberg, "RTP Retransmission Payload Format", RFC 4588,
 DOI 10.17487/RFC4588, July 2006,
 <https://www.rfc-editor.org/info/rfc4588>.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 DOI 10.17487/RFC4733, December 2006,
 <https://www.rfc-editor.org/info/rfc4733>.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, DOI 10.17487/RFC5506, April
 2009, <https://www.rfc-editor.org/info/rfc5506>.

 [RFC5576] Lennox, J., Ott, J., and T. Schierl, "Source-Specific
 Media Attributes in the Session Description Protocol
 (SDP)", RFC 5576, DOI 10.17487/RFC5576, June 2009,
 <https://www.rfc-editor.org/info/rfc5576>.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, DOI 10.17487/RFC5763, May
 2010, <https://www.rfc-editor.org/info/rfc5763>.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC6464] Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time
 Transport Protocol (RTP) Header Extension for Client-to-
 Mixer Audio Level Indication", RFC 6464,
 DOI 10.17487/RFC6464, December 2011,
 <https://www.rfc-editor.org/info/rfc6464>.

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
 March 2012, <https://www.rfc-editor.org/info/rfc6544>.

https://datatracker.ietf.org/doc/html/rfc4568
https://www.rfc-editor.org/info/rfc4568
https://datatracker.ietf.org/doc/html/rfc4588
https://www.rfc-editor.org/info/rfc4588
https://datatracker.ietf.org/doc/html/rfc4733
https://www.rfc-editor.org/info/rfc4733
https://datatracker.ietf.org/doc/html/rfc5506
https://www.rfc-editor.org/info/rfc5506
https://datatracker.ietf.org/doc/html/rfc5576
https://www.rfc-editor.org/info/rfc5576
https://datatracker.ietf.org/doc/html/rfc5763
https://www.rfc-editor.org/info/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://datatracker.ietf.org/doc/html/rfc6464
https://www.rfc-editor.org/info/rfc6464
https://datatracker.ietf.org/doc/html/rfc6544
https://www.rfc-editor.org/info/rfc6544

Uberti, et al. Expires April 13, 2018 [Page 102]

Internet-Draft JSEP October 2017

 [TS26.114]
 3GPP TS 26.114 V12.8.0, "3rd Generation Partnership
 Project; Technical Specification Group Services and System
 Aspects; IP Multimedia Subsystem (IMS); Multimedia
 Telephony; Media handling and interaction (Release 12)",
 December 2014, <http://www.3gpp.org/DynaReport/26114.htm>.

 [W3C.webrtc]
 Bergkvist, A., Burnett, D., Jennings, C., Narayanan, A.,
 Aboba, B., and T. Brandstetter, "WebRTC 1.0: Real-time
 Communication Between Browsers", World Wide Web Consortium
 WD WD-webrtc-20170515, May 2017,
 <https://www.w3.org/TR/2017/WD-webrtc-20170515/>.

Appendix A. Appendix A

 For the syntax validation performed in Section 5.8, the following
 list of ABNF definitions is used:

http://www.3gpp.org/DynaReport/26114.htm
https://www.w3.org/TR/2017/WD-webrtc-20170515/

Uberti, et al. Expires April 13, 2018 [Page 103]

Internet-Draft JSEP October 2017

 +------------------------+--+
 | Attribute | Reference |
 +------------------------+--+
ptime	[RFC4566] Section 9
maxptime	[RFC4566] Section 9
rtpmap	[RFC4566] Section 9
recvonly	[RFC4566] Section 9
sendrecv	[RFC4566] Section 9
sendonly	[RFC4566] Section 9
inactive	[RFC4566] Section 9
framerate	[RFC4566] Section 9
fmtp	[RFC4566] Section 9
quality	[RFC4566] Section 9
rtcp	[RFC3605] Section 2.1
setup	[RFC4145] Sections 3, 4, and 5
connection	[RFC4145] Sections 3, 4, and 5
fingerprint	[RFC8122] Section 5
rtcp-fb	[RFC4585] Section 4.2
candidate	[RFC5245] Section 15.1
remote-candidates	[RFC5245] Section 15.2
ice-lite	[RFC5245] Section 15.3
ice-ufrag	[RFC5245] Section 15.4
ice-pwd	[RFC5245] Section 15.4
ice-options	[RFC5245] Section 15.5
extmap	[RFC5285] Section 7
mid	[RFC5888] Sections 4 and 5
group	[RFC5888] Sections 4 and 5
imageattr	[RFC6236] Section 3.1
extmap (encrypt	[RFC6904] Section 4
option)	
msid	[I-D.ietf-mmusic-msid] Section 2
rid	[I-D.ietf-mmusic-rid] Section 10
simulcast	[I-D.ietf-mmusic-sdp-simulcast] Section
	6.1
tls-id	[I-D.ietf-mmusic-dtls-sdp] Section 4
 +------------------------+--+

 Table 1: SDP ABNF References

Appendix B. Change log

 Note to RFC Editor: Please remove this section before publication.

 Changes in draft-24:

 o Clarify that rounding is permitted when trying to maintain aspect
 ratio.

https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc4566#section-9
https://datatracker.ietf.org/doc/html/rfc3605#section-2.1
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc8122#section-5
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc5245#section-15.1
https://datatracker.ietf.org/doc/html/rfc5245#section-15.2
https://datatracker.ietf.org/doc/html/rfc5245#section-15.3
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.4
https://datatracker.ietf.org/doc/html/rfc5245#section-15.5
https://datatracker.ietf.org/doc/html/rfc5285#section-7
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc5888
https://datatracker.ietf.org/doc/html/rfc6236#section-3.1
https://datatracker.ietf.org/doc/html/rfc6904#section-4
https://datatracker.ietf.org/doc/html/draft-24

Uberti, et al. Expires April 13, 2018 [Page 104]

Internet-Draft JSEP October 2017

 o Update tls-id handling to match what is specified in dtls-sdp.

 Changes in draft-23:

 o Clarify rollback handling, and treat it similarly to other
 setLocal/setRemote usages.

 o Adopt a first-fit policy for handling multiple remote a=imageattr
 attributes.

 o Clarify that a session description with zero m= sections is legal.

 Changes in draft-22:

 o Clarify currentDirection versus direction.

 o Correct session-id text so that it aligns with RFC 3264.

 o Clarify that generated ICE candidate objects must have all four
 fields.

 o Make rollback work from any state besides stable and regardless of
 whether setLocalDescription or setRemoteDescription is used.

 o Allow modifying SDP before sending or after receiving either
 offers or answers (previously this was forbidden for answers).

 o Provide rationale for several design choices.

 Changes in draft-21:

 o Change dtls-id to tls-id to match MMUSIC draft.

 o Replace regular expression for proto field with a list and clarify
 that the answer must exactly match the offer.

 o Remove text about how to error check on setLocal because local
 descriptions cannot be changed.

 o Rework silence suppression support to always require that both
 sides agree to silence suppression or none is used.

 o Remove instructions to parse "a=ssrc-group".

 o Allow the addition of new codecs in answers and in subsequent
 offers.

https://datatracker.ietf.org/doc/html/draft-23
https://datatracker.ietf.org/doc/html/draft-22
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/draft-21

Uberti, et al. Expires April 13, 2018 [Page 105]

Internet-Draft JSEP October 2017

 o Clarify imageattr processing. Replace use of [x=0,y=0] with
 direction indicators.

 o Document when early media can occur.

 o Fix ICE default port handling when bundle-only is used.

 o Forbid duplicating IDENTICAL/TRANSPORT attributes when you are
 bundling.

 o Clarify the number of components to gather when bundle is
 involved.

 o Explicitly state that PTs and SSRCs are to be used for demuxing.

 o Update guidance on "a=setup" line. This should now match the
 MMUSIC draft.

 o Update guidance on certificate/digest matching to conform to
RFC8122.

 o Update examples.

 Changes in draft-20:

 o Remove Appendix-B.

 Changes in draft-19:

 o Examples are now machine-generated for correctness, and use IETF-
 approved example IP addresses.

 o Add early transport warmup example, and add missing attributes to
 existing examples.

 o Only send "a=rtcp-mux-only" and "a=bundle-only" on new m=
 sections.

 o Update references.

 o Add coverage of a=identity.

 o Explain the lipsync group algorithm more thoroughly.

 o Remove unnecessary list of MTI specs.

 o Allow codecs which weren't offered to appear in answers and which
 weren't selected to appear in subsequent offers.

https://datatracker.ietf.org/doc/html/rfc8122
https://datatracker.ietf.org/doc/html/draft-20
https://datatracker.ietf.org/doc/html/draft-19

Uberti, et al. Expires April 13, 2018 [Page 106]

Internet-Draft JSEP October 2017

 o Codec preferences now are applied on both initial and subsequent
 offers and answers.

 o Clarify a=msid handling for recvonly m= sections.

 o Clarify behavior of attributes for bundle-only data channels.

 o Allow media attributes to appear in data m= sections when all the
 media m= sections are bundle-only.

 o Use consistent terminology for JSEP implementations.

 o Describe how to handle failed API calls.

 o Some cleanup on routing rules.

 Changes in draft-18:

 o Update demux algorithm and move it to an appendix in preparation
 for merging it into BUNDLE.

 o Clarify why we can't handle an incoming offer to send simulcast.

 o Expand IceCandidate object text.

 o Further document use of ICE candidate pool.

 o Document removeTrack.

 o Update requirements to only accept the last generated offer/answer
 as an argument to setLocalDescription.

 o Allow round pixels.

 o Fix code around default timing when AVPF is not specified.

 o Clean up terminology around m= line and m=section.

 o Provide a more realistic example for minimum decoder capabilities.

 o Document behavior when rtcp-mux policy is require but rtcp-mux
 attribute not provided.

 o Expanded discussion of RtpSender and RtpReceiver.

 o Add RtpTransceiver.currentDirection and document setDirection.

https://datatracker.ietf.org/doc/html/draft-18

Uberti, et al. Expires April 13, 2018 [Page 107]

Internet-Draft JSEP October 2017

 o Require imageattr x=0, y=0 to indicate that there are no valid
 resolutions.

 o Require a privacy-preserving MID/RID construction.

 o Require support for RFC 3556 bandwidth modifiers.

 o Update maxptime description.

 o Note that endpoints may encounter extra codecs in answers and
 subsequent offers from non-JSEP peers.

 o Update references.

 Changes in draft-17:

 o Split createOffer and createAnswer sections to clearly indicate
 attributes which always appear and which only appear when not
 bundled into another m= section.

 o Add descriptions of RtpTransceiver methods.

 o Describe how to process RTCP feedback attributes.

 o Clarify transceiver directions and their interaction with 3264.

 o Describe setCodecPreferences.

 o Update RTP demux algorithm. Include RTCP.

 o Update requirements for when a=rtcp is included, limiting to cases
 where it is needed for backward compatibility.

 o Clarify SAR handling.

 o Updated addTrack matching algorithm.

 o Remove a=ssrc requirements.

 o Handle a=setup in reoffers.

 o Discuss how RTX/FEC should be handled.

 o Discuss how telephone-event should be handled.

 o Discuss how CN/DTX should be handled.

 o Add missing references to ABNF table.

https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/draft-17

Uberti, et al. Expires April 13, 2018 [Page 108]

Internet-Draft JSEP October 2017

 Changes in draft-16:

 o Update addIceCandidate to indicate ICE generation and allow per-m=
 section end-of-candidates.

 o Update fingerprint handling to use draft-ietf-mmusic-4572-update.

 o Update text around SDP processing of RTP header extensions and
 payload formats.

 o Add sections on simulcast, addTransceiver, and createDataChannel.

 o Clarify text to ensure that the session ID is a positive 63 bit
 integer.

 o Clarify SDP processing for direction indication.

 o Describe SDP processing for rtcp-mux-only.

 o Specify how SDP session version in o= line.

 o Require that when doing an re-offer, the capabilities of the new
 session are mostly required to be a subset of the previously
 negotiated session.

 o Clarified ICE restart interaction with bundle-only.

 o Remove support for changing SDP before calling
 setLocalDescription.

 o Specify algorithm for demuxing RTP based on MID, PT, and SSRC.

 o Clarify rules for rejecting m= lines when bundle policy is
 balanced or max-bundle.

 Changes in draft-15:

 o Clarify text around codecs offered in subsequent transactions to
 refer to what's been negotiated.

 o Rewrite LS handling text to indicate edge cases and that we're
 living with them.

 o Require that answerer reject m= lines when there are no codecs in
 common.

 o Enforce max-bundle on offer processing.

https://datatracker.ietf.org/doc/html/draft-16
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-4572-update
https://datatracker.ietf.org/doc/html/draft-15

Uberti, et al. Expires April 13, 2018 [Page 109]

Internet-Draft JSEP October 2017

 o Fix TIAS formula to handle bits vs. kilobits.

 o Describe addTrack algorithm.

 o Clean up references.

 Changes in draft-14:

 o Added discussion of RtpTransceivers + RtpSenders + RtpReceivers,
 and how they interact with createOffer/createAnswer.

 o Removed obsolete OfferToReceiveX options.

 o Explained how addIceCandidate can be used for end-of-candidates.

 Changes in draft-13:

 o Clarified which SDP lines can be ignored.

 o Clarified how to handle various received attributes.

 o Revised how attributes should be generated for bundled m= lines.

 o Remove unused references.

 o Remove text advocating use of unilateral PTs.

 o Trigger an ICE restart even if the ICE candidate policy is being
 made more strict.

 o Remove the 'public' ICE candidate policy.

 o Move open issues into GitHub issues.

 o Split local/remote description accessors into current/pending.

 o Clarify a=imageattr handling.

 o Add more detail on VoiceActivityDetection handling.

 o Reference draft-shieh-rtcweb-ip-handling.

 o Make it clear when an ICE restart should occur.

 o Resolve changes needed in references.

 o Remove MSID semantics.

https://datatracker.ietf.org/doc/html/draft-14
https://datatracker.ietf.org/doc/html/draft-13
https://datatracker.ietf.org/doc/html/draft-shieh-rtcweb-ip-handling

Uberti, et al. Expires April 13, 2018 [Page 110]

Internet-Draft JSEP October 2017

 o ice-options are now at session level.

 o Default RTCP mux policy is now 'require'.

 Changes in draft-12:

 o Filled in sections on applying local and remote descriptions.

 o Discussed downscaling and upscaling to fulfill imageattr
 requirements.

 o Updated what SDP can be modified by the application.

 o Updated to latest datachannel SDP.

 o Allowed multiple fingerprint lines.

 o Switched back to IPv4 for dummy candidates.

 o Added additional clarity on ICE default candidates.

 Changes in draft-11:

 o Clarified handling of RTP CNAMEs.

 o Updated what SDP lines should be processed or ignored.

 o Specified how a=imageattr should be used.

 Changes in draft-10:

 o Described video size negotiation with imageattr.

 o Clarified rejection of sections that do not have mux-only.

 o Add handling of LS groups

 Changes in draft-09:

 o Don't return null for {local,remote}Description after close().

 o Changed TCP/TLS to UDP/DTLS in RTP profile names.

 o Separate out bundle and mux policy.

 o Added specific references to FEC mechanisms.

 o Added canTrickle mechanism.

https://datatracker.ietf.org/doc/html/draft-12
https://datatracker.ietf.org/doc/html/draft-11
https://datatracker.ietf.org/doc/html/draft-10
https://datatracker.ietf.org/doc/html/draft-09

Uberti, et al. Expires April 13, 2018 [Page 111]

Internet-Draft JSEP October 2017

 o Added section on subsequent answers and, answer options.

 o Added text defining set{Local,Remote}Description behavior.

 Changes in draft-08:

 o Added new example section and removed old examples in appendix.

 o Fixed <proto> field handling.

 o Added text describing a=rtcp attribute.

 o Reworked handling of OfferToReceiveAudio and OfferToReceiveVideo
 per discussion at IETF 90.

 o Reworked trickle ICE handling and its impact on m= and c= lines
 per discussion at interim.

 o Added max-bundle-and-rtcp-mux policy.

 o Added description of maxptime handling.

 o Updated ICE candidate pool default to 0.

 o Resolved open issues around AppID/receiver-ID.

 o Reworked and expanded how changes to the ICE configuration are
 handled.

 o Some reference updates.

 o Editorial clarification.

 Changes in draft-07:

 o Expanded discussion of VAD and Opus DTX.

 o Added a security considerations section.

 o Rewrote the section on modifying SDP to require implementations to
 clearly indicate whether any given modification is allowed.

 o Clarified impact of IceRestart on CreateOffer in local-offer
 state.

 o Guidance on whether attributes should be defined at the media
 level or the session level.

https://datatracker.ietf.org/doc/html/draft-08
https://datatracker.ietf.org/doc/html/draft-07

Uberti, et al. Expires April 13, 2018 [Page 112]

Internet-Draft JSEP October 2017

 o Renamed "default" bundle policy to "balanced".

 o Removed default ICE candidate pool size and clarify how it works.

 o Defined a canonical order for assignment of MSTs to m= lines.

 o Removed discussion of rehydration.

 o Added Eric Rescorla as a draft editor.

 o Cleaned up references.

 o Editorial cleanup

 Changes in draft-06:

 o Reworked handling of m= line recycling.

 o Added handling of BUNDLE and bundle-only.

 o Clarified handling of rollback.

 o Added text describing the ICE Candidate Pool and its behavior.

 o Allowed OfferToReceiveX to create multiple recvonly m= sections.

 Changes in draft-05:

 o Fixed several issues identified in the createOffer/Answer sections
 during document review.

 o Updated references.

 Changes in draft-04:

 o Filled in sections on createOffer and createAnswer.

 o Added SDP examples.

 o Fixed references.

 Changes in draft-03:

 o Added text describing relationship to W3C specification

 Changes in draft-02:

 o Converted from nroff

https://datatracker.ietf.org/doc/html/draft-06
https://datatracker.ietf.org/doc/html/draft-05
https://datatracker.ietf.org/doc/html/draft-04
https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02

Uberti, et al. Expires April 13, 2018 [Page 113]

Internet-Draft JSEP October 2017

 o Removed comparisons to old approaches abandoned by the working
 group

 o Removed stuff that has moved to W3C specification

 o Align SDP handling with W3C draft

 o Clarified section on forking.

 Changes in draft-01:

 o Added diagrams for architecture and state machine.

 o Added sections on forking and rehydration.

 o Clarified meaning of "pranswer" and "answer".

 o Reworked how ICE restarts and media directions are controlled.

 o Added list of parameters that can be changed in a description.

 o Updated suggested API and examples to match latest thinking.

 o Suggested API and examples have been moved to an appendix.

 Changes in draft -00:

 o Migrated from draft-uberti-rtcweb-jsep-02.

Authors' Addresses

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: justin@uberti.name

 Cullen Jennings
 Cisco
 400 3rd Avenue SW
 Calgary, AB T2P 4H2
 Canada

 Email: fluffy@iii.ca

https://datatracker.ietf.org/doc/html/draft-01
https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-jsep-02

Uberti, et al. Expires April 13, 2018 [Page 114]

Internet-Draft JSEP October 2017

 Eric Rescorla (editor)
 Mozilla
 331 Evelyn Ave
 Mountain View, CA 94041
 USA

 Email: ekr@rtfm.com

Uberti, et al. Expires April 13, 2018 [Page 115]

