
RTCWEB Working Group C. Perkins
Internet-Draft University of Glasgow
Intended status: Standards Track M. Westerlund
Expires: November 30, 2015 Ericsson
 J. Ott
 Aalto University
 May 29, 2015

Web Real-Time Communication (WebRTC): Media Transport and Use of RTP
draft-ietf-rtcweb-rtp-usage-24

Abstract

 The Web Real-Time Communication (WebRTC) framework provides support
 for direct interactive rich communication using audio, video, text,
 collaboration, games, etc. between two peers' web-browsers. This
 memo describes the media transport aspects of the WebRTC framework.
 It specifies how the Real-time Transport Protocol (RTP) is used in
 the WebRTC context, and gives requirements for which RTP features,
 profiles, and extensions need to be supported.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 30, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Perkins, et al. Expires November 30, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RTP for WebRTC May 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Rationale . 4
3. Terminology . 4
4. WebRTC Use of RTP: Core Protocols 5
4.1. RTP and RTCP . 5
4.2. Choice of the RTP Profile 7
4.3. Choice of RTP Payload Formats 8
4.4. Use of RTP Sessions 9
4.5. RTP and RTCP Multiplexing 10
4.6. Reduced Size RTCP . 11
4.7. Symmetric RTP/RTCP 11
4.8. Choice of RTP Synchronisation Source (SSRC) 11
4.9. Generation of the RTCP Canonical Name (CNAME) 12
4.10. Handling of Leap Seconds 13

5. WebRTC Use of RTP: Extensions 13
5.1. Conferencing Extensions and Topologies 13
5.1.1. Full Intra Request (FIR) 15
5.1.2. Picture Loss Indication (PLI) 15
5.1.3. Slice Loss Indication (SLI) 15
5.1.4. Reference Picture Selection Indication (RPSI) 16
5.1.5. Temporal-Spatial Trade-off Request (TSTR) 16

 5.1.6. Temporary Maximum Media Stream Bit Rate Request
 (TMMBR) . 16

5.2. Header Extensions . 16
5.2.1. Rapid Synchronisation 17
5.2.2. Client-to-Mixer Audio Level 17
5.2.3. Mixer-to-Client Audio Level 18
5.2.4. Media Stream Identification 18
5.2.5. Coordination of Video Orientation 18

6. WebRTC Use of RTP: Improving Transport Robustness 18
6.1. Negative Acknowledgements and RTP Retransmission 19
6.2. Forward Error Correction (FEC) 20

7. WebRTC Use of RTP: Rate Control and Media Adaptation 20
7.1. Boundary Conditions and Circuit Breakers 21

 7.2. Congestion Control Interoperability and Legacy Systems . 21
8. WebRTC Use of RTP: Performance Monitoring 22
9. WebRTC Use of RTP: Future Extensions 22
10. Signalling Considerations 23
11. WebRTC API Considerations 24
12. RTP Implementation Considerations 27

Perkins, et al. Expires November 30, 2015 [Page 2]

Internet-Draft RTP for WebRTC May 2015

12.1. Configuration and Use of RTP Sessions 27
 12.1.1. Use of Multiple Media Sources Within an RTP Session 27

12.1.2. Use of Multiple RTP Sessions 28
12.1.3. Differentiated Treatment of RTP Packet Streams . . . 33

 12.2. Media Source, RTP Packet Streams, and Participant
 Identification . 35

12.2.1. Media Source Identification 35
12.2.2. SSRC Collision Detection 36
12.2.3. Media Synchronisation Context 37

13. Security Considerations 37
14. IANA Considerations . 39
15. Acknowledgements . 39
16. References . 39
16.1. Normative References 39
16.2. Informative References 42

 Authors' Addresses . 44

1. Introduction

 The Real-time Transport Protocol (RTP) [RFC3550] provides a framework
 for delivery of audio and video teleconferencing data and other real-
 time media applications. Previous work has defined the RTP protocol,
 along with numerous profiles, payload formats, and other extensions.
 When combined with appropriate signalling, these form the basis for
 many teleconferencing systems.

 The Web Real-Time communication (WebRTC) framework provides the
 protocol building blocks to support direct, interactive, real-time
 communication using audio, video, collaboration, games, etc., between
 two peers' web-browsers. This memo describes how the RTP framework
 is to be used in the WebRTC context. It proposes a baseline set of
 RTP features that are to be implemented by all WebRTC Endpoints,
 along with suggested extensions for enhanced functionality.

 This memo specifies a protocol intended for use within the WebRTC
 framework, but is not restricted to that context. An overview of the
 WebRTC framework is given in [I-D.ietf-rtcweb-overview].

 The structure of this memo is as follows. Section 2 outlines our
 rationale in preparing this memo and choosing these RTP features.

Section 3 defines terminology. Requirements for core RTP protocols
 are described in Section 4 and suggested RTP extensions are described
 in Section 5. Section 6 outlines mechanisms that can increase
 robustness to network problems, while Section 7 describes congestion
 control and rate adaptation mechanisms. The discussion of mandated
 RTP mechanisms concludes in Section 8 with a review of performance
 monitoring and network management tools. Section 9 gives some
 guidelines for future incorporation of other RTP and RTP Control

https://datatracker.ietf.org/doc/html/rfc3550

Perkins, et al. Expires November 30, 2015 [Page 3]

Internet-Draft RTP for WebRTC May 2015

 Protocol (RTCP) extensions into this framework. Section 10 describes
 requirements placed on the signalling channel. Section 11 discusses
 the relationship between features of the RTP framework and the WebRTC
 application programming interface (API), and Section 12 discusses RTP
 implementation considerations. The memo concludes with security
 considerations (Section 13) and IANA considerations (Section 14).

2. Rationale

 The RTP framework comprises the RTP data transfer protocol, the RTP
 control protocol, and numerous RTP payload formats, profiles, and
 extensions. This range of add-ons has allowed RTP to meet various
 needs that were not envisaged by the original protocol designers, and
 to support many new media encodings, but raises the question of what
 extensions are to be supported by new implementations. The
 development of the WebRTC framework provides an opportunity to review
 the available RTP features and extensions, and to define a common
 baseline RTP feature set for all WebRTC Endpoints. This builds on
 the past 20 years development of RTP to mandate the use of extensions
 that have shown widespread utility, while still remaining compatible
 with the wide installed base of RTP implementations where possible.

 RTP and RTCP extensions that are not discussed in this document can
 be implemented by WebRTC Endpoints if they are beneficial for new use
 cases. However, they are not necessary to address the WebRTC use
 cases and requirements identified in [RFC7478].

 While the baseline set of RTP features and extensions defined in this
 memo is targeted at the requirements of the WebRTC framework, it is
 expected to be broadly useful for other conferencing-related uses of
 RTP. In particular, it is likely that this set of RTP features and
 extensions will be appropriate for other desktop or mobile video
 conferencing systems, or for room-based high-quality telepresence
 applications.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. The RFC

2119 interpretation of these key words applies only when written in
 ALL CAPS. Lower- or mixed-case uses of these key words are not to be
 interpreted as carrying special significance in this memo.

 We define the following additional terms:

 WebRTC MediaStream: The MediaStream concept defined by the W3C in
 the WebRTC API [W3C.WD-mediacapture-streams-20130903].

https://datatracker.ietf.org/doc/html/rfc7478
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Perkins, et al. Expires November 30, 2015 [Page 4]

Internet-Draft RTP for WebRTC May 2015

 Transport-layer Flow: A uni-directional flow of transport packets
 that are identified by having a particular 5-tuple of source IP
 address, source port, destination IP address, destination port,
 and transport protocol used.

 Bi-directional Transport-layer Flow: A bi-directional transport-
 layer flow is a transport-layer flow that is symmetric. That is,
 the transport-layer flow in the reverse direction has a 5-tuple
 where the source and destination address and ports are swapped
 compared to the forward path transport-layer flow, and the
 transport protocol is the same.

 This document uses the terminology from
 [I-D.ietf-avtext-rtp-grouping-taxonomy] and
 [I-D.ietf-rtcweb-overview]. Other terms are used according to their
 definitions from the RTP Specification [RFC3550]. Especially note
 the following frequently used terms: RTP Packet Stream, RTP Session,
 and End-point.

4. WebRTC Use of RTP: Core Protocols

 The following sections describe the core features of RTP and RTCP
 that need to be implemented, along with the mandated RTP profiles.
 Also described are the core extensions providing essential features
 that all WebRTC Endpoints need to implement to function effectively
 on today's networks.

4.1. RTP and RTCP

 The Real-time Transport Protocol (RTP) [RFC3550] is REQUIRED to be
 implemented as the media transport protocol for WebRTC. RTP itself
 comprises two parts: the RTP data transfer protocol, and the RTP
 control protocol (RTCP). RTCP is a fundamental and integral part of
 RTP, and MUST be implemented and used in all WebRTC Endpoints.

 The following RTP and RTCP features are sometimes omitted in limited
 functionality implementations of RTP, but are REQUIRED in all WebRTC
 Endpoints:

 o Support for use of multiple simultaneous SSRC values in a single
 RTP session, including support for RTP end-points that send many
 SSRC values simultaneously, following [RFC3550] and
 [I-D.ietf-avtcore-rtp-multi-stream]. The RTCP optimisations for
 multi-SSRC sessions defined in
 [I-D.ietf-avtcore-rtp-multi-stream-optimisation] MAY be supported;
 if supported the usage MUST be signalled.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550

Perkins, et al. Expires November 30, 2015 [Page 5]

Internet-Draft RTP for WebRTC May 2015

 o Random choice of SSRC on joining a session; collision detection
 and resolution for SSRC values (see also Section 4.8).

 o Support for reception of RTP data packets containing CSRC lists,
 as generated by RTP mixers, and RTCP packets relating to CSRCs.

 o Sending correct synchronisation information in the RTCP Sender
 Reports, to allow receivers to implement lip-synchronisation; see

Section 5.2.1 regarding support for the rapid RTP synchronisation
 extensions.

 o Support for multiple synchronisation contexts. Participants that
 send multiple simultaneous RTP packet streams SHOULD do so as part
 of a single synchronisation context, using a single RTCP CNAME for
 all streams and allowing receivers to play the streams out in a
 synchronised manner. For compatibility with potential future
 versions of this specification, or for interoperability with non-
 WebRTC devices through a gateway, receivers MUST support multiple
 synchronisation contexts, indicated by the use of multiple RTCP
 CNAMEs in an RTP session. This specification requires the usage
 of a single CNAME when sending RTP Packet Streams in some
 circumstances, see Section 4.9.

 o Support for sending and receiving RTCP SR, RR, SDES, and BYE
 packet types, with OPTIONAL support for other RTCP packet types
 unless mandated by other parts of this specification. Note that
 additional RTCP Packet types are used by the RTP/SAVPF Profile
 (Section 4.2) and the other RTCP extensions (Section 5). WebRTC
 endpoints that implement the SDP bundle negotiation extension will
 use the SDP grouping framework 'mid' attribute to identify media
 streams. Such endpoints MUST implement the RTCP SDES MID item
 described in [I-D.ietf-mmusic-sdp-bundle-negotiation].

 o Support for multiple end-points in a single RTP session, and for
 scaling the RTCP transmission interval according to the number of
 participants in the session; support for randomised RTCP
 transmission intervals to avoid synchronisation of RTCP reports;
 support for RTCP timer reconsideration (Section 6.3.6 of
 [RFC3550]) and reverse reconsideration (Section 6.3.4 of
 [RFC3550]).

 o Support for configuring the RTCP bandwidth as a fraction of the
 media bandwidth, and for configuring the fraction of the RTCP
 bandwidth allocated to senders, e.g., using the SDP "b=" line
 [RFC4566][RFC3556].

 o Support for the reduced minimum RTCP reporting interval described
 in Section 6.2 of [RFC3550]. When using the reduced minimum RTCP

https://datatracker.ietf.org/doc/html/rfc3550#section-6.3.6
https://datatracker.ietf.org/doc/html/rfc3550#section-6.3.6
https://datatracker.ietf.org/doc/html/rfc3550#section-6.3.4
https://datatracker.ietf.org/doc/html/rfc3550#section-6.3.4
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3550#section-6.2

Perkins, et al. Expires November 30, 2015 [Page 6]

Internet-Draft RTP for WebRTC May 2015

 reporting interval, the fixed (non-reduced) minimum interval MUST
 be used when calculating the participant timeout interval (see
 Sections 6.2 and 6.3.5 of [RFC3550]). The delay before sending
 the initial compound RTCP packet can be set to zero (see

Section 6.2 of [RFC3550] as updated by
 [I-D.ietf-avtcore-rtp-multi-stream]).

 o Support for discontinuous transmission. RTP allows endpoints to
 pause and resume transmission at any time. When resuming, the RTP
 sequence number will increase by one, as usual, while the increase
 in the RTP timestamp value will depend on the duration of the
 pause. Discontinuous transmission is most commonly used with some
 audio payload formats, but is not audio specific, and can be used
 with any RTP payload format.

 o Ignore unknown RTCP packet types and RTP header extensions. This
 to ensure robust handling of future extensions, middlebox
 behaviours, etc., that can result in not signalled RTCP packet
 types or RTP header extensions being received. If a compound RTCP
 packet is received that contains a mixture of known and unknown
 RTCP packet types, the known packets types need to be processed as
 usual, with only the unknown packet types being discarded.

 It is known that a significant number of legacy RTP implementations,
 especially those targeted at VoIP-only systems, do not support all of
 the above features, and in some cases do not support RTCP at all.
 Implementers are advised to consider the requirements for graceful
 degradation when interoperating with legacy implementations.

 Other implementation considerations are discussed in Section 12.

4.2. Choice of the RTP Profile

 The complete specification of RTP for a particular application domain
 requires the choice of an RTP Profile. For WebRTC use, the Extended
 Secure RTP Profile for RTCP-Based Feedback (RTP/SAVPF) [RFC5124], as
 extended by [RFC7007], MUST be implemented. The RTP/SAVPF profile is
 the combination of basic RTP/AVP profile [RFC3551], the RTP profile
 for RTCP-based feedback (RTP/AVPF) [RFC4585], and the secure RTP
 profile (RTP/SAVP) [RFC3711].

 The RTCP-based feedback extensions [RFC4585] are needed for the
 improved RTCP timer model. This allows more flexible transmission of
 RTCP packets in response to events, rather than strictly according to
 bandwidth, and is vital for being able to report congestion signals
 as well as media events. These extensions also allow saving RTCP
 bandwidth, and an end-point will commonly only use the full RTCP
 bandwidth allocation if there are many events that require feedback.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550#section-6.2
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc7007
https://datatracker.ietf.org/doc/html/rfc3551
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc4585

Perkins, et al. Expires November 30, 2015 [Page 7]

Internet-Draft RTP for WebRTC May 2015

 The timer rules are also needed to make use of the RTP conferencing
 extensions discussed in Section 5.1.

 Note: The enhanced RTCP timer model defined in the RTP/AVPF
 profile is backwards compatible with legacy systems that implement
 only the RTP/AVP or RTP/SAVP profile, given some constraints on
 parameter configuration such as the RTCP bandwidth value and "trr-
 int" (the most important factor for interworking with RTP/(S)AVP
 end-points via a gateway is to set the trr-int parameter to a
 value representing 4 seconds, see Section 6.1 in
 [I-D.ietf-avtcore-rtp-multi-stream]).

 The secure RTP (SRTP) profile extensions [RFC3711] are needed to
 provide media encryption, integrity protection, replay protection and
 a limited form of source authentication. WebRTC Endpoints MUST NOT
 send packets using the basic RTP/AVP profile or the RTP/AVPF profile;
 they MUST employ the full RTP/SAVPF profile to protect all RTP and
 RTCP packets that are generated (i.e., implementations MUST use SRTP
 and SRTCP). The RTP/SAVPF profile MUST be configured using the
 cipher suites, DTLS-SRTP protection profiles, keying mechanisms, and
 other parameters described in [I-D.ietf-rtcweb-security-arch].

4.3. Choice of RTP Payload Formats

 Mandatory to implement audio codecs and RTP payload formats for
 WebRTC endpoints are defined in [I-D.ietf-rtcweb-audio]. Mandatory
 to implement video codecs and RTP payload formats for WebRTC
 endpoints are defined in [I-D.ietf-rtcweb-video]. WebRTC endpoints
 MAY additionally implement any other codec for which an RTP payload
 format and associated signalling has been defined.

 WebRTC Endpoints cannot assume that the other participants in an RTP
 session understand any RTP payload format, no matter how common. The
 mapping between RTP payload type numbers and specific configurations
 of particular RTP payload formats MUST be agreed before those payload
 types/formats can be used. In an SDP context, this can be done using
 the "a=rtpmap:" and "a=fmtp:" attributes associated with an "m="
 line, along with any other SDP attributes needed to configure the RTP
 payload format.

 End-points can signal support for multiple RTP payload formats, or
 multiple configurations of a single RTP payload format, as long as
 each unique RTP payload format configuration uses a different RTP
 payload type number. As outlined in Section 4.8, the RTP payload
 type number is sometimes used to associate an RTP packet stream with
 a signalling context. This association is possible provided unique
 RTP payload type numbers are used in each context. For example, an
 RTP packet stream can be associated with an SDP "m=" line by

https://datatracker.ietf.org/doc/html/rfc3711

Perkins, et al. Expires November 30, 2015 [Page 8]

Internet-Draft RTP for WebRTC May 2015

 comparing the RTP payload type numbers used by the RTP packet stream
 with payload types signalled in the "a=rtpmap:" lines in the media
 sections of the SDP. This leads to the following considerations:

 If RTP packet streams are being associated with signalling
 contexts based on the RTP payload type, then the assignment of RTP
 payload type numbers MUST be unique across signalling contexts.

 If the same RTP payload format configuration is used in multiple
 contexts, then a different RTP payload type number has to be
 assigned in each context to ensure uniqueness.

 If the RTP payload type number is not being used to associate RTP
 packet streams with a signalling context, then the same RTP
 payload type number can be used to indicate the exact same RTP
 payload format configuration in multiple contexts.

 A single RTP payload type number MUST NOT be assigned to different
 RTP payload formats, or different configurations of the same RTP
 payload format, within a single RTP session (note that the "m=" lines
 in an SDP bundle group [I-D.ietf-mmusic-sdp-bundle-negotiation] form
 a single RTP session).

 An end-point that has signalled support for multiple RTP payload
 formats MUST be able to accept data in any of those payload formats
 at any time, unless it has previously signalled limitations on its
 decoding capability. This requirement is constrained if several
 types of media (e.g., audio and video) are sent in the same RTP
 session. In such a case, a source (SSRC) is restricted to switching
 only between the RTP payload formats signalled for the type of media
 that is being sent by that source; see Section 4.4. To support rapid
 rate adaptation by changing codec, RTP does not require advance
 signalling for changes between RTP payload formats used by a single
 SSRC that were signalled during session set-up.

 If performing changes between two RTP payload types that use
 different RTP clock rates, an RTP sender MUST follow the
 recommendations in Section 4.1 of [RFC7160]. RTP receivers MUST
 follow the recommendations in Section 4.3 of [RFC7160] in order to
 support sources that switch between clock rates in an RTP session
 (these recommendations for receivers are backwards compatible with
 the case where senders use only a single clock rate).

4.4. Use of RTP Sessions

 An association amongst a set of end-points communicating using RTP is
 known as an RTP session [RFC3550]. An end-point can be involved in
 several RTP sessions at the same time. In a multimedia session, each

https://datatracker.ietf.org/doc/html/rfc7160#section-4.1
https://datatracker.ietf.org/doc/html/rfc7160#section-4.3
https://datatracker.ietf.org/doc/html/rfc3550

Perkins, et al. Expires November 30, 2015 [Page 9]

Internet-Draft RTP for WebRTC May 2015

 type of media has typically been carried in a separate RTP session
 (e.g., using one RTP session for the audio, and a separate RTP
 session using a different transport-layer flow for the video).
 WebRTC Endpoints are REQUIRED to implement support for multimedia
 sessions in this way, separating each RTP session using different
 transport-layer flows for compatibility with legacy systems (this is
 sometimes called session multiplexing).

 In modern day networks, however, with the widespread use of network
 address/port translators (NAT/NAPT) and firewalls, it is desirable to
 reduce the number of transport-layer flows used by RTP applications.
 This can be done by sending all the RTP packet streams in a single
 RTP session, which will comprise a single transport-layer flow (this
 will prevent the use of some quality-of-service mechanisms, as
 discussed in Section 12.1.3). Implementations are therefore also
 REQUIRED to support transport of all RTP packet streams, independent
 of media type, in a single RTP session using a single transport layer
 flow, according to [I-D.ietf-avtcore-multi-media-rtp-session] (this
 is sometimes called SSRC multiplexing). If multiple types of media
 are to be used in a single RTP session, all participants in that RTP
 session MUST agree to this usage. In an SDP context,
 [I-D.ietf-mmusic-sdp-bundle-negotiation] can be used to signal such a
 bundle of RTP packet streams forming a single RTP session.

 Further discussion about the suitability of different RTP session
 structures and multiplexing methods to different scenarios can be
 found in [I-D.ietf-avtcore-multiplex-guidelines].

4.5. RTP and RTCP Multiplexing

 Historically, RTP and RTCP have been run on separate transport layer
 flows (e.g., two UDP ports for each RTP session, one port for RTP and
 one port for RTCP). With the increased use of Network Address/Port
 Translation (NAT/NAPT) this has become problematic, since maintaining
 multiple NAT bindings can be costly. It also complicates firewall
 administration, since multiple ports need to be opened to allow RTP
 traffic. To reduce these costs and session set-up times,
 implementations are REQUIRED to support multiplexing RTP data packets
 and RTCP control packets on a single transport-layer flow [RFC5761].
 Such RTP and RTCP multiplexing MUST be negotiated in the signalling
 channel before it is used. If SDP is used for signalling, this
 negotiation MUST use the attributes defined in [RFC5761]. For
 backwards compatibility, implementations are also REQUIRED to support
 RTP and RTCP sent on separate transport-layer flows.

 Note that the use of RTP and RTCP multiplexed onto a single
 transport-layer flow ensures that there is occasional traffic sent on

https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5761

Perkins, et al. Expires November 30, 2015 [Page 10]

Internet-Draft RTP for WebRTC May 2015

 that port, even if there is no active media traffic. This can be
 useful to keep NAT bindings alive [RFC6263].

4.6. Reduced Size RTCP

 RTCP packets are usually sent as compound RTCP packets, and [RFC3550]
 requires that those compound packets start with an Sender Report (SR)
 or Receiver Report (RR) packet. When using frequent RTCP feedback
 messages under the RTP/AVPF Profile [RFC4585] these statistics are
 not needed in every packet, and unnecessarily increase the mean RTCP
 packet size. This can limit the frequency at which RTCP packets can
 be sent within the RTCP bandwidth share.

 To avoid this problem, [RFC5506] specifies how to reduce the mean
 RTCP message size and allow for more frequent feedback. Frequent
 feedback, in turn, is essential to make real-time applications
 quickly aware of changing network conditions, and to allow them to
 adapt their transmission and encoding behaviour. Implementations
 MUST support sending and receiving non-compound RTCP feedback packets
 [RFC5506]. Use of non-compound RTCP packets MUST be negotiated using
 the signalling channel. If SDP is used for signalling, this
 negotiation MUST use the attributes defined in [RFC5506]. For
 backwards compatibility, implementations are also REQUIRED to support
 the use of compound RTCP feedback packets if the remote end-point
 does not agree to the use of non-compound RTCP in the signalling
 exchange.

4.7. Symmetric RTP/RTCP

 To ease traversal of NAT and firewall devices, implementations are
 REQUIRED to implement and use Symmetric RTP [RFC4961]. The reason
 for using symmetric RTP is primarily to avoid issues with NATs and
 Firewalls by ensuring that the send and receive RTP packet streams,
 as well as RTCP, are actually bi-directional transport-layer flows.
 This will keep alive the NAT and firewall pinholes, and help indicate
 consent that the receive direction is a transport-layer flow the
 intended recipient actually wants. In addition, it saves resources,
 specifically ports at the end-points, but also in the network as NAT
 mappings or firewall state is not unnecessary bloated. The amount of
 per flow QoS state kept in the network is also reduced.

4.8. Choice of RTP Synchronisation Source (SSRC)

 Implementations are REQUIRED to support signalled RTP synchronisation
 source (SSRC) identifiers. If SDP is used, this MUST be done using
 the "a=ssrc:" SDP attribute defined in Section 4.1 and Section 5 of
 [RFC5576] and the "previous-ssrc" source attribute defined in

https://datatracker.ietf.org/doc/html/rfc6263
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc4961
https://datatracker.ietf.org/doc/html/rfc5576#section-5
https://datatracker.ietf.org/doc/html/rfc5576#section-5

Perkins, et al. Expires November 30, 2015 [Page 11]

Internet-Draft RTP for WebRTC May 2015

Section 6.2 of [RFC5576]; other per-SSRC attributes defined in
 [RFC5576] MAY be supported.

 While support for signalled SSRC identifiers is mandated, their use
 in an RTP session is OPTIONAL. Implementations MUST be prepared to
 accept RTP and RTCP packets using SSRCs that have not been explicitly
 signalled ahead of time. Implementations MUST support random SSRC
 assignment, and MUST support SSRC collision detection and resolution,
 according to [RFC3550]. When using signalled SSRC values, collision
 detection MUST be performed as described in Section 5 of [RFC5576].

 It is often desirable to associate an RTP packet stream with a non-
 RTP context. For users of the WebRTC API a mapping between SSRCs and
 MediaStreamTracks are provided per Section 11. For gateways or other
 usages it is possible to associate an RTP packet stream with an "m="
 line in a session description formatted using SDP. If SSRCs are
 signalled this is straightforward (in SDP the "a=ssrc:" line will be
 at the media level, allowing a direct association with an "m=" line).
 If SSRCs are not signalled, the RTP payload type numbers used in an
 RTP packet stream are often sufficient to associate that packet
 stream with a signalling context (e.g., if RTP payload type numbers
 are assigned as described in Section 4.3 of this memo, the RTP
 payload types used by an RTP packet stream can be compared with
 values in SDP "a=rtpmap:" lines, which are at the media level in SDP,
 and so map to an "m=" line).

4.9. Generation of the RTCP Canonical Name (CNAME)

 The RTCP Canonical Name (CNAME) provides a persistent transport-level
 identifier for an RTP end-point. While the Synchronisation Source
 (SSRC) identifier for an RTP end-point can change if a collision is
 detected, or when the RTP application is restarted, its RTCP CNAME is
 meant to stay unchanged for the duration of a RTCPeerConnection
 [W3C.WD-webrtc-20130910], so that RTP end-points can be uniquely
 identified and associated with their RTP packet streams within a set
 of related RTP sessions.

 Each RTP end-point MUST have at least one RTCP CNAME, and that RTCP
 CNAME MUST be unique within the RTCPeerConnection. RTCP CNAMEs
 identify a particular synchronisation context, i.e., all SSRCs
 associated with a single RTCP CNAME share a common reference clock.
 If an end-point has SSRCs that are associated with several
 unsynchronised reference clocks, and hence different synchronisation
 contexts, it will need to use multiple RTCP CNAMEs, one for each
 synchronisation context.

 Taking the discussion in Section 11 into account, a WebRTC Endpoint
 MUST NOT use more than one RTCP CNAME in the RTP sessions belonging

https://datatracker.ietf.org/doc/html/rfc5576#section-6.2
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc5576#section-5

Perkins, et al. Expires November 30, 2015 [Page 12]

Internet-Draft RTP for WebRTC May 2015

 to single RTCPeerConnection (that is, an RTCPeerConnection forms a
 synchronisation context). RTP middleboxes MAY generate RTP packet
 streams associated with more than one RTCP CNAME, to allow them to
 avoid having to resynchronize media from multiple different end-
 points part of a multi-party RTP session.

 The RTP specification [RFC3550] includes guidelines for choosing a
 unique RTP CNAME, but these are not sufficient in the presence of NAT
 devices. In addition, long-term persistent identifiers can be
 problematic from a privacy viewpoint (Section 13). Accordingly, a
 WebRTC Endpoint MUST generate a new, unique, short-term persistent
 RTCP CNAME for each RTCPeerConnection, following [RFC7022], with a
 single exception; if explicitly requested at creation an
 RTCPeerConnection MAY use the same CNAME as as an existing
 RTCPeerConnection within their common same-origin context.

 An WebRTC Endpoint MUST support reception of any CNAME that matches
 the syntax limitations specified by the RTP specification [RFC3550]
 and cannot assume that any CNAME will be chosen according to the form
 suggested above.

4.10. Handling of Leap Seconds

 The guidelines regarding handling of leap seconds to limit their
 impact on RTP media play-out and synchronization given in [RFC7164]
 SHOULD be followed.

5. WebRTC Use of RTP: Extensions

 There are a number of RTP extensions that are either needed to obtain
 full functionality, or extremely useful to improve on the baseline
 performance, in the WebRTC context. One set of these extensions is
 related to conferencing, while others are more generic in nature.
 The following subsections describe the various RTP extensions
 mandated or suggested for use within WebRTC.

5.1. Conferencing Extensions and Topologies

 RTP is a protocol that inherently supports group communication.
 Groups can be implemented by having each endpoint send its RTP packet
 streams to an RTP middlebox that redistributes the traffic, by using
 a mesh of unicast RTP packet streams between endpoints, or by using
 an IP multicast group to distribute the RTP packet streams. These
 topologies can be implemented in a number of ways as discussed in
 [I-D.ietf-avtcore-rtp-topologies-update].

 While the use of IP multicast groups is popular in IPTV systems, the
 topologies based on RTP middleboxes are dominant in interactive video

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc7022
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc7164

Perkins, et al. Expires November 30, 2015 [Page 13]

Internet-Draft RTP for WebRTC May 2015

 conferencing environments. Topologies based on a mesh of unicast
 transport-layer flows to create a common RTP session have not seen
 widespread deployment to date. Accordingly, WebRTC Endpoints are not
 expected to support topologies based on IP multicast groups or to
 support mesh-based topologies, such as a point-to-multipoint mesh
 configured as a single RTP session (Topo-Mesh in the terminology of
 [I-D.ietf-avtcore-rtp-topologies-update]). However, a point-to-
 multipoint mesh constructed using several RTP sessions, implemented
 in WebRTC using independent RTCPeerConnections
 [W3C.WD-webrtc-20130910], can be expected to be used in WebRTC, and
 needs to be supported.

 WebRTC Endpoints implemented according to this memo are expected to
 support all the topologies described in
 [I-D.ietf-avtcore-rtp-topologies-update] where the RTP endpoints send
 and receive unicast RTP packet streams to and from some peer device,
 provided that peer can participate in performing congestion control
 on the RTP packet streams. The peer device could be another RTP
 endpoint, or it could be an RTP middlebox that redistributes the RTP
 packet streams to other RTP endpoints. This limitation means that
 some of the RTP middlebox-based topologies are not suitable for use
 in WebRTC. Specifically:

 o Video switching MCUs (Topo-Video-switch-MCU) SHOULD NOT be used,
 since they make the use of RTCP for congestion control and quality
 of service reports problematic (see Section 3.8 of
 [I-D.ietf-avtcore-rtp-topologies-update]).

 o The Relay-Transport Translator (Topo-PtM-Trn-Translator) topology
 SHOULD NOT be used because its safe use requires a congestion
 control algorithm or RTP circuit breaker that handles point to
 multipoint, which has not yet been standardised.

 The following topology can be used, however it has some issues worth
 noting:

 o Content modifying MCUs with RTCP termination (Topo-RTCP-
 terminating-MCU) MAY be used. Note that in this RTP Topology, RTP
 loop detection and identification of active senders is the
 responsibility of the WebRTC application; since the clients are
 isolated from each other at the RTP layer, RTP cannot assist with
 these functions (see section 3.9 of
 [I-D.ietf-avtcore-rtp-topologies-update]).

 The RTP extensions described in Section 5.1.1 to Section 5.1.6 are
 designed to be used with centralised conferencing, where an RTP
 middlebox (e.g., a conference bridge) receives a participant's RTP
 packet streams and distributes them to the other participants. These

Perkins, et al. Expires November 30, 2015 [Page 14]

Internet-Draft RTP for WebRTC May 2015

 extensions are not necessary for interoperability; an RTP end-point
 that does not implement these extensions will work correctly, but
 might offer poor performance. Support for the listed extensions will
 greatly improve the quality of experience and, to provide a
 reasonable baseline quality, some of these extensions are mandatory
 to be supported by WebRTC Endpoints.

 The RTCP conferencing extensions are defined in Extended RTP Profile
 for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/
 AVPF) [RFC4585] and the memo on Codec Control Messages (CCM) in RTP/
 AVPF [RFC5104]; they are fully usable by the Secure variant of this
 profile (RTP/SAVPF) [RFC5124].

5.1.1. Full Intra Request (FIR)

 The Full Intra Request message is defined in Sections 3.5.1 and 4.3.1
 of the Codec Control Messages [RFC5104]. It is used to make the
 mixer request a new Intra picture from a participant in the session.
 This is used when switching between sources to ensure that the
 receivers can decode the video or other predictive media encoding
 with long prediction chains. WebRTC Endpoints that are sending media
 MUST understand and react to FIR feedback messages they receive,
 since this greatly improves the user experience when using
 centralised mixer-based conferencing. Support for sending FIR
 messages is OPTIONAL.

5.1.2. Picture Loss Indication (PLI)

 The Picture Loss Indication message is defined in Section 6.3.1 of
 the RTP/AVPF profile [RFC4585]. It is used by a receiver to tell the
 sending encoder that it lost the decoder context and would like to
 have it repaired somehow. This is semantically different from the
 Full Intra Request above as there could be multiple ways to fulfil
 the request. WebRTC Endpoints that are sending media MUST understand
 and react to PLI feedback messages as a loss tolerance mechanism.
 Receivers MAY send PLI messages.

5.1.3. Slice Loss Indication (SLI)

 The Slice Loss Indication message is defined in Section 6.3.2 of the
 RTP/AVPF profile [RFC4585]. It is used by a receiver to tell the
 encoder that it has detected the loss or corruption of one or more
 consecutive macro blocks, and would like to have these repaired
 somehow. It is RECOMMENDED that receivers generate SLI feedback
 messages if slices are lost when using a codec that supports the
 concept of macro blocks. A sender that receives an SLI feedback
 message SHOULD attempt to repair the lost slice(s).

https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4585

Perkins, et al. Expires November 30, 2015 [Page 15]

Internet-Draft RTP for WebRTC May 2015

5.1.4. Reference Picture Selection Indication (RPSI)

 Reference Picture Selection Indication (RPSI) messages are defined in
Section 6.3.3 of the RTP/AVPF profile [RFC4585]. Some video encoding

 standards allow the use of older reference pictures than the most
 recent one for predictive coding. If such a codec is in use, and if
 the encoder has learnt that encoder-decoder synchronisation has been
 lost, then a known as correct reference picture can be used as a base
 for future coding. The RPSI message allows this to be signalled.
 Receivers that detect that encoder-decoder synchronisation has been
 lost SHOULD generate an RPSI feedback message if codec being used
 supports reference picture selection. A RTP packet stream sender
 that receives such an RPSI message SHOULD act on that messages to
 change the reference picture, if it is possible to do so within the
 available bandwidth constraints, and with the codec being used.

5.1.5. Temporal-Spatial Trade-off Request (TSTR)

 The temporal-spatial trade-off request and notification are defined
 in Sections 3.5.2 and 4.3.2 of [RFC5104]. This request can be used
 to ask the video encoder to change the trade-off it makes between
 temporal and spatial resolution, for example to prefer high spatial
 image quality but low frame rate. Support for TSTR requests and
 notifications is OPTIONAL.

5.1.6. Temporary Maximum Media Stream Bit Rate Request (TMMBR)

 The TMMBR feedback message is defined in Sections 3.5.4 and 4.2.1 of
 the Codec Control Messages [RFC5104]. This request and its
 notification message are used by a media receiver to inform the
 sending party that there is a current limitation on the amount of
 bandwidth available to this receiver. There can be various reasons
 for this: for example, an RTP mixer can use this message to limit the
 media rate of the sender being forwarded by the mixer (without doing
 media transcoding) to fit the bottlenecks existing towards the other
 session participants. WebRTC Endpoints that are sending media are
 REQUIRED to implement support for TMMBR messages, and MUST follow
 bandwidth limitations set by a TMMBR message received for their SSRC.
 The sending of TMMBR requests is OPTIONAL.

5.2. Header Extensions

 The RTP specification [RFC3550] provides the capability to include
 RTP header extensions containing in-band data, but the format and
 semantics of the extensions are poorly specified. The use of header
 extensions is OPTIONAL in WebRTC, but if they are used, they MUST be
 formatted and signalled following the general mechanism for RTP

https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc3550

Perkins, et al. Expires November 30, 2015 [Page 16]

Internet-Draft RTP for WebRTC May 2015

 header extensions defined in [RFC5285], since this gives well-defined
 semantics to RTP header extensions.

 As noted in [RFC5285], the requirement from the RTP specification
 that header extensions are "designed so that the header extension may
 be ignored" [RFC3550] stands. To be specific, header extensions MUST
 only be used for data that can safely be ignored by the recipient
 without affecting interoperability, and MUST NOT be used when the
 presence of the extension has changed the form or nature of the rest
 of the packet in a way that is not compatible with the way the stream
 is signalled (e.g., as defined by the payload type). Valid examples
 of RTP header extensions might include metadata that is additional to
 the usual RTP information, but that can safely be ignored without
 compromising interoperability.

5.2.1. Rapid Synchronisation

 Many RTP sessions require synchronisation between audio, video, and
 other content. This synchronisation is performed by receivers, using
 information contained in RTCP SR packets, as described in the RTP
 specification [RFC3550]. This basic mechanism can be slow, however,
 so it is RECOMMENDED that the rapid RTP synchronisation extensions
 described in [RFC6051] be implemented in addition to RTCP SR-based
 synchronisation.

 This header extension uses the [RFC5285] generic header extension
 framework, and so needs to be negotiated before it can be used.

5.2.2. Client-to-Mixer Audio Level

 The Client to Mixer Audio Level extension [RFC6464] is an RTP header
 extension used by an endpoint to inform a mixer about the level of
 audio activity in the packet to which the header is attached. This
 enables an RTP middlebox to make mixing or selection decisions
 without decoding or detailed inspection of the payload, reducing the
 complexity in some types of mixers. It can also save decoding
 resources in receivers, which can choose to decode only the most
 relevant RTP packet streams based on audio activity levels.

 The Client-to-Mixer Audio Level [RFC6464] header extension MUST be
 implemented. It is REQUIRED that implementations are capable of
 encrypting the header extension according to [RFC6904] since the
 information contained in these header extensions can be considered
 sensitive. The use of this encryption is RECOMMENDED, however usage
 of the encryption can be explicitly disabled through API or
 signalling.

https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc6051
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc6464
https://datatracker.ietf.org/doc/html/rfc6464
https://datatracker.ietf.org/doc/html/rfc6904

Perkins, et al. Expires November 30, 2015 [Page 17]

Internet-Draft RTP for WebRTC May 2015

 This header extension uses the [RFC5285] generic header extension
 framework, and so needs to be negotiated before it can be used.

5.2.3. Mixer-to-Client Audio Level

 The Mixer to Client Audio Level header extension [RFC6465] provides
 an endpoint with the audio level of the different sources mixed into
 a common source stream by a RTP mixer. This enables a user interface
 to indicate the relative activity level of each session participant,
 rather than just being included or not based on the CSRC field. This
 is a pure optimisation of non critical functions, and is hence
 OPTIONAL to implement. If this header extension is implemented, it
 is REQUIRED that implementations are capable of encrypting the header
 extension according to [RFC6904] since the information contained in
 these header extensions can be considered sensitive. It is further
 RECOMMENDED that this encryption is used, unless the encryption has
 been explicitly disabled through API or signalling.

 This header extension uses the [RFC5285] generic header extension
 framework, and so needs to be negotiated before it can be used.

5.2.4. Media Stream Identification

 WebRTC endpoints that implement the SDP bundle negotiation extension
 will use the SDP grouping framework 'mid' attribute to identify media
 streams. Such endpoints MUST implement the RTP MID header extension
 described in [I-D.ietf-mmusic-sdp-bundle-negotiation].

 This header extension uses the [RFC5285] generic header extension
 framework, and so needs to be negotiated before it can be used.

5.2.5. Coordination of Video Orientation

 WebRTC endpoints that send or receive video MUST implement the
 coordination of video orientation (CVO) RTP header extension as
 described in Section 4 of [I-D.ietf-rtcweb-video].

 This header extension uses the [RFC5285] generic header extension
 framework, and so needs to be negotiated before it can be used.

6. WebRTC Use of RTP: Improving Transport Robustness

 There are tools that can make RTP packet streams robust against
 packet loss and reduce the impact of loss on media quality. However,
 they generally add some overhead compared to a non-robust stream.
 The overhead needs to be considered, and the aggregate bit-rate MUST
 be rate controlled to avoid causing network congestion (see

Section 7). As a result, improving robustness might require a lower

https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc6465
https://datatracker.ietf.org/doc/html/rfc6904
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc5285

Perkins, et al. Expires November 30, 2015 [Page 18]

Internet-Draft RTP for WebRTC May 2015

 base encoding quality, but has the potential to deliver that quality
 with fewer errors. The mechanisms described in the following sub-
 sections can be used to improve tolerance to packet loss.

6.1. Negative Acknowledgements and RTP Retransmission

 As a consequence of supporting the RTP/SAVPF profile, implementations
 can send negative acknowledgements (NACKs) for RTP data packets
 [RFC4585]. This feedback can be used to inform a sender of the loss
 of particular RTP packets, subject to the capacity limitations of the
 RTCP feedback channel. A sender can use this information to optimise
 the user experience by adapting the media encoding to compensate for
 known lost packets.

 RTP packet stream senders are REQUIRED to understand the Generic NACK
 message defined in Section 6.2.1 of [RFC4585], but MAY choose to
 ignore some or all of this feedback (following Section 4.2 of
 [RFC4585]). Receivers MAY send NACKs for missing RTP packets.
 Guidelines on when to send NACKs are provided in [RFC4585]. It is
 not expected that a receiver will send a NACK for every lost RTP
 packet, rather it needs to consider the cost of sending NACK
 feedback, and the importance of the lost packet, to make an informed
 decision on whether it is worth telling the sender about a packet
 loss event.

 The RTP Retransmission Payload Format [RFC4588] offers the ability to
 retransmit lost packets based on NACK feedback. Retransmission needs
 to be used with care in interactive real-time applications to ensure
 that the retransmitted packet arrives in time to be useful, but can
 be effective in environments with relatively low network RTT (an RTP
 sender can estimate the RTT to the receivers using the information in
 RTCP SR and RR packets, as described at the end of Section 6.4.1 of
 [RFC3550]). The use of retransmissions can also increase the forward
 RTP bandwidth, and can potentially caused increased packet loss if
 the original packet loss was caused by network congestion. Note,
 however, that retransmission of an important lost packet to repair
 decoder state can have lower cost than sending a full intra frame.
 It is not appropriate to blindly retransmit RTP packets in response
 to a NACK. The importance of lost packets and the likelihood of them
 arriving in time to be useful needs to be considered before RTP
 retransmission is used.

 Receivers are REQUIRED to implement support for RTP retransmission
 packets [RFC4588] sent using SSRC multiplexing, and MAY also support
 RTP retransmission packets sent using session multiplexing. Senders
 MAY send RTP retransmission packets in response to NACKs if support
 for the RTP retransmission payload format has been negotiated, and if
 the sender believes it is useful to send a retransmission of the

https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4585#section-6.2.1
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc4585#section-4.2
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/rfc3550#section-6.4.1
https://datatracker.ietf.org/doc/html/rfc3550#section-6.4.1
https://datatracker.ietf.org/doc/html/rfc4588

Perkins, et al. Expires November 30, 2015 [Page 19]

Internet-Draft RTP for WebRTC May 2015

 packet(s) referenced in the NACK. Senders do not need to retransmit
 every NACKed packet.

6.2. Forward Error Correction (FEC)

 The use of Forward Error Correction (FEC) can provide an effective
 protection against some degree of packet loss, at the cost of steady
 bandwidth overhead. There are several FEC schemes that are defined
 for use with RTP. Some of these schemes are specific to a particular
 RTP payload format, others operate across RTP packets and can be used
 with any payload format. It needs to be noted that using redundant
 encoding or FEC will lead to increased play out delay, which needs to
 be considered when choosing FEC schemes and their parameters.

 WebRTC endpoints MUST follow the recommendations for FEC use given in
 [I-D.ietf-rtcweb-fec]. WebRTC endpoints MAY support other types of
 FEC, but these MUST be negotiated before they are used.

7. WebRTC Use of RTP: Rate Control and Media Adaptation

 WebRTC will be used in heterogeneous network environments using a
 variety set of link technologies, including both wired and wireless
 links, to interconnect potentially large groups of users around the
 world. As a result, the network paths between users can have widely
 varying one-way delays, available bit-rates, load levels, and traffic
 mixtures. Individual end-points can send one or more RTP packet
 streams to each participant, and there can be several participants.
 Each of these RTP packet streams can contain different types of
 media, and the type of media, bit rate, and number of RTP packet
 streams as well as transport-layer flows can be highly asymmetric.
 Non-RTP traffic can share the network paths with RTP transport-layer
 flows. Since the network environment is not predictable or stable,
 WebRTC Endpoints MUST ensure that the RTP traffic they generate can
 adapt to match changes in the available network capacity.

 The quality of experience for users of WebRTC is very dependent on
 effective adaptation of the media to the limitations of the network.
 End-points have to be designed so they do not transmit significantly
 more data than the network path can support, except for very short
 time periods, otherwise high levels of network packet loss or delay
 spikes will occur, causing media quality degradation. The limiting
 factor on the capacity of the network path might be the link
 bandwidth, or it might be competition with other traffic on the link
 (this can be non-WebRTC traffic, traffic due to other WebRTC flows,
 or even competition with other WebRTC flows in the same session).

 An effective media congestion control algorithm is therefore an
 essential part of the WebRTC framework. However, at the time of this

Perkins, et al. Expires November 30, 2015 [Page 20]

Internet-Draft RTP for WebRTC May 2015

 writing, there is no standard congestion control algorithm that can
 be used for interactive media applications such as WebRTC's flows.
 Some requirements for congestion control algorithms for
 RTCPeerConnections are discussed in [I-D.ietf-rmcat-cc-requirements].
 If a standardized congestion control algorithm that satisfies these
 requirements is developed in the future, this memo will need to be be
 updated to mandate its use.

7.1. Boundary Conditions and Circuit Breakers

 WebRTC Endpoints MUST implement the RTP circuit breaker algorithm
 that is described in [I-D.ietf-avtcore-rtp-circuit-breakers]. The
 RTP circuit breaker is designed to enable applications to recognise
 and react to situations of extreme network congestion. However,
 since the RTP circuit breaker might not be triggered until congestion
 becomes extreme, it cannot be considered a substitute for congestion
 control, and applications MUST also implement congestion control to
 allow them to adapt to changes in network capacity. Any future RTP
 congestion control algorithms are expected to operate within the
 envelope allowed by the circuit breaker.

 The session establishment signalling will also necessarily establish
 boundaries to which the media bit-rate will conform. The choice of
 media codecs provides upper- and lower-bounds on the supported bit-
 rates that the application can utilise to provide useful quality, and
 the packetisation choices that exist. In addition, the signalling
 channel can establish maximum media bit-rate boundaries using, for
 example, the SDP "b=AS:" or "b=CT:" lines and the RTP/AVPF Temporary
 Maximum Media Stream Bit Rate (TMMBR) Requests (see Section 5.1.6 of
 this memo). Signalled bandwidth limitations, such as SDP "b=AS:" or
 "b=CT:" lines received from the peer, MUST be followed when sending
 RTP packet streams. A WebRTC Endpoint receiving media SHOULD signal
 its bandwidth limitations. These limitations have to be based on
 known bandwidth limitations, for example the capacity of the edge
 links.

7.2. Congestion Control Interoperability and Legacy Systems

 All endpoints that wish to interwork with WebRTC MUST implement RTCP
 and provide congestion feedback via the defined RTCP reporting
 mechanisms.

 When interworking with legacy implementations that support RTCP using
 the RTP/AVP profile [RFC3551], congestion feedback is provided in
 RTCP RR packets every few seconds. Implementations that have to
 interwork with such end-points MUST ensure that they keep within the
 RTP circuit breaker [I-D.ietf-avtcore-rtp-circuit-breakers]
 constraints to limit the congestion they can cause.

https://datatracker.ietf.org/doc/html/rfc3551

Perkins, et al. Expires November 30, 2015 [Page 21]

Internet-Draft RTP for WebRTC May 2015

 If a legacy end-point supports RTP/AVPF, this enables negotiation of
 important parameters for frequent reporting, such as the "trr-int"
 parameter, and the possibility that the end-point supports some
 useful feedback format for congestion control purpose such as TMMBR
 [RFC5104]. Implementations that have to interwork with such end-
 points MUST ensure that they stay within the RTP circuit breaker
 [I-D.ietf-avtcore-rtp-circuit-breakers] constraints to limit the
 congestion they can cause, but might find that they can achieve
 better congestion response depending on the amount of feedback that
 is available.

 With proprietary congestion control algorithms issues can arise when
 different algorithms and implementations interact in a communication
 session. If the different implementations have made different
 choices in regards to the type of adaptation, for example one sender
 based, and one receiver based, then one could end up in situation
 where one direction is dual controlled, when the other direction is
 not controlled. This memo cannot mandate behaviour for proprietary
 congestion control algorithms, but implementations that use such
 algorithms ought to be aware of this issue, and try to ensure that
 effective congestion control is negotiated for media flowing in both
 directions. If the IETF were to standardise both sender- and
 receiver-based congestion control algorithms for WebRTC traffic in
 the future, the issues of interoperability, control, and ensuring
 that both directions of media flow are congestion controlled would
 also need to be considered.

8. WebRTC Use of RTP: Performance Monitoring

 As described in Section 4.1, implementations are REQUIRED to generate
 RTCP Sender Report (SR) and Reception Report (RR) packets relating to
 the RTP packet streams they send and receive. These RTCP reports can
 be used for performance monitoring purposes, since they include basic
 packet loss and jitter statistics.

 A large number of additional performance metrics are supported by the
 RTCP Extended Reports (XR) framework [RFC3611][RFC6792]. At the time
 of this writing, it is not clear what extended metrics are suitable
 for use in WebRTC, so there is no requirement that implementations
 generate RTCP XR packets. However, implementations that can use
 detailed performance monitoring data MAY generate RTCP XR packets as
 appropriate; the use of such packets SHOULD be signalled in advance.

9. WebRTC Use of RTP: Future Extensions

 It is possible that the core set of RTP protocols and RTP extensions
 specified in this memo will prove insufficient for the future needs
 of WebRTC. In this case, future updates to this memo MUST be made

https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc3611

Perkins, et al. Expires November 30, 2015 [Page 22]

Internet-Draft RTP for WebRTC May 2015

 following the Guidelines for Writers of RTP Payload Format
 Specifications [RFC2736], How to Write an RTP Payload Format
 [I-D.ietf-payload-rtp-howto] and Guidelines for Extending the RTP
 Control Protocol [RFC5968], and SHOULD take into account any future
 guidelines for extending RTP and related protocols that have been
 developed.

 Authors of future extensions are urged to consider the wide range of
 environments in which RTP is used when recommending extensions, since
 extensions that are applicable in some scenarios can be problematic
 in others. Where possible, the WebRTC framework will adopt RTP
 extensions that are of general utility, to enable easy implementation
 of a gateway to other applications using RTP, rather than adopt
 mechanisms that are narrowly targeted at specific WebRTC use cases.

10. Signalling Considerations

 RTP is built with the assumption that an external signalling channel
 exists, and can be used to configure RTP sessions and their features.
 The basic configuration of an RTP session consists of the following
 parameters:

 RTP Profile: The name of the RTP profile to be used in session. The
 RTP/AVP [RFC3551] and RTP/AVPF [RFC4585] profiles can interoperate
 on basic level, as can their secure variants RTP/SAVP [RFC3711]
 and RTP/SAVPF [RFC5124]. The secure variants of the profiles do
 not directly interoperate with the non-secure variants, due to the
 presence of additional header fields for authentication in SRTP
 packets and cryptographic transformation of the payload. WebRTC
 requires the use of the RTP/SAVPF profile, and this MUST be
 signalled. Interworking functions might transform this into the
 RTP/SAVP profile for a legacy use case, by indicating to the
 WebRTC Endpoint that the RTP/SAVPF is used and configuring a trr-
 int value of 4 seconds.

 Transport Information: Source and destination IP address(s) and
 ports for RTP and RTCP MUST be signalled for each RTP session. In
 WebRTC these transport addresses will be provided by ICE [RFC5245]
 that signals candidates and arrives at nominated candidate address
 pairs. If RTP and RTCP multiplexing [RFC5761] is to be used, such
 that a single port, i.e. transport-layer flow, is used for RTP and
 RTCP flows, this MUST be signalled (see Section 4.5).

 RTP Payload Types, media formats, and format parameters: The mapping
 between media type names (and hence the RTP payload formats to be
 used), and the RTP payload type numbers MUST be signalled. Each
 media type MAY also have a number of media type parameters that
 MUST also be signalled to configure the codec and RTP payload

https://datatracker.ietf.org/doc/html/rfc2736
https://datatracker.ietf.org/doc/html/rfc5968
https://datatracker.ietf.org/doc/html/rfc3551
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5761

Perkins, et al. Expires November 30, 2015 [Page 23]

Internet-Draft RTP for WebRTC May 2015

 format (the "a=fmtp:" line from SDP). Section 4.3 of this memo
 discusses requirements for uniqueness of payload types.

 RTP Extensions: The use of any additional RTP header extensions and
 RTCP packet types, including any necessary parameters, MUST be
 signalled. This signalling is to ensure that a WebRTC Endpoint's
 behaviour, especially when sending, of any extensions is
 predictable and consistent. For robustness, and for compatibility
 with non-WebRTC systems that might be connected to a WebRTC
 session via a gateway, implementations are REQUIRED to ignore
 unknown RTCP packets and RTP header extensions (see also

Section 4.1).

 RTCP Bandwidth: Support for exchanging RTCP Bandwidth values to the
 end-points will be necessary. This SHALL be done as described in
 "Session Description Protocol (SDP) Bandwidth Modifiers for RTP
 Control Protocol (RTCP) Bandwidth" [RFC3556] if using SDP, or
 something semantically equivalent. This also ensures that the
 end-points have a common view of the RTCP bandwidth. A common
 RTCP bandwidth is important as a too different view of the
 bandwidths can lead to failure to interoperate.

 These parameters are often expressed in SDP messages conveyed within
 an offer/answer exchange. RTP does not depend on SDP or on the
 offer/answer model, but does require all the necessary parameters to
 be agreed upon, and provided to the RTP implementation. Note that in
 WebRTC it will depend on the signalling model and API how these
 parameters need to be configured but they will be need to either be
 set in the API or explicitly signalled between the peers.

11. WebRTC API Considerations

 The WebRTC API [W3C.WD-webrtc-20130910] and the Media Capture and
 Streams API [W3C.WD-mediacapture-streams-20130903] defines and uses
 the concept of a MediaStream that consists of zero or more
 MediaStreamTracks. A MediaStreamTrack is an individual stream of
 media from any type of media source like a microphone or a camera,
 but also conceptual sources, like a audio mix or a video composition,
 are possible. The MediaStreamTracks within a MediaStream need to be
 possible to play out synchronised.

 A MediaStreamTrack's realisation in RTP in the context of an
 RTCPeerConnection consists of a source packet stream identified with
 an SSRC within an RTP session part of the RTCPeerConnection. The
 MediaStreamTrack can also result in additional packet streams, and
 thus SSRCs, in the same RTP session. These can be dependent packet
 streams from scalable encoding of the source stream associated with
 the MediaStreamTrack, if such a media encoder is used. They can also

https://datatracker.ietf.org/doc/html/rfc3556

Perkins, et al. Expires November 30, 2015 [Page 24]

Internet-Draft RTP for WebRTC May 2015

 be redundancy packet streams, these are created when applying Forward
 Error Correction (Section 6.2) or RTP retransmission (Section 6.1) to
 the source packet stream.

 It is important to note that the same media source can be feeding
 multiple MediaStreamTracks. As different sets of constraints or
 other parameters can be applied to the MediaStreamTrack, each
 MediaStreamTrack instance added to a RTCPeerConnection SHALL result
 in an independent source packet stream, with its own set of
 associated packet streams, and thus different SSRC(s). It will
 depend on applied constraints and parameters if the source stream and
 the encoding configuration will be identical between different
 MediaStreamTracks sharing the same media source. If the encoding
 parameters and constraints are the same, an implementation could
 choose to use only one encoded stream to create the different RTP
 packet streams. Note that such optimisations would need to take into
 account that the constraints for one of the MediaStreamTracks can at
 any moment change, meaning that the encoding configurations might no
 longer be identical and two different encoder instances would then be
 needed.

 The same MediaStreamTrack can also be included in multiple
 MediaStreams, thus multiple sets of MediaStreams can implicitly need
 to use the same synchronisation base. To ensure that this works in
 all cases, and does not force an end-point to to disrupt the media by
 changing synchronisation base and CNAME during delivery of any
 ongoing packet streams, all MediaStreamTracks and their associated
 SSRCs originating from the same end-point need to be sent using the
 same CNAME within one RTCPeerConnection. This is motivating the
 discussion in Section 4.9 to only use a single CNAME.

 The requirement on using the same CNAME for all SSRCs that
 originate from the same end-point, does not require a middlebox
 that forwards traffic from multiple end-points to only use a
 single CNAME.

 Different CNAMEs normally need to be used for different
 RTCPeerConnection instances, as specified in Section 4.9. Having two
 communication sessions with the same CNAME could enable tracking of a
 user or device across different services (see Section 4.4.1 of
 [I-D.ietf-rtcweb-security] for details). A web application can
 request that the CNAMEs used in different RTCPeerConnections (within
 a same-orign context) be the same, this allows for synchronization of
 the endpoint's RTP packet streams across the different
 RTCPeerConnections.

Perkins, et al. Expires November 30, 2015 [Page 25]

Internet-Draft RTP for WebRTC May 2015

 Note: this doesn't result in a tracking issue, since the creation
 of matching CNAMEs depends on existing tracking within a single
 origin.

 The above will currently force a WebRTC Endpoint that receives a
 MediaStreamTrack on one RTCPeerConnection and adds it as an outgoing
 on any RTCPeerConnection to perform resynchronisation of the stream.
 Since the sending party needs to change the CNAME to the one it uses,
 this implies it has to use a local system clock as timebase for the
 synchronisation. Thus, the relative relation between the timebase of
 the incoming stream and the system sending out needs to be defined.
 This relation also needs monitoring for clock drift and likely
 adjustments of the synchronisation. The sending entity is also
 responsible for congestion control for its sent streams. In cases of
 packet loss the loss of incoming data also needs to be handled. This
 leads to the observation that the method that is least likely to
 cause issues or interruptions in the outgoing source packet stream is
 a model of full decoding, including repair etc., followed by encoding
 of the media again into the outgoing packet stream. Optimisations of
 this method is clearly possible and implementation specific.

 A WebRTC Endpoint MUST support receiving multiple MediaStreamTracks,
 where each of different MediaStreamTracks (and their sets of
 associated packet streams) uses different CNAMEs. However,
 MediaStreamTracks that are received with different CNAMEs have no
 defined synchronisation.

 Note: The motivation for supporting reception of multiple CNAMEs
 is to allow for forward compatibility with any future changes that
 enable more efficient stream handling when end-points relay/
 forward streams. It also ensures that end-points can interoperate
 with certain types of multi-stream middleboxes or end-points that
 are not WebRTC.

 The binding between the WebRTC MediaStreams, MediaStreamTracks and
 the SSRC is done as specified in "Cross Session Stream Identification
 in the Session Description Protocol" [I-D.ietf-mmusic-msid]. This
 document [I-D.ietf-mmusic-msid] also defines, in section 4.1, how to
 map unknown source packet stream SSRCs to MediaStreamTracks and
 MediaStreams. This later is relevant to handle some cases of legacy
 interop. Commonly the RTP Payload Type of any incoming packets will
 reveal if the packet stream is a source stream or a redundancy or
 dependent packet stream. The association to the correct source
 packet stream depends on the payload format in use for the packet
 stream.

 Finally this specification puts a requirement on the WebRTC API to
 realize a method for determining the CSRC list (Section 4.1) as well

Perkins, et al. Expires November 30, 2015 [Page 26]

Internet-Draft RTP for WebRTC May 2015

 as the Mixer-to-Client audio levels (Section 5.2.3) (when supported)
 and the basic requirements for this is further discussed in

Section 12.2.1.

12. RTP Implementation Considerations

 The following discussion provides some guidance on the implementation
 of the RTP features described in this memo. The focus is on a WebRTC
 Endpoint implementation perspective, and while some mention is made
 of the behaviour of middleboxes, that is not the focus of this memo.

12.1. Configuration and Use of RTP Sessions

 A WebRTC Endpoint will be a simultaneous participant in one or more
 RTP sessions. Each RTP session can convey multiple media sources,
 and can include media data from multiple end-points. In the
 following, some ways in which WebRTC Endpoints can configure and use
 RTP sessions is outlined.

12.1.1. Use of Multiple Media Sources Within an RTP Session

 RTP is a group communication protocol, and every RTP session can
 potentially contain multiple RTP packet streams. There are several
 reasons why this might be desirable:

 Multiple media types: Outside of WebRTC, it is common to use one RTP
 session for each type of media sources (e.g., one RTP session for
 audio sources and one for video sources, each sent over different
 transport layer flows). However, to reduce the number of UDP
 ports used, the default in WebRTC is to send all types of media in
 a single RTP session, as described in Section 4.4, using RTP and
 RTCP multiplexing (Section 4.5) to further reduce the number of
 UDP ports needed. This RTP session then uses only one bi-
 directional transport-layer flow, but will contain multiple RTP
 packet streams, each containing a different type of media. A
 common example might be an end-point with a camera and microphone
 that sends two RTP packet streams, one video and one audio, into a
 single RTP session.

 Multiple Capture Devices: A WebRTC Endpoint might have multiple
 cameras, microphones, or other media capture devices, and so might
 want to generate several RTP packet streams of the same media
 type. Alternatively, it might want to send media from a single
 capture device in several different formats or quality settings at
 once. Both can result in a single end-point sending multiple RTP
 packet streams of the same media type into a single RTP session at
 the same time.

Perkins, et al. Expires November 30, 2015 [Page 27]

Internet-Draft RTP for WebRTC May 2015

 Associated Repair Data: An end-point might send a RTP packet stream
 that is somehow associated with another stream. For example, it
 might send an RTP packet stream that contains FEC or
 retransmission data relating to another stream. Some RTP payload
 formats send this sort of associated repair data as part of the
 source packet stream, while others send it as a separate packet
 stream.

 Layered or Multiple Description Coding: An end-point can use a
 layered media codec, for example H.264 SVC, or a multiple
 description codec, that generates multiple RTP packet streams,
 each with a distinct RTP SSRC, within a single RTP session.

 RTP Mixers, Translators, and Other Middleboxes: An RTP session, in
 the WebRTC context, is a point-to-point association between an
 end-point and some other peer device, where those devices share a
 common SSRC space. The peer device might be another WebRTC
 Endpoint, or it might be an RTP mixer, translator, or some other
 form of media processing middlebox. In the latter cases, the
 middlebox might send mixed or relayed RTP streams from several
 participants, that the WebRTC Endpoint will need to render. Thus,
 even though a WebRTC Endpoint might only be a member of a single
 RTP session, the peer device might be extending that RTP session
 to incorporate other end-points. WebRTC is a group communication
 environment and end-points need to be capable of receiving,
 decoding, and playing out multiple RTP packet streams at once,
 even in a single RTP session.

12.1.2. Use of Multiple RTP Sessions

 In addition to sending and receiving multiple RTP packet streams
 within a single RTP session, a WebRTC Endpoint might participate in
 multiple RTP sessions. There are several reasons why a WebRTC
 Endpoint might choose to do this:

 To interoperate with legacy devices: The common practice in the non-
 WebRTC world is to send different types of media in separate RTP
 sessions, for example using one RTP session for audio and another
 RTP session, on a separate transport layer flow, for video. All
 WebRTC Endpoints need to support the option of sending different
 types of media on different RTP sessions, so they can interwork
 with such legacy devices. This is discussed further in

Section 4.4.

 To provide enhanced quality of service: Some network-based quality
 of service mechanisms operate on the granularity of transport
 layer flows. If it is desired to use these mechanisms to provide
 differentiated quality of service for some RTP packet streams,

Perkins, et al. Expires November 30, 2015 [Page 28]

Internet-Draft RTP for WebRTC May 2015

 then those RTP packet streams need to be sent in a separate RTP
 session using a different transport-layer flow, and with
 appropriate quality of service marking. This is discussed further
 in Section 12.1.3.

 To separate media with different purposes: An end-point might want
 to send RTP packet streams that have different purposes on
 different RTP sessions, to make it easy for the peer device to
 distinguish them. For example, some centralised multiparty
 conferencing systems display the active speaker in high
 resolution, but show low resolution "thumbnails" of other
 participants. Such systems might configure the end-points to send
 simulcast high- and low-resolution versions of their video using
 separate RTP sessions, to simplify the operation of the RTP
 middlebox. In the WebRTC context this is currently possible by
 establishing multiple WebRTC MediaStreamTracks that have the same
 media source in one (or more) RTCPeerConnection. Each
 MediaStreamTrack is then configured to deliver a particular media
 quality and thus media bit-rate, and will produce an independently
 encoded version with the codec parameters agreed specifically in
 the context of that RTCPeerConnection. The RTP middlebox can
 distinguish packets corresponding to the low- and high-resolution
 streams by inspecting their SSRC, RTP payload type, or some other
 information contained in RTP payload, RTP header extension or RTCP
 packets, but it can be easier to distinguish the RTP packet
 streams if they arrive on separate RTP sessions on separate
 transport-layer flows.

 To directly connect with multiple peers: A multi-party conference
 does not need to use an RTP middlebox. Rather, a multi-unicast
 mesh can be created, comprising several distinct RTP sessions,
 with each participant sending RTP traffic over a separate RTP
 session (that is, using an independent RTCPeerConnection object)
 to every other participant, as shown in Figure 1. This topology
 has the benefit of not requiring an RTP middlebox node that is
 trusted to access and manipulate the media data. The downside is
 that it increases the used bandwidth at each sender by requiring
 one copy of the RTP packet streams for each participant that are
 part of the same session beyond the sender itself.

Perkins, et al. Expires November 30, 2015 [Page 29]

Internet-Draft RTP for WebRTC May 2015

 +---+ +---+
 | A |<--->| B |
 +---+ +---+
 ^ ^
 \ /
 \ /
 v v
 +---+
 | C |
 +---+

 Figure 1: Multi-unicast using several RTP sessions

 The multi-unicast topology could also be implemented as a single
 RTP session, spanning multiple peer-to-peer transport layer
 connections, or as several pairwise RTP sessions, one between each
 pair of peers. To maintain a coherent mapping between the
 relation between RTP sessions and RTCPeerConnection objects it is
 recommend that this is implemented as several individual RTP
 sessions. The only downside is that end-point A will not learn of
 the quality of any transmission happening between B and C, since
 it will not see RTCP reports for the RTP session between B and C,
 whereas it would it all three participants were part of a single
 RTP session. Experience with the Mbone tools (experimental RTP-
 based multicast conferencing tools from the late 1990s) has showed
 that RTCP reception quality reports for third parties can be
 presented to users in a way that helps them understand asymmetric
 network problems, and the approach of using separate RTP sessions
 prevents this. However, an advantage of using separate RTP
 sessions is that it enables using different media bit-rates and
 RTP session configurations between the different peers, thus not
 forcing B to endure the same quality reductions if there are
 limitations in the transport from A to C as C will. It is
 believed that these advantages outweigh the limitations in
 debugging power.

 To indirectly connect with multiple peers: A common scenario in
 multi-party conferencing is to create indirect connections to
 multiple peers, using an RTP mixer, translator, or some other type
 of RTP middlebox. Figure 2 outlines a simple topology that might
 be used in a four-person centralised conference. The middlebox
 acts to optimise the transmission of RTP packet streams from
 certain perspectives, either by only sending some of the received
 RTP packet stream to any given receiver, or by providing a
 combined RTP packet stream out of a set of contributing streams.

Perkins, et al. Expires November 30, 2015 [Page 30]

Internet-Draft RTP for WebRTC May 2015

 +---+ +-------------+ +---+
 | A |<---->| |<---->| B |
 +---+ | RTP mixer, | +---+
 | translator, |
 | or other |
 +---+ | middlebox | +---+
 | C |<---->| |<---->| D |
 +---+ +-------------+ +---+

 Figure 2: RTP mixer with only unicast paths

 There are various methods of implementation for the middlebox. If
 implemented as a standard RTP mixer or translator, a single RTP
 session will extend across the middlebox and encompass all the
 end-points in one multi-party session. Other types of middlebox
 might use separate RTP sessions between each end-point and the
 middlebox. A common aspect is that these RTP middleboxes can use
 a number of tools to control the media encoding provided by a
 WebRTC Endpoint. This includes functions like requesting the
 breaking of the encoding chain and have the encoder produce a so
 called Intra frame. Another is limiting the bit-rate of a given
 stream to better suit the mixer view of the multiple down-streams.
 Others are controlling the most suitable frame-rate, picture
 resolution, the trade-off between frame-rate and spatial quality.
 The middlebox has the responsibility to correctly perform
 congestion control, source identification, manage synchronisation
 while providing the application with suitable media optimisations.
 The middlebox also has to be a trusted node when it comes to
 security, since it manipulates either the RTP header or the media
 itself (or both) received from one end-point, before sending it on
 towards the end-point(s), thus they need to be able to decrypt and
 then re-encrypt the RTP packet stream before sending it out.

 RTP Mixers can create a situation where an end-point experiences a
 situation in-between a session with only two end-points and
 multiple RTP sessions. Mixers are expected to not forward RTCP
 reports regarding RTP packet streams across themselves. This is
 due to the difference in the RTP packet streams provided to the
 different end-points. The original media source lacks information
 about a mixer's manipulations prior to sending it the different
 receivers. This scenario also results in that an end-point's
 feedback or requests goes to the mixer. When the mixer can't act
 on this by itself, it is forced to go to the original media source
 to fulfil the receivers request. This will not necessarily be
 explicitly visible any RTP and RTCP traffic, but the interactions
 and the time to complete them will indicate such dependencies.

Perkins, et al. Expires November 30, 2015 [Page 31]

Internet-Draft RTP for WebRTC May 2015

 Providing source authentication in multi-party scenarios is a
 challenge. In the mixer-based topologies, end-points source
 authentication is based on, firstly, verifying that media comes
 from the mixer by cryptographic verification and, secondly, trust
 in the mixer to correctly identify any source towards the end-
 point. In RTP sessions where multiple end-points are directly
 visible to an end-point, all end-points will have knowledge about
 each others' master keys, and can thus inject packets claimed to
 come from another end-point in the session. Any node performing
 relay can perform non-cryptographic mitigation by preventing
 forwarding of packets that have SSRC fields that came from other
 end-points before. For cryptographic verification of the source,
 SRTP would require additional security mechanisms, for example
 TESLA for SRTP [RFC4383], that are not part of the base WebRTC
 standards.

 To forward media between multiple peers: It is sometimes desirable
 for an end-point that receives an RTP packet stream to be able to
 forward that RTP packet stream to a third party. The are some
 obvious security and privacy implications in supporting this, but
 also potential uses. This is supported in the W3C API by taking
 the received and decoded media and using it as media source that
 is re-encoding and transmitted as a new stream.

 At the RTP layer, media forwarding acts as a back-to-back RTP
 receiver and RTP sender. The receiving side terminates the RTP
 session and decodes the media, while the sender side re-encodes
 and transmits the media using an entirely separate RTP session.
 The original sender will only see a single receiver of the media,
 and will not be able to tell that forwarding is happening based on
 RTP-layer information since the RTP session that is used to send
 the forwarded media is not connected to the RTP session on which
 the media was received by the node doing the forwarding.

 The end-point that is performing the forwarding is responsible for
 producing an RTP packet stream suitable for onwards transmission.
 The outgoing RTP session that is used to send the forwarded media
 is entirely separate to the RTP session on which the media was
 received. This will require media transcoding for congestion
 control purpose to produce a suitable bit-rate for the outgoing
 RTP session, reducing media quality and forcing the forwarding
 end-point to spend the resource on the transcoding. The media
 transcoding does result in a separation of the two different legs
 removing almost all dependencies, and allowing the forwarding end-
 point to optimise its media transcoding operation. The cost is
 greatly increased computational complexity on the forwarding node.
 Receivers of the forwarded stream will see the forwarding device
 as the sender of the stream, and will not be able to tell from the

https://datatracker.ietf.org/doc/html/rfc4383

Perkins, et al. Expires November 30, 2015 [Page 32]

Internet-Draft RTP for WebRTC May 2015

 RTP layer that they are receiving a forwarded stream rather than
 an entirely new RTP packet stream generated by the forwarding
 device.

12.1.3. Differentiated Treatment of RTP Packet Streams

 There are use cases for differentiated treatment of RTP packet
 streams. Such differentiation can happen at several places in the
 system. First of all is the prioritization within the end-point
 sending the media, which controls, both which RTP packet streams that
 will be sent, and their allocation of bit-rate out of the current
 available aggregate as determined by the congestion control.

 It is expected that the WebRTC API [W3C.WD-webrtc-20130910] will
 allow the application to indicate relative priorities for different
 MediaStreamTracks. These priorities can then be used to influence
 the local RTP processing, especially when it comes to congestion
 control response in how to divide the available bandwidth between the
 RTP packet streams. Any changes in relative priority will also need
 to be considered for RTP packet streams that are associated with the
 main RTP packet streams, such as redundant streams for RTP
 retransmission and FEC. The importance of such redundant RTP packet
 streams is dependent on the media type and codec used, in regards to
 how robust that codec is to packet loss. However, a default policy
 might to be to use the same priority for redundant RTP packet stream
 as for the source RTP packet stream.

 Secondly, the network can prioritize transport-layer flows and sub-
 flows, including RTP packet streams. Typically, differential
 treatment includes two steps, the first being identifying whether an
 IP packet belongs to a class that has to be treated differently, the
 second consisting of the actual mechanism to prioritize packets.
 Three common methods for classifying IP packets are:

 DiffServ: The end-point marks a packet with a DiffServ code point to
 indicate to the network that the packet belongs to a particular
 class.

 Flow based: Packets that need to be given a particular treatment are
 identified using a combination of IP and port address.

 Deep Packet Inspection: A network classifier (DPI) inspects the
 packet and tries to determine if the packet represents a
 particular application and type that is to be prioritized.

 Flow-based differentiation will provide the same treatment to all
 packets within a transport-layer flow, i.e., relative prioritization
 is not possible. Moreover, if the resources are limited it might not

Perkins, et al. Expires November 30, 2015 [Page 33]

Internet-Draft RTP for WebRTC May 2015

 be possible to provide differential treatment compared to best-effort
 for all the RTP packet streams used in a WebRTC session. The use of
 flow-based differentiation needs to be coordinated between the WebRTC
 system and the network(s). The WebRTC endpoint needs to know that
 flow-based differentiation might be used to provide the separation of
 the RTP packet streams onto different UDP flows to enable a more
 granular usage of flow based differentiation. The used flows, their
 5-tuples and prioritization will need to be communicated to the
 network so that it can identify the flows correctly to enable
 prioritization. No specific protocol support for this is specified.

 DiffServ assumes that either the end-point or a classifier can mark
 the packets with an appropriate DSCP so that the packets are treated
 according to that marking. If the end-point is to mark the traffic
 two requirements arise in the WebRTC context: 1) The WebRTC Endpoint
 has to know which DSCP to use and that it can use them on some set of
 RTP packet streams. 2) The information needs to be propagated to the
 operating system when transmitting the packet. Details of this
 process are outside the scope of this memo and are further discussed
 in "DSCP and other packet markings for RTCWeb QoS"
 [I-D.ietf-tsvwg-rtcweb-qos].

 Deep Packet Inspectors will, despite the SRTP media encryption, still
 be fairly capable at classifying the RTP streams. The reason is that
 SRTP leaves the first 12 bytes of the RTP header unencrypted. This
 enables easy RTP stream identification using the SSRC and provides
 the classifier with useful information that can be correlated to
 determine for example the stream's media type. Using packet sizes,
 reception times, packet inter-spacing, RTP timestamp increments and
 sequence numbers, fairly reliable classifications are achieved.

 For packet based marking schemes it might be possible to mark
 individual RTP packets differently based on the relative priority of
 the RTP payload. For example video codecs that have I, P, and B
 pictures could prioritise any payloads carrying only B frames less,
 as these are less damaging to loose. However, depending on the QoS
 mechanism and what markings that are applied, this can result in not
 only different packet drop probabilities but also packet reordering,
 see [I-D.ietf-tsvwg-rtcweb-qos] for further discussion. As a default
 policy all RTP packets related to a RTP packet stream ought to be
 provided with the same prioritization; per-packet prioritization is
 outside the scope of this memo, but might be specified elsewhere in
 future.

 It is also important to consider how RTCP packets associated with a
 particular RTP packet stream need to be marked. RTCP compound
 packets with Sender Reports (SR), ought to be marked with the same
 priority as the RTP packet stream itself, so the RTCP-based round-

Perkins, et al. Expires November 30, 2015 [Page 34]

Internet-Draft RTP for WebRTC May 2015

 trip time (RTT) measurements are done using the same transport-layer
 flow priority as the RTP packet stream experiences. RTCP compound
 packets containing RR packet ought to be sent with the priority used
 by the majority of the RTP packet streams reported on. RTCP packets
 containing time-critical feedback packets can use higher priority to
 improve the timeliness and likelihood of delivery of such feedback.

12.2. Media Source, RTP Packet Streams, and Participant Identification

12.2.1. Media Source Identification

 Each RTP packet stream is identified by a unique synchronisation
 source (SSRC) identifier. The SSRC identifier is carried in each of
 the RTP packets comprising a RTP packet stream, and is also used to
 identify that stream in the corresponding RTCP reports. The SSRC is
 chosen as discussed in Section 4.8. The first stage in
 demultiplexing RTP and RTCP packets received on a single transport
 layer flow at a WebRTC Endpoint is to separate the RTP packet streams
 based on their SSRC value; once that is done, additional
 demultiplexing steps can determine how and where to render the media.

 RTP allows a mixer, or other RTP-layer middlebox, to combine encoded
 streams from multiple media sources to form a new encoded stream from
 a new media source (the mixer). The RTP packets in that new RTP
 packet stream can include a Contributing Source (CSRC) list,
 indicating which original SSRCs contributed to the combined source
 stream. As described in Section 4.1, implementations need to support
 reception of RTP data packets containing a CSRC list and RTCP packets
 that relate to sources present in the CSRC list. The CSRC list can
 change on a packet-by-packet basis, depending on the mixing operation
 being performed. Knowledge of what media sources contributed to a
 particular RTP packet can be important if the user interface
 indicates which participants are active in the session. Changes in
 the CSRC list included in packets needs to be exposed to the WebRTC
 application using some API, if the application is to be able to track
 changes in session participation. It is desirable to map CSRC values
 back into WebRTC MediaStream identities as they cross this API, to
 avoid exposing the SSRC/CSRC name space to WebRTC applications.

 If the mixer-to-client audio level extension [RFC6465] is being used
 in the session (see Section 5.2.3), the information in the CSRC list
 is augmented by audio level information for each contributing source.
 It is desirable to expose this information to the WebRTC application
 using some API, after mapping the CSRC values to WebRTC MediaStream
 identities, so it can be exposed in the user interface.

https://datatracker.ietf.org/doc/html/rfc6465

Perkins, et al. Expires November 30, 2015 [Page 35]

Internet-Draft RTP for WebRTC May 2015

12.2.2. SSRC Collision Detection

 The RTP standard requires RTP implementations to have support for
 detecting and handling SSRC collisions, i.e., resolve the conflict
 when two different end-points use the same SSRC value (see section

8.2 of [RFC3550]). This requirement also applies to WebRTC
 Endpoints. There are several scenarios where SSRC collisions can
 occur:

 o In a point-to-point session where each SSRC is associated with
 either of the two end-points and where the main media carrying
 SSRC identifier will be announced in the signalling channel, a
 collision is less likely to occur due to the information about
 used SSRCs. If SDP is used, this information is provided by
 Source-Specific SDP Attributes [RFC5576]. Still, collisions can
 occur if both end-points start using a new SSRC identifier prior
 to having signalled it to the peer and received acknowledgement on
 the signalling message. The Source-Specific SDP Attributes
 [RFC5576] contains a mechanism to signal how the end-point
 resolved the SSRC collision.

 o SSRC values that have not been signalled could also appear in an
 RTP session. This is more likely than it appears, since some RTP
 functions use extra SSRCs to provide their functionality. For
 example, retransmission data might be transmitted using a separate
 RTP packet stream that requires its own SSRC, separate to the SSRC
 of the source RTP packet stream [RFC4588]. In those cases, an
 end-point can create a new SSRC that strictly doesn't need to be
 announced over the signalling channel to function correctly on
 both RTP and RTCPeerConnection level.

 o Multiple end-points in a multiparty conference can create new
 sources and signal those towards the RTP middlebox. In cases
 where the SSRC/CSRC are propagated between the different end-
 points from the RTP middlebox collisions can occur.

 o An RTP middlebox could connect an end-point's RTCPeerConnection to
 another RTCPeerConnection from the same end-point, thus forming a
 loop where the end-point will receive its own traffic. While it
 is clearly considered a bug, it is important that the end-point is
 able to recognise and handle the case when it occurs. This case
 becomes even more problematic when media mixers, and so on, are
 involved, where the stream received is a different stream but
 still contains this client's input.

 These SSRC/CSRC collisions can only be handled on RTP level as long
 as the same RTP session is extended across multiple
 RTCPeerConnections by a RTP middlebox. To resolve the more generic

https://datatracker.ietf.org/doc/html/rfc3550#section-8.2
https://datatracker.ietf.org/doc/html/rfc3550#section-8.2
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc4588

Perkins, et al. Expires November 30, 2015 [Page 36]

Internet-Draft RTP for WebRTC May 2015

 case where multiple RTCPeerConnections are interconnected,
 identification of the media source(s) part of a MediaStreamTrack
 being propagated across multiple interconnected RTCPeerConnection
 needs to be preserved across these interconnections.

12.2.3. Media Synchronisation Context

 When an end-point sends media from more than one media source, it
 needs to consider if (and which of) these media sources are to be
 synchronized. In RTP/RTCP, synchronisation is provided by having a
 set of RTP packet streams be indicated as coming from the same
 synchronisation context and logical end-point by using the same RTCP
 CNAME identifier.

 The next provision is that the internal clocks of all media sources,
 i.e., what drives the RTP timestamp, can be correlated to a system
 clock that is provided in RTCP Sender Reports encoded in an NTP
 format. By correlating all RTP timestamps to a common system clock
 for all sources, the timing relation of the different RTP packet
 streams, also across multiple RTP sessions can be derived at the
 receiver and, if desired, the streams can be synchronized. The
 requirement is for the media sender to provide the correlation
 information; it is up to the receiver to use it or not.

13. Security Considerations

 The overall security architecture for WebRTC is described in
 [I-D.ietf-rtcweb-security-arch], and security considerations for the
 WebRTC framework are described in [I-D.ietf-rtcweb-security]. These
 considerations also apply to this memo.

 The security considerations of the RTP specification, the RTP/SAVPF
 profile, and the various RTP/RTCP extensions and RTP payload formats
 that form the complete protocol suite described in this memo apply.
 It is not believed there are any new security considerations
 resulting from the combination of these various protocol extensions.

 The Extended Secure RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback [RFC5124] (RTP/SAVPF) provides
 handling of fundamental issues by offering confidentiality, integrity
 and partial source authentication. A mandatory to implement media
 security solution is created by combing this secured RTP profile and
 DTLS-SRTP keying [RFC5764] as defined by Section 5.5 of
 [I-D.ietf-rtcweb-security-arch].

 RTCP packets convey a Canonical Name (CNAME) identifier that is used
 to associate RTP packet streams that need to be synchronised across
 related RTP sessions. Inappropriate choice of CNAME values can be a

https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5764

Perkins, et al. Expires November 30, 2015 [Page 37]

Internet-Draft RTP for WebRTC May 2015

 privacy concern, since long-term persistent CNAME identifiers can be
 used to track users across multiple WebRTC calls. Section 4.9 of
 this memo provides guidelines for generation of untraceable CNAME
 values that alleviate this risk.

 Some potential denial of service attacks exist if the RTCP reporting
 interval is configured to an inappropriate value. This could be done
 by configuring the RTCP bandwidth fraction to an excessively large or
 small value using the SDP "b=RR:" or "b=RS:" lines [RFC3556], or some
 similar mechanism, or by choosing an excessively large or small value
 for the RTP/AVPF minimal receiver report interval (if using SDP, this
 is the "a=rtcp-fb:... trr-int" parameter) [RFC4585]. The risks are
 as follows:

 1. the RTCP bandwidth could be configured to make the regular
 reporting interval so large that effective congestion control
 cannot be maintained, potentially leading to denial of service
 due to congestion caused by the media traffic;

 2. the RTCP interval could be configured to a very small value,
 causing endpoints to generate high rate RTCP traffic, potentially
 leading to denial of service due to the non-congestion controlled
 RTCP traffic; and

 3. RTCP parameters could be configured differently for each
 endpoint, with some of the endpoints using a large reporting
 interval and some using a smaller interval, leading to denial of
 service due to premature participant timeouts due to mismatched
 timeout periods which are based on the reporting interval (this
 is a particular concern if endpoints use a small but non-zero
 value for the RTP/AVPF minimal receiver report interval (trr-int)
 [RFC4585], as discussed in Section 6.1 of
 [I-D.ietf-avtcore-rtp-multi-stream]).

 Premature participant timeout can be avoided by using the fixed (non-
 reduced) minimum interval when calculating the participant timeout
 (see Section 4.1 of this memo and Section 6.1 of
 [I-D.ietf-avtcore-rtp-multi-stream]). To address the other concerns,
 endpoints SHOULD ignore parameters that configure the RTCP reporting
 interval to be significantly longer than the default five second
 interval specified in [RFC3550] (unless the media data rate is so low
 that the longer reporting interval roughly corresponds to 5% of the
 media data rate), or that configure the RTCP reporting interval small
 enough that the RTCP bandwidth would exceed the media bandwidth.

 The guidelines in [RFC6562] apply when using variable bit rate (VBR)
 audio codecs such as Opus (see Section 4.3 for discussion of mandated
 audio codecs). The guidelines in [RFC6562] also apply, but are of

https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc6562
https://datatracker.ietf.org/doc/html/rfc6562

Perkins, et al. Expires November 30, 2015 [Page 38]

Internet-Draft RTP for WebRTC May 2015

 lesser importance, when using the client-to-mixer audio level header
 extensions (Section 5.2.2) or the mixer-to-client audio level header
 extensions (Section 5.2.3). The use of the encryption of the header
 extensions are RECOMMENDED, unless there are known reasons, like RTP
 middleboxes performing voice activity based source selection or third
 party monitoring that will greatly benefit from the information, and
 this has been expressed using API or signalling. If further evidence
 are produced to show that information leakage is significant from
 audio level indications, then use of encryption needs to be mandated
 at that time.

14. IANA Considerations

 This memo makes no request of IANA.

 Note to RFC Editor: this section is to be removed on publication as
 an RFC.

15. Acknowledgements

 The authors would like to thank Bernard Aboba, Harald Alvestrand,
 Cary Bran, Ben Campbell, Alissa Cooper, Charles Eckel, Alex
 Eleftheriadis, Christian Groves, Cullen Jennings, Olle Johansson,
 Suhas Nandakumar, Dan Romascanu, Jim Spring, Martin Thomson, and the
 other members of the IETF RTCWEB working group for their valuable
 feedback.

16. References

16.1. Normative References

 [I-D.ietf-avtcore-multi-media-rtp-session]
 Westerlund, M., Perkins, C., and J. Lennox, "Sending
 Multiple Types of Media in a Single RTP Session", draft-

ietf-avtcore-multi-media-rtp-session-07 (work in
 progress), March 2015.

 [I-D.ietf-avtcore-rtp-circuit-breakers]
 Perkins, C. and V. Singh, "Multimedia Congestion Control:
 Circuit Breakers for Unicast RTP Sessions", draft-ietf-

avtcore-rtp-circuit-breakers-10 (work in progress), March
 2015.

 [I-D.ietf-avtcore-rtp-multi-stream]
 Lennox, J., Westerlund, M., Wu, W., and C. Perkins,
 "Sending Multiple Media Streams in a Single RTP Session",

draft-ietf-avtcore-rtp-multi-stream-07 (work in progress),
 March 2015.

https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-multi-media-rtp-session-07
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-multi-media-rtp-session-07
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-circuit-breakers-10
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-circuit-breakers-10
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-multi-stream-07

Perkins, et al. Expires November 30, 2015 [Page 39]

Internet-Draft RTP for WebRTC May 2015

 [I-D.ietf-avtcore-rtp-multi-stream-optimisation]
 Lennox, J., Westerlund, M., Wu, W., and C. Perkins,
 "Sending Multiple Media Streams in a Single RTP Session:
 Grouping RTCP Reception Statistics and Other Feedback",

draft-ietf-avtcore-rtp-multi-stream-optimisation-05 (work
 in progress), February 2015.

 [I-D.ietf-mmusic-sdp-bundle-negotiation]
 Holmberg, C., Alvestrand, H., and C. Jennings,
 "Negotiating Media Multiplexing Using the Session
 Description Protocol (SDP)", draft-ietf-mmusic-sdp-bundle-

negotiation-19 (work in progress), March 2015.

 [I-D.ietf-rtcweb-audio]
 Valin, J. and C. Bran, "WebRTC Audio Codec and Processing
 Requirements", draft-ietf-rtcweb-audio-08 (work in
 progress), April 2015.

 [I-D.ietf-rtcweb-fec]
 Uberti, J., "WebRTC Forward Error Correction
 Requirements", draft-ietf-rtcweb-fec-01 (work in
 progress), March 2015.

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for WebRTC", draft-

ietf-rtcweb-security-08 (work in progress), February 2015.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-

rtcweb-security-arch-11 (work in progress), March 2015.

 [I-D.ietf-rtcweb-video]
 Roach, A., "WebRTC Video Processing and Codec
 Requirements", draft-ietf-rtcweb-video-05 (work in
 progress), March 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2736] Handley, M. and C. Perkins, "Guidelines for Writers of RTP
 Payload Format Specifications", BCP 36, RFC 2736, December
 1999.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-multi-stream-optimisation-05
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-19
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-bundle-negotiation-19
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-audio-08
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-fec-01
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-08
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-08
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-11
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-11
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-video-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp36
https://datatracker.ietf.org/doc/html/rfc2736
https://datatracker.ietf.org/doc/html/rfc3550

Perkins, et al. Expires November 30, 2015 [Page 40]

Internet-Draft RTP for WebRTC May 2015

 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
 Video Conferences with Minimal Control", STD 65, RFC 3551,
 July 2003.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth", RFC

3556, July 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July
 2006.

 [RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
 Hakenberg, "RTP Retransmission Payload Format", RFC 4588,
 July 2006.

 [RFC4961] Wing, D., "Symmetric RTP / RTP Control Protocol (RTCP)",
BCP 131, RFC 4961, July 2007.

 [RFC5104] Wenger, S., Chandra, U., Westerlund, M., and B. Burman,
 "Codec Control Messages in the RTP Audio-Visual Profile
 with Feedback (AVPF)", RFC 5104, February 2008.

 [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
 Real-time Transport Control Protocol (RTCP)-Based Feedback
 (RTP/SAVPF)", RFC 5124, February 2008.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
 Header Extensions", RFC 5285, July 2008.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size
 Real-Time Transport Control Protocol (RTCP): Opportunities
 and Consequences", RFC 5506, April 2009.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761, April 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

https://datatracker.ietf.org/doc/html/rfc3551
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3556
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4588
https://datatracker.ietf.org/doc/html/bcp131
https://datatracker.ietf.org/doc/html/rfc4961
https://datatracker.ietf.org/doc/html/rfc5104
https://datatracker.ietf.org/doc/html/rfc5124
https://datatracker.ietf.org/doc/html/rfc5285
https://datatracker.ietf.org/doc/html/rfc5506
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5764

Perkins, et al. Expires November 30, 2015 [Page 41]

Internet-Draft RTP for WebRTC May 2015

 [RFC6051] Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
 Flows", RFC 6051, November 2010.

 [RFC6464] Lennox, J., Ivov, E., and E. Marocco, "A Real-time
 Transport Protocol (RTP) Header Extension for Client-to-
 Mixer Audio Level Indication", RFC 6464, December 2011.

 [RFC6465] Ivov, E., Marocco, E., and J. Lennox, "A Real-time
 Transport Protocol (RTP) Header Extension for Mixer-to-
 Client Audio Level Indication", RFC 6465, December 2011.

 [RFC6562] Perkins, C. and JM. Valin, "Guidelines for the Use of
 Variable Bit Rate Audio with Secure RTP", RFC 6562, March
 2012.

 [RFC6904] Lennox, J., "Encryption of Header Extensions in the Secure
 Real-time Transport Protocol (SRTP)", RFC 6904, April
 2013.

 [RFC7007] Terriberry, T., "Update to Remove DVI4 from the
 Recommended Codecs for the RTP Profile for Audio and Video
 Conferences with Minimal Control (RTP/AVP)", RFC 7007,
 August 2013.

 [RFC7022] Begen, A., Perkins, C., Wing, D., and E. Rescorla,
 "Guidelines for Choosing RTP Control Protocol (RTCP)
 Canonical Names (CNAMEs)", RFC 7022, September 2013.

 [RFC7160] Petit-Huguenin, M. and G. Zorn, "Support for Multiple
 Clock Rates in an RTP Session", RFC 7160, April 2014.

 [RFC7164] Gross, K. and R. Brandenburg, "RTP and Leap Seconds", RFC
7164, March 2014.

16.2. Informative References

 [I-D.ietf-avtcore-multiplex-guidelines]
 Westerlund, M., Perkins, C., and H. Alvestrand,
 "Guidelines for using the Multiplexing Features of RTP to
 Support Multiple Media Streams", draft-ietf-avtcore-

multiplex-guidelines-03 (work in progress), October 2014.

 [I-D.ietf-avtcore-rtp-topologies-update]
 Westerlund, M. and S. Wenger, "RTP Topologies", draft-

ietf-avtcore-rtp-topologies-update-07 (work in progress),
 April 2015.

https://datatracker.ietf.org/doc/html/rfc6051
https://datatracker.ietf.org/doc/html/rfc6464
https://datatracker.ietf.org/doc/html/rfc6465
https://datatracker.ietf.org/doc/html/rfc6562
https://datatracker.ietf.org/doc/html/rfc6904
https://datatracker.ietf.org/doc/html/rfc7007
https://datatracker.ietf.org/doc/html/rfc7022
https://datatracker.ietf.org/doc/html/rfc7160
https://datatracker.ietf.org/doc/html/rfc7164
https://datatracker.ietf.org/doc/html/rfc7164
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-multiplex-guidelines-03
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-multiplex-guidelines-03
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-topologies-update-07
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-topologies-update-07

Perkins, et al. Expires November 30, 2015 [Page 42]

Internet-Draft RTP for WebRTC May 2015

 [I-D.ietf-avtext-rtp-grouping-taxonomy]
 Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G., and
 B. Burman, "A Taxonomy of Grouping Semantics and
 Mechanisms for Real-Time Transport Protocol (RTP)
 Sources", draft-ietf-avtext-rtp-grouping-taxonomy-06 (work
 in progress), March 2015.

 [I-D.ietf-mmusic-msid]
 Alvestrand, H., "WebRTC MediaStream Identification in the
 Session Description Protocol", draft-ietf-mmusic-msid-10
 (work in progress), April 2015.

 [I-D.ietf-payload-rtp-howto]
 Westerlund, M., "How to Write an RTP Payload Format",

draft-ietf-payload-rtp-howto-14 (work in progress), May
 2015.

 [I-D.ietf-rmcat-cc-requirements]
 Jesup, R. and Z. Sarker, "Congestion Control Requirements
 for Interactive Real-Time Media", draft-ietf-rmcat-cc-

requirements-09 (work in progress), December 2014.

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", draft-ietf-rtcweb-overview-13
 (work in progress), November 2014.

 [I-D.ietf-tsvwg-rtcweb-qos]
 Dhesikan, S., Jennings, C., Druta, D., Jones, P., and J.
 Polk, "DSCP and other packet markings for RTCWeb QoS",

draft-ietf-tsvwg-rtcweb-qos-03 (work in progress),
 November 2014.

 [RFC3611] Friedman, T., Caceres, R., and A. Clark, "RTP Control
 Protocol Extended Reports (RTCP XR)", RFC 3611, November
 2003.

 [RFC4383] Baugher, M. and E. Carrara, "The Use of Timed Efficient
 Stream Loss-Tolerant Authentication (TESLA) in the Secure
 Real-time Transport Protocol (SRTP)", RFC 4383, February
 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

https://datatracker.ietf.org/doc/html/draft-ietf-avtext-rtp-grouping-taxonomy-06
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-msid-10
https://datatracker.ietf.org/doc/html/draft-ietf-payload-rtp-howto-14
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-cc-requirements-09
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-cc-requirements-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-overview-13
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rtcweb-qos-03
https://datatracker.ietf.org/doc/html/rfc3611
https://datatracker.ietf.org/doc/html/rfc4383
https://datatracker.ietf.org/doc/html/rfc5245

Perkins, et al. Expires November 30, 2015 [Page 43]

Internet-Draft RTP for WebRTC May 2015

 [RFC5576] Lennox, J., Ott, J., and T. Schierl, "Source-Specific
 Media Attributes in the Session Description Protocol
 (SDP)", RFC 5576, June 2009.

 [RFC5968] Ott, J. and C. Perkins, "Guidelines for Extending the RTP
 Control Protocol (RTCP)", RFC 5968, September 2010.

 [RFC6263] Marjou, X. and A. Sollaud, "Application Mechanism for
 Keeping Alive the NAT Mappings Associated with RTP / RTP
 Control Protocol (RTCP) Flows", RFC 6263, June 2011.

 [RFC6792] Wu, Q., Hunt, G., and P. Arden, "Guidelines for Use of the
 RTP Monitoring Framework", RFC 6792, November 2012.

 [RFC7478] Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use Cases and Requirements", RFC 7478,
 March 2015.

 [W3C.WD-mediacapture-streams-20130903]
 Burnett, D., Bergkvist, A., Jennings, C., and A.
 Narayanan, "Media Capture and Streams", World Wide Web
 Consortium WD WD-mediacapture-streams-20130903, September
 2013, <http://www.w3.org/TR/2013/

WD-mediacapture-streams-20130903>.

 [W3C.WD-webrtc-20130910]
 Bergkvist, A., Burnett, D., Jennings, C., and A.
 Narayanan, "WebRTC 1.0: Real-time Communication Between
 Browsers", World Wide Web Consortium WD WD-webrtc-
 20130910, September 2013,
 <http://www.w3.org/TR/2013/WD-webrtc-20130910>.

Authors' Addresses

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@csperkins.org
 URI: http://csperkins.org/

https://datatracker.ietf.org/doc/html/rfc5576
https://datatracker.ietf.org/doc/html/rfc5968
https://datatracker.ietf.org/doc/html/rfc6263
https://datatracker.ietf.org/doc/html/rfc6792
https://datatracker.ietf.org/doc/html/rfc7478
http://www.w3.org/TR/2013/WD-mediacapture-streams-20130903
http://www.w3.org/TR/2013/WD-mediacapture-streams-20130903
http://www.w3.org/TR/2013/WD-webrtc-20130910
http://csperkins.org/

Perkins, et al. Expires November 30, 2015 [Page 44]

Internet-Draft RTP for WebRTC May 2015

 Magnus Westerlund
 Ericsson
 Farogatan 6
 SE-164 80 Kista
 Sweden

 Phone: +46 10 714 82 87
 Email: magnus.westerlund@ericsson.com

 Joerg Ott
 Aalto University
 School of Electrical Engineering
 Espoo 02150
 Finland

 Email: jorg.ott@aalto.fi

Perkins, et al. Expires November 30, 2015 [Page 45]

